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A b s t r a c t - - L e t  L(A) = InAm+Am-l~m-l+ +AIA+A0 be an n xn  monic matrix polynomial, 
and let CL be the correspondmg block compamon matrLx In this note, we extend a known result 
on scalar polynomials to obtain a formula for the polar decomposition of CL when the matrmes A0 
and ~-~=~1 A3A; are nonsmgular © 2005 Elsevier Ltd All rights reserved. 

K e y w o r d s - - B l o c k  companion matrLx, Matrix polynomial, Elgenvalue, Singular value, Polar de~ 
composition. 

1. I N T R O D U C T I O N  

Consider the monic matmz polynomzal, 

L(A) = I~A m + Am_l Am-1 + " "  + A1A + A0, (1) 

where A 3 E C ~×~ (3 = 0, 1 , . . . , m  - 1, m > 2), A is a complex variable and I,~ denotes the 

n × n identi ty matrix. The s tudy of matr ix  polynomials, especially with regard to their spectral 

analysis, has a long history and plays an impor tant  role in systems theory [1-4]. A scalar Ao E C 

is said to be an ezgenvalue of L(A) if the system L(A0)x = 0 has a nonzero solution x0 C C n. This 

solution xo is known as an ezgenveetor of L(A) corresponding to Ao. The set of all eigenvalues 

of L(A) is the spectrum of L(A), namely, sp(L) -- {A e C :  det L(A) = 0}, and contains no more 

than  nm distinct (finite) elements. 
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Define A = [ A i A 2 . . .  Am-i] E C ~x'~(m-i). The nm x nm matrix, 

[ i '°  ]I .0 0 In . . .  °0 
C L  = " " : .. . = 0 I n ( m - ~ )  

0 0 . . .  I~ 

- A o  -A1  - A 2  "" - A m - 1  

(where the zero matrices are of appropriate size) is known as the block companion matrix of L(A), 
and its spectrum, sp(Cn), coincides with sp(L). Moreover, CL and L(A) are strongly connected 
since they have similar Jordan structures and define equivalent dynamical systems; for example, 
see [2,3] for these comments and general background on block companion matrices of matrix 
polynomials. 

Let CL = P U  be the (left) polar decomposition of CL, where the nm x nm matrix P = 
(CLC~) i/2 is positive semidefinite and U E C ~mxnm is unitary. Then, the eigenvalues of P are 
the s~ngular values of CL and (recalling that sp(CL) ---- sp(L)) yield bounds for the eigenvalues 
and for products of eigenvalues of L(A) [5,6]. 

In [7], van den Driessche and Wimmer obtained an explicit formula for the polar decomposition 
of the companion matrix corresponding to a monic scalar polynomial p(A) (i.e., for n = 1) in 
terms of the coefficients of p(A). In this article, extending their methodology, we prove that their 
results are also valid for the matrix polynomial L(A) in (1) and its block companion matrix CL 

T~m-i A zl* in (2) when the matrices A0 and AA* = z_,3=1 3"-j are nonsingular. An important feature of 
our generalization is that the construction of the polar decomposition of the nm x nm matrix CL 
is reduced to the computation of the (positive definite) square root of a 2n x 2n positive definite 
matrix. If in addition, AoA~ and AA* commute, then the polar decomposition of CL is further 
reduced to the computation of the n x n positive definite square roots, 

( 
Po = (AoA;) 1/2, P1 = (AA*) 1/2 = / E  A3A , (3) 

\ 3=1  / 

and 

= ( a a *  + AoA; + I3 + 2Po) = (P t  + (Po + (4) 

2. S I N G U L A R  V A L U E S  A N D  P O L A R  D E C O M P O S I T I O N  

Suppose L(A) = InA m +Am_lA  m-1 + . . .  + A i A + A o  is an n x n matrix polynomial with n > 2 
and det A0 5 i 0 (or equivalently, 0 ~ sp(L)), and let CL be the corresponding (nonsingular) block 
companion matrix in (2). 

rn--1 Consider the n x n positive definite matrix S = }-~3=o A3A~ = AA* +AoA~ and the nm x nm 
positive definite matrix, 

c ;  ~) - CL * = 

The square roots of the eigenvalues of CLC~ are the singular values of CL. Keeping in mind the 
Schur complement of the leading n(m - 1) x n(m - 1) block of the linear pencil InmA - CLC~, 
one can see that 

det (I~mA - CnC~) = det [In(m-i) (A -1 ) ]  det <I~A - s -  A l-~_ l A A  *) 

-- (A - 1) ~(m-2) det [I~A 2 - (In + S) A + AoA~]. 
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Hence, the singular values of CL are 0" = 1 (of multiplicity at least n ( m  - 2)) and the square 

roots of the eigenvalues of the quadrat ic  self-adjoint mat r ix  polynomial,  

R L (A) : InA 2 - ( In  -]- S )  X + AoA; .  (5) 

The  Hermit ian  matr ices In + S and AoA;  are pomtive definite, and the quant i ty  [x*(In + 
S)x] ~ - 4 x * A o A ; x  is nonnegative for every unit vector x 6 C n. Thus,  by [4, Section IV.31] (see 
also [8]), the eigenvalues of the mat r ix  polynomial  RL(A) are real poslUve and their min imum 
and max imum values are given by 

~mm (RL)  =- min 2 : x E C ~, x*x  = 1 

and 

1 + x * S x  + ~/(1 + x*Sx)  2 - 4 x * A o A $ x  } 
-~max (RL) = max 2 : x C C n, x*x = 1 , 

respectively. Moreover, we have the following known result [5, L e m m a  2.7] (see also [6, p. 336; 
7, L e m m a  2.2]). 

PROPOSITION 1. The singular values al >_ a2 > . . .  > aura of  the block companion matr ix  CL 
fa / / in to  three groups, 

(i) 0" 1 > 0" 2 ~ ' ' "  ~ (:7 n __ 1, 

(ii) 0"4+1 = cr,~+~ . . . . .  0"~(m-1) = 1 (if m >_ 3), and 
(iii) 1 >_ ~ ( m - 1 ) + 1  >-- Crn(,~-l)+2 > " "  --> Cr,~,~ > 0. 

The 2n singular values of  CL in (i) and (iii) are the square roots of the eigenvalues of RL(A) 
in (5). 

COROLLARY 1. For any eigenvalue # of L(A), 

,~mm(RL) 1/2 = 0.nrn ~ IPl ~ Erl = )kmax(RL)  1/2 

Next, we characterize the case when 1 is an eigenvalue of RL(A), i.e., when CL has more than  
n ( m  - 2) singular values equal to 1 (see also [5, L e m m a  2.8]). 

PROPOSITION 2. The following s ta tements  are equivalent. 

(i) The matr ix  polynomial  RL(A) has an eigenvalue A : 1. 
m - 1  . (ii) The matr ix  AA* = ~-~3=1 A3A3 is singular. 

(iii) The matrices A1, A 2 , . . . ,  Am-1 are singular and have a common left eigenvector corre- 
sponding to zero. 

PROOF. Since det RL(1) = de t (AA*) ,  the equivalence (i) ~ (ii) follows readily. Moreover, if y E 
m--1 C n is a nonzero vector such tha t  A~y = 0 (3 = 1, 2 . . . . .  m -  1), then A A * y  = ~3=1 A3A~Y = O. 

Thus, it is enough to prove the par t  (ii) ~ (iii). 
Suppose AA* is singular, and let Xo 6 C ~ be a unit eigenvector of AA* corresponding to 0. 

Then,  
m--1 

x;zxzX*xo = x ; A , A ; x o  = o, 
3=1 

where A3A ~ is positive semidefinite and satisfies x~A3A~xo >_ 0 for every 3 = 1, 2 , . . . ,  m -  1. 
Hence, x~A3A~x o = 0 for every 3 -= 1, 2 , . .  , m - 1, and thus, 

A~x0 = 0, 3 = 1 , 2 , . . . , m -  1. | 

If  the m i m m u m  or the max imum singular value of CL is equal to 1, then  the polar decomposit ion 
of CL is equivalent to the polar  decomposit ion of the matr ix  Ao. 
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PROPOSITION 3. Suppose the minimum or the maximum singular value of CL is q = 1. Let Po 
be the positive definite matrix in (3) (recall that det Ao ~ 0). Then, A1 = A2 . . . . .  Am-1 = O, 
and the polar decomposition of CL iS given by CL = PU, where 

p = I~(m-1) 0 and U = - P o  A0 0 0 Po , ' 

PROOF. Clearly, A = 1 is the minimum or the maximum eigenvalue of the matrix polynomial 
RL(A) in (5). Suppose A = 1 is the minimum eigenvalue of RL(A). Then, for every unit vector 
x E C n, the equation, 

X *RL (•) x = ,~2 _ (1 + x*Sx) A + x*AoA~x = O, 

has a real root [4,8], 

Hence, 

1 + x*Sx - ~¢/(1 + x*Sx) 2 - 4x*AoA~x 
>_1. '01= 2 

( 
m _ l  ;I x* I E A3A x <_S x *AoA~x, 

\3=o / 
where the equality holds for x a unit eigenvector of RL()~) corresponding to 1. Consequently, 

m--1 , the matrix AA* = Y~3=1 A3Aj is singular negative semidefinite. Since AA* is always positive 

semidefimte, this means that A = 0, and thus, CLC~ = I~(,~-1) @ AoA~ and P = (CLC~) 1/2 = 
In(m-l) e Po. 

If A -- 1 is the maximum eigenvalue of RL(A), then the proof is similar, using the real root, 

1 + x*Sx + I~/(1 + x*Sx) 2 - 4x*AoA~x 
P2= 2 

of the quadratic equation (6). In both cases, the matrix, 

[ 0 In(m-i)] 
U : _PoZAo 0 ' 

satisfies 

and 

_<1, 

PU~- [In(o-l) poO 1 [-Po--01Ao In(o--l)] :CL" 
The proof  is complete. | 

Note that if all the coefficient matrices A1, A2, . . . ,  A,~-I of L(A) are zero (this is the case in 
the above proposition), then CLC~ = In(,~-l) ~AoA~ and the spectrum of RL(A) = (A-  1)(InA- 
AoA~) coincides with the union sp(AoA~) V {1}. 

Consider the 2n x 2n Hermitian matrix, 

= 

{~-i .\ I12 
In ~ j~, AjA3 ) 

1 Aj A; E Aj A~ 
\2=1 3=0 

[;: 

0 ] = / ~ m  
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Then, by straightforward computations, we see that  det(12~A - HL) --- det RL(A), i.e., sp(RL) = 
sp(HL). As a consequence, HL is positive definite• 

Assuming that  AA* m-1 = Y]~3=1 A3A~ is nonsingular, we also define the nm × 2n matrix, 

° 1 
ML = A 1 I n '  

and observe that  

] [  :1 0] 01 , .  ' M ~ M L  = 1 A  0 A 1 -~- 1 

in 1,~ in 

Now, we can prove the main result of the paper, generalizing [7, Theorem 2.1]. 

THEOREM 1. Let L(A) = I~A m + Am_IA m-1 + - - .  + A1A + Ao be an n x n matr/x polynomial 
m - - 1  with detAo ~ 0, and suppose AA* = ~3=1 AjA;  is nonsingular. Define ML as above, and 

let r-D/2 be the positive definite square root of HL. Then, the polar decomposition of the block 
Z Z L  

companion matrix C L is given by C L : P U, where 

and 

PROOF. 
satisfies, 

(, . .  + 
- ( A o l )  * 0 ' 

Since M~ML = 12~, the matrix P = 1rim + ML(H1L/2 -- 12~)M~, is positive definite and 

p2 

z 

z 

Furthermore, by the 
P(CL1) *, where 

nR [r3"1/2 
1rim + lVlL~12, L 

I,~m + 2ML(H1L/2 

I,,., + ML(2H~/~ 

1am + ML(H~ - G.)M;~ 

-r.m~-I--foP1-1 ~ ]  [O 1 

CLCL 

- I 2 . ) M L )  2 

- -  I2n)M ~ -'~ ML(H1L/2 - 12,,)'eM*L 

- 212~ + HL - 2H1L/2 + I2n)M~ 

 lnl [ 0 s o In] 

relation e L = PU, we have that  U* = CL1P, or equivalently, U = 

( c [ ~ )  * = 
_A~(Aol),__ - ~ o ,  1~0 00 . . .  !~]  
- A ~ ( A o l )  * 0 In . . .  00 [ _ A , ( A o l ) ,  

-A~_I (Ao~)  * 0 0 . . .  [ - (A°~)* 
_/A_-I~ * . . 

The proof is complete. 

IO o-1> ] 

Notice that  by the assumption det A0 ¢ 0, it follows that  CL is nonsingular and matrices P 
and U are unique [9]. 

Next, we obtain that  the matrices CLC~ and In(m-2) ® HL are unitarily similar. One can 
easily see that  this result leads &rectly to a second proof of Theorem 1. 
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PROPOSITION 4. Suppose A A *  is nonsingular and let ~.dl, W2,... ,0in(m--2) be an orthonormal 

sys tem of  n ( m  - 2) eigenvectors of  CLC~ corresponding to the eigenvalue A = 1. Then, the 

n m  x n m  matr ix  V : [wl w2 . . Wn(m-  2) M L ] is unitary and satisfies V * ( C L C ~  ) V = In(m-2) @ H L . 

PROOF. Consider the eigenvectors, 

I~l~l 1 ~1,~ / 
OJ 1 : : ' 0-;2 : 

kWl,rn J 

I a J2,1 

O-J2,rn 

wn(rn-2)'l ] 
Wn(m--2)'2 [ Earn, 

, • • •, Wn(ra-2) : . E 

L °2n(m- 2),m .J 

where w~,3 e C n (~ = 1 , 2 , . . . , n ( m - 2 ) ,  3 = 1 , 2 , . . . , m ) ,  and define the n m  x n ( m - 2 )  matrix 
W = [WlW2... Wn(,~--2)]. Since AA* is nonsingular, by Proposition 2, A1, A2 , . . . ,  A,~-I cannot 
have a common left eigenvector corresponding to zero. As a consequence, the equations, 

(C *) LCL OJk = 

zo 0 0 1 

/[1 • . . o  , . 

• ' i 
0 0 

- A 1  - A 2  " • - A m - 1  L Wk,m.l L Wk,m.l 

(k = 1, 2 , . . . ,  n ( m  - 2)) yield 

wk,,~ = 0, k = 1,2, . . , n ( m -  2), 

and 
p Wk'l ] 

/ M ;  k =  0 In . = 0 ,  k =  l , 2 , . . . , n ( m -  2).  

1. wk,,~ .1 

Furthermore, M ~ M L  = I2n, and thus, the n m  x n m  matrix V = [WML] is unitary. If W1 is 
the n ( m  - 1) x n ( m  - 2) submatrix of W obtained by striking out the last n zero rows of W, 

then straightforward computations imply that  

['n= v* (CLC~) v = 1) o] 
= - P 1 1 A  PI 

- A  S 

"I,~(m-2) 0 
= 0 In 

0 P1 

= I n ( ~ - 2 )  e HL. 

s [WML] 

0] 
P1 
S 

When the matrices AoA~ and AA* commute, the problem of computing H[/2 arisen in Theo- 
rem 1 can be reduced to the computation of the positive definite matrices Po, P1, and t9 in (3) 
and (4). The following lemma is necessary for our discussion. 

LEMMA 1. Suppose AoA~ and AA* commute.  Then, the matrices AoA~, AA*, Po, P1, ~ and 

their reverses are mutual ly  commuting.  

PROOF. By [9, Theorem 4.1.6], there exists a umtary Vo E C n×n, such that  V~(AoA~)Vo and 
V0*(AA*)V0 are diagonal. The result follows readily. | 
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PROPOSITION 5. Suppose AA* is nonsingular and commutes with AoA~. 
definite square root of HI, is given by 

H1/2 [~01 L ~- • -~ P~ P o + S  " 

PaOOF 

535 

Then, the positive 

Since AoA~ and AA* commute, using Lemma 1, it m straightforward to see that 

m_1] [In P~ Po+ 2 
[~-'(z~ + Po) ~-'PI ]2 

= [ m-IP1 m-l(Po + S) 
[~-2[(I  n + Po) 2 + AA*] ¢-2[i,~ + 2Po + SIP1 ] 

= L ~-2[±. + 2Po + siP1 ~-2[i,~ + 2Po + s]s  J 

P1 

Moreover, by Lemma 1 and [9, Theorem 7.7.6], we obtain that the matrices, 

0 k5-1 and P1 P0 + S ' 

are commuting positive definite. Hence, their product is also a positive definite matrix, completing 
the proof. | 

It is worth mentioning that if CL is nonsingular with polar decomposition CL = P U and 
the nm x nm matrix P is written in the form P = [Q1Q2... Qm], where Qk E C nm×n (k = 
1, 2, . . . ,  m), then 

[-A*(AoI)  * _ ( A o l )  * I n ( - 1 ) ]  
U = [ Q 1  Q2 . . .  Qm] o 

• $ - - 1  = - Qm(Ao 1) + Q3A3(Ao ) Q1Q2.. .Qm-1 • 
j=l 

Our results are illustrated in the following example. 

EXAMPLE. Consider the 2 x 2 matrix polynomial, 

L(A)=I2A3+A2f l2+AIA+A0=I2A3+ [11 0]f12 + [~ ~ ] f l +  [11 ; ]  
1 

and its block companion matrix CL. The spectrum sp(L) = {1,-1,-0.5 ± 0.866i} and the 
singular values of CL, namely, 2.4171, 1.8354, 1, 1, 0.8477, 0.2659, clearly confirm Proposition 1 
and Corollary 1. The matrices A0 and AA* = A1A~ + A2A~ = [1114] are nonsingular and do not 
commute. It is easy to compute, 

[ 1 . 3 4 1 6 - 0 . 4 4 7 2 ]  
 o---04472 08944, 

[09391 034371 
/)1 = L0.3437 1.9702J' 

[2.3094 -0.09061 
= -0.0906 2.6242 J '  
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and 

-1 0 ] 
M L =  0 12 = 

The positive definite square root of HL is 

0.1984 -0.5422 0 0]  

'] 0.1984 -0.5422 0 0 
0 -0.9391 -0.3437 0 

0.1984 -0.5422 0 " 
0 0 1 
0 0 0 

H1/2 = 

0.91 -0.1089 0.3726 0.1459 
-0.1089 0.6629 0.1787 0.7189 
0.3726 0.1787 1.6813 -0.0482 
0.1459 0.7189 -0.0482 2.1118 

and by Theorem 1, the polar decomposition of CL is given by CL = P U ,  where 

p = 

0.9208 -0.0792 -0.0941 -0.0792 -0.0229 -0 .3609]  
-0.0792 0.9208 -0.0941 -0.0792 -0.0229 -0 .3609 |  
-0.0941 -0.0941 0.8105 -0.0941 -0.4113 -0 .3838 |  
-0.0792 -0.0792 -0.0941 0.9208 -0.0229 -0 .3609]  
-0.0229 -0.0229 -0.4113 -0.0229 1.6813 -0 .0482]  
-0.3609 -0.3609 -0.3838 -0.3609 -0.0482 2.1118 ] 

and 

u = P ( C [ l )  * = 

-0.3074 -0.1904 0.9208 -0.0792 -0.0941 -0.0792- 
-0.3074 -0.1904 -0.0792 0.9208 -0.0941 -0.0792 
-0.1445 -0.5437 -0.0941 -0.0941 0.8105 -0.0941 
-0.3074 -0.1904 -0.0792 -0.0792 -0.0941 0.9208 
0.5283 -0.7417 -0.0229 -0.0229 -0.4113 -0.0229 

-0.6453 -0.2134 -0.3609 -0.3609 -0.3838 -0.3609 

Denoting the Frobenms norm by I[" [IF, we confirm our numerical results by calculating ][CLCT. -- 

P2[[F < 10 -14. Notice also that  the last four columns of U are exactly the same with the first 
four columns of P, verifying our discussion. | 

Finally, we remark that  since our results yield a strong reduction of the order of the problem 
of polar decomposition, they lead to better estimations of the factors P and U than the classical 
methods applied directly to CL. For example, consider the 50 x 50 diagonal matrix polynomial, 

L (A) = IsoA 5 + A4 A4 + A3 A3 -b A2A 2 + AiA +/50,  

where A 3 = diag {1, 23, 33, . . . ,  503 } (9 = 1,2, 3, 4). Two approximations of the positive definite 

square root of the 250 x 250 matrix CLC~, P,  and /5, were constructed by our methodology 
(using Theorem 1 and Proposition 5) and by a standard singular value decomposition of CL, 

respectively. All the computations were performed in MATLAB. To compare the accuracy of the 
two techniques, we compute HCLC~ -- P211F ~- 0.0135 and IICLC~ - P211F ~- 0.1562. Hence, we 
conclude that  our results add one more possibility for testing numerical algorithms relative to 
polar decomposition and singular value decomposition. 
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