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Abstract—=Let L(\) = In ™+ Am—13™" 14+ 4+ A1X+ Ap be an n x » monic matrix polynomial,
and let Cy, be the corresponding block companion matrix In this note, we extend a known result
on scalar polynomials to obtain a formula for the polar decomposition of Cr, when the matrices Ag
and z;’f___ll A, A} are nonsmgular (© 2005 Elsevier Ltd All rights reserved.
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1. INTRODUCTION

Consider the monic matriz polynomaal,
L(A) = In)‘m‘r‘Am—-lAm_l"{“"' +A1A+AO: (1)

where A, € C*** (3 =0,1,...,m —1, m > 2), X is a complex variable and I, denotes the
n x n identity matrix. The study of matrix polynomials, especially with regard to their spectral
analysis, has a long history and plays an important role in systems theory [1-4]. A scalar Ap € C
is said to be an eigenvalue of L(}) if the system L(Ao)z = 0 has a nonzero solution o € C™. This
solution zo is known as an eigenvector of L()\) corresponding to Ag. The set of all eigenvalues
of L()) is the spectrum of L(\), namely, sp(L) = {X € C : det L(A) = 0}, and contains no more
than nm distinet (finite) elements.
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Define A = [ A1Az... Ayp—1] € C***™~1 The nm x nm matrix,

0 I, 0 0
0 0 I 0 0 I
= . . . . . — n(m-—l)
L : : : : {—AO -A }
0 0 0 I,
Ay —A1 Ay - —An

(where the zero matrices are of appropriate size) is known as the block companion matriz of L(}),
and its spectrum, sp(C), coincides with sp(L). Moreover, Cr, and L{}) are strongly connected
since they have similar Jordan structures and define equivalent dynamical systems; for example,
see [2,3] for these comments and general background on block companion matrices of matrix
polynomials.

Let Cp, = PU be the (left) polar decomposition of Cy, where the nm x nm matrix P =
(CLC3)'/? is positive semidefinite and U € C*™*™™ is unitary. Then, the eigenvalues of P are
the singular values of Cp and (recalling that sp(Cr) = sp(L}) yield bounds for the eigenvalues
and for products of eigenvalues of L()\) [5,6].

In [7], van den Driessche and Wimmer obtained an explicit formula for the polar decomposition
of the companion matrix corresponding to a monic scalar polynomial p(A\} (i.e., for n = 1) in
terms of the coefficients of p(A). In this article, extending their methodology, we prove that their
results are also valid for the matrix polynomial L(A) in (1) and its block companion matrix Cy,
in (2) when the matrices Ay and AA* = Zj A, A} are nonsingular. An important feature of
our generalization is that the construction of the polar decomposition of the nm x nm matrix Cp,
is reduced to the computation of the (positive definite) square root of a 2n x 2n positive definite
matrix. If in addition, AgA} and AA* commute, then the polar decomposition of Cp, is further
reduced to the computation of the n X n positive definite square roots,

1/2
Py = (AA3)Y2, Py =(AAYY? = (ZAA*) , (3)

and
1/2
= (AA* + Ao A% + I, +2P) Y% = (P1 +(Po+In )) (4)

2. SINGULAR VALUES AND POLAR DECOMPOSITION

Suppose L(A) = [,A™ + A1 A™ 14+ 4 A1 A+ Ag is an n x n matrix polynomial with n > 2
and det Ag # 0 (or equivalently, 0 ¢ sp(L)), and let C, be the corresponding (nonsingular) block
companion matrix in (2).

Consider the n X n positive definite matrix § = Z;':Ol A, Ay = AA* + ApAf and the nm x nm

positive definite matrix,
* In(m—l) —A*
cucy = [y 57,
The square roots of the eigenvalues of CLC} are the singular values of Cy. Keeping in mind the

Schur complement of the leading n{m — 1) x n(m — 1) block of the linear pencil I,mA ~ CLCT,
one can see that

1
det (TnmA — CLCE) = det [Lym_1) (A — 1)] det <In,\ - A—_—AA*)

= A= 1) det [I,A2 — (I, + 8) A+ AoAZ] .
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Hence, the singular values of Cf, are o = 1 (of multiplicity at least n(m — 2)) and the square
roots of the eigenvalues of the quadratic self-adjoint matrix polynomial,

R (A) = LA? — (I, + S) A + 4o A} (5)

The Hermitian matrices I, + § and AgAj are positive definite, and the quantity [z*(I, -+
S)z]? — 4z* Ag Ajz is nonnegative for every unit vector z € C". Thus, by [4, Section IV.31] (see
also [8]), the eigenvalues of the matrix polynomial Ry () are real positive and their minimum
and maximum values are given by

1+2*Sz — \/(1 + 2*Sz)? — dz* Ag Al
2

Amm (Rr) = min 1z eC? 'z =1

and

14 2*Sz + \/(1 +2*8z)% — dz* Ao Al
2

Amax (Rr) = max xeCh iz =15,

respectively. Moreover, we have the following known result [5, Lemma 2.7 (see also [6, p. 336;
7, Lemma 2.2]).

ProPOSITION 1. The singular values 0y > 03 > -+ > 0y, of the block companion matrix Cy,
fall into three groups,

(i) o12092---20,21,

(i) Ont1 =0ng2 = = Opim-yy =1 (if m > 3), and

(iil) 1> On(m—1)+1 = On(m—1)42 = ' ** = Onm > 0.
The 2n singular values of Cy, in (i) and (iii) are the square roots of the eigenvalues of Ry ())
in (5).
COROLLARY 1. For any eigenvalue i of L)),

)\mm(RL)l/z = 0Onm S !ul S g1 = )\max(RL)l/2-

Next, we characterize the case when 1 is an eigenvalue of Ry ()), i.e., when C, has more than
n(m — 2) singular values equal to 1 (see also [5, Lemma 2.8]).

ProPOSITION 2. The following statements are equivalent.

(i) The matrix polynomial Ry ()) has an eigenvalue A = 1.
(ii) The matrix AA* = Z;n:_ll A, A} is singular.
(iii) The matrices Aj, As,...,Am—1 are singular and have a common left eigenvector corre-
sponding to zero.

PROOF. Since det Rr (1) = det(AA*), the equivalence (i) & (ii) follows readily. Moreover, if y €
C™ 1s a nonzero vector such that AJy =0 (3 =1,2,...,m—1), then AA*y = E;’:ll A Ay =0.
Thus, it is enough to prove the part (i) = (iii).

Suppose AA* is singular, and let 2o € C™ be a unit eigenvector of AA* corresponding to 0.
Then,

m—1
TyAN T = Y z5A, A}z =0,
=1
where A, A} is positive semidefinite and satisfies z3A4, Az > 0 for every 3 = 1,2,...,m — 1.
Hence, 254, A}z =0 for every 3 = 1,2,.. ,m — 1, and thus,
Ajzo =0, 7=1,2,...,m—1. |

If the minimum or the maximum singular value of C|, is equal to 1, then the polar decomposition
of C, is equivalent to the polar decomposition of the matrix Ag.
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PROPOSITION 3. Suppose the minimum or the maximum singular value of Cp iso = 1. Let Py
be the positive definite matrix in (3) (recall that det Ag #0). Then, Ay = Ag = .- = Ay, _1 =0,
and the polar decomposition of Cy, is given by Cr, = PU, where

I 0 0 Inim—
— | tn(m-1) — n(m-1)
P [ 0 P, ] and U [ _P 4, 0

Proor. Clearly, A = 1 is the minimum or the maximum eigenvalue of the matrix polynomial
Rp(X\) in (5). Suppose A =1 is the minimum eigenvalue of Ry ()). Then, for every unit vector
z € C", the equation,

TR Nz =X —(1+2*Sz) A+ 2" A Al = 0, (6)

has a real root [4,8],

14+ 2*Sz — /(1 4+ 2*S7)* — da* AgAxz
VI ) odse

pL= )

Hence,
m~—1
ot | Y AA; |z <t A4,
1=0

where the equality holds for z a unit eigenvector of Ry (A) corresponding to 1. Consequently,
the matrix AA* = Z;’L—ll A, A} is singular negative semidefinite. Since AA* is always positive
semidefinite, this means that A = 0, and thus, CLC} = L;(;n_1) ® AoAj and P = (CLCE)1/2 =
Inm-1) @ Po.

If A = 1 is the maximum eigenvalue of R ()), then the proof is similar, using the real root,

1+ 2*Sz + \/(1 +2*8z)% — dz* Ao ALz
2= 9 < 1,

of the quadratic equation (6). In both cases, the matrix,

U= [ 0 In(m—l)] ,

Pytd, 0
satisfies — [ 0 In(m—l)] { 0 —ASPJI] _J
T -P'4 0 Lyim-1) 0 oo
and I 0 0 I
PU = [ " Po} [—Po'le n(rg_l)] =Cu
The proof is complete. |

Note that if all the coefficient matrices Aj, As, ..., Am-1 of L(A) are zero (this is the case in
the above proposition), then CCy = I,(m—1) ® Ao Aj and the spectrum of Rp(A) = (A—=1)(InA—
AgA}) coincides with the union sp(AgAf) U {1}.

Consider the 2n x 2n Hermitian matrix,

1 1/2
I, A, A
<J§1 ! J) _ [In P1:|

H; =
L m—1 1/2 m—1 . P S
5 4,4 5 4,
J_‘_..

=1
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Then, by straightforward computations, we see that det(lopnA — Hp) = det RL()\), i.e., sp(Rr) =
sp(Hp). As a consequence, Hy, is positive definite.
Assuming that AA* = Z;nz_ll A, 47 is nonsingular, we also define the nm X 2n matrix,

[-aPrt 0]
ML - { 0 In_ ?

and observe that

_[PCTPEPTT 0 _ L.

0 I, 0 I, 0 I,

_p-1 _A*p~1
M;;ML:[ PCIA oH A*P; 0]

Now, we can prove the main result of the paper, generalizing [7, Theorem 2.1].

THEOREM 1. Let L(A) = I,A™ + A, 1 2™ 1 4. 4 Aj) + Ag be an n x n matrix polynomial
with det Ag # 0, and suppose AA* = E;’:ll A, A} is nonsingular. Define M, as above, and

let Hll// ? be the positive definite square root of Hy,. Then, the polar decomposition of the block
companion matrix Cp, is given by Cp = PU, where

P = Lm + My, (H}” ~ L) M}
and

~A*AFY Iyme
U= (Inm+ML(H;/2—12n)Mz)[ —(f(xg?)*) <0 1>].

ProoF. Since Mj My, = I, the matrix P = IL,,, + ML(HII/2 — Iy,) M} is positive definite and
satisfies,

p? = (Inm + My (HY? - Izn)M}j)z
= I + 2Mp (H}? = Ln) M} + My (HY? — 1,2 M}
= Lnm + My (2H,? — 2L, + Hy, — 2H}? + L) M},
= Inm + Mp(Hy — L) M

I -A*Pft 0][0 B -P'A 0

= nm 0 L)]|P S-IL|| o I
0 -A

:I""“L[—A S—In}

= CLC.

Furthermore, by the relation Cp, = PU, we have that U* = CZIP, or equivalently, U =
P(C;Y)*, where

—Af4gT) L 0 - 0
~AXA4A5YY 0 I, - 0 .
(CL—I)* = : : |l = —A*(étl) 1)* I'n(m—l)
o Do .o (A 5
~An_(AgH) 0 0 - I,
(4N 0 0 .- 0
The proof is complete. .

Notice that by the assumption det Ag # 0, it follows that Cy is nonsingular and matrices P
and U are unique [9].

Next, we obtain that the matrices CLC} and I,(;m_s) @ Hy, are unitarily similar. One can
easily see that this result leads directly to a second proof of Theorem 1.
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PROPOSITION 4. Suppose AA* is nonsingular and let wi,ws,...,Wnm-2) be an orthonormal
system of n{m — 2) eigenvectors of C;C} corresponding to the eigenvalue A = 1. Then, the
nm x nm matrix V = [wiws .. wn(m—_2)yML] is unitary and satisfies V*(C,C7)V = Inm_oy ® Hy.

Proor. Consider the eigenvectors,

w11 w21 Wn(m-2),1
wi1,2 w22 Wn(m—2),2
Wy = : ) Wz = . ; ceey Wn(m—2) = . € Cnmv
Wi,m W2,m Wn(m—2),m
where w,, € C* (2 = 1,2,...,n(m —2), 3 = 1,2,...,m), and define the nm x n(m — 2) matrix
W = [wiwsz ... Wn(m-2)]- Since AA* is nonsingular, by Proposition 2, A;, As, ..., Ay cannot

have a common left eigenvector corresponding to zero. As a consequence, the equations,

L. o - 0 ~A}
0 I, - 0 —Ay || @R “h1
. . Wk,2 Wk,2
(CLCL)wi = : : . : : =
0 0 R I, —A;“n_l
—Al __A2 .. —Am-—l S Wk,m W,m

(k=1,2,...,n(m—2)) yield

and
Wk,1
_p1 Wi,2
Miw, = A0 , =90, k=1,2,...,n(m—2)
0 I,
Wk,m

Furthermore, M} M;, = I5,, and thus, the nm x nm matrix V = [WM_] is unitary. If W is
the n(m — 1) x n(m — 2) submatrix of W obtained by striking out the last n zero rows of W,
then straightforward computations imply that

* * _ w In(m—-l) —~A*
ve@epy =y | [ 75w

B ;EAS [Wl -A*pt 0]
BN o 0 I
| -A 5§ n
-In(m—Q) 0 0
= 0o I, P
| o P S
= Inm-2) ® HL. |

When the matrices ApAf and AA* commute, the problem of computing H}J/ ? arisen in Theo-
rem 1 can be reduced to the computation of the positive definite matrices Py, P, and ¥ in (3)
and (4). The following lemma is necessary for our discussion.

LEMMA 1. Suppose AgA} and AA* commute. Then, the matrices AgAj, AA*, Po, Py, ¥ and
their mverses are mutually commuting.

ProOF. By [9, Theorem 4.1.6], there exists a umtary Vo € C**", such that V§'(A4oAg)Vo and
Vit (AA*}V, are diagonal. The result follows readily. ]
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PROPOSITION 5. Suppose AA* is nonsingular and commutes with AgAj. Then, the positive
definite square root of Hy, is given by

Y2 _ ¥t o0 L+Ph P
L 710 gt P Py+5

Proor Since ApAj and AA* commute, using Lemma 1, 1t 1s straightforward to see that

vl o0 | [L+P A T\
()
(UYL +R) A )P

| Ulp \IJ"(PO-r-S)]
(O-2[(I, + Po)? + AA*] U~2[I, + 2P, + S|P,
| U2, + 2P + S|P \I:—z[In+2PO+S]S]

— In Pl a——
~ | p 5} = Hi.

Moreover, by Lemma 1 and [9, Theorem 7.7.6], we obtain that the matrices,

Pl 0 d I+ P P
0o ¢! an P P+S|

are commuting positive definite. Hence, their product is also a positive definite matrix, completing
the proof. ]

It is worth mentioning that if Cy, is nonsingular with polar decomposition C;, = PU and
the nm X nm matrix P is written in the form P = [Q1Q2...Qm], where Qp € C"*" (k =
1,2,...,m), then

U

x( A—1yx
(@1 Q2 - Qm][_A (4 ) I"(m—l)]

—(Agh)* 0

m—1
- (Qm(Aal)* + Z Q]A; (Aal)*) QlQ? s Qm—l
1=1

Our results are illustrated in the following example.

ExAMPLE. Consider the 2 X 2 matrix polynomial,

L(A) = ToA* 4+ A\ + A+ Ag = L\ + [1 0] It [0 0] At [‘1 1] ,
11 11 1 0
and its block companion matrix Cp. The spectrum sp(L) = {1,—1,—0.5 £ 0.866i} and the
singular values of Cp, namely, 2.4171, 1.8354, 1, 1, 0.8477, 0.2659, clearly confirm Proposition 1
and Corollary 1. The matrices Ag and AA* = A1 AT+ A A5 = [ i ﬂ are nonsingular and do not
commute. It is easy to compute,

p_ [ 13416 —0.4472
7 | -0.4472 0.8944 |’

p, - [0:9391 0.3437
17 10.3437 1.9702]°

¢ | %8094 —0.0906
~ |-0.0006 2.6242 |’
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and
0.1984 -0.5422 0 0
0.1984 —0.5422 0 0
ML:[—A*Pfl 0]2 ~0.9391 -0.3437 0 0
0 L 0.1984 —0.5422 0 0
0 0 10
0 0 0 1

The positive definite square root of Hy, is

0.91 —0.1089 0.3726  0.1459

—0.1089 0.6629  0.1787  0.7189
0.3726  0.1787  1.6813 —0.0482 |’

0.1459  0.7189 —0.0482 2.1118

H? =

and by Theorem 1, the polar decomposition of Cj, is given by C;, = PU, where

0.9208 —0.0792 -0.0941 -0.0792 —0.0229 -0.3609
—0.0792 09208 —0.0941 -0.0792 -0.0229 -0.3609
—-0.0941 —-0.0941 0.8105 —0.0941 -0.4113 -0.3838
-0.0792 -0.0792 -0.0941 0.9208 —0.0229 -—0.3609
—0.0229 -0.0229 -0.4113 -0.0229 1.6813 —0.0482
-0.3609 ~0.3609 -0.3838 -0.3609 -0.0482 2.1118

and

-0.3074 —-0.1904 0.9208 —0.0792 -0.0941 -0.0792
—0.3074 —-0.1904 —0.0792 0.9208 -—0.0941 -0.0792
—0.1445 -0.5437 -—0.0941 -—-0.0941 0.8105 —0.0941
—0.3074 —-0.1904 -0.0792 -0.0792 -0.0941 0.9208
0.5283 —0.7417 -0.0229 -0.0229 -—-0.4113 -0.0229
—~0.6453 -0.2134 -0.3609 -0.3609 —0.3838 —0.3609

U=PC) =

Denoting the Frobenius norm by || - || 7, we confirm our numerical results by calculating ||C.C} —
P?|r < 107!, Notice also that the last four columns of U are exactly the same with the first
four columns of P, verifying our discussion. |

Finally, we remark that since our results yield a strong reduction of the order of the problem
of polar decomposition, they lead to better estimations of the factors P and U than the classical
methods applied directly to Cy,. For example, consider the 50 x 50 diagonal matrix polynomial,

L(N) = IsoA® 4+ Agh? + Ag)3 + A0 + A1) + Iso,

where A, = diag {1,27,37,...,50°} (3 = 1,2,3,4). Two approximations of the positive definite
square root of the 250 x 250 matrix C,C}, P, and 15, were constructed by our methodology
(using Theorem 1 and Proposition 5) and by a standard singular value decomposition of Cf,
respectively. All the computations were performed in MATLAB. To compare the accuracy of the
two techniques, we compute ||C,C} — P%||F 2 0.0135 and |C,C} — P?||p 22 0.1562. Hence, we
conclude that our results add one more possibility for testing numerical algorithms relative to
polar decomposition and singular value decomposition.
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