Experiences Deploying a Large-Scale Emergent
Network

Bryce Wilcox-O’Hearn

Zooko.Com Software Engineering
zooko@zooko . com

Abstract. “Mojo Nation” was a network for robust, decentralized file
storage and transfer. It was first released to the public in July, 2000,
and remained in continuous operation until February, 2002. Over 100,000
people downloaded and used the Mojo Nation software. We observe some
surprising and problematic behavior of the users as a group. We describe
several specific problems in the design of Mojo Nation, some of which
appear to be soluble with simple practical improvements, and others of
which are not yet addressed in the literature, suggesting opportunities
for further research.

Introduction

Mojo Nation[I] was not a file-sharing system (like Gnutella or Napster), but
an “emergent file store”, in which the storage, transfer and naming of files was
performed in a decentralized manner, independent of any individual node. It had
much in common with systems like CFS[2], PAST[3] and OceanStore[d], both in
goals and in design. Mojo Nation was designed from the start with ambitious
goals of attack-resistance and scalability.

The first version of Mojo Nation was released to the public in July of 2000. It
had many advanced features, but deployment to large numbers of end users in-
evitably revealed its architectural deficiencies. During its lifespan, its developers
deployed literally hundreds of changes to the protocol in response to observed
behavior and in order to take advantage of newly discovered techniques. For
example, in August of 2001, shortly after reading a pre-print of [5], we deployed
a new version that used consistent hashing to locate a block in a set of servers.

We typically observed more than 10,000 downloads of the Mojo Nation soft-
ware per month, as shown by statistics published by SourceForge.net[9]. (Note
that before August of 2001 downloads were not hosted by SourceForge, although
some of the web pages were. The higher number of page views in October of 2000
were a result of Mojo Nation being featured on slashdot.org, the consequences
of which will be described below.)

Unfortunately, the vast majority of these users who tried Mojo Nation were
not satisfied by the service it offered, as indicated by the fact that they perma-
nently stopped using the network after trying it only briefly. At its largest, Mojo
Nation never exceeded 10,000 simultaneously connected nodes, and during the

P. Druschel, F. Kaashoek, and A. Rowstron (Eds.): IPTPS 2002, LNCS 2429, pp. 104-{I10] 2002.
© Springer-Verlag Berlin Heidelberg 2002



Experiences Deploying a Large-Scale Emergent Network 105

majority of its 19-month lifespan it had between 100 and 600 persistent nodes.
This paper is motivated by the desire to learn from this failure.

There are many important aspects of the Mojo Nation product which we
must omit from consideration in this paper. These include Mojo Nation’s user
interface, marketing, distributed search engine service, lightweight resource ac-
counting scheme, agnostically blindable digital tokens and more. In this paper we
will focus on the basics: the individual nodes, connecting them into a network,
and building a decentralized file store on that network.

Observed Behavior

Frequent Join / Leave

The most surprising and problematic behavior that users of Mojo Nation dis-
played was frequent joining and leaving. We observed that the most common
behavior was to join the network, stay connected for less than an hour, then
leave the network and never return. Measurements taken from two particular 1-
month periods (October, 2000 and February, 2001) indicated that between 80%
and 84% of the users fell into this group of “one-time, less than one hour” group,
and that of the remaining 16% to 20%, a significant fraction stayed connected
for less than 24 hours then permanently disconnected.

Even among the remaining persistent nodes (those that recurringly connected
to the network over a period of weeks), the typical node remained connected for
only a short consecutive time, and only a few times per week. One measurement
taken in April 2001 showed that the average node was connected 0.28 of the
time, and other, less systematic observations suggest that the distribution was
highly skewed, with approximately 1/6 of the nodes connected almost all the
time, and the rest connected approximately 3 hours per day.

The overall picture suggested by these observations is that the “network
half-life”, or the time for replacement of half of the nodes in the network by new
arrivals, was usually less than 1 hour, and at times it was much less than 1 hour.

Varying Space Allocation

The default disk allocation per node in Mojo Nation was originally 100 MB. In
April of 2001 we raised the default to 500 MB. Users can manually adjust that
setting. The Mojo Nation software did not report to us what settings the user
chooses, but we do know from support mail and user feedback that no users have
complained about the default setting, and that many users are quick to point
out that they have raised their limit to a high setting, usually in the range of 10
GB to 60 GB.

Varying Connection Quality

Market research reports (e.g. [7]) typically suggest that around 13% of Internet
users have broadband connections, and the rest use relatively slow and intermit-
tent dial-up connections. Anecdotal evidence from Mojo Nation was consistent



106 Bryce Wilcox-O’Hearn

with this. However, there was an active minority of users with very high qual-
ity connections (including academic and corporate networks). These users also
tended to be in the minority that stay consistently connected and in the minority
that allocate large amounts of disk space.

Routability

Measurements taken at various times over the life of the Mojo Nation network
always returned the same answer: 1/3 of Mojo Nation nodes were not directly
reachable from the Internet, as observed by the fact that they did not have
routeable TP addresses. In addition, some unknown number of users may have
had routeable IP addresses, but may have been behind firewalls that did not
allow incoming TCP connections.

Which Parts Worked?

Mojo Nation was a complex system and it is difficult to ascribe its successes
to individual components. It could be described in general as a file storage and
transfer network in which there is a mechanism for global coordination with-
out communication (e.g. consistent hashing to locate nodes and data blocks in a
ring), and in which individual nodes use local information to decide how to store,
transmit, replicate and cache data. When Mojo Nation worked, it was a demon-
stration that such a network can be deployed and operated in an environment
made up of unmanaged volunteers.

When Mojo Nation failed, its failures can more easily be ascribed to partic-
ular design elements.

Which Parts Failed? (Open Problems)

Original Introduction

The only failures which rendered the network completely unusable for all new
users (not counting occurences of the authors releasing a new version with fatal
bugs), are failures of original introduction. “Original introduction” is the problem
of how a node connects to the network for the first time, when it does not yet
have any connections to any other nodes in the network. The first version of
Mojo Nation used single central introducer. Each new node would contact that
introducer and receive in response a list of other nodes.

The Great Slashdotting of October 2000 was a dramatic demonstration of
the inherent weakness in this design. In October 2000 an entry was posted on the
popular web site slashdot.org headlined: “Forget Napster & Gnutella: Enter Mojo
Nation” [§]. The next day our web server reported that downloads of the software
had rocketed from 300 copies per day to almost 10,000 copies per day. The
central introducer was totally overloaded and was not returning any responses
to any users. We struggled for days to make the server operate, but it wasn’t



Experiences Deploying a Large-Scale Emergent Network 107

until the flash crowd had died down and we took the time to implement a new
system of introduction (involving multiple redundant but still centrally managed
introducers), that the network became usable again.

The issue of original introduction is largely ignored by the extant literature.
There are several solutions to the problem in use on currently deployed net-
works including redundant centrally-administered introducers (FastTrack, Mojo
Nation), bundling a list of original contacts with the download of the software
(Limewire, Freenet), asking users to manually configure the original connection
(Freenet), and combinations of more than one of these techniques (Limewire).

The scalability, security and attack-resistance trade-offs implicit in these de-
sign decisions have not been publically analyzed as far as we know.

Data Availability

Even when the network as a whole was working, a very common failure was
that the data that a user sought was unavailable. We ascribe the source of that
problem to our design’s failure to accomodate the highly unreliable behavior
of the nodes. Simultaneously, we believe that the primary reason for frequent
join/leave behavior was that the data users sought was unavailable. This con-
stitutes a “chicken-and-egg” problem, which was exaccerbated instead of solved
by other elements of our design.

We repeatedly tuned our replication and information dispersal design in order
to counteract this problem, but even at the best, data availability was variable,
and appeared to depend upon which server nodes were connected at the time
an observation was made.

There were two significant mistakes that Mojo Nation made which can be
easily avoided.

The first was that it did not discriminate against newly joined nodes. As
described in [6], the length of time that a node has been continuously connected
to the network is a good predictor of the length of time that it will remain
connected into the future. A simple heuristic to favor long-lived nodes, such
as that proposed in [6], would have reduced the problems caused by frequent
join/leave behavior.

The second was that Mojo Nation used an erasure code to split the data
into a set of shares such that any sufficiently large subset of the shares would
suffice to rebuild the data. The number of shares required to rebuild the data
was equal to 1/2 of the total number of shares generated. This was intended
to increase data robustness, but if the availability of the underlying shares is
less than the “required to total” ratio (in this case, less than 1/2), then such an
erasure code has the opposite of the intended effect, dramatically reducing the
robustness of the data. We believe that the other problems of data availability
were thus compounded by the addition of an erasure code with a “required to
total” ratio that was too high for the actual behavior of the nodes.

As noted in the “Future Research” section of [2], the issue of how to manage
block storage in the face of servers joining and leaving remains mostly open. More
sophisticated caching and replication strategies will hopefully ameliorate this



108 Bryce Wilcox-O’Hearn

problem. In addition “reputation” or “trust metric” techniques such as described
the section on “Attack Resistance” below might help by discriminating against
unreliable servers. Mojo Nation deployed software which attempted to do exactly
that, but the interaction between this discrimination and other design goals is
not well analyzed.

Other Open Problems

Bypassing Firewalls and NAT

The challenge of enabling nodes that live behind firewalls or NAT to act as
servers is a challenge that most deployed systems do not yet attempt to address.
It is also likely to become more rather than less important in the future as
the size of the Internet grows and as application-level connections cross more
administrative boundaries.

Mojo Nation used a “relay” technique in which a third node helps two fire-
walled nodes to communicate with one another, similar in principle to [10].

Attack Resistance / Malicious Nodes / Mutual Distrust / Motivation
to Cooperate

Perhaps the most challenging unsolved problem is that of mutual distrust. While
a network architect is tempted to assume that all nodes in the system behave as
he designed them to behave, this assumption may prove fatal once a network is
deployed into multiple disjoint administrative zones.

A fundamentally related issue is that of “motivation to cooperate”. Why
does a node choose to offer services to the network as well as to make requests
of the network? Is there anything preventing a user from altering their copy of
the software, or writing their own compatible implementation, which uses the
resources of the other nodes but refuses to provide its own resource to them?

Also closely related is the notion of “attack resistance”. If a node can use the
resources of other nodes without offering them service in return, then it is able to
act as a drain on the resources of the network as a whole, possibly constituting
a denial-of-service attack on the entire network.

On the other hand, if a node can be coerced into cooperating, perhaps by
cutting that node off from the services of the network in retaliation for its lack
of cooperation, how can we be sure that the same mechanism cannot be used to
attack specific (innocent) nodes, or even to attack the network itself?

Hopefully the research pursued in papers like [I1] and [12] will lead to a
quantitatively justified method of gaining attack resistance without sacrificing
other design goals.

Mojo Nation’s experience shows that there are two kinds of attack that are
likely to be encountered by any network that is deployed in a large scale on the
Internet.

The first attack is when a user alters his client in the attempt to gain more
advantage for himself. Several different users made such modifications to their



Experiences Deploying a Large-Scale Emergent Network 109

Mojo Nation software and then helpfully contacted us to describe what they did.
Other users have made modifications, but we are aware of those changes only
indirectly through observations of anomalous behavior.

The second kind of attack is when an enemy attempts to remove central
components of the network through legal means. Legal action was recently
initiated[13] against the Fast Track network even though the only centrally
administered components are the original introducer service and the design,
implementation and distribution of the software.

Conclusion

As an emergent file store, Mojo Nation was partially a success and partially a
failure. The parts that failed were a centralized original introduction mechanism
and a data storage scheme that proved too fragile when deployed on a network
with a surprisingly short half-life.

These two problems can be straightforwardly solved in practice, and they
also present possible directions for the advancement of theory.

In addition, we believe that any long term, large scale emergent network will
need to address the “other open problems” of attack resistance, malicious nodes,
mutual distrust, and motivation to cooperate.

References

1. Web Site: Mojo Nation.
http://mojonation.net/

2. Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., Stoica, I.: Wide-area coop-
erative storage with CFS. Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01) (To appear; Banff, Canada, Oct. 2001).
http://citeseer.com/dabekOlwidearea.html

3. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage
utility.
http://citeseer.com/439820.html

4. Kubiatowicz, J., et al.: OceanStore: An Architecture for Global-Scale Persistent
Storage. ASPLOS, December 2000.
http://citeseer.com/kubiatowiczOOoceanstore.html

5. Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H. Chord: A
scalable peer-to-peer lookup service for Internet applications. Technical Report TR-
819, MIT, March 2001.
http://citeseer.com/stoicaOlchord.html

6. Maymounkov, P., Mazieres, D. Kademlia: A Peer-to-peer Information System Based
on the XOR Metric. Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS02).
http://scs.cs.nyu.edu/ " {}{}dm/kpos.pdf

7. Web Site: Press Release: “U.S. Residential Internet Market Grows in Second Quar-
ter”.
http://www.isp-planet.com/research/2001/us_q2.html


http://mojonation.net/
http://citeseer.com/dabek01widearea.html
http://citeseer.com/439820.html
http://citeseer.com/kubiatowicz00oceanstore.html
http://citeseer.com/stoica01chord.html
http://scs.cs.nyu.edu/~{ }{}dm/kpos.pdf

110 Bryce Wilcox-O’Hearn

8. Web Site: Slashdot headline: “Forget Napster & Gnutella: Enter Mojo Nation”.
http://slashdot.org/article.pl?sid=00/10/09/1826243

9. Web Site: SourceForge Usage Statistics: Mojo Nation.
http://sf.net/project/stats/index.php?report=months&group_id=8340

10. Ng, T. S. E., Stoica, 1., Zhang, H.: A waypoint service approach to connect het-
erogeneous internet address spaces. Proceedings of the Usenix Technical Conference
(June 2001), pp. 319-332.
http://citeseer.com/ng0lwaypoint.html

11. Levien, R., Aiken, A. Attack-resistant trust metrics for public key certification. 7th
USENIX Security Symposium, January 1998.
http://citeseer.com/levien98attackresistant.html

12. Dingledine, R., Freedman, M.J., Molnar D. The Free Haven project: Distributed
Anonymous Storage Service. Workshop on Design Issues in Anonymity and Unob-
servability, July 2000 (LNCS 2009).
http://www.freehaven.net/doc/berk/freehaven-berk.ps
http://citeseer.com/dingledine0Ofree.html

13. News Article: “Suit hits popular post-Napster network”, CNet News.Com.
http://news.cnet.com/news/0-1005-200-7389552.html


http://citeseer.com/ng01waypoint.html
http://citeseer.com/levien98attackresistant.html
http://www.freehaven.net/doc/berk/freehaven-berk.ps
http://citeseer.com/dingledine00free.html
http://news.cnet.com/news/0-1005-200-7389552.html

	Introduction
	Observed Behavior
	Which Parts Worked?
	Which Parts Failed? (Open Problems)
	Other Open Problems
	Conclusion
	References

