
Theoretical Computer Science 11 (1980) 303-320 
@ North-Holland Publishing Company 

QN THE AVERAGE NUMBER OF REBALANCING 
OPERATIONS IN WEIGHT-BALANCED TREES 

Norbert BLUM and Kurt MEHLHORN 
Fachbereich 10, Universitiit des Saarlandes, 6600 Saarbriicken, Fed. Rep. Germany 

Communicated by M. Nivat 
Received November 1978 
Revised June 1979 

Abstract. It is shown that the average number of rebalancing operations (rotations and double 
rotations) in weight-balanced trees is constant. 

1. Introduction 

Balanced trees are a popular method of maintaining sets in a digital computer. The 
basic set operations MEMBER, INSERT, DELETE have O(log n) processing time 
for a set of n elements. 

Balanced trees come in two kinds. The balance criterion is either on the height 
(AVL-trees [2], 2-3 trees [l], brother trees [9], . . .) or on the weight (weight- 
balanced trees) of the subtrees. In the first kind of trees one either allows subtrees to 
have only small differences in height (AVL-trees) or one allows nodes of different 
arity (2-3 trees, brother trees). Here we deal with weight-balanced trees. Weight- 
balanced trees were introduced by Nievergelt and Reingold [8]. 

A node in a binary tree either has two sons or no son at all. Nodes with no sons are 
called leaves. 

Definition 1. Let T be a binary tree. If T is a single leaf, then the mot-balance p( T) is 
$, otherwise we define p(T) = 11;1/1TI, where IT,‘,] is the number of leaves in the left 
subtree of T and ITI is the number of leaves in tree T. 

Definition 2. A binary tree T is said to be of bounded baiance cy, or in the set BB[cY], 
for C&a! G 3, if and only if 

(1) a!q(T)~l-a!; 
(2) T is a single leaf or both subtrees are of bounded balance cy. 

therefork 
Note that lTrl/lTI = 1 -p(T). By interchanging left and right we may 
assume w.1.o.g. that p(T) < $. 
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Balanced trees share many common properties: 
(1) the depth is bounded by O(log ITI); 
(2) upon insertion or deletion of a leaf at most O(log 1 T() rebalancing operations 

(rotations and double rotations in the case of AVL-trees and BB[a,]-trees, node 
splittings and combinations in the case of 2-3 trees and brother trees) are required to 
rebalance the tree. The rebalancing operations are limited to the path of search. In all 
known examples of balanced trees it is easy to construct examples which require each 
nlode on the path of search to be rebalanced (usually after the deletion of a leaf). 

Example 1. Consider the following tree: 

Inserting a new leaf in front of the left-most leaf gives rise to the following sequence 
of rebalancing operations: 

Note however, that inserting yet another leaf will require at most one rebafsncing 
operation. This suggests that on the average (averaged over a random sequence of 
insertions and deletions) a smaller number of rebalancing operations suffices. Note 
also, that deleting the left-most leaf will reverse the sequence above and recreate the 
original tree. 
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(3) Simulation results show that on the average (random sequence of insertions 
and deletions) a constant number of rebalancing operations suffices. Karlton et al. [5] 
report that on the average 0.46 (0.23) rebalancing operations (2 rotations and 
double rotations) are required to rebalance an AVL-tree upon the insertion 
(deletion) of a ieaf. There are plausibility arguments which support the empirical 
evidence [4; 6, p. 462; 81. 

The plausibility arguments are based on the unjustified assumption that node 
balances (the height difference between left and right subtrees in AVL-trees, the root 
balance in BB[&j- trees) are independent random variables. The plausibility 
arguments yield constants which are in close agreement with empirical evidence. 

Here we give a rigorous proof that the average number of rebalancing operations 
in BB[a!]-trees is bounded by a constant. Actually we prove a stronger result. 

There is a constant c (depending on (u) such that: The total number of rebalancing 
operations required for executing an arbitrary sequence of n insertions and deletions 
on an initially empty BB[a,]-tree is bounded by c l n. 

This contrasts with simulation results which by their nature consider random 
sequences of insertion and deletions. We do not average over many sequences of 
insertions and deletions but only over the elements of a single sequence of insertions 
and deletions. (This implies for every heuristic that a constant number of rebalancing 
operations will suffice on the average. For this reason we do not give any particular 
heuristic (for heuristics cf. [6, lo]).) However, our constant is much larger than 
empirical evidence suggests. (About 27 for CY = a.) We do not claim that our const:rnt 
is best possible. 

We also correct a serious mistake in the original paper of Nievergelt and Reingold 
on BB[a]-trees. 

In our drawings we will not draw leaves, i.e. the tree 

stands for 

X 4 
Inserting a leaf means replacing a leaf by a tree consisting of one node and two leaves 
and deleting a leaf means replacing the father of the leaf by the other subtree. 
Deletion of the right son of node x gives 

A which stands for A LJ 

Note that the balance p(x) of node x is the quotient of the number of leaves in the 
left subtree and the total number of leaves. Hence P(X) = $_ 
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The motivation for this paper is twofold. Firstly it treats an interesting theoretical 
question in tree searching and narrows the gap between theory and practice. 
Secondly it treats an important question of practical relevance. The updating 
behavior of a tree structure is the bottleneck in time-shared tree manipulation 

(see PI). 

2. The effect of aotatioras and double-rotations in weight-balanced trees 

BB[a]-trees aie balanced by rotations and double rotations. Fig. 1 is taken from 
[$I. Squares represent nodes, triangles represent subtrees, the root-balance is given 
beside each node. Symmetrical variants of the operations exist. 

Rotation - 

Double Rotation 

Fig. 1. 

Nievergelt and Reingold state the following theorem in [S] without proof. 

Fact (Nievergelt and Reingold): If Q 6 1 -342 and the insertion or deletion of a 
node in a tree in BB[a] causes a subtree T of that tree to have root-balance less than 
a, T can be rebalanced by performing one of the two transformations shown above. 
More precisely, let pz denote the balance of the right subtree of T after the insertion 
or deletion has been done. If p2 < (1 - 24( 1 - CU), then a rotation will rebalance T, 
otherwise a double rotation will rebalance T. 
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This theorem is false. Consider the example in Fig. 2: Q! = 6. The root ZJ of this tree 
has balance P(V) = &. Deleting one of the leav-- bD with fz.ther x requires the root to be 

Fig. 2. 

rebalanced; it has balance &. A double rotation gives Fig. 3. Node v has balance 
i< &. A rotation makes the balance of v even worse. This example shows that the 
‘theorem’ of [8] is wrong for iC Q! <A. The same counter example works for any a! 
with O<cu e&. More precisely, replace the triangle in Fig. 2 by a BB[cu] tree with b 
leaves such that 

1 2 
-<cry- 
b+l b+6’ 

Such b exists for all cy, 0 < ar s &. This follows from the observation that 

1 2 
---_ 
b+l (b+l)+% 

for 635 and that 2/(6+6)=&for b=5. 
We show in this section that a stronger version of the above theorem is indeed true 

for&Cc&l -542. Before doing so we want to show tha: Fig. 1 correctly gives the 
root-balances of all nodes. Also we state a lemma about the effect of an insertion or 
deletion on root-balances. 

Fig. 3. 
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Let a, b, c, d be the number of leaves in the subtrees shown in Fig. 1. We treat the 
case of rotation and leave the case of double rotation to the reader. By the definition 
of root-balance 

. Pl =a/(a+b+c) and &=b(b+c). 

Then 

(a+b)=&(a+b+c)+&(b+c) 

=Pl(a+b+c)+&((a+b+c)-a) 

=(P1+PG--Pl))(a+b+c). 

Hence thle root-balance of node A after the rotation is 

lalb + b) = PlI(Pl + Ml -PI)) 

and the root-balance of node B is 

(a+b)j(a+b+c)=pl+p2(l-pl). 

Next we study the effect of insertion and deletions on root-balances. 

Lemma 1. Let T be a tree in BB[cv] with root v. 
(1) If we inset a leaf into the right subtree of T, then p(v) SY/ (1 +cu) after the 

insertion. 
(2) If we delete a leaf from the left subtree of T, then 

after the deletion, where 1 is the number of leaves in the left subtree after the deletion. 

Prooh Let T have n + 1 leaves, it left subtree have 1+ 1 leaves. Then 

l+l 
ct- <- andhence ns-- 

n+l 

l+l 1 

cy l 

(1) After inserting a leaf into T’s right subtree we have 

u(v) = Itla l+l 

n+2 (l+l)/a+l 

1 

Y/a+1 
since (1-k l)/((l+ 1)/a + 1) is 
monotonically increasing 
i:l 1 and 120 

lY =- 
l+a’ 
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(2) After deleting a leaf from T’s left subtree we have 

1 
p(V)=-3 

1 
n (l+l)/cu-1 

1 CY 

32/CY 
= - 

-1 2-CY 
since lf ((I+ I)/cY + 1) is 
monotonicaljy increasing 
inlandlal. 

Remark. ar/(l+a)z4(2-a) for O<a<$. 

We are now able to state the correct version of Nievergeh and Reingold’s theorem. 
We will actually prove more. We not only show that rotations and double rotations 
suffice to rebalance the tree but, moreover, that they suffica to move all root-balances 
into the interval [( 1 + 6)ar, 1 - (1 + S)a] for some small 8. This observation will allow 
us to show in the next section that the average number of rebalancing steps per 
insertion and deletion is constant. 

Let 
s 

g(‘y,6)=[1+(1+6)(l-(Y)](2-cy) l 

Then g(a, 0) = 0, g is increasing in a! and S(Os ac G 1 and S 2 0). Also g(a, S) s 
S/(2-4 and g(a, s>& S/(2-4 for 2 ll~aCl and 0~%0.01. (We only need 
that range later on.) 

Theorem 1. There is a continuous, increasing function c: [0, O.Ol]-) R with ciOj = 0, 
~(0.01) = 0.0043 such that: for Q! E R, A< a! s 1 - $42 - c(S), aizd for T a binary tree 
with subtrees Tt and T, such that: 

(1) 
(2) 

(3‘1 

Tt and T, are in BB[a]; 
ITtl/lTI < ar and either 

(2.1) ITMTI - 1) 3 a! (T is obtained by insertion of a leaf into the right subtree 
of Tj or 
(2.2) ClZI+ lj/(ITI+ ljaa (T is obtained by deletion of a leaf from the left 
subtree of T). 
& is the root-balance of T,; 

we have: 
(i) if /3z G I/(2 -(u j + g(cu, Sj, then a rotation rebalances the tree, more precisely 

Yl? Y2m+S)a, l-(~+e-d 

after the rotation, where y1 and y2 are as shown in Fig. 1; 
(ii) if p+ I/ (2 -a) +g(cu, Sj, then a double rotation rebalances the tree, more 

precisely 

71, y2,y3 E cu + G, 1 - (1 + a4 

where yl, y2, y3 are shown as in Fig. 1; 
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(iii) if &C a s $ and ITI G 10, then we only claim 

YI, 72 (rev. ~1, ~2, ~3) E [a, 1 - a I. 

Remark 1. For S = 0, this corrects the theorem of Nievergelt and Reingold. 

Remark 2. A larger range of values for S is possible. However, subsequent compu- 
tations become more complicated and no additional insights are gained. 

Prod of Theorem 1. We need to show that nodes A, B (A, B, C) have balances in 
the interval [(l + S)CU, 1 - (1-t S)a] after a rotation (double rotation). This is done by 
tedious but simple calculations. 

By Lemma 1 we may assume PI a a/(1+ (u) in Case 2.1 and 

in Case 2.2; in’any case PI 2 a/(2 - CY). Also &, p3 E [a, 1 -(u] since T, is in BB[a]. 

Case I: p2 s I/ (2 - cv)+g(cr, S), i.e. rotation is applied. 
(1.1) Wehavetoshow(l+S)cr6yrsl-(1+6)cu: 

y1 = & + (1 -p& the RHS is increasing in & and 
increasing in &. 

Hence, 

Also 

2 1.4a since [ ] is decreasing in LY anda!<!. 

Y+a+(l-cw) 2 ( 1 
-+g(@, 6) l 

-a > 

Consider 

h(a,S)=l-(l+S)cu -[a+(~-a)(&g(a,6))]. 

We have to show 

h(a,6)20 forOGGL01 and ~~~~1--4~2-c(S), 

h(u,S)=l-2+$&x-(1-a)g(o,S) 

=2a2-4a+l 

2-a 
-Sa -(l -cu)g(cu, 8). 

Since 2a2-4a, + 1 = 2(a2-2a +:> has zerc)es 1 -$J2 and 1 +$J2 we condude 

~(~,o)Bo fontal--$J2. 
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Furthermore Sa! + (1 - cu)g(a, 6) G a[~ + (1 -Q: j/(2 - CU)~ and hence 

h(a, S)a 
2~*-4~~+l-S[~(2-(~)+(1-(Y)1 

2-a 
. 

The numerator is a quadratic expression in LY and is decreasing in S. Hence 
h(a,S)aOfora G l-&/2 - cl(S), where cl(O) = 0, cl continuous and increasing and 
Q(O.01) = 0.0043. 

(1.2) We have to show (1 + S)cr G y2 s 1 - (1 + S jet : 

Pl - the RHS is decreasing in /32 y2=p1+(1-p1)p2 andincreasinginp 10 

We want to show y,~(l+S)cu first, We have &aa,/(l+a) in Case 2.1 and 

P1- 1z1/(1F1+ 1 - cw) in Case 2.2. We treat the case ITI = 1 separately. 
If I Tl I 2 2 or if Case 2.1 applies, then we have 

p+min(cu/(l+cu),2a/(3-ar))=2cu/(3-cu) fora,s$. 

Hence, 

y2a2ar/(3 

2a/(3 - CY) 

-a!)+[l-2a/(3-a,)][l/(2-a!)+g(a, S)] 

1 
2 

(r+3-3cu l+S -- 
[ 1 2 2-a, 

since g(cy, 6) G S/(2 - cu) 

1 
3 

+3 
1.01 

l ar since cy 2 0 and S G 0.01 
l 

ar 4 (1-a) 

since f(a) = Q! +3.03 9 (1 - a)/4 is increasing in Q! and cu 2 1 - 3 J 2 < 0.3. 
It remains to consider the Case 2.2 and ]TI = 1. Since LY > $ and <IZI + l)/ 

(ITI + 1) 3 CY > & we have ITI G 9. Our tree ITI has the following form: 

y2 1s smallest when b is as large as possible. ence we only have to consider the case 

that b/(b+c)s l/(2-a)+g(a, S)G 1.01/(2 - (w) and b as large as possible. 

Furthermore b + c = I TI - 1. 
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If&Q G i, then we have to show y2 3 CY, otherwise we have to show y2 2 (1 + 8)~. 
]Tl=9; then a~& and hence ba[1.01/1.8]*8==4.49 and, hence, b=4 and 
y2= l/(b+l)=&; 
lT]=& then a!~$ and hence bc[l.01/(2-$)]*7=3.97 and, hence, b=3 is 
maximaland y,=l/(b+l)=iacu; 
ITl=7: then CVC$ and hence bs[1.01/(2-$j6=3.46 and, hence, b=3 is 
maximaland y2=l/(b+l)=$aa; 
(Tl=6: then cy& and hence bs[1.01/(2-$)].5=2.94 and, hence, b=2 is 
maximalandy2=1/(b+l)=$~(l+S)a!; 
lTl=S: then cy- <l-&/2 and hence b ~[1.01/~2-1+4J2)]. 4e2.37 and, hence, 
b=2ismaximaland ~~=l/(b+l)=$a(l+S)cr; 
)Tl=#r then G s 1 -$J2 and hence b ~[1.01/(2- 1+&/2)] 9 3 = 1.78 and, hence, 
b=lismaximalandy2=l/(b+l)=$(l+S)a. 
I TI s 3 is impossible since 1 T$l TI s a is one of the hypotheses of the theorem. 

Next we have to show y2 s 1 - (1 + S)cy : 

a 1 
72s =-z=l- 

a+(l-&a 2-a 
l.d)lcY 

if 1~2~a -2.02~ + 1.01a2, if 1~2-3.02cu, if cy s l/3.02. This finishes Case I of 
the proof. 

CaseII: p2>1/(2-cu)+g(~,S)~1/(2 -a), i.e. a double rotation is applied. 
(HI.1) Wehavetoshow(l+S)ar~yl~l-(l+S)a: 

y1 = p1 + (1 -p1)p2p3 the RI-IS is increasing in 
Pt, PZ and kk 

Hence, 

y*%Y/(2-car)+(l -a/(2--a))(1/(2-CY)) l a! 

Ly+2-2a -. 

2 
2-(x Q>a 4-3ar 
2-a! * l (2& 

~* 4-3+ A l 

(2 - 3’ 
sincef(a)=(4-3ti)/(2-a)2is 
increasing for CY S f 

= 1.045~(1++!, 

y1 scu +(l -cu)(l -cu)(l --a) 

q1-cu)-(o.32 - 3 l 0.3 + l)cu since a3 - 3ar + 1 is decreasing 
inaforo<$and 
awl-iJ2~0.3 
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(11.2) We have to show (1+ S)ar G y2 S 1 - (1 + S)CW. We show y2 > (I + S)a first. 
By Lemma 1 p 2 a rw/(l + (w) in Case 2.1 and @ 2 3 cuZ/(Z -t- 1 -a) in Case 2.2, where J is 
the number of leaves in the left subtree of T. Furthermore 

Pl 1 

y2=p~+(l--p~)p2~3=l+(l/pl-1)P2P3 

is increasing in & and decreasing in p2 and pg. 

case 2.3: fir a(~/(1 +a). Then 

41 +a) 
Y2”al(l+a)+(l-cw/(l+cr))(l-3 

since 1 - CY + a2 is decreasing in cy for cy 6 4 and a! 3 &. 
Case 2.2: PI 2 cuf!(l+ 1 -a). We treat the case IT/l 3 3 analytically and the case 
IFI s 2 by explicit consideration. If IKI 2 3, then p1 2 3a/(4 - ar). EIence 

3ar/(4-cw) 

y2~3~/(4-cr)+(l-3Ly/(4--(Y))(1-(y)2 

3 

=3a+4*(l-a)3’(Y 

3 

a3 l $+4 l ($)3 
l cy since 3a! + 4 l (1 - al3 is decreasing for 

CY ~4 and &<a O--$I2 

2 1.09cu a(1 +@a. 

It remains to consider Case 2.2 and IT,! c 2. Since cy > ?;?;i and (IT*/ + l)/(\Tl + 1) a 
Q;’ >$ we have jTJ G 15. The tree T has the following form: 
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y2 is smallest when b is as large as possible. Hence we only have to consider the case 

that bl(b + c) =S 1 -CI and (b + c)/(b +c + d) G 1-a and b maximal. Hence 

b s [(l - cu)(b + c)] G I(1 -a!)[(l-cu)(bi-c+d)jj 

= l(1 -a) ’ L(l -QNTI-ITIl)JJ 

lzI=2: 
lTl=15: thena~(I’&I+1)/(17’I+l)=&andb~ ~(&1$13j)j =8andhencey2= 
2/(b+2) z&(l+S)a; 
ITI=14:thena~~andb~7and,hence,yz=2/(b+2)~~~(1+~)~; 
ITI = 13: then ar c&and bs7 and, hence, y,~$~(l+S)cu; 
ITI = 12: then ar s & and b <6 and, hence, y+$(l+S)(~; 
)5”j=II: thena&$andb s 5 and, hence, y2 2 $2 (1 + S)cu ; 
l7’l~IO; then bs4and, hence, y+&(l+S)(l-$42)b(l+S)c~; 
I7j=Ir since (I~~l+l)/((TI+l)~a,>~we have ITIs9; 
lTl=P: thena&and b<4and, hence, ?2=l/(b+l)=$acu; 
ITI=& thena&$.ifbc3,thenyZ=$ 2 CY. If b = 4, then c + d s 3 and hence either 
cslora~l.Hencea~fand’~.255~a; 
ITI= 7; then a &$and bs3 and, hence, y2~$aa; 
lTl=6; thencu~~.Ifb~2,thenY2~43(1+S)CY.Ifb=3,thenc=d=1andhence 
cy ~4. Thus y2=+cy; 
ITIG5; then a!6 -342 and b s 2 since c ~1 and da1 and, hence, y2=5- l> 

(l+s)(1--&l2)~(1+s)cu. 
Next we show y2 6 1 - (1 + S)~X : 

CR 2-a 
y2s .1 

cw+(l-cu) 
1 

-+g(% 6) > 
S2 -a! +(l -ck!)(l +$s>’ 

2-0 
a 

Consider 

h(cY,s)=l-(l+S)a!- 
(2-a) 

(Z-cu)+(l-cu)(l+$S) 

(2a2 -4a! +1)-S~(3-2cr)+(1-~)2S/2-ar($S2)(a -a) = 
(3-2c~)+(l-a!)+8 

. 

The numerator of this expression is a quadratic equation in cu and is decreasing in 
S(Sa0.01,(~<$). For S=O its zeroes are l-&/2,1+4J2. Hence h(a,S)aO for 
cr s l-442 - c&S) with ~(0) = 0, c2 continuous and increasing and ~~(0.01) = 
0.0016. 

(X1.3) We: have to show (1 + S)cr s y3 s 1 - (1 + @a! : 

P2(1 -P3) 

y3= l-p2p3 
is increasing in p2 and decreasing in &; 

1-(1-a) 

Y%1/(2-cr)+g(cY,6))-(1-a) 
a(l+S)a! 
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iff 

315 

1 

1/(l/(2-_o+g((Y,s))-(l-*)~(l+6) 

iff 

l+(l-(X)(1+6)3 
(1+5)(2-a) 

1 + (2 - cr)&, 8) 

iff 

g(q 6) l (2-*)a (1+5)(2-a) -l= 
s 

1 +(l -a)(1 +S) 1 +(l -a)(1 +S)’ 

This is true by definition of g(cr, 8). 
Also 

(1 -O)(l -cu) 

y3Gl_(l-cW)cW 

l-2*+** 1 1 
= l--ar+cu* = -l_(y+cu*Ly 

<I- 
1 

1-&+(&)” 
Sl-(l+S)a! 

since 1 - ar + (Y* is decreasing for Q! 6 $ and CY 3 6. 
Finally taking c(6) = max[cl(S), c2(S)] finishes the proof of the theorem. 

Corollary 1. If & < a! G I -$J2, then rotation and double rotation along the path of 
search suffice to rebalance the tree after insertion or deletion of a leaf. 

Proof. Inserting a leaf creates a subtree of the form 

It has root balance $. Deleting a Beaf means replacing a tree by one.of its direct 
subtrees. In either case the new subtree is in BB[a,]. Theorem 1 implies that we can 
walk back to the root and rebalance the tree by rotations and double rotations. 

The corollary above is the correct version of the ‘theorem’ stated in [S]. In the next 
section we use Theorem 1 to prove an upper bound on the average number of 
rebalancing operations. 

3. The average number of rebalancing o 

In this section we will prove our main theorem: the average number of rebalancing 
operations is constant. e need some notation first. 
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A transaction is either an insertion or a deletion. A transaction goes through a node 
v if v is on the path of search to the leaf to be inserted or deleted or (alternatively) if 
the leaf (to be inserted or deleted) is a descendant of iu. A node v takes part in a 
rebalancing operation, if it is one of the nodes explicitly shown in Fig. 1. A node causes 
a rebalancing operation if it is the root of one of trees shown on the left side in Fig. 1. 
Furthermore nodes retain the identity as shown in Fig. 1, i.e. if a rotation to the left is 
applied to a tree with root A, then node A has subtrees of weight a and b respectively 
after the rotation. Note also that new nodes are created by insertions and that nodes 
are destroyed by deletions. Finally consider any sequence of transactions. We start 
with a tree To and apply the first transaction to it. Then the tree is rebalanced as 
described a”s the end of the previous section, resulting in tree T1. The next transaction 
is applied to T1, T1 is rebalanced, . . . . Let TO, T1, T2, . . . , T,, . . . be any such 
sequence of BB[Ly ]- trees. 

Lemma2. LetO~S~0.01,~~~~1-~~2-c(6)andletvbeanode.If 
(1) v causes a rebalancing operation in T, (after the transaction was applied to T,) 

and 
(2) either v took part in a rebalancing operation before or v was not a node qf the 

initial tree To and never took part in a rebalancing operation before and 
(3) n is the number of leaves in the subtree with root v in T, anr1 n 2 11 if cy G i, 

then at least [&ynl transactions went through v since v took part in a rebalancing 
operation for the last time or v was created. 

Proof. Let j < m be such that: v took part in a rebalancing operation in q, but not in 
T. j+1, l l l 9 Tmml or v did not exist in Ti but existed in I;.;-1, . . . , T,-, and never took 
part in a balancing operation. In the second case the balance p(v) of node v in Tj+l is 
$. In the first case the balance p(v) = t’/n’ of node v in Tj+l is in [( 1+6)cu, l- 
(l+S)ac]ora s $ and n’s 10. 10. This is an immediate consequence of Theorem 1. 
Also the balance p(v) = t/n of node v in T,,, is outside the interval [a, 1 -a], say 
t/n < ff. 

Node v did not take part in a rebalancing operation in trees Tj+ 1, l e l , T,- 1. 

In these trees dr (il) deletions (insertions) were performed in the left subtree of 
v and d, (ir) deletions (insertions) were performed in the right subtree of v. 
Hence 

t= t’-dl+-ir, 

n =n ’ - d, - d, + il+ i,. 

The number of transactions which went through v is di + d, + ii + i,. We need a lower 
bound on that number. Certainly abs(n - n ‘) is a lower bound. Hence we are done if 
~‘~I0anda~~.Supposen’~10or~>$andhencet’/n’~[(1+S)cu,1-(1+S)~]. 
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Assume to the contrary that d, + d, + in + ir < Gcun. Then 

*-(l+s).,,,l=d&-i! 
12’ 

-(1+6)(x 
r - il - ir 

< t+4 
-n +dl-i, 

s “,“+‘s”,“,” - (1 + S)cw = - (‘c:E: < 0, a contradiction. 

Lemma 2 shows that many transactions go through a node v between rebalancing 
operations involving v. In order to finish off the proof all we need is a clever way of 
counting transactions and rebalancing operations. 

With every node v we associate accounts: the transaction accounts TAi (v) and the 
balancing operation accounts BOi(v), 0 s i < 00. Furthermore there is a special 
account S. All accounts have initial value zero. 

Let To be a tree in BB[~Y] and let To, T,, . . . , T,, . . . be as above a transaction 
sequence of BB[a]-trees. Let v be any node of Tm, and let n be the number of leaves 
in the subtree of T, with root v. Let i be such that (l/( 1 -a))’ < n < (l/( 1 - (Y))? 
Note that n 2 2 and, hence, i 3 1. 

If the transaction applied to T, goes through node v, then we charge one unit to 
transaction accounts TAi-i(v), TAi(v) and TAi+l(v). 

If v causes a rebalancing operation in T,,,, then if v took part in a rebalancing 
operation before or was not a node of initial tree TO, then we charge one unit to 
account BOi(v) otherwise we charge one unit to special account S. 

Note that for every node v of the initial tree To at most one unit is charged to 
account S and, hence, S G 1 TOI - 1. It remains to sum the contents of the balancing 
operation accounts BOi( v). 

Whenever one unit is charged to account BOi(v) we are in a situation to which 
Lemma 2 applies: if n 2 11 or ar >i, then at least San transactions went through1 v 
since v took part in a rebalancing operation (if it ever did) or v was created. Since 
(cf. Fig. 4) 

n -[l/(1 -a)l’_‘~San and [l/(1 -a)]‘+*-n a&n 

[l/(1-a)]‘+* 

Fig. 4. 
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we even knslw that Scan units 
rebalancing operation (if it ever 

1 
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were charged to TAi(v) since v took part in a 
did) or v was created. Hence, 

(1 -cu)i 
sa! TAi(u) 

if cy > $ or (l/( 1 -a))’ 2 11. Since cy > $ this is certainly the case for i 2 12. 
We are now ready to estimate the total number A of rebalancing operations 

required to perform the first m transactions. Let k be any integer 212. Then 

A=S+CCBOi(v) 
v i 

=S+‘C C BOi(v)+C C BOi(v). 
v iCk v iz-k 

NOW SslTo/-l and 

v iak 

~$~~ C (l-a)‘TAi(u) 
v isk 

1 
GG l C C mfl [if the jth transaction goes through v and 

v iak i-0 for the number or of leaves in the subtree 
of Ti with root v 

[lf(l--(Y)]i-*~Pl c[lf(l-cy)]i+2 

then (1 - aQi else 0] 

+y c C[*.cj 
j=O iak v 

s&om~* c 3*(1-4’ 
j=O iak 

since Tj is a tree in BB[ar ] and hence for fixed i a transaction goes through at most one 
node v with [l/(1 -a!)]‘< n <[l/(1 -~!)]j+l 

s[3(1 --(~)~/&r*] l m 
and 

v ;ck 

srnf’ c c 
j=O i<k v 

v causes a I ebalancing operation in Tj 
and for the number n of leaves in the subtree 
of Tj with root v 
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[l/(l-cy)]i~,~<[l/(l-cy)]i+l 

then 1 else 0] 

m-l 

s c maximal depth of a BB[a] tree with [l/( 1 - &)I’ leaves 
j-0 

G [max. depth of a BB[a!]-tree with [l/( 1 - cy j]’ leaves] l m 

c(k-l)*m. 
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Altogether we have shown 

ITol- 1+ min[k - 1+3(1-&&*I * m 
kEN 
ka12 

rebalancing operations suffice to perform an arbitrary sequence 
with initial tree To and A< ar s l-f42 -c(S), i.e. we have 

of m transactions 

Theorem 2. Let 0 < S s 0.01 and &< al 6 l-442 - c(S) where c is defined as in 
TIteorem 1. Then there is a constant d such that: for To any tree in BB[a], at most 
1 ToI - 1 + d l m balancing operations are required to perform an arbitrary sequence of m 
insertions and deletions with initial tree To. 

Corollary 2. There is a constant d such that d l m balancing operations suffice to 
perform m insertions and deletions on an initially empty tree. 

It is worth to estimate the constant d for a specific example: a! = $ and 6 = 0.01. 
Let k = 25, then 3(1 YY)~/&Y* = 3.61. A BBC:] tree with G($)*’ =z 1329 leaves has 

depth at most 23.87 (cf. [7,8]). I-Ience d ~27.48. 

Remark, 27 is a rather pessimistic estimate. This constant could be improved by a 
more careful version of Theorem I combined with a detailed analysis of trees of small 
depth (cf. [lo]). 
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