
Theoretical Computer Science 11 (1980) 303-320
@ North-Holland Publishing Company

QN THE AVERAGE NUMBER OF REBALANCING
OPERATIONS IN WEIGHT-BALANCED TREES

Norbert BLUM and Kurt MEHLHORN
Fachbereich 10, Universitiit des Saarlandes, 6600 Saarbriicken, Fed. Rep. Germany

Communicated by M. Nivat
Received November 1978
Revised June 1979

Abstract. It is shown that the average number of rebalancing operations (rotations and double
rotations) in weight-balanced trees is constant.

1. Introduction

Balanced trees are a popular method of maintaining sets in a digital computer. The
basic set operations MEMBER, INSERT, DELETE have O(log n) processing time
for a set of n elements.

Balanced trees come in two kinds. The balance criterion is either on the height
(AVL-trees [2], 2-3 trees [l], brother trees [9], . . .) or on the weight (weight-
balanced trees) of the subtrees. In the first kind of trees one either allows subtrees to
have only small differences in height (AVL-trees) or one allows nodes of different
arity (2-3 trees, brother trees). Here we deal with weight-balanced trees. Weight-
balanced trees were introduced by Nievergelt and Reingold [8].

A node in a binary tree either has two sons or no son at all. Nodes with no sons are
called leaves.

Definition 1. Let T be a binary tree. If T is a single leaf, then the mot-balance p(T) is
$, otherwise we define p(T) = 11;1/1TI, where IT,‘,] is the number of leaves in the left
subtree of T and ITI is the number of leaves in tree T.

Definition 2. A binary tree T is said to be of bounded baiance cy, or in the set BB[cY],
for C&a! G 3, if and only if

(1) a!q(T)~l-a!;
(2) T is a single leaf or both subtrees are of bounded balance cy.

therefork
Note that lTrl/lTI = 1 -p(T). By interchanging left and right we may
assume w.1.o.g. that p(T) < $.

303

304 N. Blrrm, K. Mehlhorn

Balanced trees share many common properties:
(1) the depth is bounded by O(log ITI);
(2) upon insertion or deletion of a leaf at most O(log 1 T() rebalancing operations

(rotations and double rotations in the case of AVL-trees and BB[a,]-trees, node
splittings and combinations in the case of 2-3 trees and brother trees) are required to
rebalance the tree. The rebalancing operations are limited to the path of search. In all
known examples of balanced trees it is easy to construct examples which require each
nlode on the path of search to be rebalanced (usually after the deletion of a leaf).

Example 1. Consider the following tree:

Inserting a new leaf in front of the left-most leaf gives rise to the following sequence
of rebalancing operations:

Note however, that inserting yet another leaf will require at most one rebafsncing
operation. This suggests that on the average (averaged over a random sequence of
insertions and deletions) a smaller number of rebalancing operations suffices. Note
also, that deleting the left-most leaf will reverse the sequence above and recreate the
original tree.

Rebalancing operations in weight-balanced trees 385

(3) Simulation results show that on the average (random sequence of insertions
and deletions) a constant number of rebalancing operations suffices. Karlton et al. [5]
report that on the average 0.46 (0.23) rebalancing operations (2 rotations and
double rotations) are required to rebalance an AVL-tree upon the insertion
(deletion) of a ieaf. There are plausibility arguments which support the empirical
evidence [4; 6, p. 462; 81.

The plausibility arguments are based on the unjustified assumption that node
balances (the height difference between left and right subtrees in AVL-trees, the root
balance in BB[&j- trees) are independent random variables. The plausibility
arguments yield constants which are in close agreement with empirical evidence.

Here we give a rigorous proof that the average number of rebalancing operations
in BB[a!]-trees is bounded by a constant. Actually we prove a stronger result.

There is a constant c (depending on (u) such that: The total number of rebalancing
operations required for executing an arbitrary sequence of n insertions and deletions
on an initially empty BB[a,]-tree is bounded by c l n.

This contrasts with simulation results which by their nature consider random
sequences of insertion and deletions. We do not average over many sequences of
insertions and deletions but only over the elements of a single sequence of insertions
and deletions. (This implies for every heuristic that a constant number of rebalancing
operations will suffice on the average. For this reason we do not give any particular
heuristic (for heuristics cf. [6, lo]).) However, our constant is much larger than
empirical evidence suggests. (About 27 for CY = a.) We do not claim that our const:rnt
is best possible.

We also correct a serious mistake in the original paper of Nievergelt and Reingold
on BB[a]-trees.

In our drawings we will not draw leaves, i.e. the tree

stands for

X 4
Inserting a leaf means replacing a leaf by a tree consisting of one node and two leaves
and deleting a leaf means replacing the father of the leaf by the other subtree.
Deletion of the right son of node x gives

A which stands for A LJ

Note that the balance p(x) of node x is the quotient of the number of leaves in the
left subtree and the total number of leaves. Hence P(X) = $_

306 N. Blum, K. Mehlhoru

The motivation for this paper is twofold. Firstly it treats an interesting theoretical
question in tree searching and narrows the gap between theory and practice.
Secondly it treats an important question of practical relevance. The updating
behavior of a tree structure is the bottleneck in time-shared tree manipulation

(see PI).

2. The effect of aotatioras and double-rotations in weight-balanced trees

BB[a]-trees aie balanced by rotations and double rotations. Fig. 1 is taken from
[$I. Squares represent nodes, triangles represent subtrees, the root-balance is given
beside each node. Symmetrical variants of the operations exist.

Rotation -

Double Rotation

Fig. 1.

Nievergelt and Reingold state the following theorem in [S] without proof.

Fact (Nievergelt and Reingold): If Q 6 1 -342 and the insertion or deletion of a
node in a tree in BB[a] causes a subtree T of that tree to have root-balance less than
a, T can be rebalanced by performing one of the two transformations shown above.
More precisely, let pz denote the balance of the right subtree of T after the insertion
or deletion has been done. If p2 < (1 - 24(1 - CU), then a rotation will rebalance T,
otherwise a double rotation will rebalance T.

Rebalancing operations in weight-balanced trees 307

This theorem is false. Consider the example in Fig. 2: Q! = 6. The root ZJ of this tree
has balance P(V) = &. Deleting one of the leav-- bD with fz.ther x requires the root to be

Fig. 2.

rebalanced; it has balance &. A double rotation gives Fig. 3. Node v has balance
i< &. A rotation makes the balance of v even worse. This example shows that the
‘theorem’ of [8] is wrong for iC Q! <A. The same counter example works for any a!
with O<cu e&. More precisely, replace the triangle in Fig. 2 by a BB[cu] tree with b
leaves such that

1 2
-<cry-
b+l b+6’

Such b exists for all cy, 0 < ar s &. This follows from the observation that

1 2
---_
b+l (b+l)+%

for 635 and that 2/(6+6)=&for b=5.
We show in this section that a stronger version of the above theorem is indeed true

for&Cc&l -542. Before doing so we want to show tha: Fig. 1 correctly gives the
root-balances of all nodes. Also we state a lemma about the effect of an insertion or
deletion on root-balances.

Fig. 3.

308 N. Blum, AK. Mehihorn

Let a, b, c, d be the number of leaves in the subtrees shown in Fig. 1. We treat the
case of rotation and leave the case of double rotation to the reader. By the definition
of root-balance

. Pl =a/(a+b+c) and &=b(b+c).

Then

(a+b)=&(a+b+c)+&(b+c)

=Pl(a+b+c)+&((a+b+c)-a)

=(P1+PG--Pl))(a+b+c).

Hence thle root-balance of node A after the rotation is

lalb + b) = PlI(Pl + Ml -PI))

and the root-balance of node B is

(a+b)j(a+b+c)=pl+p2(l-pl).

Next we study the effect of insertion and deletions on root-balances.

Lemma 1. Let T be a tree in BB[cv] with root v.
(1) If we inset a leaf into the right subtree of T, then p(v) SY/ (1 +cu) after the

insertion.
(2) If we delete a leaf from the left subtree of T, then

after the deletion, where 1 is the number of leaves in the left subtree after the deletion.

Prooh Let T have n + 1 leaves, it left subtree have 1+ 1 leaves. Then

l+l
ct- <- andhence ns--

n+l

l+l 1

cy l

(1) After inserting a leaf into T’s right subtree we have

u(v) = Itla l+l

n+2 (l+l)/a+l

1

Y/a+1
since (1-k l)/((l+ 1)/a + 1) is
monotonically increasing
i:l 1 and 120

lY =-
l+a’

309 Rebalancing operations in weight-balanced trees

(2) After deleting a leaf from T’s left subtree we have

1
p(V)=-3

1
n (l+l)/cu-1

1 CY

32/CY
= -

-1 2-CY
since lf ((I+ I)/cY + 1) is
monotonicaljy increasing
inlandlal.

Remark. ar/(l+a)z4(2-a) for O<a<$.

We are now able to state the correct version of Nievergeh and Reingold’s theorem.
We will actually prove more. We not only show that rotations and double rotations
suffice to rebalance the tree but, moreover, that they suffica to move all root-balances
into the interval [(1 + 6)ar, 1 - (1 + S)a] for some small 8. This observation will allow
us to show in the next section that the average number of rebalancing steps per
insertion and deletion is constant.

Let
s

g(‘y,6)=[1+(1+6)(l-(Y)](2-cy) l

Then g(a, 0) = 0, g is increasing in a! and S(Os ac G 1 and S 2 0). Also g(a, S) s
S/(2-4 and g(a, s>& S/(2-4 for 2 ll~aCl and 0~%0.01. (We only need
that range later on.)

Theorem 1. There is a continuous, increasing function c: [0, O.Ol]-) R with ciOj = 0,
~(0.01) = 0.0043 such that: for Q! E R, A< a! s 1 - $42 - c(S), aizd for T a binary tree
with subtrees Tt and T, such that:

(1)
(2)

(3‘1

Tt and T, are in BB[a];
ITtl/lTI < ar and either

(2.1) ITMTI - 1) 3 a! (T is obtained by insertion of a leaf into the right subtree
of Tj or
(2.2) ClZI+ lj/(ITI+ ljaa (T is obtained by deletion of a leaf from the left
subtree of T).
& is the root-balance of T,;

we have:
(i) if /3z G I/(2 -(u j + g(cu, Sj, then a rotation rebalances the tree, more precisely

Yl? Y2m+S)a, l-(~+e-d

after the rotation, where y1 and y2 are as shown in Fig. 1;
(ii) if p+ I/ (2 -a) +g(cu, Sj, then a double rotation rebalances the tree, more

precisely

71, y2,y3 E cu + G, 1 - (1 + a4

where yl, y2, y3 are shown as in Fig. 1;

310 N. Hum, K. Mehlhorn

(iii) if &C a s $ and ITI G 10, then we only claim

YI, 72 (rev. ~1, ~2, ~3) E [a, 1 - a I.

Remark 1. For S = 0, this corrects the theorem of Nievergelt and Reingold.

Remark 2. A larger range of values for S is possible. However, subsequent compu-
tations become more complicated and no additional insights are gained.

Prod of Theorem 1. We need to show that nodes A, B (A, B, C) have balances in
the interval [(l + S)CU, 1 - (1-t S)a] after a rotation (double rotation). This is done by
tedious but simple calculations.

By Lemma 1 we may assume PI a a/(1+ (u) in Case 2.1 and

in Case 2.2; in’any case PI 2 a/(2 - CY). Also &, p3 E [a, 1 -(u] since T, is in BB[a].

Case I: p2 s I/ (2 - cv)+g(cr, S), i.e. rotation is applied.
(1.1) Wehavetoshow(l+S)cr6yrsl-(1+6)cu:

y1 = & + (1 -p& the RHS is increasing in & and
increasing in &.

Hence,

Also

2 1.4a since [] is decreasing in LY anda!<!.

Y+a+(l-cw) 2 (1
-+g(@, 6) l

-a >

Consider

h(a,S)=l-(l+S)cu -[a+(~-a)(&g(a,6))].

We have to show

h(a,6)20 forOGGL01 and ~~~~1--4~2-c(S),

h(u,S)=l-2+$&x-(1-a)g(o,S)

=2a2-4a+l

2-a
-Sa -(l -cu)g(cu, 8).

Since 2a2-4a, + 1 = 2(a2-2a +:> has zerc)es 1 -$J2 and 1 +$J2 we condude

~(~,o)Bo fontal--$J2.

Rebulancing operations in weight-balanced trees 311

Furthermore Sa! + (1 - cu)g(a, 6) G a[~ + (1 -Q: j/(2 - CU)~ and hence

h(a, S)a
2~*-4~~+l-S[~(2-(~)+(1-(Y)1

2-a
.

The numerator is a quadratic expression in LY and is decreasing in S. Hence
h(a,S)aOfora G l-&/2 - cl(S), where cl(O) = 0, cl continuous and increasing and
Q(O.01) = 0.0043.

(1.2) We have to show (1 + S)cr G y2 s 1 - (1 + S jet :

Pl - the RHS is decreasing in /32 y2=p1+(1-p1)p2 andincreasinginp 10

We want to show y,~(l+S)cu first, We have &aa,/(l+a) in Case 2.1 and

P1- 1z1/(1F1+ 1 - cw) in Case 2.2. We treat the case ITI = 1 separately.
If I Tl I 2 2 or if Case 2.1 applies, then we have

p+min(cu/(l+cu),2a/(3-ar))=2cu/(3-cu) fora,s$.

Hence,

y2a2ar/(3

2a/(3 - CY)

-a!)+[l-2a/(3-a,)][l/(2-a!)+g(a, S)]

1
2

(r+3-3cu l+S --
[1 2 2-a,

since g(cy, 6) G S/(2 - cu)

1
3

+3
1.01

l ar since cy 2 0 and S G 0.01
l

ar 4 (1-a)

since f(a) = Q! +3.03 9 (1 - a)/4 is increasing in Q! and cu 2 1 - 3 J 2 < 0.3.
It remains to consider the Case 2.2 and]TI = 1. Since LY > $ and <IZI + l)/

(ITI + 1) 3 CY > & we have ITI G 9. Our tree ITI has the following form:

y2 1s smallest when b is as large as possible. ence we only have to consider the case

that b/(b+c)s l/(2-a)+g(a, S)G 1.01/(2 - (w) and b as large as possible.

Furthermore b + c = I TI - 1.

312 N. Blum, K. Mehlhorn

If&Q G i, then we have to show y2 3 CY, otherwise we have to show y2 2 (1 + 8)~.
]Tl=9; then a~& and hence ba[1.01/1.8]*8==4.49 and, hence, b=4 and
y2= l/(b+l)=&;
lT]=& then a!~$ and hence bc[l.01/(2-$)]*7=3.97 and, hence, b=3 is
maximaland y,=l/(b+l)=iacu;
ITl=7: then CVC$ and hence bs[1.01/(2-$j6=3.46 and, hence, b=3 is
maximaland y2=l/(b+l)=$aa;
(Tl=6: then cy& and hence bs[1.01/(2-$)].5=2.94 and, hence, b=2 is
maximalandy2=1/(b+l)=$~(l+S)a!;
lTl=S: then cy- <l-&/2 and hence b ~[1.01/~2-1+4J2)]. 4e2.37 and, hence,
b=2ismaximaland ~~=l/(b+l)=$a(l+S)cr;
)Tl=#r then G s 1 -$J2 and hence b ~[1.01/(2- 1+&/2)] 9 3 = 1.78 and, hence,
b=lismaximalandy2=l/(b+l)=$(l+S)a.
I TI s 3 is impossible since 1 T$l TI s a is one of the hypotheses of the theorem.

Next we have to show y2 s 1 - (1 + S)cy :

a 1
72s =-z=l-

a+(l-&a 2-a
l.d)lcY

if 1~2~a -2.02~ + 1.01a2, if 1~2-3.02cu, if cy s l/3.02. This finishes Case I of
the proof.

CaseII: p2>1/(2-cu)+g(~,S)~1/(2 -a), i.e. a double rotation is applied.
(HI.1) Wehavetoshow(l+S)ar~yl~l-(l+S)a:

y1 = p1 + (1 -p1)p2p3 the RI-IS is increasing in
Pt, PZ and kk

Hence,

y*%Y/(2-car)+(l -a/(2--a))(1/(2-CY)) l a!

Ly+2-2a -.

2
2-(x Q>a 4-3ar
2-a! * l (2&

~* 4-3+ A l

(2 - 3’
sincef(a)=(4-3ti)/(2-a)2is
increasing for CY S f

= 1.045~(1++!,

y1 scu +(l -cu)(l -cu)(l --a)

q1-cu)-(o.32 - 3 l 0.3 + l)cu since a3 - 3ar + 1 is decreasing
inaforo<$and
awl-iJ2~0.3

Rebalancing operations in weight-balanced trees 313

(11.2) We have to show (1+ S)ar G y2 S 1 - (1 + S)CW. We show y2 > (I + S)a first.
By Lemma 1 p 2 a rw/(l + (w) in Case 2.1 and @ 2 3 cuZ/(Z -t- 1 -a) in Case 2.2, where J is
the number of leaves in the left subtree of T. Furthermore

Pl 1

y2=p~+(l--p~)p2~3=l+(l/pl-1)P2P3

is increasing in & and decreasing in p2 and pg.

case 2.3: fir a(~/(1 +a). Then

41 +a)
Y2”al(l+a)+(l-cw/(l+cr))(l-3

since 1 - CY + a2 is decreasing in cy for cy 6 4 and a! 3 &.
Case 2.2: PI 2 cuf!(l+ 1 -a). We treat the case IT/l 3 3 analytically and the case
IFI s 2 by explicit consideration. If IKI 2 3, then p1 2 3a/(4 - ar). EIence

3ar/(4-cw)

y2~3~/(4-cr)+(l-3Ly/(4--(Y))(1-(y)2

3

=3a+4*(l-a)3’(Y

3

a3 l $+4 l ($)3
l cy since 3a! + 4 l (1 - al3 is decreasing for

CY ~4 and &<a O--$I2

2 1.09cu a(1 +@a.

It remains to consider Case 2.2 and IT,! c 2. Since cy > ?;?;i and (IT*/ + l)/(\Tl + 1) a
Q;’ >$ we have jTJ G 15. The tree T has the following form:

314 N. Blum, K. Mehlhnrn

y2 is smallest when b is as large as possible. Hence we only have to consider the case

that bl(b + c) =S 1 -CI and (b + c)/(b +c + d) G 1-a and b maximal. Hence

b s [(l - cu)(b + c)] G I(1 -a!)[(l-cu)(bi-c+d)jj

= l(1 -a) ’ L(l -QNTI-ITIl)JJ

lzI=2:
lTl=15: thena~(I’&I+1)/(17’I+l)=&andb~ ~(&1$13j)j =8andhencey2=
2/(b+2) z&(l+S)a;
ITI=14:thena~~andb~7and,hence,yz=2/(b+2)~~~(1+~)~;
ITI = 13: then ar c&and bs7 and, hence, y,~$~(l+S)cu;
ITI = 12: then ar s & and b <6 and, hence, y+$(l+S)(~;
)5”j=II: thena&$andb s 5 and, hence, y2 2 $2 (1 + S)cu ;
l7’l~IO; then bs4and, hence, y+&(l+S)(l-$42)b(l+S)c~;
I7j=Ir since (I~~l+l)/((TI+l)~a,>~we have ITIs9;
lTl=P: thena&and b<4and, hence, ?2=l/(b+l)=$acu;
ITI=& thena&$.ifbc3,thenyZ=$ 2 CY. If b = 4, then c + d s 3 and hence either
cslora~l.Hencea~fand’~.255~a;
ITI= 7; then a &$and bs3 and, hence, y2~$aa;
lTl=6; thencu~~.Ifb~2,thenY2~43(1+S)CY.Ifb=3,thenc=d=1andhence
cy ~4. Thus y2=+cy;
ITIG5; then a!6 -342 and b s 2 since c ~1 and da1 and, hence, y2=5- l>

(l+s)(1--&l2)~(1+s)cu.
Next we show y2 6 1 - (1 + S)~X :

CR 2-a
y2s .1

cw+(l-cu)
1

-+g(% 6) >
S2 -a! +(l -ck!)(l +$s>’

2-0
a

Consider

h(cY,s)=l-(l+S)a!-
(2-a)

(Z-cu)+(l-cu)(l+$S)

(2a2 -4a! +1)-S~(3-2cr)+(1-~)2S/2-ar($S2)(a -a) =
(3-2c~)+(l-a!)+8

.

The numerator of this expression is a quadratic equation in cu and is decreasing in
S(Sa0.01,(~<$). For S=O its zeroes are l-&/2,1+4J2. Hence h(a,S)aO for
cr s l-442 - c&S) with ~(0) = 0, c2 continuous and increasing and ~~(0.01) =
0.0016.

(X1.3) We: have to show (1 + S)cr s y3 s 1 - (1 + @a! :

P2(1 -P3)

y3= l-p2p3
is increasing in p2 and decreasing in &;

1-(1-a)

Y%1/(2-cr)+g(cY,6))-(1-a)
a(l+S)a!

Rebalancing operations in weight-balanced trees

iff

315

1

1/(l/(2-_o+g((Y,s))-(l-*)~(l+6)

iff

l+(l-(X)(1+6)3
(1+5)(2-a)

1 + (2 - cr)&, 8)

iff

g(q 6) l (2-*)a (1+5)(2-a) -l=
s

1 +(l -a)(1 +S) 1 +(l -a)(1 +S)’

This is true by definition of g(cr, 8).
Also

(1 -O)(l -cu)

y3Gl_(l-cW)cW

l-2*+** 1 1
= l--ar+cu* = -l_(y+cu*Ly

<I-
1

1-&+(&)”
Sl-(l+S)a!

since 1 - ar + (Y* is decreasing for Q! 6 $ and CY 3 6.
Finally taking c(6) = max[cl(S), c2(S)] finishes the proof of the theorem.

Corollary 1. If & < a! G I -$J2, then rotation and double rotation along the path of
search suffice to rebalance the tree after insertion or deletion of a leaf.

Proof. Inserting a leaf creates a subtree of the form

It has root balance $. Deleting a Beaf means replacing a tree by one.of its direct
subtrees. In either case the new subtree is in BB[a,]. Theorem 1 implies that we can
walk back to the root and rebalance the tree by rotations and double rotations.

The corollary above is the correct version of the ‘theorem’ stated in [S]. In the next
section we use Theorem 1 to prove an upper bound on the average number of
rebalancing operations.

3. The average number of rebalancing o

In this section we will prove our main theorem: the average number of rebalancing
operations is constant. e need some notation first.

316 N. Blum, K. Mehlhorn

A transaction is either an insertion or a deletion. A transaction goes through a node
v if v is on the path of search to the leaf to be inserted or deleted or (alternatively) if
the leaf (to be inserted or deleted) is a descendant of iu. A node v takes part in a
rebalancing operation, if it is one of the nodes explicitly shown in Fig. 1. A node causes
a rebalancing operation if it is the root of one of trees shown on the left side in Fig. 1.
Furthermore nodes retain the identity as shown in Fig. 1, i.e. if a rotation to the left is
applied to a tree with root A, then node A has subtrees of weight a and b respectively
after the rotation. Note also that new nodes are created by insertions and that nodes
are destroyed by deletions. Finally consider any sequence of transactions. We start
with a tree To and apply the first transaction to it. Then the tree is rebalanced as
described a”s the end of the previous section, resulting in tree T1. The next transaction
is applied to T1, T1 is rebalanced, Let TO, T1, T2, . . . , T,, . . . be any such
sequence of BB[Ly]- trees.

Lemma2. LetO~S~0.01,~~~~1-~~2-c(6)andletvbeanode.If
(1) v causes a rebalancing operation in T, (after the transaction was applied to T,)

and
(2) either v took part in a rebalancing operation before or v was not a node qf the

initial tree To and never took part in a rebalancing operation before and
(3) n is the number of leaves in the subtree with root v in T, anr1 n 2 11 if cy G i,

then at least [&ynl transactions went through v since v took part in a rebalancing
operation for the last time or v was created.

Proof. Let j < m be such that: v took part in a rebalancing operation in q, but not in
T. j+1, l l l 9 Tmml or v did not exist in Ti but existed in I;.;-1, . . . , T,-, and never took
part in a balancing operation. In the second case the balance p(v) of node v in Tj+l is
$. In the first case the balance p(v) = t’/n’ of node v in Tj+l is in [(1+6)cu, l-
(l+S)ac]ora s $ and n’s 10. 10. This is an immediate consequence of Theorem 1.
Also the balance p(v) = t/n of node v in T,,, is outside the interval [a, 1 -a], say
t/n < ff.

Node v did not take part in a rebalancing operation in trees Tj+ 1, l e l , T,- 1.

In these trees dr (il) deletions (insertions) were performed in the left subtree of
v and d, (ir) deletions (insertions) were performed in the right subtree of v.
Hence

t= t’-dl+-ir,

n =n ’ - d, - d, + il+ i,.

The number of transactions which went through v is di + d, + ii + i,. We need a lower
bound on that number. Certainly abs(n - n ‘) is a lower bound. Hence we are done if
~‘~I0anda~~.Supposen’~10or~>$andhencet’/n’~[(1+S)cu,1-(1+S)~].

Rebalancing.operations in weight-balanced trees 317

Assume to the contrary that d, + d, + in + ir < Gcun. Then

*-(l+s).,,,l=d&-i!
12’

-(1+6)(x
r - il - ir

< t+4
-n +dl-i,

s “,“+‘s”,“,” - (1 + S)cw = - (‘c:E: < 0, a contradiction.

Lemma 2 shows that many transactions go through a node v between rebalancing
operations involving v. In order to finish off the proof all we need is a clever way of
counting transactions and rebalancing operations.

With every node v we associate accounts: the transaction accounts TAi (v) and the
balancing operation accounts BOi(v), 0 s i < 00. Furthermore there is a special
account S. All accounts have initial value zero.

Let To be a tree in BB[~Y] and let To, T,, . . . , T,, . . . be as above a transaction
sequence of BB[a]-trees. Let v be any node of Tm, and let n be the number of leaves
in the subtree of T, with root v. Let i be such that (l/(1 -a))’ < n < (l/(1 - (Y))?
Note that n 2 2 and, hence, i 3 1.

If the transaction applied to T, goes through node v, then we charge one unit to
transaction accounts TAi-i(v), TAi(v) and TAi+l(v).

If v causes a rebalancing operation in T,,,, then if v took part in a rebalancing
operation before or was not a node of initial tree TO, then we charge one unit to
account BOi(v) otherwise we charge one unit to special account S.

Note that for every node v of the initial tree To at most one unit is charged to
account S and, hence, S G 1 TOI - 1. It remains to sum the contents of the balancing
operation accounts BOi(v).

Whenever one unit is charged to account BOi(v) we are in a situation to which
Lemma 2 applies: if n 2 11 or ar >i, then at least San transactions went through1 v
since v took part in a rebalancing operation (if it ever did) or v was created. Since
(cf. Fig. 4)

n -[l/(1 -a)l’_‘~San and [l/(1 -a)]‘+*-n a&n

[l/(1-a)]‘+*

Fig. 4.

318

we even knslw that Scan units
rebalancing operation (if it ever

1

PT. Blum, K. Mehlhorn

were charged to TAi(v) since v took part in a
did) or v was created. Hence,

(1 -cu)i
sa! TAi(u)

if cy > $ or (l/(1 -a))’ 2 11. Since cy > $ this is certainly the case for i 2 12.
We are now ready to estimate the total number A of rebalancing operations

required to perform the first m transactions. Let k be any integer 212. Then

A=S+CCBOi(v)
v i

=S+‘C C BOi(v)+C C BOi(v).
v iCk v iz-k

NOW SslTo/-l and

v iak

~$~~ C (l-a)‘TAi(u)
v isk

1
GG l C C mfl [if the jth transaction goes through v and

v iak i-0 for the number or of leaves in the subtree
of Ti with root v

[lf(l--(Y)]i-*~Pl c[lf(l-cy)]i+2

then (1 - aQi else 0]

+y c C[*.cj
j=O iak v

s&om~* c 3*(1-4’
j=O iak

since Tj is a tree in BB[ar] and hence for fixed i a transaction goes through at most one
node v with [l/(1 -a!)]‘< n <[l/(1 -~!)]j+l

s[3(1 --(~)~/&r*] l m
and

v ;ck

srnf’ c c
j=O i<k v

v causes a I ebalancing operation in Tj
and for the number n of leaves in the subtree
of Tj with root v

Rebalancing opetations in weight-balanced ttees

[l/(l-cy)]i~,~<[l/(l-cy)]i+l

then 1 else 0]

m-l

s c maximal depth of a BB[a] tree with [l/(1 - &)I’ leaves
j-0

G [max. depth of a BB[a!]-tree with [l/(1 - cy j]’ leaves] l m

c(k-l)*m.

319

Altogether we have shown

ITol- 1+ min[k - 1+3(1-&&*I * m
kEN
ka12

rebalancing operations suffice to perform an arbitrary sequence
with initial tree To and A< ar s l-f42 -c(S), i.e. we have

of m transactions

Theorem 2. Let 0 < S s 0.01 and &< al 6 l-442 - c(S) where c is defined as in
TIteorem 1. Then there is a constant d such that: for To any tree in BB[a], at most
1 ToI - 1 + d l m balancing operations are required to perform an arbitrary sequence of m
insertions and deletions with initial tree To.

Corollary 2. There is a constant d such that d l m balancing operations suffice to
perform m insertions and deletions on an initially empty tree.

It is worth to estimate the constant d for a specific example: a! = $ and 6 = 0.01.
Let k = 25, then 3(1 YY)~/&Y* = 3.61. A BBC:] tree with G($)*’ =z 1329 leaves has

depth at most 23.87 (cf. [7,8]). I-Ience d ~27.48.

Remark, 27 is a rather pessimistic estimate. This constant could be improved by a
more careful version of Theorem I combined with a detailed analysis of trees of small
depth (cf. [lo]).

References

[l] Aho, Hopcroft and Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] Adel’son-Velskii and Laudis, An algorithm for the organization of information, Soviet. Math. Dokl.
3 (1962) 1259-1262.

[3] Bayer and Schkolnik, Concurrency of operations on B-trees, Actu Informat. 9 (1) (1977) l-22.
[4] Foster, Information storage and retrieval u%g AVL-trees, Proc. ACM Nut. Conf. 20 (1965)

192-205.
[S] Karlton, Fuller, Scroggs and Kaehler, Performance of height balanced trees, J. ACM 19 (1) (1976)

23-28.

320 N. Blum, K. Mehlhorn

[6] Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching (Addison-Wesley,
Reading, MA, 1974).

[7] Mehlhorn, Efiziente Algorithmen (Teubner Verlag, 1977).
[g] Nievergelt and Reingold, Binary search trees of bounded balance, SIAMJ. Comput. 2 (1) (1973).
[9] Ottman and Six, Eine rieue Klasse von ausgeglichenen Blumen, Angewandte Informatik (1976)

395-400.
[101 Yao, On r;andom 2-3 trees, Acta Informat. 9 (2) (1978) 159-170.

