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ABSTRACT 

Given the inherent dynamics of a viral quasispecies we are often 

interested in the comparison of diversity indices of sequential sam-

ples of a patient, or in the comparison of diversity indices of virus in 

groups of patients in a treated versus control design. It is then im-

portant to make sure that the diversity measures from each sample 

may be compared with no bias and within a consistent statistical 

framework. In the present report we review some indices often used 

as measures for viral quasispecies complexity and provide means 

for statistical inference, applying procedures taken from the ecology 

field. In particular we examine the Shannon entropy and the muta-

tion frequency, and we discuss the appropriateness of different 

normalization methods of the Shannon entropy found in the litera-

ture. By taking amplicons ultra-deep pyrosequencing (UDPS) raw 

data as a surrogate of a real HCV viral population we study through 

in-silico sampling the statistical properties of these indices under two 

methods of viral quasispecies sampling, classical cloning followed 

by Sanger sequencing (CCSS) and Next Generation Sequencing 

(NGS) such as UDPS. We propose solutions specific to each of the 

two sampling methods - CCSS and NGS - to guarantee statistically 

conforming conclusions as free of bias as possible. 

1 INTRODUCTION  

RNA viruses show a high replication error rate due to the lack of 

proofreading mechanisms, and it is estimated that for viruses with 

typically high replicative loads every possible point mutation and 

many double mutations are generated with each viral replication 

cycle, and may be present within the population at any 

time(Domingo et al., 2012). In the case of hepatitis C virus (HCV), 

the viral load -defined as the number of viral particles per ml of 

serum in acutely or chronically infected patients- may reach 107 in 

immuno-competent patients, which roughly means a population of 

circulating particles of 1010-1011 at any given time. This population 

is highly dynamic, with a viral half-life of a few hours, and with 
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the production and clearance of 1010 to 1012 genomes per day in a 

patient (Neumann et al., 1998; Herrmann et al., 2000). Given this 

inherent dynamics we are often interested in the comparison of 

diversity indices of sequential samples of a patient, or among 

groups of patients. These comparisons may be informative of the 

patient evolution or the appropriateness of a given treatment (see 

Suppl. Material). 

Next generation sequencing methods (NGS) will likely be in-

creasingly adopted in clinical diagnostics in the next years. Im-

provements in costs, protocols and coverage are closing the gap 

between what was feasible in research and diagnostics. The first 

diagnostics likely to be moved to NGS will be those currently 

based on classical molecular cloning and Sanger sequencing 

(CCSS) because it is labor intensive and has limited sensitivity. In 

this work we use in-silico sampling from viral reference distribu-

tions to study the statistical properties of diversity indices aimed at 

quantifying RNA virus quasispecies complexity. 

Estimates of the species richness and other diversity indices as 

defined in ecology (see Suppl. Material) are challenging when 

populations are complex in genomic composition (Magurran, 

2010) as is the case with viral quasispecies (Perales et al., 2010; 

Domingo et al., 2012). The approaches in the ecology domain are 

extensive and still very active (Hutcheson, 1970; Heip & Engels, 

1974; Salicru et al., 1993; Pardo et al., 1997; Hellmann & Fowler, 

1999; Chao & Shen, 2003; Walther & Moore, 2005; Jost, 2006; 

Chao et al., 2009; Tuomisto, 2010; Magurran, 2010; Chao et al., 

2010; Nemenman et al., 2011; Colwell et al., 2012) and can be 

useful to the analysis of viral quasispecies. Although the qua-

sispecies definition as a "dynamic distributions of nonidentical but 

closely related mutant and recombinant viral genomes subjected to 

a continuous process of genetic variation, competition and selec-

tion, and which act as a unit of selection" (Domingo et al., 2005) 

conveys an intuitive image of complexity, no comprehensive and 

universally admitted index of quasispecies complexity exists. In a 

large population in equilibrium or with small perturbations, the 

genome frequencies are related with their relative fitness. There are 
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a number of useful indices and variables but none of them fully 

captures that intuitive image. Viral quasispecies complexity may 

be viewed as a multivariate feature, where the number of haplo-

types, of polymorphic sites and their relative frequencies are its 

dimensions. Each of these indices and variables are difficult to 

estimate given the expected diversity of a quasiespecies from 

available data and the limited sample size amenable to analysis 

(Domingo et al., 2012). 

The primary indices measure the extend of the viral quasispecies 

complexity by the number of haplotypes, polymorphic sites, and 

number of different mutations; these may be considered as richness 

indices. Other indices such as the Shannon entropy (S) (Shan-

non,1948) or the Simpson index (Magurran, 2004) measure the 

diversity, or the evenness when normalized to maximum diversity 

(Sn), while others such as the mutation frequency (Mf) or the 

nucleotide diversity (Pi) measure the intra-population heterogenei-

ty, that is how different are the members of the population among 

them. S and Sn, or the Simpson index, are not sensitive to the 

number of mutations. The Simpson index has been less used with 

viral quasispecies (Nowak et al. 1991, Wolinsky et al. 1996), as it 

provides a more stable although less sensitive measure of diversity 

by downweighting the rare haplotypes. Mf measures the heteroge-

neity with respect to the most represented (dominant) sequence 

(Ramirez et al., 2013) or the consensus sequence of the population 

(Cabot et al., 2000). Pi gives the global population heterogeneity, 

taking into account the average number of mutations between each 

pair of individuals in the viral population (Nei, 1987). Each of 

these variables describe a different part of the mutation space 

occupied by a quasispecies, and they all provide relevant infor-

mation regarding mutation barriers to antiviral treatment re-

sistance.  

We studied by in-silico sampling the distribution and properties 

of three of the most common variables used to quantify the viral 

quasispecies complexity in the literature, the diversity through S 

and Sn and the heterogeneity through Mf. The quasispecies rich-

ness by the number of estimated haplotypes in the population is 

also studied because of its implications on Sn and Mf. We propose 

methods for inference for each sampling scheme - CCSS and NGS 

- with these complexity indices. 

2 METHODS 

2.1 Basic assumptions 
To make simulations of CCSS or NGS sampling experiments we need 

the distribution of haplotypes of a viral quasispecies. We can empirically 
approach a 1010 genomes distribution by taking the raw data from high 

coverage amplicon UDPS experiments of samples of a wide complexity 

spectrum as reference distributions.  
Simulations of measures by CCSS will be obtained by in-silico sampling 

a given number of particles from the reference distribution, where any 

particle has the same probability to be sampled. Simulations of measures 
from NGS data will be obtained by in-silico sampling a number of particles 

from these distributions and setting an abundance filter, corresponding to 

RT+PCR+NGS noise levels (Huse et al., 2007; Vandenbroucke et al., 
2011; Beerenwinkel & Zagordi, 2011; Gilles et al., 2011; Prosperi et al., 

2011; Mild et al., 2011; Archer et al., 2012; Flaherty et al., 2012; Macala-

lad et al., 2012; Prosperi & Salemi, 2012; Zagordi et al., 2012; Beerenwin-
kel et al., 2012; Loman et al., 2012). 

 

This study is based on the following set of basic assumptions: 

a. A very high coverage (~x50,000) UDPS amplicon dataset from 

patient samples of HCV may be considered as a coarse approximation to 
the high complexity of RNA virus quasiespecies, and the observed distribu-

tion of haplotypes may be used as a viral population reference distribution 

from which to sample viral particles. 
b. A CCSS in-silico experiment consists in sampling a given num-

ber of viral particles from a reference distribution. All obtained sequences 

are accepted as true members of the population. Measures of viral qua-
sispecies complexity are then computed from the observed haplotypes and 

frequencies. 

c. The NGS methods have a noise level, due to RT + PCR + se-
quencing errors, below which we may not distinguish true from erroneous 

mutations. Any data treatment of amplicon NGS sequences requires some 

sort of abundance filter to exclude artefactual haplotypes and point muta-
tions. 

d. As a simple approach, a NGS in-silico experiment consists in 

sampling a given number of molecules from the reference distribution, 
followed by an abundance filter to exclude all haplotypes with abundance 

below the noise level. Measures of viral quasispecies complexity are then 

computed from the filtered haplotypes and frequencies. 

2.2 Indices of diversity, definitions and equations 

We give in the Suppl. Material all relevant definitions and equations 

used throughout this work. Definitions related to viral quasispecies and to 

diversity indices. And all the equations with and without bias corrections. 

2.3 Distribution of diversity measures 

The distribution of a variable measuring viral quasispecies complexity 

obtained by a CCSS experiment will be estimated by repeating a number of 
times (2000) an in-silico sampling of a given number of viral particles, and 

computing such variable each time. In this study we repeated a number of 

times experiments with 20 and 50 clones, covering the most common range 
of sample sizes in the literature. The distribution of NGS measures was 

obtained by repeating the same number of times (2000) in-silico samplings 

of 400 and 1000 reads sampled from the reference populations, filtering at 
a noise level of 0.5%, and computing the complexity variables each time. 

This is a feasible expected mean coverage in clinical settings, with about 50 

samples in a 454 Junior plate.   

2.4 Shannon entropy normalization 
In the ecology literature the Shannon entropy (Suppl.Eq. I) is normalized 

to the natural logarithm of the number of estimated species in the popula-
tion (Suppl.Eq. VI) so that a population where all species are equally 

represented corresponds to a maximum entropy of 1, whereas a population 

with a single species is a population of minimum entropy, with Sn = 0. In 
the virology literature we observe other two normalizations. Either to 

log(N) (Pawlotsky et al., 1998; Cabot et al., 2000; Grande-Perez et al., 

2002; Abbate et al., 2005) or to N (Fishman & Branch, 2009; Nasu et al., 
2011; Nishijima et al., 2012), where N is the sample size, that is the number 

of clones in each sample. The normalization to log(N) is justified by saying 

that maximum entropy is attained when all observed molecules are differ-
ent. These two normalizations are sample size-dependent, that is, having 

the same S for two samples of different size from the same population we 

obtain two different Sn. Normalizing to log(N) may be accepted when the 
number of clones of all samples to be compared is the same as in (Pawlot-

sky et al., 1998; Abbate et al., 2005) but lacks justification otherwise.  

A different measure of Shannon entropy may be obtained by the average 
of the per-site S, which would be normalized to log(4) for nucleotide 

sequences, or to log(20) for amino acid sequences - the natural logarithm of 

the alphabet size.  
In this study we use the per-haplotype S, with Sn normalized to log(h), 

where h is the number of estimated haplotypes in the population, according 

to the definition of Shannon entropy used in ecology. Note that the mean-
ing of the three normalizations is different. With S/log(N) and S/N a scaled 

version of S with equivalent statistical properties, and S/log(h) requiring 

the estimate of h and influenced by its distribution.  
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Fig. 1.  
A) Quasiespecies profile as a cumulated distribution of the three reference 

populations used in the study. In abscissa the haplotypes are ordered pri-

marily by the Hamming distance to the most frequent haplotype, and ties 
are determined in descending order of frequency. The first haplotype is the 

dominant one, while the last is the one showing more differences respect to 

the dominant and with a lower frequency in the population. The flatter the 
profile, the less complex is the quasispecies. 

B) Quasispecies profile as a frequency distribution with the haplotypes 

ordered by decreasing frequency, the plot shows a detail of the full plot to 

view the impact of filtering on each of the three viral populations, with a 
dash-dot line at the 0.5% threshold. 

2.5 Rarefaction 
When the expected value of a diversity index depends of the sample size 

we render comparable two samples of different size by rarefaction. The 

process of rarefaction (Magurran, 2010) is defined as a repeated resampling 

without replacement from a sample to a smaller sample size. In ecology it 
is specifically used to compare species richness values, and to construct 

rarefaction curves. This is particularly useful for biased estimators where 

the bias is a function of the sample size, as the number of haplotypes, S and 
Sn. 

2.6 Fringe trimming 
When filtering the haplotypes of a NGS experiment above a given noise 

level, say 0.5% for instance, because of the sampling process there are 
chances to accept haplotypes with real abundances below 0.5% while 

rejecting haplotypes which are above 0.5% in the population. This produces 

fringes of haplotypes at the lower end of the NGS filtered sample which 
could compromise the comparison of samples. A conservative way to make 

comparable samples of filtered data, eventually of different sizes, is to trim 

these fringes up to a given confidence level. Fringe trimming and haplotype 
filtering may be carried out in a single step by excluding all haplotypes 

with  

 
 that is, by excluding the haplotypes with ni reads for which the probabil-

ity to observe up to ni counts in a sample of size N, when the haplotype 

abundance in the population is 0.5%, is lower that 90%. Both the noise 
level and the confidence level may be modified as required. 0.5% and 90% 

are just given as examples, which fit our requirements on HCV NS3 sam-

ples, according to previous experience (Gregori et al. 2013, Ramirez et al. 
2013). In the Suppl. Material we show results filtering at 0.2% and at 1%, 

and trimming at a different confidence levels.  

2.7 Software and statistical methods 
The in-silico sampling and all the computations and graphics were done 

on the open source R language and environment (R Core Team, 2013) 

using default libraries, and libraries in the Bioconductor project (Gentleman 
et al., 2004) as the Biostrings library (Pages et al., 2012). The R scripts are 

available upon request. NGS data simulations from a set of haplotypes of 

the high complexity population were performed by the Grinder program 
(Angly et al. 2012) with the parameters described in the Suppl. Material. 

2.8 Data 
Samples from two patients, one with an acute VHC infection and another 

with a chronic VHC infection were used to obtain the reference distribu-

tions used in the in-silico sampling. Six amplicons covering the NS3 HCV 

region were compared. The methods and protocols followed from patient 

sampling to UDPS sequencing have been described elsewhere (Cubero et 

al., 2013). A coarse quality filter is used on the raw 454 reads to exclude all 

haplotypes represented by a single read, or those with more than 2 indeter-

minations or 3 gaps. We took the haplotype distribution of three of these 

amplicons as reference distributions of examples of quasispecies with low-, 

mid- and high-complexity. The corresponding fasta files are included in the 

supplementary material, with frequencies (number of reads and percentage) 

in the header of each haplotype. The characterization of these reference 

quasispecies, along with the number of reads obtained in sequencing are 

given in Table 1. Although the reference distributions are based on HCV 

patient samples, we think that the conclusions are equally extensible to any 

virus passing through a RNA phase.  

2.9 In-silico sampling 

The statistical properties of diversity indices are studied by in-silico 

sampling from the reference distributions described above. The sampling is 

done by generating n random integers, where n is the sample size, between 

1 and N, where N is the number of molecules in the reference population, 

with replacement, and assigning each random number to the corresponding 

haplotype by the population cumulative distribution (Fig. 1A).   

 

3 RESULTS 

3.1 Data characterization 

Three reference distributions of different levels of viral qua-

sispecies complexity - low, mid and high - are used as data sets 

(Table 1). The profile of these quasispecies populations may be 

depicted by the cumulative distribution of its haplotype frequencies 

(Fig. 1A). A complementary plot in Fig. 1B gives the haplotype 

frequencies in descending order, with a dash-dot line at the 0.5% 

cut-off showing the incidence of filtering on each population. On 

the other hand Suppl. Table 1 shows the effect of filtering at dif-

ferent noise levels on the reference populations. The most dramatic 

change is produced on the number of haplotypes, followed by the 

number of polymorphic sites. Mf and Pi show a smooth transition, 

while Sn displays a similar behavior except for the mid-complexity 

population where larger changes are observed. Increasing levels of 

filtering are considered as the gradual elimination of genomes of 
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low replication fitness. The number of reads excluded by these 

filters are particularly high for the high-complexity population 

where filtering at 1% abundance represents the exclusion of 42.5% 

of the population. This is consistent with the production of tails of 

low fitness mutants from each of the haplotypes with enough 

replicating fitness. 

 

Table 1.  Characterization of viral quasispecies population distri-

butions used in the simulations. 

 
Popul. Reads Hplot. Polym. 

sites 

Max, 

Diff. 

Sn Mf Mean 

diffs. 

Pi 

Low 42436 496 300 4 0.2194 5.089E-04 0.39 1.012E-03 

Mid 43300 550 269 6 0.2562 1.449E-03 0.93 2.502E-03 

High 52250 2064 266 14 0.5705 1.198E-02 5.23 1.585E-02 

 

3.2 Inference on complexity values in CCSS 

We studied the distribution of S, Sn and Mf for CCSS samples of 

20 and 50 clones respectively, by 2000 replicates of in-silico sam-

pling, for each of the three populations. The median of the ob-

served values and the standard deviations are given in Suppl. Table 

2A. The corresponding boxplots are shown in Fig. 2A. Mf shows 

no bias with respect to the population value in any of the three 

populations. For S and Sn we observe a bias with respect to the 

population value which is sample size-dependent. When compar-

ing pairs of samples of size 20 and 50, this differential bias could 

bring to the wrong conclusion that they come from populations of 

different diversity. 

When applying the bias corrections of Hutcheson (Suppl.Eq. II) 

(Hutcheson, 1970) and Chao1 (Suppl.Eq. III) (Chao et al., 2009) 

the bias is partially corrected but remains sample size dependent 

(Suppl. Table 2B and Suppl. Fig. 1). When applying the rarefaction 

of the samples of size 50 to size 20 the median values of both 

samples are brought to the same level (Suppl. Table 2C and Suppl. 

Fig. 2) and the samples become comparable despite the different 

sample size.   

In conclusion, the Mf values are not biased and may be directly 

compared with no further precaution, but the comparison of S or 

Sn values requires a bias correction. When the sizes of the two 

samples being compared are unbalanced, the comparison of S or 

Sn requires also the rarefaction of the big sample to the small 

sample size (see box 1). Inference is carried out by the t-test 

(Suppl.Eq. XI) (Hutcheson, 1970). 

3.3 Inference on complexity values in NGS 

We have taken 400 and 1000 reads as feasible sample sizes in a 

clinical setting for the determination of the viral complexity by 

NGS, with the same ratio as the 20 and 50 clones used in CCSS. 

Now we consider as population diversity values those obtained 

from the populations filtered at the noise level (Suppl. Table 2D). 

That is, the values which at best could be obtained by NGS.  

When filtering at the noise level most 'rare' haplotypes are re-

moved and the bias correction on S and Sn, as seen under CCSS, 

has a lower impact. On the distribution of 2000 replicates of sam-

ples of 400 and 1000 reads, filtered at 0.5%, we still observe a 

sample size differential bias, not only for S and Sn, but also for Mf 

in this sampling scheme (Suppl. Table 2D and Fig. 2B). The bias 

correction of Hutcheson (Suppl.Eq. II) has a limited impact, as 

expected. 

We observed that the filtering has effects which depend of the 

sample size, as may be seen in Fig. 3A with a scatterplot of the 
number of haplotypes observed on 2000 replicates of pairs of 

samples of size 400 and 1000. The small samples are clearly biased 

towards higher number of haplotypes despite being sampled from 

the same population, and filtered at the same abundance level. This 

effect is explained by the lower frequencies at which the same 

haplotypes are observed when increasing the sample size, particu-

larly for those at the lower frequency end. The number of haplo-

types observed before filtering in the big samples is higher than 

those observed in the small samples. As a consequence the relative 

frequencies of the same haplotypes are lower in the big than in the 

small samples. This is illustrated in Fig.3B where we show a 

barplot with the probabilities to observe an haplotype at a frequen-

cy of 0.5% in the population with a number of reads up to a given 

number of counts, both for samples of size 400 and 1000. The 

probability to observe such haplotype in a sample of size 400 with 

up to 2 reads is higher than the probability to observe the same 

haplotype in a sample of size 1000 with up to 5 reads. 

According to this observation, after filtering at noise level, the 

small sample carries more information than the big sample. So the 

clean big sample is not useful for rarefaction. Instead the basis for 

rarefaction should be the raw big sample, including all rare haplo-

types and artifacts. At each rarefaction cycle the resampled reads 

should be filtered previously to compute the diversity indices. An 

alternative strategy could be trimming the haplotype fringes at 

noise level at a given confidence level. The effect of this additional 

filtering is seen by comparing Fig. 3A and Fig. 3C. The bias of S, 

Sn and Mf is also greatly reduced (Suppl. Fig.3). To assess the 

sensitivity of this method to small changes in the parameters we 

explored the results filtering at levels of 0.2% and 1%, and trim-

ming at 80%, 90% and 99% confidence. Filtering deeper, into the 

noise level at 0.2%, the differential bias is exacerbated for S and 

Sn, and a differential bias is introduced in Mf. In these circum-

stances the fringe trimming alleviates both, the absolute and the 

differential bias, of S, Sn and Mf, but does not completely cancel 

them. On the other hand filtering well above noise level, at 1%, the 

absolute and the differential bias are rather limited and the fringe 

trimming strategy alone is able to compensate for the differential 

bias (See  Supplementary Materials Parameters Sensitivity.doc). 

Finally to assess the generality of the two strategies (rarefy the raw 

sampled data, and fringe trimming) we performed a prospective 

simulation study using the Grinder program (Angly et al. 2012) to 

simulate NGS data on the 18 clean haplotypes of the high com-

plexity population, with corresponding frequencies. We used a 

linear error rate profile with three different mean error rates 

(0.15%, 0.25% and 0.35%) and with three different slopes each. 

This simulation confirmed that the fringe trimming approach re-

duces both bias and differential bias, with the rarefaction giving 

the minimum differential bias, but showing higher absolute bias 

(See Supplementary Materials Grinder Simulations.doc). 

In conclusion under the NGS sampling scheme the comparison of 

diversity indices - S, Sn and Mf - requires of rarefaction or haplo-

types fringe trimming above noise level. When the sizes of the two 

samples being compared are markedly unbalanced the use of rare-

faction should be preferred for S and Sn. The fringe trimming 

suffices for Mf in either case. The use of analytical formulations of 

rarefaction for S and Sn (Chao et al. 2013) is not possible with 

NGS data as the abundance filter discards singletons, doubletons, 

and rare haplotypes in general. Resampling should be used instead  
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Fig. 2.     A) Boxplots with the distribution of the observed values of S, Sn and Mf in 2000 replicates  CCSS experiments of size 20 and 50, for each of the three viral populations. B) Boxplots with the 

distribution of the observed values of S, Sn and Mf in 2000 replicates of NGS experiments of size 400 and 1000, filtering at a noise level of 0.5%, for each of the three viral populations. 
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(see box 2). Use the Z test on S (Suppl.Eq. V), Sn (Suppl.Eq. V 

with VI and VII) or Mf (Suppl.Eq. X). 

4 DISCUSSION 
Quasispecies dynamics represents an important challenge for the 

control of infectious diseases associated with RNA viruses and 

some DNA viruses. In particular we are interested in improved 

molecular diagnosis of B and C hepatitis viruses which are respon-

sible for more than 500 million of chronic infections worldwide. 

As strongly evidenced by recent reports, viral quasispecies  com-

plexity, measured by diversity indices, has clear clinical relevance 

in the course and  prognosis  of these diseases. Moreover the ade-

quate diagnosis of quasispecies complexity has direct implications 

for antiviral treatment failure because of its reflection in genetic 

barriers to resistance (Margeridon-Thermet et al., 2009; Solmone 

et al., 2009; Sarrazin & Zeuzem, 2010; Homs et al., 2011; Poordad 

et al., 2011; Jacobson et al., 2011; Powdrill et al., 2011; Liu et al., 

2011; Nasu et al., 2011; Perales et al., 2012; Homs et al., 2012; 

Nishijima et al., 2012; Margeridon-Thermet et al., 2013; Cheng et 

al., 2013; Jardim et al., 2013). Because of these reasons it is para-

mount to establish a standard method of measuring and comparing 

diversity indices with statistic grounds and fitted to the expected 

degrees of viral quasispecies complexity. 

We argue that the virus field would benefit of implementing solu-

tions already established in ecology to compare diversity indices. 

Useful connections between ecology and viral quasispecies have 

been previously established. Self-organization of subpopulations 

from a viral quasispecies that exhibited competition-colonization 

dynamics was approached by applying ecological models of biodi-

versity in spatially structured habitats (Tilman, 1994). The study 

revealed that host cell killing by viruses can be modulated by a 

tradeoff between competition and colonization, and suggested a 

model of virus virulence based on intramutant spectrum interac-

tions (Ojosnegros et al., 2010). Also niche theory of competition 

communities and the replicator-mutator equation were combined to 

show that a typical quasispecies profile required both competition 

and cooperation among variants (Arbiza et al., 2010; Vignuzzi et 

al.,2006). 

By a review of methods used in ecology that could be approached 

to describe RNA viral quasispecies, and thanks to deep coverage 

amplicon UDPS data which has been used as source of in-silico 

sampling, we have studied the behavior and statistical properties of 

S, Sn and Mf under the sampling schemes of CCSS and NGS.  

By CCSS we may sample any virion with equal chance, but their 

estimated frequency will never be lower than 1/N, the granularity 

or resolution of the device, where N is the number of clones in the 

experiment. That is, when using 20 clones, no observed haplotype 

will have an estimated frequency in the population below 5%. This 

granularity together with the very high diversity of RNA viruses 

causes a systematic bias in the estimation of S and Sn. On the other 

hand Mf does not suffer of estimation bias. Another consideration 

for the CCSS method is that we lack any means to control whether 

any of the observed clones are artefactual or of very low abun-

dance. In a recently published study (Ramirez et al., 2013) we 

compared experimentally a patient sample of HBV sequenced in 

replicates by UDPS (two 454-FLX+, one 454-FLX, and one 454 

 

Fig. 3.     A) Scatterplot with the number of observed haplotypes in pairs of 

samples of size 400 and 1000 after filtering the haplotypes below the noise-

level. The clouds are biased to higher values for the small samples. 

b) Plots with the cumulated probabilities to observe an haplotype with an 

abundance in the population at the noise level (0.5% here) with growing 

number of reads, for samples of size 400 and 1000. The numbers inside the 

bars give the number of reads, on top, and the percentage in the sample 

below. 

C) Scatterplot with the number of observed haplotypes in pairs of samples 

of size 400 and 1000 when the haplotype fringes have been trimmed at a 

90% confidence level. The clouds are now centered on the diagonal. 
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Box 1 - Quasispecies diversity inference on S, Sn or Mf 

with CCSS samples 

1. Establish the significance level. 
2. Specify the null and alternative hypotheses. 

3. For Mf compute variance and go to step 7. For S or Sn follow 

to next step. 
4. Use Chao1 (Suppl.Eq.III), or other methods to estimate the 

number of haplotypes in the population  from the distribution 

of haplotypes in the sample. 
5. Correct the bias in S or Sn by Hutcheson (Suppl.Eq.II), prefer-

ably to the third term, using the estimated number of haplo-

types and the sample size. 
6. If the samples to be compared are unbalanced rarefy the big 

sample to the size of the small one to obtain an estimate of S or 
Sn and its variance. Use the observed value and the computed 

variance for the small sample, and the rarefied values of S or 

Sn and variance for the big sample. 
7. Test the null hypothesis by the Welch t-test (Eq,XI) and com-

pute the CI. 

Box 2 - Quasispecies diversity inference on S, Sn or Mf 

with NGS samples 

1. Establish noise level by controls 
2. Establish the significance level. 

3. Specify the null and alternative hypotheses. 

4. Clean the NGS sequences by the method of choice. 
5. Trim haplotypes at the noise level, at 90% confidence. 

6. Correct the bias in the Shannon entropy by Hutcheson 

(Suppl.Eq.II), preferably to the third term 
7. Compute variances by the theoretical expression. 

8. If the samples to be compared are unbalanced use rarefaction 

before filtering, as in box 1. 
9. Test the null hypothesis by the Z test (Eqs.VI,X) and compute 

the CI. 

Junior, in the forward and reverse) and by 150 sequences obtained 

by CCSS. Among the 36 singleton haplotypes by CCSS, 10 were 

also identified by UDPS in 5 to 8 of the UDPS replicates, and 24 

could not be identified in any of the replicates with a total of 96221 

quality filtered reads covering the full amplicon. As an example, 

filtering at 0.5% the high complexity reference population, a 

36.2% of the reads are removed (Suppl. Table 1), which means that 

in CCSS experiments, on this kind of viral populations, roughly 

one out of each three clones observed will correspond to haplo-

types below 0.5% in the population. 

Under the assumption that all observed clones are true members of 

the population, we observed by this sampling scheme that S and Sn 

are biased, and that the bias is sample size-dependent.  We ob-

served also that S shows a better behavior to analytical bias correc-

tion than Sn, and that Mf is an unbiased estimator. A less biased 

comparison of S or Sn values between samples requires of intra-

sample normalization, composed of terms of correction (Suppl.Eq. 

II and III). When the sample sizes are unbalanced the normaliza-

tion requires a rarefaction of the big sample to the small sample 

size as well.   

On the other hand, NGS methods are highly sensitive and repro-

ducible, but they are limited by the technical noise level. By dis-

carding observed haplotypes our diversity estimates are biased 

with respect to the true population values. We may nevertheless 

consider the haplotypes below the 0.5% frequency in our example 

as spurious or of low biological relevancy at the sampling time 

point. In this case we used the diversity values of the filtered popu-

lation as gold standard, being the best we can achieve by NGS. We 

observed a sample size-dependent bias both on S, Sn and Mf.  

The minimum differential bias is provided by rarefaction for S and 

Sn. For Mf fringe trimming provides an unbiased comparison. 

When the samples to be compared are not very unbalanced and the 

abundance filter is above noise level, fringe trimming could give 

good results for both S, Sn and Mf.  

The in-silico sampling and simulation allowed us to assess the 

validity of the estimate and tests used in ecology when dealing 

with viral quasispecies with S, Sn and Mf, and permitted to identi-

fy the key points for less biased comparisons of complexity indices 

under the same sampling scheme.  

In this work we have empirically studied the statistical properties 

of S, Sn and Mf when observing the quasispecies viral complexity 

either by CCSS or by NGS, and through this we assessed the 

means for less biased comparisons of complexity indices. These 

methods could  allow us to statistically conclude whether a viral 

quasispecies is expanding or contracting in diversity, independent-

ly of the size of the samples being compared.  

In the supplementary material we give the formulation, and in 

boxes 1 and 2 we propose the methods of data treatment for infer-

ence for each of the two methodologies, CCSS and NGS. 
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