
AccKW: An Efficient Access Control Scheme for
Keyword-Based Search over RDBMS

Vikram Goyal, Ashish Sureka, and Sangeeta Lal

Indraprastha Institute of Information Technology Delhi
New Delhi, India

{vikram,ashish,sangeeta}@iiitd.ac.in

Abstract. Access control for relational databases is a well researched area. An
SQL query is allowed or denied access to database according to the specified ac-
cess control policy. On the other side, there has been a surge in research activities
to provide keywords-based search interface over RDBMS. This has posed new
challenges for access control enforcement as traditional solutions to access con-
trol will not be efficient for keyword-based search. This paper proposes a frame-
work AccKW, which enforces access control policies on keyword-based search
over RDBMS in the early phases of keywords based search process. The main
contributions of this paper are twofold: (i) we have investigated the problem of
access control in the domain of keyword-based search over relational databases,
and (ii) we have implemented the framework AccKW, and found out that AccKW
outperforms in terms of execution time as compared to the naive approach (brute
force approach) in case of strict access control policy.

1 Introduction

Keyword-based search has become popular with the advent of Internet search engines.
Although it may at times be challenging to end-users to specify a good set of keywords
for their respective queries, due to ease in specification of query keyword-based search
has become one of the mostly used search paradigm in many domains.

Recently, there has been a surge in research activity in the area of keyword-based
search over relational databases [1,2,3,4,5,6,7]. The ability to search relational databases
using keywords allows end-users to search relevant information without any knowledge
of the database schema and SQL. BANKS [2,4,5], DbXPlorer [1] and DISCOVER [3]
are few systems that have been proposed in the recent past. Based on our literature
survey, we observed that the research on keyword-based search on structured or semi-
structured databases has focused on aspects such as strategy for keyword based search,
search effectiveness and efficiency.

This paper focuses on access control for keyword-based search in enterprise domain.
Search in enterprise domain would be different from search in the Internet domain as
the set of users and their information need may be known in enterprise domain. Further,
access control is a critical aspect in enterprise domain which needs to be addressed
to enable wide scale adoption and deployment of keyword-based search solutions on
relational databases. Some examples of access control in enterprise domain are:

S. Kikuchi, S. Sachdeva, and S. Bhalla (Eds.): DNIS 2010, LNCS 5999, pp. 107–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

108 V. Goyal, A. Sureka, and S. Lal

– In a health organization, it may be desired to allow patients to see only their medical
information in the medical database. On the other hand, a doctor should get access
to all the medical information of the patients she is treating.

– In an academic institution information system, it may be desired that a student
should be able to see only her grade. On the other hand, an instructor should be
able to able to access all the grades for a course she has taught [8].

– In a bank database, a customer should be able to see only her bank account infor-
mation. At the same time, a manager in the bank should be able to read transactions
history of each bank account but not the personal information of customers.

Several techniques and models have been proposed as well as implemented in some
of the commercial database management systems [9,8,10,11]. However, access control
for relational databases is a well researched area, but, access control within the con-
text of keyword-based search over relational databases poses certain unique challenges.
According to our knowledge, access control for keyword-based search over relational
databases in an enterprise domain is a relatively unexplored area. The work presented
in this paper lies at the intersection of access control and keyword-based search on
relational databases. Existing access control mechanisms on databases assume only
SQL query interface. They analyze a user provided SQL statement’s FROM clause
and WHERE clause to decide the authorization. There are also some solutions which
transform or rewrite an SQL query into a valid authorized SQL query if the input query
is unauthorized [9,8].

In this paper, we have proposed a framework, AccKW, which integrates access con-
trol routines within the keyword-based search strategy. We identified that in some cases
the naive approach would generate very large number of SQL queries which should
then be processed through access control routines. Incorporation of access control in
the early phases of search methodology drastically reduces the time to generate autho-
rized queries. We define two performance metrics: (i) execution time to generate the
queries and, (ii) number of authorized queries generated, to evaluate the performance
of our framework. Experiments have been performed by varying number of input key-
words, keywords selectivity, database size and access control policy. The results show
that AccKW outperforms the naive approach when the access control policy is strict.

The key contributions of this paper are:

1. we have investigated the problem of access control in the domain of keyword-based
search over relational databases, and have proposed a framework AccKW which
enforces access control policies cost effectively in this domain.

2. we implemented the framework AccKW, and found out that AccKW outperforms
in terms of execution time as compared to the naive approach in case of strict access
control policy.

The rest of the paper is organized as follows. Section 2 describes related work. In Sec-
tion 3, we describe the architecture of the AccKW framework. Section 4 presents our
formal model of access control. Section 5 describes the algorithm used to enforce the
access control policy in keyword-based search system. In Section 6 we describe the
experimentation results. Section 7 concludes the paper.

AccKW: An Efficient Access Control Scheme 109

2 Related Work

The work related to this paper can be discussed from two perspectives: access control
and keyword-based search in RDBMS. We describe the work done in these two areas
in this Section.

There has been extensive work in access control enforcement in relational databases
[9,8,12,13,14]. The most closely related work is the Virtual Private Database (VPD)
model of Oracle [9]. It uses the functions defined on relations by the administrator to
enforce an access control policy. These functions return a predicate string for a given
SQL query from a user, which is appended to the query. VPD is an excellent model
to enforce access control policies but works on a single SQL query at a time. In case
of keyword-based search system, this model will not be efficient as it would require
all the SQL queries either authorized or unauthorized to be generated, whicshould then
be analyzed by VPD model. Our proposed technique enforces access control policies
during formation of SQL queries from input keywords and generates only valid SQL
queries. We then use Oracle’s VPD model to append predicates on the generated valid
SQL queries to get a set of authorized SQL queries.

Similarly, the work proposed in [8,14] also considers a single SQL query and rewrites
that SQL query into an authorized SQL query. These works focus on theoretical aspects
of an SQL query after authorization rewriting. The work in [14] also discusses on op-
timal generation of safe plan of query execution to prevent leakage due to user defined
functions having side effects. All these work are complementary to our work and can be
used after generation of valid SQL queries. The work in [15] and the work in [13], both
have described Cell-level authorization and its implementation techniques. However,
there techniques are not general and are restricted to privacy policy enforcement. They
also consider a single SQL query at a time and rewrites it or filter the query’s result for
enforcement of privacy. We have worked for general purpose access control and prune
unauthorized SQL queries in the earlier phases.

Keyword-based search has been a focus of researchers in database community in the
recent years [1,2,3,4,5,6,7]. They allow an application user to make a query using a
set of keywords. It has made the task of application users easier as neither they should
know and remember the SQL query semantics to search the information nor should they
have knowledge about the database schema. Users input a set of keywords, and they get
a set of ranked results. The search using keywords over databases [1,5] is different from
search over Internet, as keywords are spread among a set of relations due to normal-
ization of database. All the keyword-based search techniques over structured databases
focus on aspects such as strategy for keyword-based search, search effectiveness and
efficiency. None of this work addresses access control enforcement issues.

However, there have been proposed many different strategies for keyword-based
search over relational databases. Our proposed access control enforcement strategy Ac-
cKW can be applied in conjunction with all of these techniques [3,5] in a cost effective
way. For this paper, we choose the technique proposed in DbXplorer [1] as an example.
DbXplorer uses two phases for reporting the result. These two phases are called publish
phase and search phase respectively. In the publish phase, an inverted index is created
using cell values in the database tables. Each entry of inverted index also called master
index or symbol table has three values, i.e. keyword, relation-id and an attribute. The

110 V. Goyal, A. Sureka, and S. Lal

pair <relation-id, attribute> can be seen as a pointer to the table’s attribute having the
keyword as its cell value. The database schema graph is created using entities as nodes
of the graph and primary key and foreign key relationship as an edge. This schema
graph is then used in the search phase, in which input keywords of a user are annotated
on the graph using the inverted index. Then different join trees containing all the input
keywords are generated. Each join tree is finally translated to an SQL query and is exe-
cuted on the database to get a partial result. In this paper, we adapt this technique to our
needs. We call the adapted version of this technique as VarDbXplorer.

3 System Architecture

Figure 1 presents the system architecture of the proposed AccKW framework. The sys-
tem architecture consists of modules already present in the DBXplorer system and ad-
ditional modules introduced by us. The modules added by us are differentiated from ex-
isting modules by applying shading in the system architecture block diagram presented
in Figure 1. As illustrated in Figure 1, we extend the existing DBXplorer system by
introducing three functions: Keyword Tuples Filter, Access Control Policy and Schema
Graph Modifier. The functionality of each of the module is described in the following
paragraphs.

Database

SQL Queries

Keyword
Filtered

Tuples

Keyword
Tuples

Authorised SQL Queries

results

Generator
Query Annotated

Schema Graph

Schema Graph

keywords Output Result

Symbol Table

Keyword tuples

Based Search
Interface

Keywords

Schema Graph

Graph Modifer
Schema

Policy
Access Control

Annotator

Keyword
Tuples
Filter

Schema Graph
Modified

An SQL query to get

Modifier
SQL Queries

Fig. 1. Architecture of AccKW Framework

AccKW: An Efficient Access Control Scheme 111

The Keywords Based Search Interface (KBSI) is the front-end module through which
the application user interacts with the system. The end-user provides query keywords
based on his or her information needs through the KBSI module. The search results
obtained from the underlying Database is presented to the user through the same KBSI
module. Typically, this module can be either a web-based interface or a form-based
interface. The KBSI module is responsible for constructing an SQL query based on
the supplied input keywords. The generated SQL query is then executed on the Symbol
Table (a master index table implemented in the database) to get the keyword tuples. The
resultant keyword tuples are passed on to the Keyword Tuples Filter (KTF) module.

The KTF module applies access control policy rules on these tuples and filters out
keyword tuples having either unauthorized relations or unauthorized attributes. The fil-
tered keyword tuples are eliminated and is not passed on to the next module in the
pipeline for further processing. For example, consider a fine-grained access control rule
which says that if the value of the age variable or field in a record is less than 30, then
such a record should not be accessible to a specific user or role. In such a case, any
keyword tuple consisting of age attribute and having the age value less than 30 will
be filtered out from further processing. The module uses the application users context
information to decide the access control rules for that user. Context information may
include attributes such as role-id, user-id, time and location information.

The Schema Graph Modifier (SGM) module prunes the schema graph for a specific
user using the access control rules applicable to the user. The pruning consists of opera-
tions such as relation node deletion, edge deletion, and specific node attributes deletion
(i.e., node label modification). This module generates a Modified Schema Graph for the
specific user.

The Schema Graph Annotator module takes filtered keyword tuples and modified
schema graph as the inputs and produces an Annotated Schema Graph. This module
annotates the keywords from the keyword tuples on the nodes of the schema graph. The
Query Generator module generates all the valid join trees as described in [1] and forms
the set of valid SQL queries. These valid SQL queries are then processed by the SQL
Queries modifier (SQLM) module. The SQLM module takes each SQL query and the
access control policy as inputs. It appends the predicates to the query by analyzing the
relation and attribute information present in both the SQL query and the access control
policy. For example, consider a rule wherein an access to a relation is authorized only
if the user is accessing his or her information. In such a situation, a predicate checking
for the match in user-id will be appended to the query. The queries generated by this
module are called authorized SQL queries and are executed on the database. The result
set of each query is forwarded to the KBSI module for final display to the application
user.

4 Formal Model of Access Control

We assume that the access control policy has been defined as a set of rules. Each rule
is a quad-tuple (S, A, O, Auth). A rule defines an authorization decision Auth (allow,
deny) for a subject S for an object O (a set of tuples of a table in database) for an action
A. For example, consider a rule (manager, select, project, allow). The rule defines that a

112 V. Goyal, A. Sureka, and S. Lal

manager is allowed to access project table tuples. Subjects represent end-users as well
as groups of users (wherein a group of users can be represented as a role). In general,
an action on databases can be any common operation such as select, insert, update, and
delete. In this paper, we investigate the select operation as it is the most widely used
operation in keyword-based search over RDBMS.

The object component of the rule is specified as a pair: (table exp, predicate). The
first tuple of the pair i.e., table exp is a valid table expression which can be any valid
projection of attributes of a table. The second tuple of the pair i.e., predicate, is either
any valid WHERE clause condition of an SQL query as specified in [9] or a sequence
of tables. If predicate is like a WHERE clause, then it can include exists sub-queries or
conditions on more than one table attributes. For example, consider a rule (salesman,
select, (Employee.salary, salary >20000), deny). The rule denotes that a salesman can-
not access salary of an employee if the salary of that employee is more than Rs 20,000.
We specify following types of rules using above specified quad-tuple (S, A, O, Auth):

1. Entity Constraint. An entity constraint defines authorization for a database rela-
tion for a subject. For an example, rule (student, select, (faculty,), deny) is an entity
constraint and defines that a student is denied any type of access on faculty table.
In other words, relation faculty can not occur in FROM clause of an SQL query
issued by subject student.

2. Context based Entity Constraint. A context based entity constraint defines au-
thorization for a relation by using predicates on attribute’s value. As an example,
rule (student, select, (faculty,student.instructor id != faculty.id), deny) is a context
based entity constraint and specifies that a student is not allowed to access faculty
table tuples if faculty is not student’s instructor.

3. Entity-Attribute Constraint. This constraint defines authorization for attributes
of a database relation. As an example, rule (student, select, (faculty.salary,), deny)
specifies that a student can not access any faculty’s salary information. Further,
salary attribute of faculty relation can not be used any where in the WHERE clause
of an SQL query from student.

4. Context-based Entity-Attribute Constraint. This constraint uses predicates to
define authorization for attributes of a relation. As an example, rule (faculty, select,
(student.marks, student.instructor id != faculty.id), deny) is a context-based entity-
attribute constraint and specifies that a faculty can not access marks of a student if
the faculty is not the instructor of that student.

5. Entity Path Constraint. An entity path constraint defines authorization on a set
of relations in the database. For an example, rule (student, select, (faculty, per-
sonal detail), deny) specifies that a student can not access faculty and personal
detail relation together in a single SQL query.

As described earlier in this Section, access control policy is a set of rules and we do not
define any priority on the basis of ordering of rules in the policy specification. However,
due to presence of both allow and deny decision there may occur a conflict for a query,
in that case we give higher precedence to deny semantics.

AccKW: An Efficient Access Control Scheme 113

5 Algorithm

We present an algorithm in this Section which enforces all the constraint types described
in Section 4 in keyword-based search domain.

Algorithm 1. Algorithm to determine authorized SQL queries for a given set of key-
words
Input: 1. Access control Policy, A

2. Symbol Table, ST
3. A schema graph, G
4. User’s Context Information, U
5. Input keywords from a user U , input keywords

Output: Authorized SQL Queries set output queries

Method:
1. output queries = []
2. key tuples = []
3. for all keyword in input keywords do
4. k tuples = get key tuples from ST
5. key tuples.extend(k tuples)
6. end for
7. filtered key tuples = prune-key-tuples(key tuples, A, U)
8. if ∀ k ∈ keywords, k �∈ key tuples then
9. return output queries

10. end if
11. pruned graph = prune-graph(G, A, U)
12. annotated gr = annotate-graph(pruned graph,filtered key tuples
13. valid trees = get-valid-join-trees(annotated gr)
14. pruned trees = prune-trees(valid trees)
15. valid queries = get-valid-queries(pruned trees)
16. output queries = rewrite-queries(valid queries, A, U)
17. return output queries

We now describe functions prune-key-tuples(key tuples, A, U), prune-graph(G, A,
U), prune-trees(valid trees) and rewrite-queries(valid queries, A, U) invoked in Al-
gorithm 1.

– prune-key-tuples(key tuples, A, U): In this function, all the keyword tuples which
are not accessible to the user are removed. This function uses first four types of con-
straints to determine removable keyword tuples (keyid,relid,attid) in the following
way:
• A keyword tuple will be removed if it contains a relid value also present in

object tuple of any entity constraint rule with deny authorization.
• A keyword tuple will be removed if it contains a relid value also present in

object tuple of context based entity constraint rule with deny authorization and
the rule’s predicate is true for keyid value.

114 V. Goyal, A. Sureka, and S. Lal

• A rule of type entity attribute constraint would remove a keyword tuple if the
rule has deny authorization and rule’s relation and attribute ids match with the
tuple’s relid and attid.

• Context based attribute constraint rule with deny authorization removes a key-
word tuple if the tuple’s keyid value makes rule’s predicate true and also
matches in relid and attid value of the rule’s object tuple.

– prune-graph(G, A, U): This function prunes the schema graph and uses first and
third type of constraints in the following way:
• An entity constraint rule with deny authorization removes a node with relation

label from the schema graph.
• A rule of type entity attribute constraint removes attribute from the label of the

relation node specified in the rule. It also removes an edge from the schema
graph if the edge label has the attribute specified in rule.

– prune-trees(valid trees): This function uses path constraint type rules to delete
inaccessible join trees, i.e., if a join tree has relation nodes present in any of the
path constraint rule then the join tree is deleted.

– rewrite-queries(valid queries, A, U): In this function, valid queries are rewritten
to get the authorized set of queries. This step is similar to Oracle’s VPD approach
and uses context based entity constraint, and context based entity attribute con-
straint types rules. These constraints are very similar to dynamic ACL association
tuple of instance set in Oracle’s VPD.

We illustrate Algorithm 1 through an example.

Illustrative Example

We present below an example to demonstrate our algorithm. The schema for example
is given as below:

Employee(eid, name, age, gender, pan, salary, phone, address)
Project(pid, name, budget, start date, duration, details)
Emp-Proj(eid, pid, join date, role)
Sponsors(sid, name, phone, type, investment, did)
Complains(cid, pid, date, details)

The schema graph for this schema would be as given in Figure 2.
Let us further assume the following authorizations for a user on this database.

1. (clerk, select, (Complains,), deny) : A clerk can not execute any operation on Com-
plain relation.

2. (clerk, select, (Sponsors.investment,), deny) :A clerk can not execute select query
on sponsors investment attribute.

3. (clerk, select, (Employee,Project.budget> 30 and Employee.eid=Emp-Proj.eid and
Emp-Proj.pid=Project.pid), deny) : A clerk can not access other employee infor-
mation if employee is involved in at least one project with budget greater than 30
lakhs.

AccKW: An Efficient Access Control Scheme 115

,23

Employee Emp−Proj

Project

Sponsors

Complains

manish Delhi

23

23

23

,

Delhi

Fig. 2. Example Schema Graph

4. (clerk,select, (Employee, Employee.age > 35), deny): A clerk can not access em-
ployee information if employee age is more than 35.

Let us now assume that the user with clerk role inputs Manish, Delhi and 23 keywords
for information search. Keywords annotation in the schema graph for the above given
authorization rules is shown in Figure 2. Figure shows crosses on relation Complains
and keyword ‘23’. This is due to the reason that Complains relation and investment
attribute of relation Sponsors are not accessible to the user. We have shown these crosses
for the clarity purpose but in actual, these keywords will not be annotated to the schema
graph due to filtering of keyword tuples and pruning of schema graph.

The following set of join trees as shown in Figure 3 will be generated in this case.
The authorized SQL queries would be as given below:

– Select name, address, age from Employee where name = ‘manish’ and address =
‘Delhi’ and age = 23 and not (age > 35)

– Select name, age, address from Employee, Emp-Proj, Project, Sponsors
where Employee.eid = Emp-Proj.eid and Emp-Proj.pid = Project.pid and

,23

Employee Emp−Proj

Project

23

,Manish Delhi

Tree 2

Employee Emp−Proj

Project

Sponsors

Delhi

23

Manish

Tree 4

,

Tree 1

Employee

Manish Delhi

Employee Emp−Proj

Project

Sponsors

Delhi

23Manish,

Tree 3

Fig. 3. Join Trees

116 V. Goyal, A. Sureka, and S. Lal

Project.pid = Sponsors.pid and Employee.name = ‘manish’ and Employee.age = 23
and Sponsors.address = ‘Delhi’ and not (Project.budget > 20) and not (age >35)

– Select name, budget, address from Employee, Emp-Proj, Project, Sponsors where
Employee.eid = Emp-Proj.eid and Emp-Proj.pid = Project.pid and Project.pid =
Sponsors.pid and Employee.name = ‘manish’ and Project.budget = 23 and Spon-
sors.address = ‘Delhi’ and not (Project.budget > 30) and not (age > 35)

– Select name, budget, address from Employee, Emp-Proj, Project where
Employee.eid = Emp-Proj.eid and Emp-Proj.pid = Project.pid and Employee.name
= ‘manish’ and Project.budget = 23 and Employee.address = ‘Delhi’ and not
(Project.budget > 30) and not (age > 35)

6 Experimental Study

Our performance evaluation consists of experiments on our implementation of the VarD-
bXplorer (which is an adapted version of DBXplorer) and Access Control on TPC-H
[16] database on a HP desktop machine. The machine is a Intel(R) Core Due CPU
2.66GHz with 3GB of main memory. The experiment is implemented in Python ver-
sion 2.5.2 and uses MySQL database system [17] at the backend.

We have used TPC-H database [16] for performance study as TPC-H database use is
common in researchers working on keywords based search on RDBMS [1,3]. The sizes
of the database are 10 MB, 100 MB, and 1GB generated using scaling factor of .01, .1
and 1 with dbgen utility of TPC-H benchmark.

We adapt DbXplorer keyword-based search strategy [1] for our scenarios and term
that as VarDBXplorer. The master index or symbol table is implemented as an inverted
index table in MySQL which is a column based approach [1]. We have written a python
program to make a master index for every value present in the database. Each value in
the database is stored with its occurrence information in the symbol table. A value is
a single word and is an alphanumeric expression which is obtained from an attribute
value after lexical analysis process. For an example, an address value is decomposed
into words using space as a delimiter and removing control characters. A value may
occur more than once in an attribute of a relation or in more than one tuple of a relation.
An entry of symbol table can be represented as a 3-tuple < value, Ti, Aij >, where
value is a keyword, Ti is a relation name and Aij is jth attribute in relation Ti. To
select keywords with a particular frequency, we created another table key stats, which
is derived from master index table by executing a group by SQL query on master index
table. Each tuple of this table is a (value, frequency) pair. Here, frequency specifies the
number of attributes in which the value occurs.

We measure the efficiency of applying access control policy in the early phases of
search in terms of performance parameters: time of execution (Texec) in seconds and
number of generated queries (Numge). For that, we specified five types of access con-
trol policies which vary in terms of access restrictions for a user. Policy-1 has the least
restriction and Policy-5 has the maximum restriction among these 5 policies. Each pol-
icy rule is of the type defined in 4, i.e., entity constraint, context based entity constraint
etc. We considered different database sizes for evaluation, for that we have generated
data using different scaling factor of dbgen utility, i.e., 10 MB, 100 MB and 1000 MB

AccKW: An Efficient Access Control Scheme 117

using scaling factor of .01, .1 and 1. We have also studied the effect on time and number
of generated queries for variation in number of input keywords. For that we have used 2
to 6 keywords in a query. We have not used more than 6 keywords as it is quite uncom-
mon that a user search has more than 6 keywords. We have also studied the effect of
variation in keyword selectivity. Keyword selectivity of a keyword is defined as number
of attributes in the database in which the keyword is present. The parameters table is
given as Table 1

Table 1. Parameters Table

PARAMETER DEFAULT VALUE VARIATIONS

Access Control Policy Quantifier (λ) 3 1,2,4,5
Number of Keywords (n) 5 2,3,4,6
Selectivity of Keywords (F) 5 1 to 4, 6 to 10
Database Size (S) 1 GB 100 MB, 10 MB

Effect of Variation in Access Control Policy

The performance graphs of effect in variation of access control policy is shown in Fig-
ure 4a and Figure 4b. As explained earlier, the policies from policy-1 to policy-5 varies
in terms of strictness. Policy-1 is the most relaxed one and policy-5 is the strictest
one among the five. We see that as the access control policy becomes more restrictive
for a user, it reduces the execution time Texec to generate authorized queries as well
as the number of authorized queries. Figure 4a shows that VarDBXplorer approach
always takes more time as compared to AccKW. Figure 4b shows the effect of dif-
ferent access control policies on Numge and has log scale for Y-axis. It shows that
the value of Numge goes on decreasing as the access control policy becomes more
restrictive.

We find that this is due to pruning of schema graph size and authorized tuple set in the
early phases. This reduction in the size of the schema graph results into less processing
and hence reduction in both time Texec and number of queries Numge.

Effect of Variations in the Number of Keywords

We did this experiment by selecting 2 to 6 keys at random from the master index which
has selectivity (F) equal to 5.

The performance graphs of this experiment are shown in Figure 5a and Figure 5b.
Figure 5b has log scale for Y-axis. The experiment shows that Texec and Numge in-
creases as the number of keywords (n) increases for a given access control policy option
(default access control policy 3). This is due to generation of more number of tuples
with the increase in number of keywords, that need to be annotated with the pruned
schema graph. More keywords annotation to schema graph leads to more number of
queries generation as well as more execution time.

118 V. Goyal, A. Sureka, and S. Lal

5

15

25

1 3 5

T
ex

ec
 (

s)

Policy Options

AccKW
VarDBXplorer

(a) Effect on Texec

500
1000

3500

1 3 5

N
um

ge

Policy Options

AccKW
VarDBXplorer

(b) Effect on Numge

Fig. 4. Effect of variation in Access Control Policy

10

30

50

2 4 6

T
ex

ec
 (

s)

No. of Keywords (n)

AccKW
VarDBXplorer

(a) Effect on Texec

100

3000

25000

2 4 6

N
um

ge

No. of Keywords (n)

AccKW
VarDBXplorer

(b) Effect on Numge

Fig. 5. Effect of Variation in Number of Keywords

Effect of Variations in Keyword Selectivity

The performance graphs of this experiment are shown in Figure 6a and Figure 6b (with
log scale on Y-axis). The graphs show that the increase in the selectivity of keywords
increases the Texec as well as Numge for a given access control policy. The reason for
this is similar to the previous experiment that the increase in selectivity of a keyword
results into more tuples generation. This increase in tuples in the tuple set results in
more number of keys to be annotated with the schema graph and hence increase in
execution time Figure 6a and generated authorized queries Figure 6b.

Effect of Variations in the Database Size

Figure 7a and Figure 7b shows the performance results of variation in database size
on Texec and Numge respectively. Graph in Figure 7b uses log scale for Y-axis. As

AccKW: An Efficient Access Control Scheme 119

200

400

600

1 5 10

T
ex

ec
 (

s)

Keyword Frequency (F)

AccKW
VarDBXplorer

(a) Effect on Texec

100

1000

10000

100000

1 5 10

N
um

ge

Keyword Frequency (F)

AccKW
VarDBXplorer

(b) Effect on Numge

Fig. 6. Effect of variations in keyword selectivity

50

100

10MB 100 MB 1GB

T
ex

ec
 (

s)

Database Size (S)

AccKW
VarDBXplorer

(a) Effect on Texec

200

3500

10MB 100MB 1GB

N
um

ge

Database Size (S)

AccKW
VarDBXplorer

(b) Effect on Numge

Fig. 7. Effect of variations in the database size

discussed earlier, we generated data of different sizes using scaling factor parameter of
dbgen utility of TPC-H benchmark for this experiment.

The result shows a minimal effect of data sizes on execution time and number of
queries for a given access control policy, keyword selectivity and number of keys. This
constant difference is due to the difference in time to get the keyword-tuples from the
master index. After keyword tuple selection, the process of authorized query generation
will be same for each data size version.

7 Conclusions

This paper proposes a novel framework called AccKW which enforces access control
in keyword-based search over RDBMS. Solutions for access control enforcement in the
domain of keyword-based search over RDBMS is a relatively unexplored area and the
work presented in this paper addresses the stated research gap. The paper proposes a

120 V. Goyal, A. Sureka, and S. Lal

solution framework and also discusses issues and challenges regarding access control
in this domain. The proposed framework is implemented and emperically evaluated.
The paper presents performance results from different perspectives such as efficiency
and performance impact as a result of variation in number of keywords, access control
policy, database size, and keyword selectivity. Based on the empirical evaluation and
simulation results, we conclude that the proposed framework outperforms the naive
approach in most of the cases.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: A system for keyword-based search over re-
lational databases. In: ICDE 2002: Proceedings of the 18th International Conference on Data
Engineering, Washington, DC, USA, p. 5. IEEE Computer Society, Los Alamitos (2002)

2. Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, P., Sudarshan, S.:
Banks: browsing and keyword searching in relational databases. In: VLDB 2002: Proceed-
ings of the 28th international conference on Very Large Data Bases, VLDB Endowment, pp.
1083–1086 (2002)

3. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In:
VLDB 2002: Proceedings of the 28th international conference on Very Large Data Bases,
VLDB Endowment, pp. 670–681 (2002)

4. Hulgeri, A., Nakhe, C.: Keyword searching and browsing in databases using banks. In: ICDE
2002: Proceedings of the 18th International Conference on Data Engineering, Washington,
DC, USA, p. 431. IEEE Computer Society, Los Alamitos (2002)

5. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidi-
rectional expansion for keyword search on graph databases. In: VLDB 2005: Proceedings of
the 31st international conference on Very large data bases, VLDB Endowment, pp. 505–516
(2005)

6. Koutrika, G., Simitsis, A., Ioannidis, Y.: Précis: The essence of a query answer. In: Interna-
tional Conference on Data Engineering, vol. 0, p. 69 (2006)

7. Simitsis, A., Koutrika, G., Ioannidis, Y.: Précis: from unstructured keywords as queries to
structured databases as answers. The VLDB Journal 17(1), 117–149 (2008)

8. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting techniques for
fine-grained access control. In: SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 551–562. ACM, New York (2004)

9. Murthy, R., Sedlar, E.: Flexible and efficient access control in oracle. In: SIGMOD 2007:
Proceedings of the 2007 ACM SIGMOD international conference on Management of data,
pp. 973–980. ACM, New York (2007)

10. Olson, L.E., Gunter, C.A., Madhusudan, P.: A formal framework for reflective database ac-
cess control policies. In: CCS 2008: Proceedings of the 15th ACMconference on Computer
and communications security, pp. 289–298. ACM, New York (2008)

11. Shin, H., Atluri, V.: Spatiotemporal access control enforcement under uncertain location
estimates. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security XXIII. LNCS,
vol. 5645, pp. 159–174. Springer, Heidelberg (2009)

12. Chaudhuri, S., Dutta, T., Sudarshan, S.: Fine grained authorization through predicated grants.
In: ICDE 2007: Proceedings of the 23rd International Conference on Data Engineering, Is-
tanbul, Turkey, pp. 1174–1183. IEEE, Los Alamitos (2007)

13. Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., Rjaibi, W.: Extending relational
database systems to automatically enforce privacy policies. In: ICDE 2005: Proceedings of
the 21st International Conference on Data Engineering, Washington, DC, USA, pp. 1013–
1022. IEEE Computer Society, Los Alamitos (2005)

AccKW: An Efficient Access Control Scheme 121

14. Kabra, G., Ramamurthy, R., Sudarshan, S.: Redundancy and information leakage in fine-
grained access control. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD inter-
national conference on Management of data, pp. 133–144. ACM, New York (2006)

15. Lefevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.: Limiting
disclosure in hippocratic databases. In: VLDB, pp. 108–119 (2004)

16. TPC-H decision support benchmark (Transaction Processing Council),
http://www.tpc.org/

17. MySQL Database, http://www.mysql.com/

http://www.tpc.org/
http://www.mysql.com/

	AccKW: An Efficient Access Control Scheme for Keyword-Based Search over RDBMS
	Introduction
	Related Work
	System Architecture
	Formal Model of Access Control
	Algorithm
	Experimental Study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

