The Polar Decomposition of Block Companion Matrices

G. Kalogeropoulos
Department of Mathematics
University of Athens
Panepistimioupolis 15784, Athens, Greece
gkaloger@math.uoa.gr
P. Psarrakos*
Department of Mathematics
National Technical University
Zografou Campus 15780, Athens, Greece
ppsarr@math.ntua.gr

(Recevved October 2004; revised and accepted February 2005)

Abstract

Let $L(\lambda)=I_{n} \lambda^{m}+A_{m-1} \lambda^{m-1}+\quad+A_{1} \lambda+A_{0}$ be an $n \times n$ monic matrix polynomial, and let C_{L} be the corresponding block companion matrix In this note, we extend a known result on scalar polynomials to obtan a formula for the polar decomposition of C_{L} when the matrices A_{0} and $\sum_{\jmath=1}^{m-1} A_{\jmath} A_{j}^{*}$ are nonsmgular (C) 2005 Elsevier Ltd All rights reserved.

Keywords-Block companion matrix, Matrix polynomial, Eigenvalue, Singular value, Polar decomposition.

1. INTRODUCTION

Consider the monic matrix polynomial,

$$
\begin{equation*}
L(\lambda)=I_{n} \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0} \tag{1}
\end{equation*}
$$

where $A_{\jmath} \in \mathbb{C}^{n \times n}(\jmath=0,1, \ldots, m-1, m \geq 2), \lambda$ is a complex variable and I_{n} denotes the $n \times n$ identity matrix. The study of matrix polynomials, especially with regard to their spectral analysis, has a long history and plays an important role in systems theory [1-4]. A scalar $\lambda_{0} \in \mathbb{C}$ is said to be an eigenvalue of $L(\lambda)$ if the system $L\left(\lambda_{0}\right) x=0$ has a nonzero solution $x_{0} \in \mathbb{C}^{n}$. This solution x_{0} is known as an eigenvector of $L(\lambda)$ corresponding to λ_{0}. The set of all eigenvalues of $L(\lambda)$ is the spectrum of $L(\lambda)$, namely, $\operatorname{sp}(L)=\{\lambda \in \mathbb{C}: \operatorname{det} L(\lambda)=0\}$, and contains no more than $n m$ distinct (finite) elements.

[^0]Define $\Delta=\left[A_{1} A_{2} \ldots A_{m-1}\right] \in \mathbb{C}^{n \times n(m-1)}$. The $n m \times n m$ matrix,

$$
C_{L}=\left[\begin{array}{ccccc}
0 & I_{n} & 0 & \cdots & 0 \\
0 & 0 & I_{n} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & I_{n} \\
-A_{0} & -A_{1} & -A_{2} & \cdots & -A_{m-1}
\end{array}\right]=\left[\begin{array}{cc}
0 & I_{n(m-1)} \\
-A_{0} & -\Delta
\end{array}\right]
$$

(where the zero matrices are of appropriate size) is known as the block companion matrix of $L(\lambda)$, and its spectrum, $\mathrm{sp}\left(C_{L}\right)$, coincides with $\operatorname{sp}(L)$. Moreover, C_{L} and $L(\lambda)$ are strongly connected since they have similar Jordan structures and define equivalent dynamical systems; for example, see $[2,3]$ for these comments and general background on block companion matrices of matrix polynomials.
Let $C_{L}=P U$ be the (left) polar decomposition of C_{L}, where the $n m \times n m$ matrix $P=$ $\left(C_{L} C_{L}^{*}\right)^{1 / 2}$ is positive semidefinite and $U \in \mathbb{C}^{n m \times n m}$ is unitary. Then, the eigenvalues of P are the singular values of C_{L} and (recalling that $\left.\operatorname{sp}\left(C_{L}\right)=\operatorname{sp}(L)\right)$ yield bounds for the eigenvalues and for products of eigenvalues of $L(\lambda)[5,6]$.
In [7], van den Driessche and Wimmer obtained an explicit formula for the polar decomposition of the companion matrix corresponding to a monic scalar polynomial $p(\lambda)$ (i.e., for $n=1$) in terms of the coefficients of $p(\lambda)$. In this article, extending their methodology, we prove that their results are also valid for the matrix polynomial $L(\lambda)$ in (1) and its block companion matrix C_{L} in (2) when the matrices A_{0} and $\Delta \Delta^{*}=\sum_{\jmath=1}^{m-1} A_{\jmath} A_{j}^{*}$ are nonsingular. An important feature of our generalization is that the construction of the polar decomposition of the $n m \times n m$ matrix C_{L} is reduced to the computation of the (positive definite) square root of a $2 n \times 2 n$ positive definite matrix. If in addition, $A_{0} A_{0}^{*}$ and $\Delta \Delta^{*}$ commute, then the polar decomposition of C_{L} is further reduced to the computation of the $n \times n$ positive definite square roots,

$$
\begin{equation*}
P_{0}=\left(A_{0} A_{0}^{*}\right)^{1 / 2}, \quad P_{1}=\left(\Delta \Delta^{*}\right)^{1 / 2}=\left(\sum_{\jmath=1}^{m-1} A_{j} A_{j}^{*}\right)^{1 / 2}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi=\left(\Delta \Delta^{*}+A_{0} A_{0}^{*}+I_{n}+2 P_{0}\right)^{1 / 2}=\left(P_{1}^{2}+\left(P_{0}+I_{n}\right)^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

2. SINGULAR VALUES AND POLAR DECOMPOSITION

Suppose $L(\lambda)=I_{n} \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ is an $n \times n$ matrix polynomial with $n \geq 2$ and $\operatorname{det} A_{0} \neq 0$ (or equivalently, $0 \notin \operatorname{sp}(L)$), and let C_{L} be the corresponding (nonsingular) block companion matrix in (2).
Consider the $n \times n$ positive definite matrix $S=\sum_{j=0}^{m-1} A_{\jmath} A_{j}^{*}=\Delta \Delta^{*}+A_{0} A_{0}^{*}$ and the $n m \times n m$ positive definite matrix,

$$
C_{L} C_{L}^{*}=\left[\begin{array}{cc}
I_{n(m-1)} & -\Delta^{*} \\
-\Delta & S
\end{array}\right] .
$$

The square roots of the eigenvalues of $C_{L} C_{L}^{*}$ are the singular values of C_{L}. Keeping in mind the Schur complement of the leading $n(m-1) \times n(m-1)$ block of the linear pencil $I_{n m} \lambda-C_{L} C_{L}^{*}$, one can see that

$$
\begin{aligned}
\operatorname{det}\left(I_{n m} \lambda-C_{L} C_{L}^{*}\right) & =\operatorname{det}\left[I_{n(m-1)}(\lambda-1)\right] \operatorname{det}\left(I_{n} \lambda-S-\frac{1}{\lambda-1} \Delta \Delta^{*}\right) \\
& =(\lambda-1)^{n(m-2)} \operatorname{det}\left[I_{n} \lambda^{2}-\left(I_{n}+S\right) \lambda+A_{0} A_{0}^{*}\right] .
\end{aligned}
$$

Hence, the singular values of C_{L} are $\sigma=1$ (of multiplicity at least $n(m-2)$) and the square roots of the eigenvalues of the quadratic self-adjoint matrix polynomial,

$$
\begin{equation*}
R_{L}(\lambda)=I_{n} \lambda^{2}-\left(I_{n}+S\right) \lambda+A_{0} A_{0}^{*} . \tag{5}
\end{equation*}
$$

The Hermitian matrices $I_{n}+S$ and $A_{0} A_{0}^{*}$ are positive definite, and the quantity $\left[x^{*}\left(I_{n}+\right.\right.$ S) $x]^{2}-4 x^{*} A_{0} A_{0}^{*} x$ is nonnegative for every unit vector $x \in \mathbb{C}^{n}$. Thus, by [4, Section IV.31] (see also [8]), the eigenvalues of the matrix polynomial $R_{L}(\lambda)$ are real positive and their minimum and maximum values are given by

$$
\lambda_{\min }\left(R_{L}\right)=\min \left\{\frac{1+x^{*} S x-\sqrt{\left(1+x^{*} S x\right)^{2}-4 x^{*} A_{0} A_{0}^{*} x}}{2}: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

and

$$
\lambda_{\max }\left(R_{L}\right)=\max \left\{\frac{1+x^{*} S x+\sqrt{\left(1+x^{*} S x\right)^{2}-4 x^{*} A_{0} A_{0}^{*} x}}{2}: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

respectively. Moreover, we have the following known result [5, Lemma 2.7] (see also [6, p. 336; 7, Lemma 2.2]).
Proposition 1. The singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n m}$ of the block companion matrix C_{L} fall into three groups,
(i) $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 1$,
(ii) $\sigma_{n+1}=\sigma_{n+2}=\cdots=\sigma_{n(m-1)}=1$ (if $m \geq 3$), and
(iii) $1 \geq \sigma_{n(m-1)+1} \geq \sigma_{n(m-1)+2} \geq \cdots \geq \sigma_{n m}>0$.

The $2 n$ singular values of C_{L} in (i) and (iii) are the square roots of the eigenvalues of $R_{L}(\lambda)$ in (5).
Corollary 1. For any eigenvalue μ of $L(\lambda)$,

$$
\lambda_{\min }\left(R_{L}\right)^{1 / 2}=\sigma_{n m} \leq|\mu| \leq \sigma_{1}=\lambda_{\max }\left(R_{L}\right)^{1 / 2} .
$$

Next, we characterize the case when 1 is an eigenvalue of $R_{L}(\lambda)$, i.e., when C_{L} has more than $n(m-2)$ singular values equal to 1 (see also [5, Lemma 2.8]).
Proposition 2. The following statements are equivalent.
(i) The matrix polynomial $R_{L}(\lambda)$ has an eigenvalue $\lambda=1$.
(ii) The matrix $\Delta \Delta^{*}=\sum_{\jmath=1}^{m-1} A_{1} A_{j}^{*}$ is singular.
(iii) The matrices $A_{1}, A_{2}, \ldots, A_{m-1}$ are singular and have a common left eigenvector corresponding to zero.
Proof. Since $\operatorname{det} R_{L}(1)=\operatorname{det}\left(\Delta \Delta^{*}\right)$, the equivalence (i) \Leftrightarrow (ii) follows readily. Moreover, if $y \in$ \mathbb{C}^{n} is a nonzero vector such that $A_{j}^{*} y=0(\jmath=1,2, \ldots, m-1)$, then $\Delta \Delta^{*} y=\sum_{j=1}^{m-1} A_{\jmath} A_{j}^{*} y=0$. Thus, it is enough to prove the part (ii) \Rightarrow (iii).

Suppose $\Delta \Delta^{*}$ is singular, and let $x_{0} \in \mathbb{C}^{n}$ be a unit eigenvector of $\Delta \Delta^{*}$ corresponding to 0 . Then,

$$
x_{0}^{*} \Delta \Delta^{*} x_{0}=\sum_{j=1}^{m-1} x_{0}^{*} A_{j} A_{j}^{*} x_{0}=0,
$$

where $A_{3} A_{j}^{*}$ is positıve semidefinite and satisfies $x_{0}^{*} A_{3} A_{j}^{*} x_{0} \geq 0$ for every $\jmath=1,2, \ldots, m-1$. Hence, $x_{0}^{*} A_{\jmath} A_{\jmath}^{*} x_{0}=0$ for every $\jmath=1,2, . ., m-1$, and thus,

$$
A_{3}^{*} x_{0}=0, \quad \jmath=1,2, \ldots, m-1
$$

If the minımum or the maximum singular value of C_{L} is equal to 1 , then the polar decomposition of C_{L} is equivalent to the polar decomposition of the matrix A_{0}.

Proposition 3. Suppose the minimum or the maximum singular value of C_{L} is $\sigma=1$. Let P_{0} be the positive definite matrix in (3) (recall that $\operatorname{det} A_{0} \neq 0$). Then, $A_{1}=A_{2}=\cdots=A_{m-1}=0$, and the polar decomposition of C_{L} is given by $C_{L}=P U$, where

$$
P=\left[\begin{array}{cc}
I_{n(m-1)} & 0 \\
0 & P_{0}
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{cc}
0 & I_{n(m-1)} \\
-P_{0}^{-1} A_{0} & 0
\end{array}\right]
$$

Proof. Clearly, $\lambda=1$ is the minimum or the maximum eigenvalue of the matrix polynomial $R_{L}(\lambda)$ in (5). Suppose $\lambda=1$ is the minimum eigenvalue of $R_{L}(\lambda)$. Then, for every unit vector $x \in \mathbb{C}^{n}$, the equation,

$$
\begin{equation*}
x^{*} R_{L}(\lambda) x=\lambda^{2}-\left(1+x^{*} S x\right) \lambda+x^{*} A_{0} A_{0}^{*} x=0 \tag{6}
\end{equation*}
$$

has a real root $[4,8]$,

$$
\rho_{1}=\frac{1+x^{*} S x-\sqrt{\left(1+x^{*} S x\right)^{2}-4 x^{*} A_{0} A_{0}^{*} x}}{2} \geq 1
$$

Hence,

$$
x^{*}\left(\sum_{\jmath=0}^{m-1} A_{\jmath} A_{\jmath}^{*}\right) x \leq x^{*} A_{0} A_{0}^{*} x
$$

where the equality holds for x a unit eigenvector of $R_{L}(\lambda)$ corresponding to 1 . Consequently, the matrix $\Delta \Delta^{*}=\sum_{j=1}^{m-1} A_{j} A_{j}^{*}$ is singular negative semidefinite. Since $\Delta \Delta^{*}$ is always positive semidefinite, this means that $\Delta=0$, and thus, $C_{L} C_{L}^{*}=I_{n(m-1)} \oplus A_{0} A_{0}^{*}$ and $P=\left(C_{L} C_{L}^{*}\right)^{1 / 2}=$ $I_{n(m-1)} \oplus P_{0}$.

If $\lambda=1$ is the maximum eigenvalue of $R_{L}(\lambda)$, then the proof is similar, using the real root,

$$
\rho_{2}=\frac{1+x^{*} S x+\sqrt{\left(1+x^{*} S x\right)^{2}-4 x^{*} A_{0} A_{0}^{*} x}}{2} \leq 1
$$

of the quadratic equation (6). In both cases, the matrix,

$$
U=\left[\begin{array}{cc}
0 & I_{n(m-1)} \\
-P_{0}^{-1} A_{0} & 0
\end{array}\right]
$$

satisfies

$$
U U^{*}=\left[\begin{array}{cc}
0 & I_{n(m-1)} \\
-P_{0}^{-1} A_{0} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -A_{0}^{*} P_{0}^{-1} \\
I_{n(m-1)} & 0
\end{array}\right]=I_{n m}
$$

and

$$
P U=\left[\begin{array}{cc}
I_{n(m-1)} & 0 \\
0 & P_{0}
\end{array}\right]\left[\begin{array}{cc}
0 & I_{n(m-1)} \\
-P_{0}^{-1} A_{0} & 0
\end{array}\right]=C_{L}
$$

The proof is complete.
Note that if all the coefficient matrices $A_{1}, A_{2}, \ldots, A_{m-1}$ of $L(\lambda)$ are zero (this is the case in the above proposition), then $C_{L} C_{L}^{*}=I_{n(m-1)} \oplus A_{0} A_{0}^{*}$ and the spectrum of $R_{L}(\lambda)=(\lambda-1)\left(I_{n} \lambda-\right.$ $\left.A_{0} A_{0}^{*}\right)$ coincides with the union $\operatorname{sp}\left(A_{0} A_{0}^{*}\right) \cup\{1\}$.

Consider the $2 n \times 2 n$ Hermitian matrix,

$$
H_{L}=\left[\begin{array}{cc}
I_{n} & \left(\begin{array}{c}
\left.\sum_{j=1}^{m-1} A_{\jmath} A_{j}^{*}\right)^{1 / 2} \\
\left(\sum_{j=1}^{m-1} A_{\jmath} A_{j}^{*}\right)^{1 / 2}
\end{array} \sum_{j=0}^{m-1} A_{j} A_{j}^{*}\right.
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & P_{1} \\
P_{1} & S
\end{array}\right] .
$$

Then, by straightforward computations, we see that $\operatorname{det}\left(I_{2 n} \lambda-H_{L}\right)=\operatorname{det} R_{L}(\lambda)$, i.e., $\operatorname{sp}\left(R_{L}\right)=$ $\operatorname{sp}\left(H_{L}\right)$. As a consequence, H_{L} is positive definite.

Assuming that $\Delta \Delta^{*}=\sum_{j=1}^{m-1} A_{\jmath} A_{j}^{*}$ is nonsingular, we also define the $n m \times 2 n$ matrix,

$$
M_{L}=\left[\begin{array}{cc}
-\Delta^{*} P_{1}^{-1} & 0 \\
0 & I_{n}
\end{array}\right]
$$

and observe that

$$
M_{L}^{*} M_{L}=\left[\begin{array}{cc}
-P_{1}^{-1} \Delta & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
-\Delta^{*} P_{1}^{-1} & 0 \\
0 & I_{n}
\end{array}\right]=\left[\begin{array}{cc}
P_{1}^{-1} P_{1}^{2} P_{1}^{-1} & 0 \\
0 & I_{n}
\end{array}\right]=I_{2 n}
$$

Now, we can prove the main result of the paper, generalizing [7, Theorem 2.1].
THEOREM 1. Let $L(\lambda)=I_{n} \lambda^{m}+A_{m-1} \lambda^{m-1}+\cdots+A_{1} \lambda+A_{0}$ be an $n \times n$ matrix polynomial with $\operatorname{det} A_{0} \neq 0$, and suppose $\Delta \Delta^{*}=\sum_{\jmath=1}^{m-1} A_{\jmath} A_{j}^{*}$ is nonsingular. Define M_{L} as above, and let $H_{L}^{1 / 2}$ be the positive definite square root of H_{L}. Then, the polar decomposition of the block companion matrix C_{L} is given by $C_{L}=P U$, where

$$
P=I_{n m}+M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right) M_{L}^{*}
$$

and

$$
U=\left(I_{n m}+M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right) M_{L}^{*}\right)\left[\begin{array}{cc}
-\Delta^{*}\left(A_{0}^{-1}\right)^{*} & I_{n(m-1)} \\
-\left(A_{0}^{-1}\right)^{*} & 0
\end{array}\right]
$$

Proof. Since $M_{L}^{*} M_{L}=I_{2 n}$, the matrix $P=I_{n m}+M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right) M_{L}^{*}$ is positive definite and satisfies,

$$
\begin{aligned}
P^{2} & =\left(I_{n m}+M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right) M_{L}^{*}\right)^{2} \\
& =I_{n m}+2 M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right) M_{L}^{*}+M_{L}\left(H_{L}^{1 / 2}-I_{2 n}\right)^{2} M_{L}^{*} \\
& =I_{n m}+M_{L}\left(2 H_{L}^{1 / 2}-2 I_{2 n}+H_{L}-2 H_{L}^{1 / 2}+I_{2 n}\right) M_{L}^{*} \\
& =I_{n m}+M_{L}\left(H_{L}-I_{2 n}\right) M_{L}^{*} \\
& =I_{n m}+\left[\begin{array}{cc}
-\Delta^{*} P_{1}^{-1} & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
0 & P_{1} \\
P_{1} & S-I_{n}
\end{array}\right]\left[\begin{array}{cc}
-P_{1}^{-1} \Delta & 0 \\
0 & I_{n}
\end{array}\right] \\
& =I_{n m}+\left[\begin{array}{cc}
0 & -\Delta^{*} \\
-\Delta & S-I_{n}
\end{array}\right] \\
& =C_{L} C_{L}^{*}
\end{aligned}
$$

Furthermore, by the relation $C_{L}=P U$, we have that $U^{*}=C_{L}^{-1} P$, or equivalently, $U=$ $P\left(C_{L}^{-1}\right)^{*}$, where

$$
\left(C_{L}^{-1}\right)^{*}=\left[\begin{array}{ccccc}
-A_{1}^{*}\left(A_{0}^{-1}\right)^{*} & I_{n} & 0 & \cdots & 0 \\
-A_{2}^{*}\left(A_{0}^{-1}\right)^{*} & 0 & I_{n} & \cdots & 0 \\
& \vdots & \vdots & \cdot & \vdots \\
\cdot & A_{m-1}^{*}\left(A_{0}^{-1}\right)^{*} & 0 & 0 & \cdots \\
I_{n} \\
-\left(A_{0}^{-1}\right)^{*} & 0 & 0 & \cdots & 0
\end{array}\right]=\left[\begin{array}{cc}
-\Delta^{*}\left(A_{0}^{-1}\right)^{*} & I_{n(m-1)} \\
-\left(A_{0}^{-1}\right)^{*} & 0
\end{array}\right]
$$

The proof is complete.
Notice that by the assumption $\operatorname{det} A_{0} \neq 0$, it follows that C_{L} is nonsingular and matrices P and U are unique [9].

Next, we obtain that the matrices $C_{L} C_{L}^{*}$ and $I_{n(m-2)} \oplus H_{L}$ are unitarily similar. One can easily see that this result leads directly to a second proof of Theorem 1.

Proposition 4. Suppose $\Delta \Delta^{*}$ is nonsingular and let $\omega_{1}, \omega_{2}, \ldots, \omega_{n(m-2)}$ be an orthonormal system of $n(m-2)$ eigenvectors of $C_{L} C_{L}^{*}$ corresponding to the eigenvalue $\lambda=1$. Then, the $n m \times n m$ matrix $V=\left[\omega_{1} \omega_{2} . . \omega_{n(m-2)} M_{L}\right]$ is unitary and satisfies $V^{*}\left(C_{L} C_{L}^{*}\right) V=I_{n(m-2)} \oplus H_{L}$. Proof. Consider the eigenvectors,

$$
\omega_{1}=\left[\begin{array}{c}
\omega_{1,1} \\
\omega_{1,2} \\
\vdots \\
\omega_{1, m}
\end{array}\right], \quad \omega_{2}=\left[\begin{array}{c}
\omega_{2,1} \\
\omega_{2,2} \\
\vdots \\
\omega_{2, m}
\end{array}\right], \quad \ldots, \quad \omega_{n(m-2)}=\left[\begin{array}{c}
\omega_{n(m-2), 1} \\
\omega_{n(m-2), 2} \\
\vdots \\
\omega_{n(m-2), m}
\end{array}\right] \in \mathbb{C}^{n m}
$$

where $\omega_{2, \jmath} \in \mathbb{C}^{n}(\imath=1,2, \ldots, n(m-2), \jmath=1,2, \ldots, m)$, and define the $n m \times n(m-2)$ matrix $W=\left[\omega_{1} \omega_{2} \ldots \omega_{n(m-2)}\right]$. Since $\Delta \Delta^{*}$ is nonsingular, by Proposition $2, A_{1}, A_{2}, \ldots, A_{m-1}$ cannot have a common left eigenvector corresponding to zero. As a consequence, the equations,

$$
\left(C_{L} C_{L}^{*}\right) \omega_{k}=\left[\begin{array}{ccccc}
I_{n} & 0 & \cdots & 0 & -A_{1}^{*} \\
0 & I_{n} & \cdots & 0 & -A_{2}^{*} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_{n} & -A_{m-1}^{*} \\
-A_{1} & -A_{2} & \cdots & -A_{m-1} & S
\end{array}\right]\left[\begin{array}{c}
\omega_{k, 1} \\
\omega_{k, 2} \\
\vdots \\
\omega_{k, m}
\end{array}\right]=\left[\begin{array}{c}
\omega_{k, 1} \\
\omega_{k, 2} \\
\vdots \\
\omega_{k, m}
\end{array}\right]
$$

($k=1,2, \ldots, n(m-2)$) yield

$$
\omega_{k, m}=0, \quad k=1,2, \ldots, n(m-2)
$$

and

$$
M_{L}^{*} \omega_{k}=\left[\begin{array}{cc}
-P_{1}^{-1} \Delta & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{c}
\omega_{k, 1} \\
\omega_{k, 2} \\
\vdots \\
\omega_{k, m}
\end{array}\right]=0, \quad k=1,2, \ldots, n(m-2) .
$$

Furthermore, $M_{L}^{*} M_{L}=I_{2 n}$, and thus, the $n m \times n m$ matrix $V=\left[W M_{L}\right]$ is unitary. If W_{1} is the $n(m-1) \times n(m-2)$ submatrix of W obtained by striking out the last n zero rows of W, then straightforward computations imply that

$$
\begin{aligned}
V^{*}\left(C_{L} C_{L}^{*}\right) V & =\left[\begin{array}{c}
W^{*} \\
M_{L}^{*}
\end{array}\right]\left[\begin{array}{cc}
I_{n(m-1)} & -\Delta^{*} \\
-\Delta & S
\end{array}\right]\left[W M_{L}\right] \\
& =\left[\begin{array}{cc}
W_{1}^{*} & 0 \\
-P_{1}^{-1} \Delta & P_{1} \\
-\Delta & S
\end{array}\right]\left[\begin{array}{ccc}
W_{1} & -\Delta^{*} P_{1}^{-1} & 0 \\
0 & 0 & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
I_{n(m-2)} & 0 & 0 \\
0 & I_{n} & P_{1} \\
0 & P_{1} & S
\end{array}\right] \\
& =I_{n(m-2)} \oplus H_{L} .
\end{aligned}
$$

When the matrices $A_{0} A_{0}^{*}$ and $\Delta \Delta^{*}$ commute, the problem of computing $H_{L}^{1 / 2}$ arisen in Theorem 1 can be reduced to the computation of the positive definite matrices P_{0}, P_{1}, and Ψ in (3) and (4). The following lemma is necessary for our discussion.
Lemma 1. Suppose $A_{0} A_{0}^{*}$ and $\Delta \Delta^{*}$ commute. Then, the matrices $A_{0} A_{0}^{*}, \Delta \Delta^{*}, P_{0}, P_{1}, \Psi$ and their nverses are mutually commuting.
Proof. By [9, Theorem 4.1.6], there exists a unitary $V_{0} \in \mathbb{C}^{n \times n}$, such that $V_{0}^{*}\left(A_{0} A_{0}^{*}\right) V_{0}$ and $V_{0}^{*}\left(\Delta \Delta^{*}\right) V_{0}$ are diagonal. The result follows readily.

Proposition 5. Suppose $\Delta \Delta^{*}$ is nonsingular and commutes with $A_{0} A_{0}^{*}$. Then, the positive definite square root of H_{L} is given by

$$
H_{L}^{1 / 2}=\left[\begin{array}{cc}
\Psi^{-1} & 0 \\
0 & \Psi^{-1}
\end{array}\right]\left[\begin{array}{cc}
I_{n}+P_{0} & P_{1} \\
P_{1} & P_{0}+S
\end{array}\right]
$$

Proof Since $A_{0} A_{0}^{*}$ and $\Delta \Delta^{*}$ commute, using Lemma 1 , it is straightforward to see that

$$
\begin{aligned}
& \left(\left[\begin{array}{cc}
\Psi^{-1} & 0 \\
0 & \Psi^{-1}
\end{array}\right]\left[\begin{array}{cc}
I_{n}+P_{0} & P_{1} \\
P_{1} & P_{0}+S
\end{array}\right]\right)^{2} \\
& \quad=\left[\begin{array}{cc}
\Psi^{-1}\left(I_{n}+P_{0}\right) & \Psi^{-1} P_{1} \\
\Psi^{-1} P_{1} & \Psi^{-1}\left(P_{0}+S\right)
\end{array}\right]^{2} \\
& =\left[\begin{array}{cc}
\Psi^{-2}\left[\left(I_{n}+P_{0}\right)^{2}+\Delta \Delta^{*}\right] & \Psi^{-2}\left[I_{n}+2 P_{0}+S\right] P_{1} \\
\Psi^{-2}\left[I_{n}+2 P_{0}+S\right] P_{1} & \Psi^{-2}\left[I_{n}+2 P_{0}+S\right] S
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n} & P_{1} \\
P_{1} & S
\end{array}\right]=H_{L}
\end{aligned}
$$

Moreover, by Lemma 1 and [9, Theorem 7.7.6], we obtain that the matrices,

$$
\left[\begin{array}{cc}
\Psi^{-1} & 0 \\
0 & \Psi^{-1}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
I_{n}+P_{0} & P_{1} \\
P_{1} & P_{0}+S
\end{array}\right]
$$

are commuting positive definite. Hence, their product is also a positive definite matrix, completing the proof.

It is worth mentioning that if C_{L} is nonsingular with polar decomposition $C_{L}=P U$ and the $n m \times n m$ matrix P is written in the form $P=\left[Q_{1} Q_{2} \ldots Q_{m}\right]$, where $Q_{k} \in \mathbb{C}^{n m \times n}(k=$ $1,2, \ldots, m)$, then

$$
\begin{aligned}
U & =\left[\begin{array}{llll}
Q_{1} & Q_{2} & \cdots & Q_{m}
\end{array}\right]\left[\begin{array}{cc}
-\Delta^{*}\left(A_{0}^{-1}\right)^{*} & I_{n(m-1)} \\
-\left(A_{0}^{-1}\right)^{*} & 0
\end{array}\right] \\
& =\left[-\left(Q_{m}\left(A_{0}^{-1}\right)^{*}+\sum_{\jmath=1}^{m-1} Q_{\jmath} A_{j}^{*}\left(A_{0}^{-1}\right)^{*}\right) Q_{1} Q_{2} \ldots Q_{m-1}\right]
\end{aligned}
$$

Our results are illustrated in the following example.
Example. Consider the 2×2 matrix polynomial,

$$
L(\lambda)=I_{2} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+A_{0}=I_{2} \lambda^{3}+\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \lambda^{2}+\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \lambda+\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]
$$

and its block companion matrix C_{L}. The spectrum $\operatorname{sp}(L)=\{1,-1,-0.5 \pm 0.866 \mathrm{i}\}$ and the singular values of C_{L}, namely, 2.4171, 1.8354, 1, 1, 0.8477, 0.2659 , clearly confirm Proposition 1 and Corollary 1. The matrices A_{0} and $\Delta \Delta^{*}=A_{1} A_{1}^{*}+A_{2} A_{2}^{*}=\left[\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right]$ are nonsingular and do not commute. It is easy to compute,

$$
\begin{aligned}
P_{0} & =\left[\begin{array}{cc}
1.3416 & -0.4472 \\
-0.4472 & 0.8944
\end{array}\right] \\
P_{1} & =\left[\begin{array}{cc}
0.9391 & 0.3437 \\
0.3437 & 1.9702
\end{array}\right] \\
\Psi & =\left[\begin{array}{cc}
2.3094 & -0.0906 \\
-0.0906 & 2.6242
\end{array}\right]
\end{aligned}
$$

and

$$
M_{L}=\left[\begin{array}{cc}
-\Delta^{*} P_{1}^{-1} & 0 \\
0 & I_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0.1984 & -0.5422 & 0 & 0 \\
0.1984 & -0.5422 & 0 & 0 \\
-0.9391 & -0.3437 & 0 & 0 \\
0.1984 & -0.5422 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

The positive definite square root of H_{L} is

$$
H_{L}^{1 / 2}=\left[\begin{array}{cccc}
0.91 & -0.1089 & 0.3726 & 0.1459 \\
-0.1089 & 0.6629 & 0.1787 & 0.7189 \\
0.3726 & 0.1787 & 1.6813 & -0.0482 \\
0.1459 & 0.7189 & -0.0482 & 2.1118
\end{array}\right]
$$

and by Theorem 1, the polar decomposition of C_{L} is given by $C_{L}=P U$, where

$$
P=\left[\begin{array}{cccccc}
0.9208 & -0.0792 & -0.0941 & -0.0792 & -0.0229 & -0.3609 \\
-0.0792 & 0.9208 & -0.0941 & -0.0792 & -0.0229 & -0.3609 \\
-0.0941 & -0.0941 & 0.8105 & -0.0941 & -0.4113 & -0.3838 \\
-0.0792 & -0.0792 & -0.0941 & 0.9208 & -0.0229 & -0.3609 \\
-0.0229 & -0.0229 & -0.4113 & -0.0229 & 1.6813 & -0.0482 \\
-0.3609 & -0.3609 & -0.3838 & -0.3609 & -0.0482 & 2.1118
\end{array}\right]
$$

and

$$
U=P\left(C_{L}^{-1}\right)^{*}=\left[\begin{array}{cccccc}
-0.3074 & -0.1904 & 0.9208 & -0.0792 & -0.0941 & -0.0792 \\
-0.3074 & -0.1904 & -0.0792 & 0.9208 & -0.0941 & -0.0792 \\
-0.1445 & -0.5437 & -0.0941 & -0.0941 & 0.8105 & -0.0941 \\
-0.3074 & -0.1904 & -0.0792 & -0.0792 & -0.0941 & 0.9208 \\
0.5283 & -0.7417 & -0.0229 & -0.0229 & -0.4113 & -0.0229 \\
-0.6453 & -0.2134 & -0.3609 & -0.3609 & -0.3838 & -0.3609
\end{array}\right] .
$$

Denoting the Frobenus norm by $\|\cdot\|_{F}$, we confirm our numerical results by calculating $\| C_{L} C_{L}^{*}-$ $P^{2} \|_{F}<10^{-14}$. Notice also that the last four columns of U are exactly the same with the first four columns of P, verifying our discussion.
Finally, we remark that since our results yield a strong reduction of the order of the problem of polar decomposition, they lead to better estimations of the factors P and U than the classical methods applied directly to C_{L}. For example, consider the 50×50 diagonal matrix polynomial,

$$
L(\lambda)=I_{50} \lambda^{5}+A_{4} \lambda^{4}+A_{3} \lambda^{3}+A_{2} \lambda^{2}+A_{1} \lambda+I_{50},
$$

where $A_{3}=\operatorname{diag}\left\{1,2^{3}, 3^{3}, \ldots, 50^{3}\right\}(3=1,2,3,4)$. Two approximations of the positive definite square root of the 250×250 matrix $C_{L} C_{L}^{*}, P$, and \hat{P}, were constructed by our methodology (using Theorem 1 and Proposition 5) and by a standard singular value decomposition of C_{L}, respectively. All the computations were performed in Matlab. To compare the accuracy of the two techniques, we compute $\left\|C_{L} C_{L}^{*}-P^{2}\right\|_{F} \cong 0.0135$ and $\left\|C_{L} C_{L}^{*}-\hat{P}^{2}\right\|_{F} \cong 0.1562$. Hence, we conclude that our results add one more possibility for testing numerical algorithms relative to polar decomposition and singular value decomposition.

REFERENCES

[^1]4. A S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencals, Translations of Math. Monographs, Volume 71, Amer. Math. Society, Providence, RI, (1988).
5 N.J. Higham and F. Tisseur, Bounds of elgenvalues of matrix polynomials, Linear Algebra Appl. 358, 5-22, (2003)

6 F Kittaneh, Singular values of companion matrices and bounds on zeros of polynomials, SIAM J. Matrzx Anal Appl. 16, 333-340, (1995).
7 P vanden Drıessche and H.K. Wımmer, Explıcit polar decomposition of companion matrices, Electr. J. Linear Algebra 1, 64-69, (1996)
8. P. Lancaster and P. Psarrakos, The numerical range of selfadjoint quadratic matrix polynomials, SIAM J. Matrex Anal. Appl. 23, 615-631, (2001)
9. R A. Horn and C.R Johnson, Matrix Analysıs, Cambridge University Press, Cambridge, (1985).

[^0]: *Author to whom all correspondence should be addressed
 0898-1221/05/\$ - see front matter (C) 2005 Elsevier Ltd. All rights reserved.
 Typeset by $\mathcal{A M}_{\mathcal{M}} \mathcal{S}-\mathrm{TEX}_{\mathrm{E}}$

[^1]: 1. F R. Gantmacher, The Theory of Matrices, Chelsea, New York, (1959).

 2 I Gohberg, P Lancaster and L. Rodman, Matrix Polynomıals, Academic Press, New York, (1982).
 3. P Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition, Academic Press, Orlando, FL, (1985)

