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ABSTRACT 

Let % be a linear code over GF(q), spanned by the rows of a matrix G of rank k. 
A nonnegative integer A is said to be the contraction index of 8 if a maximal set of 

pairwise linearly independent columns of G has k + A elements. We derive several 

upper and lower bounds on the dimension of a proper subcode of 4 with a 

prescribed contraction index v < A. We also present an upper bound on the dimen- 

sion of any linear code over GF(9) of length n, minimum Hamming distance d, and 

contraction index A. For certain values of n and d the latter bound is shown to be 

tight for all 9 and A. This substantially generalizes the results obtained by Delsarte 

andbyDucforA=l. 

1. INTRODUCTION 

Let 6 be an (n, k) linear code of length n and dimension k over GF(q), 

the finite field with 9 elements. Thus d is a k-dimensional linear subspace 

of the space of all the 9-ary n-tuples. If {v,,v,, . . . , vk) is a basis for 8, the 

matrix G having (v,, v2,. . . , ok) as its rows is called a generator matrix of 1. 

Given a set of nonzero vectors with entries from GF(q), we say that these 

vectors are pairuhe linearly independent over GF(q) if no vector in the set 

is a scalar multiple of some other vector in the set. The contraction index A 
of the code d is defined as 

h=msax[card(S)-k], 
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where the maximum is taken over the family of all sets S of pairwise linearly 
independent columns of G. Obviously 0 Q A < n - k. If the maximal set S 
contains all the n columns of G, then A = n - k is the codimension of 6. In 
general, a code with contraction index A is contractible, in the terminology of 
[8], to a code with codimension A. 

Our goal in this paper is to provide some answers to the following 
questions: 

(1) Given a quadruple of nonnegative integers n, d, y, and A, what is the 
dimension J(n,d,q,A) of the largest linear code over GF(q) of length n, 
minimum Hamming distance d, and contraction index A? 

(2) Given a linear code t with contraction index A, what is the 
dimension J(V) of the largest subcode of L with a prescribed contraction 
index v < A? 

In the sequel we determine J(n, d,q, A) exactly for all 4 and A, provided 
that n and d assume certain values. We also present an upper bound on 
J(n,d, 9, A) for other values of n and d and provide upper and lower bounds 
on J(v). These results are derived by examination of the structure of certain 
matrices using linear algebra and combinatorial counting. 

While the general problem of finding J(n, d, q, A) originates from recent 
research concerned with maximum-likelihood soft decision decoding (see 
[8, 9]), the special case A = 1 had already been intensively studied in the 
context of majority logic decoding. Delsarte [3] and Due [4] proved an upper 
bound on ](n, d, q, l),’ which is attainable over any finite field, provided d 
is even. For odd d a tighter, also attainable bound was reported in [9]. 
Hence, J(n, d,q, 1) is determined. In Section 2 we derive a bound on 
](n, d, 4,2). The method employed can be, in principle, pursued further to 
the point where one might conjecture a general upper bound which pertains 
to all values of A (Theorem 11). However, we postpone the proof of this 
conjecture until Section 4, as a direct proof is cumbersome for A 2 3. In 
Section 3 we derive bounds on J(v) which enable us to provide an estimate 
of J(v) for 0 Q v < A -2 and, in most cases, determine the value of J(v) 
exactly for v = A - 1. In Section 4 we employ some of the relations devel- 
oped in Section 3 to prove the bound on J(n, d, q, A). Finally, in Section 5 
we shall demonstrate that the results obtained herein suffice for determining 
the value of J(v), v = 0,1,2,3,4,5,8,10,11, for the (24,121 extended binary 
Golay code. 

‘This hound is frequently and somewhat inappropriately interpreted as a bound on J(l). 
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2. PRELIMINARIES 

In this section we introduce notation which is assumed in the remainder 
of the paper. We let t be an (n, k) linear code over GF(q) with minimum 
Hamming distance d and contraction index A. In the sake of brevity, we 
shall often refer to C as an ((n, k, A)) code. For any matrix P we define a 
contracted version of P, denoted by P*, as a matrix consisting of a maximal 
set of pairwise linearly independent columns of P. Let G be a generator 
matrix of d. The (n*, k) code generated by G* is denoted L*, and the dual 
code of 1* is denoted (8*) I. Clearly, r~* = k + A, and A is also the 
contraction index of G*. Let gi be the ith column of G. If scalar multiples 
of a vector b appear as columns of G at 1 distinct positions i,, i,, . . . , i,, we 
say that the set {g,,, gi,,. .., g,,} constitutes a block of columns (or in brief a 
block) of multiplicity 1 with representative b. A block of columns whose 
representative has Hamming weight 1 will be called a unit block. A unit 
block and the row in which its representative is nonzero are said to be 
associated. 

For J(n, d, y, A) to be well defined n, d, q, and A must satisfy certain 
constraints. For instance, J(n, d, q, 1) is defined only if n > [3d /21. Condi- 
tions of similar nature are stated in Theorems 3, 4, and 15. Trivially, 

J(n,d,q,A)<n- A. This bound is attainable for A 2 1 over any finite field, 
provided d = 1 or d = 2. Therefore in the sequel we assume that d > 3. 

THEOREM 1. J(n,d,q,O)= ln/dl. 

Proof. As A = 0, t* is a (k, k) code and the identity matrix may be 
taken for G*. Thus the multiplicity of each of the k unit blocks in G must be 
at least d. n 

THEOREM 2 [4]. 

J(n,d,q,l)< q -1. 
I I 

It is easily verified that (1) is actually an equality for an even d, provided 
that n 2 3d /2. However, for an odd d, J(n, d, q, 1) is generally smaller. The 
proof presented here yields a much better insight than the proof of 191 and 
provides the ground for deriving additional results. 
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THEOREM 3. Zf d is odd, then 

J(n,d,q,l) = 

provided that n + 12 3(d + 1)/2. 

Proof As h=l, 4* isa(k+l,k)codeand G* maybe taken tobe 

where x stands for any nonzero element of GF(q), I, and I, are identity 
matrices, and k, > 2. Denote by & the multiplicity of the block of columns 
whose representative is the rightmost column of G*, and let the numbers 

m,,m,,..., mk, and l,,l,,..., Z,, be the multiplicities of the unit blocks 
associated with, respectively, zeros and nonzeros of the rightmost column of 
G*. Obviously, mi > d for all i = 1,2,. . ., k,. Also, Zi, + Ziz 2 d whenever 
i, z i,. Since d is odd, this implies that Zi 2 (d + 1)/2 for k, - 1 values of i. 
For the remaining value, say i = j, we shall use Zj + f> d. Thus 

d-t1 
n> ;rni+ ~ri+(lj+f)ak,d+(k,-l)l+d 

i=l i=l 
i#j 

d+l 
>(k-l++d. 

This yields 

J(n,d,q,l) Q (2) 
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By taking k, = 0, 2, = 1, = * * * = Zkl = (d + 1)/2 and &= (d - 1)/2+ S, 
where 6 = n + 1 [mod Cd + 1)/21, the upper bound is attained whenever 
n+1.3@+1)/2. n 

THEOREM 4. For even d 

, 

and for odd d 

.Z(n,d,2,2) = 

provi&d that n > 2 d + 1. 

Proof. Since A = q = 2, G* may be assumed to have the following form: 

I , A’ = 

where I,, I,,, I,,, I,, are identity matrices and k, + k,, + k,, + k,, = k. If 
two unit blocks of multiplicities (say) 1, and I, are associated with identical 
rows of the matrix A*, then evidently I, + 1, > d. As A = 2, the two columns 
of A* are distinct, and the weight of each is at least 2. Hence, one of the 
following holds: 

(4 k,, = 0, k,, a 2, k,, > 2. 

(b) k,, > I, k,, 2 I, k,, > 1. 

Cc) k,, a 2, k,, a 1, k,, = 0. 
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Thus a row-permuted version of G* is given by 

k-3 

3 

where the multiplicity of each of the k - 3 unit blocks is at least 1 d /2], and 
the matrix B*, which includes the representatives of the three unit blocks 
whose multiplicities might be less than [d/21, is one of the following: 

1 0 0 0 1 

(4 B*=O i 10 0 0 1 0 1, I 1 0 

1 

B*=O i 
0 0 0 1 

(b) 10 0 0 1 10, 1 1 1 

1 0 0 0 

(cl 
0 0 1 1 

In the three cases different sets of constraints are imposed on l,, l,, . . . , ls, 
the multiplicities of the five blocks of columns whose representatives consti- 
tute B*. Yet they yield I, + 1, + I, + I, + 1, > 2d + 1 for each case. Hence, 

n>(k-3);+(2d+l) if d is even 

and 

d+l 
n+lb(k-3)T+(2d+2) if d is odd. 
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Rearranging the above inequalities, we obtain 

i I 2(n-1) _1 
J(n,d,%2) G d 

and 

J(n,d,2,2) G 
2(n+l) I I d+1 --l, 

respectively. Also it follows that n > 2d + 1 for any ((n, k,2)) binary code 
with minimum distance d. If this condition holds, the foregoing bounds are 
attainable as demonstrated, for instance, by the following matrices: 

d/a d/a d/a d/2 d/a d/a d/2+6, 1 

ll...l ll...l 0 
ll...l ll...l 1 

ll...l ll...l 1 

ll’.‘l ll...l 1 

ll...l ll...l 1 

I 

and 

ll...l ll...l 1 

d+l d+l d+l d-l d-l d+l d+l 
- - ~ 2 2 2 2 2 2 2+8p 1 

( 
ll...l ll...l 0 

ll...l ll...l 1 
ll..,l ll...l 1 

ll...l ll...l 0 
ll...l ll...l 0 

\ ll...l ll.‘..l 0 

where blanks denote O’s, 6, = n - 1 (mod d /2), 6, E n + 1 [mod Cd + 1)/21, 
and the numbers above the matrices stand for the multiplicities of the 
corresponding blocks of columns. n 
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By a similar argument one may show that 

and if d is odd, 

J(n,d,9,2)< I 2(n+l) 9 
d+l +; -2. 

I 
(4) 

Yet the proof involves many different cases and is rather cumbersome. 
Instead, we shall establish (3) and (4) as a special case of a substantially more 
general result of Theorem 11. 

3. BOUNDS ON THE DIMENSION OF A SUBCODE 

LEMMA 5. Let (&*I’ contain a codeword of Hamming weight w. Then 
there exists an (( n, k’, A’)) subcode c’ c 6 such that 

and A’gA-1. 

Furthermore, if w is odd, then any generator matrix of 4’ contains a block of 
zero columns. 

Proof. As G* is a parity-check matrix of (&*> I, a codeword of weight 
w in (C*>’ corresponds to a set of w blocks of columns of G with 
representatives b,, b,, . . . , b, satisfying 

crIbI + crzb, + . . . + a,b, = 0 (5) 

for some nonzero al,oz,..., (Y, E GF(q). Assume that w is even. Then by 
row operations followed by deletion of at most w /2 - 1 rows of G we may 
obtain a matrix G’ such that 

qb( + ai+lb;+l = 0 for i=1,3 ,..., w-3, 

where b,! is the representative of the block of columns of G’, which 
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originates from the block of G with representative bj. Hence by (5) we also 
have cY,_,b&_, + a,b; = 0. Let 4’ be the subcode of % generated by G’. 
Then t’ has dimension k’> k -(w/2- 1) and contraction index A’< 
(n* - w/2) - k’ Q A - 1. Now let w be odd. Then a similar argument 
demonstrates the existence of a matrix G’ of rank k’ > k -(w - 1)/2 such 
that 

qb; + cxi+lb(+l = 0 for i=1,3,...w-2, 

and b; = 0. n 

Let D(n,k,q)be th e ar es minimum distance of a linear code of length 1 g t 
rr and dimension k over GF(9). The function D(n, k, 9) has been intensively 
studied (see in particular [5, 10, 111) and is tabulated for 9 = 2 and 1~ k < 
n Q 127 in [12]. For some V, 0 < Y < A - 1, assume that Jo. Jr,. . . , J,_ 1 are 
a prim-i known upper bounds on J(O), J(l), . . . , J(v - 11, respectively. Then 
the following theorem provides an upper bound on J(V). 

THEOREM 6. lit J be the largest integer that satisfies either of the 
following two conditions 

(i) 

and 

(ii) 

J%I,+(9-1) forsome /_L<v-1, 

I- 
D(J + “>V>9) - 1 

2 I Q 1,-l. 

Proof. Let Y be an ((n, J(v), v>> subcode of 8. Then W* is a 
(J(v)+v,J(v)) code and (V*)’ is a (J(v)+v,v) code. Denote by s the 
minimum distance of (Y*) I. By Lemma 5 there exists a subcode Y’ c Y 
with contraction index p < v - 1 and dimension _I’ such that 

(6) 

If sG.29 then 

I’..!(v)-(9-l). 
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If s > 2q + 1, then, in view of (6) and Theorem 9, we may set p = v - 1, and 
therefore 

J,-l>,J’~.l(~)- I qJ(v)+y>v,q)-l 
2 1. 

Hence, J(v) satisfies either (i) or (ii>. n 

A different upper bound on J( v will be derived using the following J 
well-known result due to Griesmer [5] and Solomon and StiMer [lo]. 

THEOREM 7 (The Griesmer bound). For any (n,k) code over GF(q) 
with minimum distance d, 

k-l d 

n>C 7. 

i=O i 1 9 

In the sequel d L denotes the minimum Hamming distance of (8*)’ 

THEOREM 8. For any pair of integers u and p such that 0 < v < p 

<h-l, 

J(v) <n*- (7) 

Proof. Consider the case v = CL. Let Y be an ((n, J(v), v)) subcode of 
L generated by a matrix Q. Then G* is given by 

J(u)+ v 

I Jw 

,I k-J(v) 
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where P has n* -[J(u)+ ] 1 v co umns. Denote by T the number of columns 
of P*, a contracted version of P. Let A be the matrix consisting of all the 
columns of P and those columns of Q* that are scalar multiples of some 
column of P. Evidently, A has exactly n = n* - [J(V) + Y] + T columns. Now 
write G* as follows: 

k-J(v) 

and define 23 to be the (7, K) code obtained from t* by deleting (punctur- 
ing out) the first n* - 77 coordinates. Let 9 1 be the dual code of 9. The 
minimum distance of ~3 * is at least d 1 (cf. [l, Lemma 11). Hence, applying 
the Griesmer bound to _!S I, we have 

Now K < ranks A) + rank( B) < r + [k - j(v)]. Consequently ?I - K > A - v 

and 

n*-[J(u)+u]+~a y $ . 
i=O i 1 

In view of T < n* -[J(V)+ v], the proof for v = p is completed. To prove (7) 
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for Y < p write G* in the following form: 

k-J(u) 

where the matrix P has n* -[J(V)+ ~1 co umns. 1 
by substituting P for P in the foregoing argument. 

The result readily follows 
n 

To clarify our interest in the case v < CL, consider the function 

with n*, d I, q, and A fixed. It has a global minimum at v0 = A -[log, d L 1. 
In fact, for Y < v. we have f<~> = f(vo)+ (v. - v)/2 > f(u,>. However, (7) 
implies an upper bound which is a monotonically nondecreasing function 
of v. 

We now show that (7) holds with equality for Y = A - 1, provided that 
dL a29+1. 

THEOREM 9. Zfd* a29+1 then 

dl 
J(A-l)=n*-(A-l)- T . I 1 

Proof It follows from (7) that for 0 < v < A - 2 and d L a 29 + 1, 

I@+*-(A-2)-3 (8) 
I=0 
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By Lemma 5, J(h’) >/ k -[(d’ - 1)/2] for some A’ < A - 1. Assume that 
0 < A’ < A - 2. Then using (8) we conclude that d L is odd and 

dL -1 
](h’)=k-2. 

Let 7’ be an ((n, J(A’), A’}) subcode of 6’ generated by a matrix Q which, 
according to Lemma 5, has at least one zero column. Then G* may be 
written as follows: 

a 

Q J(i) 

j0 

k-J(i) 
c 

and 5, the number of columns of P*, is at most n* - [J(A’) + A - 2]- 1. 
Going through the proof of Theorem 8 again, with P replaced by P, we 
obtain 

n*-[J(A’)+A-2]+?& i 
i=o 

AS d L 2 29 + 1 and 5 < n* - [J(A’) + A - 2]- 1, this yields 

a contradiction to (9). Hence, A’ = A - 1 and 

d’-1 I I 
I 

J(A-l)=k- 2 =n*-(A-l)- $ . 
I 1 

n 
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Clearly, there always exists some value of v for which (7) holds with 
equality. However, this value of Y might be less than A - 1 if d L < 29. 
Finally, it is noteworthy that there exist codes for which the bound of 
Theorem 8 yields the value of J(V) exactly for all 1~ v < A - 1. For instance, 
let B be the q-ary Hamming code, defined by the parity-check matrix H, 
whose columns are all the q-ary A-tuples with first nonzero entry equal to 1. 
It may be shown that if 4 is even, then for v = 1,2,. . . , h - 1 

J(u) 2 
4”(9*-” +1)-2 

2(9-l) --. (10) 

As the Hamming codes have the parameters 161 ri* = n = (4” - I)/(y - l), 
k = n - A, d = 3, and d L = q*\-l, substitution into (7) yields 

+1 1 h-v-l 

J(v)<~-v-~ ,c q”-‘-“= 
9”(y*-V+1)-2 

a=0 2(q-1) --. 

Hence, (10) holds with equality and the bound of Theorem 8 is tight for 
l<v<A-1. 

4. A BOUND ON J(n, d, q;A) 

In this section we present an upper bound on J(n, d, 9, A) which includes 
all of (l)--(4) as special cases. Without loss of generality we assume through- 
out that G, a generator matrix of %, has the form [U ] A], where U consists 
of all the unit blocks of G. Then G* = [I ] A*]. If A satisfies (A’)* = A’, 
where the superscript t denotes transposition, we say that 6 is row con- 

tracted. The dimension of any row contracted code is obviously upper- 
bounded by (y * - l)/(y - 1). For A >, 2, let M be the matrix having as its 
rows some (q* - l)/(q - 1) pairwise linearly independent q-ary A-tuples. 
Denote by M, the submatrix of M consisting of all the rows with Hamming 
weight at least 2. 

LEMMA 10. Let M[i] be a matrix obtained by deleting some i rows from 

M. lf i > A + 1, then M[i] has a column of weight at most 9*-l -2. Further- 

more, M[A] does not contain a column of weight less than 9”-’ - 1 iff 
M[A] = M,. 
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Proof. Each column of M contains qh - ’ nonzero entries. The result 
thus follows by counting the total member of nonzeros in M[i] by rows and 
then by columns. n 

THEOREM 11. For A > 1, 

i 

2n 
J(n,d,q,A) < 

qh-q 
d+ 2(9-l) J --A, 

and if d is odd, 

J(n,d,q,A) G 
2(n+l) +f-l 

d+l + 2(9-l) J 
-A. 

Proof. We shall proceed by induction on A. The inequalities (1) and (2) 
are regarded as induction base. The induction hypothesis is that for all 
v=l,2 ,...,A-1, 

J(n,d,q,v) G I 
and if d is odd, 

J(n,d,q,v)< 
2(n+l) 

d+l + 2;b-:, 

It has to be shown that 

and if d is odd, 

qh-q 
2(q - 1) 

+A 
d+l 

2 . 

(11) 

(12) 
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We assume that 

k>  +9 
2(rl-1) 

-A, 

as otherwise (11) and (12) trivially hold. 

LEMMA 12. The inequalities (11) and (12) hold, provided 8 is row 

contracted. 

Proof. We distinguish three cases. Since the proof employs Lemma 5, 
which discriminates between odd and even weight codewords, we also have 
to distinguish between odd and even values of q in cases 2 and 3. 

Case 1: A* = M[i], A + 1~ i < A +[(q” - 1)/2(q - l)]. By Lemma 10 

A* contains a column of Hamming weight at most q”-’ -2. Such a column 
of A* corresponds to a codeword of (8*> 1 of weight w < q* - ’ - 1. Hence 
by Lemma 5 8 contains an ((n, k’, A’)) subcode 8, where 

Let d' = d + 6, 6 > 0, denote the minimum distance of 6’. If 6 is even, then 
by the induction hypothesis 

4 
A-l 

-9 

2(9 -1) 

and if d is odd, 

4 
h-l 

-q 

2(q -1) 

(I31 

(I41 

In view of k’a k -q “-l/2+1, (13) and (14) yield respectively (11) and 
(12). Finally, if 6 is odd, then d’ > d + 1 and (12) follows from (13). 

Case 2: A* = M[ A]. We may assume that A* = M, and q # 2”‘, since 
otherwise the proof of case 1 applies. Note that G* = [I 1 M,] contains rows 
of weight 3. This implies the existence of three blocks of columns of G, so 
that one of them (consisting of, say, the first 1 columns) has multiplicity at 
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least d/3. Consider the ((n - 1, k - 1, A)) code W obtained from C by 
shurtening [S], that is, by taking all the codewords that have O’s in the first 1 

coordinates and then deleting those 0’s. A generator matrix of Y* may be 
written as [I 1 M[h + l]]. Using Lemmas 5 and 10, we conclude that W 
contains a subcode w’ with parameters 

A-l 

I I 
A-1 -1 

n’=n-1, k’>(k-l)- ’ -2 
2 

=k-’ 2 , 

d’a d, A’<h--1. 

By applying the induction hypothesis to w’, in view of 1 >, d /3, we obtain 
(11) and (12). 

Case3: A*=M[i],O<i<A-1. At least one row of A* has weight 1. 

Hence assume that the bottom row of G* has weight 2, and let Z,, I, denote 
the multiplicities of the two blocks whose representatives, b, and b, 
respectively, have nonzero entries in the bottom row of G. Since 1, + 1, > d, 

we may further assume that I, > [d /2], w h ere 1, is the multiplicity of the 
block consisting of the first 1, columns of G. Let Y be the 
((n - I,, k - 1, A)) code obtained from t by shortening the first I, coordi- 
nates. Then a generator matrix of W contains a block of columns with 
representative of weight at most 9’ -r - 1, which results by deleting the last 
coordinate of b,. This implies the existence of a codeword u E (Y*)’ of 
weight w < qA-‘. Hence, using Lemma 5, 7” contains an ((n - I,, k’, A’)) 
subcode 7” with minimum distance d’ > d, where A’ < A - 1 and k’ > (k - 1) 

-l(w - 1)/2]. ru’ owifeitherq=2’“orw<q”-‘,thenk’>k-qA-’/2and 

the inequalities (11) and (12) f o 11 ow by applying the induction hypothesis to 
Y’. Hence we assume that q z 2” and w = 9’ - ‘. Yet in this case w is odd, 
and since one of the nonzero entries of u corresponds to a block of 
multiplicity l,, Lemma 5 implies that any generator matrix of Y’ contains a 

block of 1, zero columns. Puncturing these zero columns out, we obtain a 
code 7”’ with parameters 

n”=(n-Z1)-Z2<n-d, k”= k’, d”= d’a d, A” = A’ < A - 1 

Substitution of these parameters into the induction hypothesis yields (11) 
and (12). n 

The foregoing lemma proves the induction step for a row contracted code. 
Yet if C is not row contracted, then G may be assumed to have the following 
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where U, and U, consist of the unit blocks of G, (A’,)* = AtI, and all the 
nonzero rows of A, are scalar multiples of some row of A,. Let 81 and &2 
be the (n,,k,) and (n,,k,) codes generated by, respectively, G, =[U, I A,] 
and G, = [U, I A,]. We claim the following: 

LEMMA 13. The code &I is a row contracted code with contraction 
index at most A, minimum distance at least d. Furthermore the following 

properties hold: 

(i) k = k, + k,. 

(ii) n 2 n1 + k,[d/2]. 

Proof. We prove only (ii), as the rest is obvious. If two unit blocks of G 
of multiplicities 1, and 1, are associated with rows of A that are linearly 
dependent, then 1, + 1, > d. Thus G, may be chosen so that the multiplicity 
of each unit block of U, is at least Id /21, and property (ii) follows. q 

Using Lemmas I2 and 13, we have 

8-4 
2(9 - 1) 

and if d is odd, 

(9-4 
2(4 -1) 

The above inequalities together with properties (i) and (ii) establish the 
induction step for any linear code 4, which completes the proof of Theo- 
rem 11. n 
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In the sequel we present several explicit constructions that attain the 
bound of Theorem 11 for various values of n, d, 9, and A. 

THEOREM 14. For A>2 andn>(q”-1)/(9-l), 

J(n,3,9,h) = 
I 

9* + 49 - 1) - 1 

2(9-l) -*’ i 

Proof. Consider the following construction: 

(15) 

where 

k,= 
9A-1 
---A, ,+l”-;-*I, 
9-l 

I, and I, are identity matrices, M, is as previously defined, and P is any 
matrix which does not contain zero rows. Assume that n - k, - h is even. 
Then the ((n,k, + k,,A)) code g enerated by (15) attains the bound of 
Theorem 11. For the case of odd n - k, - A, a bound meeting code is 
obtained by appending a column of weight 1 to (15). n 

Thus the upper bound of Theorem 11 is tight for any 9 and h. Yet the 
above construction is not the only one that attains the bound of Theorem 11. 
For instance, several values of J<~I, d, 9,2) for 9 # 2 and d # 3 are derived in 
the following theorem. 
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THEOREM 15. 
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(a) 

(b) 

cc> 

(4 

(e> 

(a) 

j(n,4,3,2)=;-1 

2n-1 
J(n,5,3,2) = 6 

I I 

n-l 
J(n,5,4,2) = 3 

n-2 
J(n,6,4,2) = 3 

f O-t- n=2m, m > 3. 

for n>8. 

fm n=3mor3m+l, m > 3. 

for n=3m+l, m > 3. 

f Or n=3mi-2, m>3. 

Proof. Consider the following constructions: 

( 00 11 00 11 11 12 1 ’ 

@I 1 0 111 111 1 ’ 0 1 111 222 

(c-1 111 00 11 11 ) ’ 000 11 11 22 

11 00 0 111 11 
(d) 00 11 0 111 ow I 1 

00 00 1 111 ow 

111 00 00 11 11 
(e) 000 11 00 11 wu I , 

000 00 11 11 wo 

where w and W are zeros of x2 + x + 1 and W2 = w. These yield 

(a) J(6,4,3,2) z 2, 

(b) J(8,5,3,2) 2 2, 

(c) J(9,6,3,2) >, 2, 

(d) J(10,5,4,2) > 3, 

(e) 1(11,6,4,2) > 3. 
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For greater values of n we can easily extend the above constructions. Thus 
for instance the sequence 

t 00 00 11 00 00 11 00 00 11 11 12 11 1 , 1 00 00 00 00 00 11 00 00 11 00 00 11 11 12 11 ’ 
11 00 00 00 11 

1 

100 00 00 11 00 11 
00 00 00 00 11 12 
00 00 11 00 00 11 
00 11 00 00 00 11 

\ll 00 00 00 00 11 

\ 

. . . 

I 

yields 

J(8,4,3,2) > 3, J( 10,4,3,2) > 4, J(12,4,3,2) 25, . . . . 

implying the lower bound on J(n, 4,3,2) for all n = 2m, m > 3. The other 
four constructions may be extended similarly. Theorem 11 provides the 
upper bounds in all the cases. n 

Another peculiar example of bound reaching codes is the family of 

(((c~* - l)/(q - 0, J(V), Y>> su co b d es of a given g-ary Hamming code with 
codimension A, where v = 1,2,. . , A - 1. Evidently, the minimum distance d 
of each of the A - 1 subcodes is at least 3. Recall that if q is even then J(V) 
is given by (10). Comparing the lower bound of (10) with the upper bound of 
Theorem 11, we conclude that d may not be greater than 3 and that (10) 
holds with equality. Hence these subcodes attain the bounds of Theorems 11 
and 8, which, somewhat unexpectedly, coincide in this particular case. 

We remark that the codes constructed in Theorems 14 and 15 are optimal 
in the sense discussed in this paper, i.e. for a fixed A. Without fixing the 
contraction index one may possibly obtain codes of higher dimension for the 
same length and minimum distance. For instance, although ](12,6,3,2) = 3, 
there exists a (12,6) ternary code with minimum distance 6, namely the 
ternary Golay code. The motivation for restricting A is that small contraction 
index implies low complexity of decoding (cf. [8, 91). 

5. AN EXAMPLE 

A well-studied code (see for instance [7,2]) is the binary (24,12) extended 
Golay code 9. It is an extremal doubly even self-dual code. Codewords of d 
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of weight 8, called octads, hold the Steiner system S(5,8,24). Evidently, the 
contraction index of 9 is 12. In this section we determine for 4 = 9 the 
exact value of J(V) for all v = 0, 1,2,3,4,5,8,10,11. 

PROPOSITION 16. J(O) < 3, J(l) < 5, and J(2) < 4. 

Proof. We have J(V) < ](24,8,2, V) for 0 < v < 2. Hence, 

1(O) =G 124/81> 

J(1) < /2x24/8]-1, 

J(2) < [2X(24-1)/8] -1, 

using Theorems 1, 2, and 4, respectively. n 

It may be readily shown that the ((24,3,0)) and the ((24,5,1)) sub- 
codes of 9 are unique up to a permutation of coordinates. The former is 
spanned by three disjoint octads, and the latter is spanned by five octads that 
share four common coordinates. 

PROPOSITION 17. J(3) < 5. 

Proof. By Theorem 11, J(3) < 12 X24/81 = 6. The case J(3) = 6 is easily 
ruled out as follows. Let Y be a ((24,6,3)) subcode of 9. Then since 
D(6 + 3,3,2) = 4, Lemma 5 implies the existence of a (24,5) subcode Y’ c Y 
with contraction index at most 2. By the foregoing proposition the contraction 
index of 7” must be 1, and since the ((24,5,1)) subcode of 9 is unique, we 
may assume that a generator matrix of Y has the form 

‘1111 1111 

1111 1111 

1111 1111 

1111 1111 
1111 1111 

01 02 w3 w4 w5 % 

(16) 

where blanks denote O’s and wi, ws, , to6 denote binary 4-tuples. If the 
Hamming weight of wi is odd, then all the six 4-tuples must have odd 
weight, and the contraction index of Y is 6. If wi has even weight, then all 
the six 4-tuples must have even weight, and since the contraction index of Y 
is 3, exactly three out of the six 4-tuples have weight 2. It follows that the 
weight of the bottom row of (16) is not divisible by 4, which is a contra- 
diction. n 
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We note that the ((24,5,3)) subcode of 9 spanned by the five octads 

‘111111110000000000000000\ 
000000001111111100000000 
000000000000000011111111 
111100001111000000000000 

\000000001100110000001111, 

is also unique up to a permutation of coordinates. The proof of the unique- 
ness of this subcode is rather long and is therefore omitted. 

PROPOSITION 18. J(4) < 6 and J(5) < 7. 

Proof. By Theorem 6, J(4) < 7. If J(4) = 7, then using Lemma 5 and 
0(11,4,2) = 5 we establish the existence of a ((24,5,v)) (V < 3) subcode of 
9, generated by a matrix having at least one zero column. Since both the 
((24,5,1)) and the ((24,5,3)) b d su co es of 9 are unique and both of them 
are generated by matrices with no column entirely zero, this leads to a 
contradiction. The fact that J(5) Q 7 may be proved similarly. n 

PROPOSITION 19. 

(i) J(V) < 8 for 6 < v < 10. 
(ii) J(ll> = 9. 

Proof. Evidently, (#*>I = 9* = 9. Hence d ’ = 8 and (i), (ii) follow 
by applying Theorems 8 and 9, respectively. n 

The foregoing four propositions provide upper bounds on J(V). Lower 
bounds may be obtained using the following generator matrix of 9: 

fllllllll 
00000000 

~00000000 
11110000 
00000000 

~ 11001100 
10101010 
00000000 
00000000 
01111000 
10011100 

111111100 

00000000 
11111111 
00000000 
11110000 
11110000 
11001100 
10101010 
11001100 
10101010 
01111000 
10011100 
11111100 

00000000 
00000000 
11111111 
00000000 
11110000 
00000000 
00000000 
11001100 
10101010 
01111000 
10011100 
01010110 

= 

a1 1 
a2 
a3 
a4 

a5 
a6 
a7 . 
aa 
a9 
a10 
all 
a12j 

(17) 
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For instance, rows {al, a2, a3, as, u6} span a subcode with contraction index 
3, which is the unique ((24,5,3)) subcode of 9. Furthermore, consider the 
following sets of rows of (17): 

Together with Propositions 16 through 19, this determines J(Y) for nine out 
of the twelve values of v. These results are summarized in the following 
table: 

V J(Y) V J(v) 

0 3 6 6-8 
1 5 7 5-8 
2 4 8 8 

3 5 9 7-8 
4 6 10 8 
5 7 11 9 

Determination of the exact value of J(v) for v = 6,7,9 is an open question. 

Alexander Vardy wishes to thank Hagit Itzkowitz fm her invaluable help. 
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