
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 66 (2003) 473–495

Guess-and-verify versus unrestricted nondeterminism
for OBDDs and one-way Turing machines$

Martin Sauerhoff1

FB Informatik, LS 2, Universitat Dortmund, 44221 Dortmund, Germany

Received 12 November 2001; revised 4 July 2002

Abstract

It is well known that a nondeterministic Turing machine can be simulated in polynomial time by
a so-called guess-and-verify machine. It is an open question whether an analogous simulation exists
in the context of space-bounded computation. In this paper, a negative answer to this question is
given for ordered binary decision diagrams (OBDDs) and one-way Turing machines. If it is required
that all nondeterministic guesses occur at the beginning of the computation, this can blow up the
space complexity exponentially in the input length for these models. This is a consequence of the

following main result of the paper. There is a sequence of boolean functions fn : f0; 1gn-f0; 1g such

that fn has nondeterministic OBDDs of polynomial size that use at most ð1=3Þ � ðn=3Þ1=3 log n � ð1 þ oð1ÞÞ
nondeterministic guesses for each computation, but fn already requires exponential size if only at most

ð1 � eÞ � ð1=3Þ � ðn=3Þ1=3 log n nondeterministic guesses may be used, where e40 is an arbitrarily small
constant.
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: OBDDs; Branching programs; One-way Turing machines; Nondeterminism; Guess-and-verify; Space

complexity; Lower bounds

1. Introduction and definitions

So far, there are only few models of computation for which it has been possible to analyze the
power of nondeterminism and randomness. Apart from the obvious question whether or not

$A preliminary version of this work has appeared in Proceedings of FST & TCS ’99, Lecture Notes in Computer

Science, Vol. 1738, Springer, Berlin, 1999, pp. 342–355.

E-mail address: sauerhof@ls2.cs.uni-dortmund.de.
1This work has been supported by DFG Grant We 1066/9.

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00037-0

nondeterminism or randomization helps at all to decrease the complexity of problems, we may
also be interested in the following, more sophisticated questions:

* How much nondeterminism or randomness is required to exploit the full power of the
respective model of computation? Is there a general upper bound on the amount of these
resources which we can make use of?

* How does the complexity of concrete problems depend on the amount of available
nondeterminism or randomness?

For Turing machines, we even do not know whether nondeterminism or randomness helps
at all to solve more problems in polynomial time, and we seem to be far away from
answers to questions of the above type. On the other hand, nondeterminism and randomness
are well understood, e.g., in the context of two-party communication complexity. It is a
challenging task to fill the gap in our knowledge between the latter model and the more
‘‘complicated’’ ones.

In this paper, we consider space-bounded models of computation in the nonuniform as well as
the uniform setting. Besides boolean circuits and formulae, branching programs are one of the
standard nonuniform models of computation.

Definition 1.

* A (deterministic) branching program (BP) on the set of input variables X ¼ fx1;y; xng is a
directed acyclic graph with one source and two sinks. The sinks are labeled by 0 and 1 and the
interior nodes are labeled by variables from X : Interior nodes have two outgoing edges also

labeled by 0 and 1; resp. This graph represents a boolean function f : f0; 1gn-f0; 1g on X as

follows. In order to evaluate f for a given assignment a ¼ ða1;y; anÞAf0; 1gn to the input
variables, one follows a path starting at the source. At an interior node labeled by xi; the path
continues with the edge labeled by ai (this is called a test of the variable xi). The output for a is
the label of the sink reached in this way.

* A nondeterministic branching program is syntactically a deterministic branching program on
two disjoint sets of variables X and Y ¼ fy1;y; yrg: The variables from these sets are called
decision variables and nondeterministic variables, resp. Nodes labeled by the two types of
variables are called decision nodes and nondeterministic nodes, resp. On each path from the
source to one of the sinks, each nondeterministic variable is allowed to appear at most once. A
nondeterministic branching program computes the output 1 on an assignment a to the variables
in X iff there is an assignment b to the nondeterministic variables such that the 1-sink is reached
for the path belonging to the complete assignment consisting of a and b: Such a path to the 1-
sink is called an accepting path.

* The size of a deterministic or nondeterministic branching program G, denoted by jGj; is the
number of nodes in G: The (nondeterministic) branching program size of f is the minimum size of
a deterministic (nondeterministic) branching program representing f :

The size of nondeterministic BPs as defined above is polynomially related to that according to the
well-known alternative definition using unlabeled nondeterministic nodes and assuming that
the successor of such a node is guessed nondeterministically [18], as well as to the size of

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495474

switching-and-rectifier networks [22]. A natural measure for the amount of nondeterminism
consumed by a nondeterministic BP is obtained as follows.

Definition 2. The (worst-case) number of nondeterministic guesses of a nondeterministic BP G is
defined as the maximal number of nondeterministic nodes on a path from the source to one of the
sinks.

Observe that the minimal number of nondeterministic variables required to label all
nondeterministic nodes in a BP such that the read-once property for these variables is satisfied
is identical to the maximal number of nondeterministic guesses on a path from the source to one
of the sinks. Hence, the number of nondeterministic variables is also a measure for the amount of
nondeterminism used by the BP.

For a history of results on BPs, we refer to the monograph [25] of Wegener. We only mention
that a tight connection between the complexity theory of BPs and that of Turing machines is
established by the well-known fact that the logarithm of the size complexity of BPs is essentially
equal to the space complexity for the nonuniform (advice taking) variant of Turing machines.
This is true for the deterministic as well as for the nondeterministic models.

Proving superpolynomial lower bounds on the size of BPs for explicitly defined boolean
functions is a fundamental open problem, even in the deterministic case. Nevertheless, several
interesting restricted types of BPs could be analyzed quite successfully, and for some of these
models even exponential lower bounds could be proven. The goal in complexity theory is to
provide proof methods for more and more general types of BPs, and on the other hand, to extend
these methods also to the nondeterministic or randomized case.

Here we deal with ordered binary decision diagrams (OBDDs) that are one of the restricted
types of BPs whose structure is especially well understood in the deterministic case.

Definition 3. Let p be a permutation of f1;y; ng: A p-OBDD on X ¼ fx1;y;xng is a BP with the
restriction that the order of variables on each path from the source to one of the sinks is consistent
with p; i.e., the list of these variables is a sublist of xpð1Þ;y;xpðnÞ: We call a graph an OBDD if it is

a p-OBDD for some permutation p: The permutation p is called the variable order of the OBDD.

OBDDs have been invented as a data structure for the representation of boolean functions and
have proven to be very useful in various fields of application. For many applications it is crucial
that one can work with OBDDs of small size for the functions that have to be represented. Hence,
lower and upper bounds on the size of OBDDs are also of practical relevance. There are two
nondeterministic variants of the OBDD model that we consider in this paper.

Definition 4. Let G be a nondeterministic BP on variables from X,Y ; where Y ¼ fy1;y; yrg
contains the nondeterministic variables. Let p be a permutation of f1;y; ng: We call G a
nondeterministic p-OBDD if the order of the X -variables on all paths from the source to one of the
sinks in G is consistent with p: If there is a permutation p0 of f1;y; n þ rg such that G is
syntactically a p0-OBDD on X,Y (according to Definition 3), then we call G a synchronous
nondeterministic p0-OBDD.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 475

We only remark that there are also nondeterministic variants of OBDDs that have
been proposed for practical use. Since we want to study OBDDs as a model of computation,
it is important that nondeterminism may be used in the model in the same way as by
Turing machines. We consider the following variants of the standard Turing machine
(TM). In this paper, all TMs are equipped with a read-only input tape and a single
work tape.

Definition 5.

* A nonuniform Turing machine (also called advice-taking Turing machine) is a TM with
an additional read-only tape, called advice tape. On input x; this tape is automatically

loaded with an advice string aðjxjÞAf0; 1g�; where a :N-f0; 1g� is an arbitrary function.
The space used for input x is the sum of the space required on the work tape and JlogjaðjxjÞjn:
A nonuniform Turing machine computes a sequence of functions fn : f0; 1gn-f0; 1g
for nAN:

* A one-way Turing machine moves its input head to the right after reading a cell on the input
tape. The input is terminated by a special end marker.

* For nAN; let pn be a permutation of f1;y; ng: A Turing machine with input orders ðpnÞnAN is a

one-way TM that, prior to its computation, permutes an input string of length n on its input
tape according to the order pn without resource consumption. An ordered Turing machine is a
TM that works as described for some sequence of input orders.

A one-way or ordered TM with space bound sðnÞ; n the input length, has a work tape of length
sðnÞ that is delimited by start and end markers.

Nondeterministic variants of the above models are defined by allowing transitions to two
successor configurations, where such a transition does not depend on the symbol under the input
head and does not move this head.

Observe that one-way TMs are special ordered TMs. Nondeterministic OBDDs and the
nonuniform variant of nondeterministic ordered TMs are closely related. We obtain the following
simulation result, which is proven analogously to the relationship between BPs and unrestricted
nonuniform TMs (see, e.g., [25]).

Proposition 6.

(1) Let ðGnÞnAN be a sequence of nondeterministic OBDDs with variable orders ðpnÞnAN; size sðnÞ ¼
OðnÞ; and rðnÞ nondeterministic variables such that each Gn represents a function

fn : f0; 1gn-f0; 1g: Then there is a nonuniform nondeterministic TM with input orders
ðpnÞnAN that computes the sequence of functions ð fnÞnAN; runs in space Oðlog sðnÞÞ; and takes at

most rðnÞ nondeterministic steps during each computation.
(2) Let a nonuniform nondeterministic TM with input orders ðpnÞnAN be given that runs in space

sðnÞ ¼ Oðlog nÞ; takes at most rðnÞ nondeterministic steps during each computation, and
computes the sequence of functions ð fnÞnAN: Then there is a sequence of nondeterministic

OBDDs ðGnÞnAN with variable orders ðpnÞnAN such that Gn represents fn and has size 2OðsðnÞÞ and

at most rðnÞ nondeterministic variables.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495476

This proposition justifies the definition of nondeterministic OBDDs and allows to transfer
complexity results for OBDDs to ordered TMs and vice versa.

2. Previous and new results

Previous results for branching programs. Several exponential lower bounds on the size of
deterministic, nondeterministic, and randomized variants of OBDDs have been proven by
exploiting corresponding results on one-way communication complexity [1,5,11,15,23,24]. In this
situation where the standard problem of proving exponential lower bounds on the size of OBDDs
can be considered solved, we can dare to tackle the more challenging questions concerning the
resources nondeterminism and randomness mentioned at the beginning of the introduction.

The dependence of the OBDD size on the resource randomness has been dealt with to some
extent by the author [23]. Analogous to a well-known result of Newman [19] for randomized
communication complexity, it could be shown that a logarithmic number of random bits is always
sufficient and for some functions also necessary to exploit the full power of randomness for
OBDDs.

What do we know about the resource nondeterminism? In the context of communication
complexity theory, Hromkovič and Schnitger [9] have proven that, contrary to the randomized
case, imposing a logarithmic bound on the number of nondeterministic bits restricts the
computational power of the model. An asymptotically exact tradeoff between one-way
communication complexity and the number of nondeterministic bits has been proven by
Hromkovič and the author [10]. Klauck [14] has established a round hierarchy in the case where
the available amount of nondeterminism is limited. This is contrary to the situation for unlimited
nondeterminism, where each nondeterministic protocol can be simulated by a nondeterministic
one-way protocol.

These results lead to the conjecture that there should be sequences of functions that have
nondeterministic OBDDs of polynomial size, but that require exponential size if the amount of
nondeterminism, measured in the number of nondeterministic variables, is logarithmically
bounded in the input length. But although lower bounds on the size of nondeterministic OBDDs
can immediately be obtained by using the results on one-way communication complexity, the
upper bounds do not carry over. Proving a tradeoff between size and nondeterminism turns out to
be a difficult task even for OBDDs. A first result of this kind has been presented in [10]. The
sequence of functions considered there can be represented by (unrestricted) nondeterministic

OBDDs of size ðn=log nÞOðlog nÞ in the input length n; while nondeterministic OBDDs with Oðlog nÞ
nondeterministic variables require size 2OðnÞ: So far, it has been open to obtain a similar result with
a polynomial upper bound for unrestricted nondeterministic OBDDs.

Previous results for Turing machines. The dependence of complexity on the available amount of
randomness or nondeterminism has also been studied for some time in the uniform setting. In the
absence of sufficiently strong lower bound methods for the standard model of polynomial-time
TMs, one has resorted to prove relativized separations or collapses of complexity classes,
completeness results, or results under yet unproven conjectures. Of the first type is the seminal
work of Kintala and Fischer [12,13] who have introduced complexity classes between P and NP
defined in terms of nondeterministic polynomial-time TMs using limited amounts of

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 477

nondeterminism. Several subsequent papers have continued this line of research later on, see, e.g.,
[2,4,6,7,21].

Here we are concerned with space as the primary resource and look at subclasses of L and NL,
the classes of languages recognizable by deterministic and nondeterministic TMs, resp., with
logarithmic space bound (‘‘logspace’’ for short in the following). Because of Proposition 6, we are
interested in one-way logspace TMs that have been studied to some extent due to their
relationship to some important open problems in formal language theory and complexity theory.
Hartmanis and Mahaney [8] have investigated the classes 1L and 1NL of languages recognizable
by one-way logspace TMs and nondeterministic one-way logspace TMs, resp. They have shown
that 1La1NL (by looking at a uniform variant of the string non-equality problem from
communication complexity theory) and have defined a natural complete problem for 1NL under
one-way logspace reductions. Furthermore, they have proven that 1NLDL iff L ¼ NL: Finally,
they have introduced the class ENL of all languages recognizable by nondeterministic TMs that
may use nondeterministic moves only after reading the complete input (‘‘nondeterminism at the
end’’) and have shown that NL has unary complete languages (with respect to logspace
reductions) iff ENL ¼ NL: (In fact, Hartmanis and Mahaney used the name ‘‘RNL’’ for the class
called ‘‘ENL’’ here.)

The famous open ‘‘LBA problem’’ is the question of whether the context-sensitive languages
coincide with those languages recognizable by deterministic linear-bounded automata. Niepel [20]
has introduced the one-way variant 1ENL of the class ENL and has exploited the ideas of
Hartmanis and Mahaney to show that the statements 1ENL ¼ 1L and ENL ¼ L are both
equivalent to an affirmative answer to the LBA problem.

It is well known that there is a polynomial-time simulation of arbitrary nondeterministic TMs
by so-called guess-and-verify machines that guess all nondeterministic bits in advance and store
them in a special location. It is no longer obvious how this can be done in the context of space-
bounded computation. Niepel [20] has investigated the classes BNL and 1BNL of languages
recognizable by nondeterministic logspace TMs and nondeterministic one-way logspace TMs,
resp., that only use nondeterministic moves before reading their input (‘‘nondeterminism at the
beginning’’), i.e., they work in the guess-and-verify mode. She has proven that 1ENLD1BNL and
ENLDBNL: Altogether, this gives us the following relations among the classes for logspace TMs
mentioned so far:

1LD1ENLD1BNLD1NL; and LDENLDBNLDNL:

It is easy to see that 1Lk1BNL (consider again the string non-equality problem). Hence, at least
one of the first two inclusions in the first chain of inclusions is proper, but to the best of our
knowledge, this has not yet been proven for either of them. It has also been open so far whether
1BNLa1NL; i.e., whether forcing the machines to work in the guess-and-verify mode really
restricts the power of nondeterministic one-way TMs.

Summary of new results. We present a sequence of functions that have synchronous

nondeterministic OBDDs of polynomial size with ð1=3Þ � ðn=3Þ1=3 log n � ð1 þ oð1ÞÞ nondetermi-
nistic variables (where n is the input length), but that require exponential size in the synchronous

model if only at most ð1 � eÞ � ð1=3Þ � ðn=3Þ1=3 log n nondeterministic variables may be used, where
e40 is an arbitrarily small constant. As a corollary, we obtain that even general nondeterministic

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495478

OBDDs that may use only at most Oðlog nÞ nondeterministic variables have exponential size for
the considered functions. Furthermore, this function also shows that requiring all nondetermi-
nistic variables to be tested at the top of a general nondeterministic OBDD may blow up the size
exponentially.

For the proof of the tradeoff result, it is important to consider synchronous nondeterministic
OBDDs. But it is not obvious whether the general type of nondeterminism is really more
powerful. We show that the OBDD sizes for the two models are polynomially related if the
number of nondeterministic variables is not limited, but that the size for the synchronous model
may be exponentially larger if such a limit exists.

Finally, we apply our first result to derive similar results for one-way TMs. We show that
requiring nondeterministic one-way TMs to work in the guess-and-verify mode may increase the
space complexity from logarithmic in the input length for the general model to linear for the
restricted model. In particular, we obtain that 1BNLk1NL:

Overview on the rest of the paper. In Section 3, we present some tools from communication
complexity theory needed for the proofs of our lower bounds. In Section 4, the tradeoff between
OBDD size and the number of nondeterministic variables is proven. Section 5 deals with the
relationship between general and synchronous nondeterministic OBDDs. Section 6 contains the
results for one-way TMs. We conclude the paper with a summary and an open problem.

3. Tools from communication complexity theory

In this section, we define deterministic and nondeterministic communication protocols and state
two lemmas required for the proof of the main theorem of the paper. For a thorough introduction
to communication complexity theory, we refer to the monographs of Hromkovič [9] and
Kushilevitz and Nisan [17].

A deterministic two-party communication protocol is an algorithm by which two players, called
Alice and Bob, cooperatively evaluate a function f : X � Y-f0; 1g; where X and Y are finite sets.
Alice obtains an input xAX and Bob an input yAY : The players determine f ðx; yÞ by sending
messages to each other. Each player is assumed to have unlimited (but deterministic)
computational power to compute her (his) messages. The (deterministic) communication
complexity of f is the minimal number of bits exchanged by a communication protocol by which
Alice and Bob compute f ðx; yÞ for each input ðx; yÞAX � Y :

Here we only consider protocols with one round of communication, so-called one-way

communication protocols. In a one-way communication protocol, Alice sends a single message to
Bob who has to output the result of the protocol, which may depend on his input and the message

he has obtained. We use DA-Bð f Þ to denote the (deterministic) one-way communication

complexity of f, by which we mean the minimum number of bits sent by Alice in a deterministic
one-way protocol for f : Furthermore, we also consider nondeterministic one-way protocols.

Definition 7. A nondeterministic one-way communication protocol for a function f : X � Y-f0; 1g
is a collection of deterministic one-way protocols P1;y;Pd ; where d ¼ 2r; with f ðx; yÞ ¼ 1 iff
there is an iAf1;y; dg such that Piðx; yÞ ¼ 1: The number r is called the number of
nondeterministic bits of P. Let the number of witnesses of P for an input ðx; yÞ be accPðx; yÞ ¼

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 479

jfi j Piðx; yÞ ¼ 1gj: Furthermore, let the (private) nondeterministic complexity of P be NðPÞ ¼
r þ max1pipd DðPiÞ; where DðPiÞ denotes the deterministic complexity of Pi: The nondeterministic

one-way complexity of f, NA-Bð f Þ; is the minimum of NðPÞ over all protocols P as described
above. By the nondeterministic one-way complexity of f with restriction to r nondeterministic bits

and w witnesses for accepted inputs, NA-B
r;w ð f Þ; we mean the minimum complexity of a

nondeterministic protocol P for f that uses r nondeterministic bits and that satisfies accPðx; yÞXw

for all ðx; yÞAf �1ð1Þ: Finally, we define NA-B
r ð f Þ ¼ NA-B

r;1 ð f Þ:

The following well-known function plays a central role in this paper.

Definition 8. For an arbitrary boolean vector a ¼ ða1;y; akÞ; let numðaÞ ¼
Pk

i¼1 ai 2
i�1: Define

the function INDn on inputs x ¼ ðx1;y; xnÞ and y ¼ ðy1;y; yJlog nnÞ by INDnðx; yÞ ¼ xnumðyÞþ1 if

numðyÞAf0;y; n � 1g and INDnðx; yÞ ¼ 0 otherwise.

This function is referred to as ‘‘index’’ or ‘‘pointer function’’ in the literature. We may regard x
as a memory contents and numðyÞ þ 1 as an address in this memory. Kremer et al. [16] have
shown that INDn has complexity OðnÞ for randomized one-way communication protocols with
bounded error (see [9,17] for a definition of randomized communication protocols). It is easy to
see that essentially log n bits of communication are sufficient and also necessary to compute INDn

by nondeterministic one-way protocols. Here we will require the following more precise lower
bound on the nondeterministic one-way communication complexity of INDn that also takes the
number of nondeterministic bits and the number of witnesses for accepted inputs into account:

Lemma 9. NA-B
r;w ðINDnÞXnw � 2�r�1 þ r:

This is a special case of a result derived by Hromkovič and the author [10] for a more
complicated function. Since this result is an important ingredient in the proof of our main result,
we provide a proof for it.

Proof. Let P be a nondeterministic one-way protocol for INDn with r nondeterministic bits and

accPðx; yÞXw for all ðx; yÞAIND�1
n ð1Þ: Hence, there are d ¼ 2r deterministic one-way protocols

P1;y;Pd that compute f as described in Definition 7. For i ¼ 1;y; d; let gi be the function
computed by Pi: Obviously, gipINDn: Observe that, by averaging, there is an index i0Af1;y; dg
such that jg�1

i0
ð1ÞjXwjIND�1

n ð1Þj=d: It is easy to see that jIND�1
n ð1Þj ¼ n � 2n�1: Hence,

jg�1
i0
ð1ÞjXnw � 2n�r�1: We prove that for any function g with gpINDn; DA-BðgÞXjg�1ð1Þj=2n:

From this, the lemma follows.

We consider the communication matrix Mg of gpINDn; which is the 2n � 2Jlog nn-matrix with

0- and 1-entries defined by Mgðx; yÞ ¼ gðx; yÞ for xAf0; 1gn and yAf0; 1gJlog nn: It is a well-known

fact that DA-BðgÞ ¼ Jlog kn; where k is the number of different rows of Mg:

Hence, it is sufficient to prove that log kXjg�1ð1Þj=2n: Let a1;y; akAf0; 1g2Jlog nn
be the

different rows of Mg: By the definition of INDn; only the first n entries of each ai can be nonzero.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495480

Let mi be the number of occurrences of ai in the matrix Mg and let ci be the number of ones in ai:

Then m1 þ?þ mk ¼ 2n: The key observation for the proof is that ai can occur in at most 2n�ci

rows of Mg since gpINDn: Hence, mip2n�ci or, equivalently, cipn � log mi: We obtain an upper

bound on the number of ones in Mg by maximizing the function f :Rn-R with f ðx1;y;xnÞ ¼
Pk

i¼1 xiðn � log xiÞ for x1;y; xkAR subject to the constraints xiX0 for all i ¼ 1;y; k and x1 þ
?þ xk ¼ 2n: By the method of Lagrangian multipliers, it follows that the maximum is attained

for x1 ¼ ? ¼ xk ¼ 2n=k: We thus obtain the upper bound jg�1ð1Þjp2n � log k; which yields the
desired lower bound on log k: &

Finally, we briefly revisit the well-known standard method for proving lower bounds on the
OBDD size, using the formalism from [24]. This makes use of the following reducibility concept
from communication complexity theory (due to [3]).

Definition 10 (Rectangular reduction). Let Xf ;Yf and Xg;Yg be finite sets. Let f : Xf �
Yf-f0; 1g and g : Xg � Yg-f0; 1g be arbitrary functions. Then we call a pair ðj1;j2Þ of

functions j1 : Xf -Xg and j2 : Yf -Yg a rectangular reduction from f to g if gðj1ðxÞ;j2ðyÞÞ ¼
f ðx; yÞ for all ðx; yÞAXf � Yf : If such a pair of functions exists for f and g; we say that f is

reducible to g.

We describe the proof method only for the special case of nondeterministic OBDDs that is
important for this paper.

Lemma 11. Let g be a boolean function defined on the variable set X ¼ fx1;y;xng and let p
be a permutation of f1;y; ng: W.l.o.g. (by renumbering) we may assume that p is the

identity. Suppose there is a boolean function f defined on inputs from X � Y ; where X and Y

are finite sets, and a pAf1;y; n � 1g such that f is reducible to g : f0; 1gp � f0; 1gn�p-f0; 1g:
Let G be a (general) nondeterministic p-OBDD for g that uses at most r nondeterministic
variables and has w accepting paths for each input accepted by g. Then JlogjGjnX
NA-B

r;w ð f Þ � r:

4. Tradeoff between OBDD size and nondeterminism

Now we are ready to present the main result of the paper. We consider the following function.

Definition 12. Let N ¼ 3k2m and m ¼ n þ Jlog nn: We define the function MINDk;n (‘‘masked

k-fold index function’’) on (disjoint) variable vectors si ¼ ðsi
1;y; si

kmÞ; ti ¼ ðti
1;y; ti

kmÞ; and ui ¼
ðui

1;y; ui
kmÞ; where iAf1;y; kg: The vectors si and ti are used as bit masks by which variables

from ui are selected. Let an input ððs1; t1; u1Þ;y; ðsk; tk; ukÞÞAf0; 1g3k2m be given. If one of the

vectors si does not contain exactly n ones, or one of the vectors ti does not contain exactly Jlog nn
ones, let MINDk;nððs1; t1; v1Þ;y; ðsk; tk; vkÞÞ ¼ 0: Otherwise, let pi;1o?opi;n be the positions of

the ones in si; and let qi;1o?oqi;Jlog nn be the positions of the ones in ti; where i ¼ 1;y; k; and

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 481

define

MINDk;nððs1; t1; u1Þ;y; ðsk; tk; ukÞÞ
¼ INDnððu1

p1;1
;y; u1

p1;n
Þ; ðu1

q1;1
;y; u1

q1;Jlog nn
ÞÞ

4?4INDnððuk
pk;1

;y; uk
pk;n

Þ; ðuk
qk;1

;y; uk
qk;Jlog nn

ÞÞ:

Theorem 13 (Main Result).

(1) The function MINDk;n can be represented by synchronous nondeterministic OBDDs using

kJlog nn nondeterministic variables in size Oðk2n3 log nÞ; but

(2) every synchronous nondeterministic OBDD representing the function MINDk;n and using at

most r nondeterministic variables has size 2Oðn�2
�r=kÞ:

Setting k ¼ n in the above theorem, we obtain the following separation result.

Corollary 14. Let N ¼ 3n2ðn þ Jlog nnÞ; which is the input length of MINDn;n:

(1) The function MINDn;n can be represented by synchronous nondeterministic OBDDs using

nJlog nn ¼ ð1=3Þ � ðN=3Þ1=3 log N � ð1 þ oð1ÞÞ nondeterministic variables in size OðN5=3 log NÞ;
but

(2) every synchronous nondeterministic OBDD representing MINDn;n with at most Oðlog NÞ
nondeterministic variables requires size 2OðN

1=3Þ: It still requires size 2OðN
e=3Þ if only ð1 � eÞ �

ð1=3Þ � ðN=3Þ1=3 log N nondeterministic variables may be used, where e40 is any constant.

Proof. We first express n and log n in terms of the input length. We have N ¼ 3n3 � ð1 þ dnÞ and

log N ¼ 3 log n � ð1 þ d0nÞ for some dn; d
0
n40 with dn; d

0
n-0 for n-N: Thus, n ¼ ðN=3Þ1=3 � ð1 þ

dnÞ�1=3 and log n ¼ ð1=3Þ � log N � ð1 þ d0nÞ
�1: Substituting k ¼ n; the upper bound in part (1) of

Theorem 13 becomes Oðk2n3 log nÞ ¼ Oðn5 log nÞ ¼ OðN5=3 log NÞ: If r ¼ Oðlog NÞ; and hence,

also r ¼ Oðlog nÞ; the lower bound in part (2) is of order 2OðnÞ ¼ 2OðN
1=3Þ: Finally, let rpð1 � eÞ �

ð1=3Þ � ðN=3Þ1=3 log N: Expressing N in terms of n; this implies rpð1 � eÞ � n log n � ð1 þ dnÞ1=3ð1 þ
d0nÞ: Thus, 2�r=k ¼ Oðn�1þeÞ and 2Oðn�2

�r=kÞ ¼ 2Oðn
eÞ ¼ 2OðN

e=3Þ: &

Corollary 15. The function MINDn;n with input length N requires exponential size in N for (general)

nondeterministic OBDDs with Oðlog NÞ nondeterministic variables. Furthermore, it also requires
exponential size for (general) nondeterministic OBDDs with the restriction that no nondeterministic

variable may appear after a decision variable on a path from the source to a sink (i.e., all
nondeterministic variables have to be tested at the top of the graph).

Proof. Let G be a nondeterministic OBDD for MINDn;n with nondeterministic variables

y1;y; yr; where r ¼ Oðlog nÞ: In G we replace y1;y; yr with constants in all the different possible
ways, obtaining deterministic OBDDs G1;y;G2r : We construct a synchronous nondeterministic

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495482

OBDD G0 representing the same function as G by nondeterministically choosing between
G1;y;G2r using nondeterministic nodes at the top of the new graph. Since r ¼ Oðlog nÞ; jG0j is at
most polynomially larger than jGj: Hence, the first claim follows from the lower bound in
Corollary 14.

Now we consider the second claim. Let G be a nondeterministic OBDD for MINDn;n where no

nondeterministic variable is tested after a deterministic variable. The OBDD G has a part
consisting of nondeterministic nodes at the top by which one of the deterministic nodes of G is
chosen. We replace the nondeterministic nodes by a tree whose nodes are labeled by the minimal
possible number r of nondeterministic variables. This does not change the represented function
and can only decrease the size. We obviously have rpJlogjGjn: Now either rpð1 � eÞ � n log n

and we obtain an exponential lower bound by Theorem 13, or r4ð1 � eÞ � n log n and we get the

lower bound jGjX2r�1 ¼ nOðnÞ: &

In the remainder of the section, we prove Theorem 13. We start with the easier upper bound.

Proof of Theorem 13, part (1). The function MINDk;n is the conjunction of k copies of the

following function. The ‘‘masked index function’’ MINDn is defined on the variable vectors
s ¼ ðs1;y; skmÞ; t ¼ ðt1;y; tkmÞ; and u ¼ ðu1;y; ukmÞ; where m ¼ n þ Jlog nn; by

MINDnðs; t; uÞ ¼ INDnððup1
;y; upn

Þ; ðuq1
;y; uqJlog nnÞÞ

in the case that p1o?opn and q1o?oqJlog nn are the positions of ones in the s- and t-vector,

resp., and MINDnðs; t; uÞ ¼ 0 otherwise. The essence of the proof is to construct sub-OBDDs for
the k copies of MINDn in MINDk;n and to combine these sub-OBDDs afterwards by identifying

the 1-sink of the ith copy with the source of the ði þ 1Þth one, for i ¼ 1;y; k � 1:
Thus, we first construct a synchronous nondeterministic OBDD G for a single function

MINDn: We use the variable order described by

y1;y; yJlog nn; s1; t1; u1; s2; t2; u2;y; skm; tkm; ukm;

where y1;y; yJlog nn are the nondeterministic variables. With a tree of nondeterministic

nodes labeled by the y-variables at the top of G; a deterministic sub-OBDD Gd from G1;y;Gn

is chosen. The number dAf1;y; ng is interpreted as a guess of the address for the index function
INDn:

We describe the construction of Gd : While testing the variables in the chosen order, we store the
number of ones already seen in the s- and the t-vector, resp. We only need nodes for storing
numbers from f0;y; ng and f0;y;Jlog nng; resp., on each level of the OBDD, since the
function yields the output 0 for larger numbers of ones. Using this information, we can find the
variables up1

;y; upn
and uq1

;y; uqJlog nn for the evaluation of MINDn: We compare the real

address numðuq1
;y; uqJlog nnÞ þ 1 with the guessed address d and output the addressed bit upd

in

the positive case and 0 otherwise. During the computation, we only need to store the addressed bit
upd

if it is found before all address bits have been checked.

Altogether, Gd has size Oðkðn þ log nÞ � n � log nÞ: Thus, the overall size of G is Oðkn3 log nÞ: The
OBDD for MINDk;n contains k copies of OBDDs of this type and therefore has size

Oðk2n3 log nÞ: &

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 483

We now turn to the proof of the lower bound. A straightforward idea is to apply the
standard proof method from Lemma 11. The ‘‘k-fold index function’’ (without bit masks)
defined in the following appears to be a suitable candidate for a rectangular reduction to
MINDk;n:

Definition 16. For inputs xi ¼ ðxi
1;y; xi

nÞAf0; 1gn and yi ¼ ðyi
1;y; yi

Jlog nnÞAf0; 1gJlog nn; where

i ¼ 1;y; k; let

INDk;nððx1;y; xkÞ; ðy1;y; ykÞÞ ¼ INDnðx1; y1Þ4?4INDnðxk; ykÞ:

We would like to consider nondeterministic one-way protocols for INDk;n according to

the partition of the variables where Alice has ðx1;y; xkÞ and Bob ðy1;y; ykÞ: It has been
shown in [10] that in this case, the players essentially cannot do better than evaluate all k copies
of INDn independently which requires kJlog nn nondeterministic bits. It is easy to see
that a rectangular reduction from INDk;n (with this partition of the variables) to MINDk;n

is possible if the variables of different blocks ðsi; ti; uiÞ are ‘‘completely interleaved’’ in the

given variable order of the nondeterministic OBDD. Let xi
1;y;xi

3km be the list of variables

in si; ti; ui in arbitrary order. Then an ‘‘interleaved order’’ is described by x1
1; x2

1;y; xk
1 ;

x1
2;x

2
2;y;xk

2;y;x1
3km; x2

3km;y; xk
3km: But there is no reason why we should expect that the

nondeterministic OBDD uses such an order. Intuitively, an order of the type defined below is
more suitable.

Definition 17. For i ¼ 1;y; k; let xi ¼ ðxi
1;y; xi

nÞ: An order p of the variables xi
j; 1pipk and

1pjpn; is called blockwise with respect to x1;y; xk if there are permutations ðb1;y; bkÞ of
f1;y; kg and ð ji;1;y; ji;nÞ of f1;y; ng for i ¼ 1;y; k such that p is the order described by

xb1

j1;1
;y; xb1

j1;n
; xb2

j2;1
;y; xb2

j2;n
;y;xbk

jk;1
;y; xbk

jk;n
:

The xi are called blocks in this context. For the ease of notation, we may assume that the blocks

are simply ordered according to x1;y; xk in p and that the variables within each block are

ordered as in the definition of xi:

For MINDk;n we consider orders which are blockwise with respect to ðsi; ti; uiÞ if we ignore the

nondeterministic variables. Such an order is used in the proof of the upper bound of MINDk;n:
We may even believe that this is ‘‘the best choice.’’ Our first idea for reducing INDk;n to MINDk;n

does no longer work for blockwise orders. This is because the standard proof method only allows
to bound the number of nodes on a single ‘‘cut’’ through the OBDD, and we do not know how we
can avoid ‘‘bad cuts’’ with only few nodes in the case of a blockwise order. Hence, we have to find
a new way to deal with this kind of orders.

In general, we even do not have a blockwise order, but an arbitrary one. We have defined the
function MINDk;n in such a way that we can select a suitable suborder by fixing the bit mask

vectors. Although we cannot select an interleaved order as a suborder, we can at least turn an
arbitrary order into a blockwise one.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495484

Lemma 18. Leg G be a synchronous nondeterministic OBDD for MINDk;n: Let p be the suborder of

the decision variables in G. Then there are assignments to the s- and t-variables of MINDk;n such that

by applying these assignments to G one obtains a synchronous nondeterministic OBDD G0 for the
function INDk;n that is no larger than G, uses at most as many nondeterministic variables as G, and

where the decision variables are ordered according to pb described by

x1
1;y;x1

n; y1
1;y; y1

Jlog nn;x
2
1;y;x2

n; y2
1;y; y2

Jlog nn;y;xk
1;y;xk

n; yk
1;y; yk

Jlog nn

after renaming the selected u-variables.

Proof. Let L be the list of the u-variables of MINDk;n ordered according to p: Only by deleting

variables, we obtain a sublist of L where the variables appear in a blockwise order with respect to

the ui as blocks. This is done in steps t ¼ 1;y; k: Let Lt be the list of variables we are still working
with at the beginning of step t; and let mt be the minimum number of variables in all blocks which
have not been completely removed in the list Lt: We start with L1 ¼ L and m1 ¼ km: At the end,
the algorithm outputs the list of variables L0; which is initially empty.

In step t; let p be the smallest index in Lt such that the sublist of elements with indices

1;y; p contains exactly m ¼ n þ Jlog nn variables of a block ui: Let bt ¼ i and choose indices

jt;1;y; jt;m such that the variables ubt

jt;1
;y; ubt

jt;m
are under the first p variables of Lt: Append these

variables to the output list L0: Afterwards, delete the first p variables and all variables of the block

ubt from Lt to obtain Ltþ1:
It is easy to verify that mtXðk � t þ 1Þm for t ¼ 1;y; k; and hence, the above algorithm can

really be carried out sufficiently often. Let

ub1

j1;1
;y; ub1

j1;m
; ub2

j2;1
;y; ub2

j2;m
;y; ubk

jk;1
;y; ubk

jk;m

be the obtained sublist L0 of variables. For i ¼ 1;y; k; fix si such that it contains ones exactly at

the positions ji;1;y; ji;n; and fix ti such that it contains ones exactly at the positions

ji;nþ1;y; ji;nþJlog nn: It is a simple observation that, in general, assigning constants to variables

may only reduce the OBDD size and the number of variables, and the OBDD obtained by the
assignment (nondeterministically) represents the restricted function. &

Hence, we are left with the task of proving a lower bound on the size of synchronous
nondeterministic OBDDs with ‘‘few’’ nondeterministic variables for the function INDk;n and the

blockwise variable order pb on the decision variables. Essentially, our plan is again to decompose
the whole OBDD into sub-OBDDs which are responsible for the evaluation of the single copies of
INDn:

It is easy to see that Jlog nn nondeterministic variables are already sufficient to evaluate a
single copy of INDn in polynomial size by an OBDD with an arbitrary variable order. Hence,
there will always be some copies which have only polynomially many nodes in a nondeterministic
OBDD of minimal size representing MINDk;n: The difficulty for the proof is that we have to

estimate the amount of nondeterminism ‘‘used up’’ for one copy of INDn: This cannot be done by
the known proof methods (it is easy to see that it does not work to simply count the number of
nondeterministic variables in each part). The following lemma solves this problem. It is crucial for
the proof of this lemma that we consider synchronous nondeterministic OBDDs.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 485

Lemma 19 (Nondeterministic Partition Lemma). Let fn be a boolean function on n variables and let

fk;n be the boolean function defined on the variable vectors x1;y; xk consisting of n variables each by

fk;nðx1;y;xkÞ ¼ fnðx1Þ4?4fnðxkÞ: Let pb be a blockwise variable order with respect to x1;y; xk:
Let G be a synchronous nondeterministic OBDD for fk;n where the decision variables are ordered

according to pb and which uses r nondeterministic variables.
Then there are synchronous nondeterministic OBDDs G1 and G2 with the order pb on the decision

variables and numbers r1Af0;y; rg and wAf1;y; 2r1g such that:

(1) jG1jpjGj and jG2jpjGj;
(2) G1 represents fn; uses at most r1 nondeterministic variables, and there are at least w accepting

paths in G1 for each input in f �1
n ð1Þ;

(3) G2 represents fk�1;n and uses at most r � r1 þ Jlog wn nondeterministic variables.

Proof. Let G be as described in the lemma. Suppose that the order pb of the decision variables is

given by x1
1;y; x1

n;y; xk
1 ;y; xk

n : Let r1 be the number of nondeterministic variables tested before

x1
n (thus, r � r1 nondeterministic variables are tested after x1

n). Let y1 and y2 be vectors with the

nondeterministic variables tested before and after x1
n; resp.

For the construction of G1; we consider the set of nodes in G reachable by assignments to x1

and y1: We replace such a node with the 0-sink, if the 1-sink of G is not reachable from it by

assignments to x2;y;xk and y2; and with the 1-sink, otherwise. The resulting graph is called G1:
It can easily be verified that it represents fn: We define w as the minimum of the number of

accepting paths in G1 for an input in f �1
n ð1Þ: Thus G1 fulfills the requirements of the lemma.

The OBDD G2 is constructed as follows. Choose an assignment aAf �1
n ð1Þ to x1 such that G1 has

exactly w accepting paths for a: Let Ga be the nondeterministic OBDD on y1; x2;y; xk and y2

obtained from G by fixing the x1-variables according to a: The top of this graph consists of

nondeterministic nodes labeled by y1-variables. Call the nodes reached by assignments to y1 ‘‘cut
nodes.’’ W.l.o.g., we may assume that none of the cut nodes represents the 0-function. (Otherwise,
we remove the node, as well as all nodes used to reach it and the nodes only reachable from it.
This does not change the represented function.)

By the choice of a and the above assumption, there are at most w paths belonging to

assignments to y1 by which cut nodes are reached, hence, the number of cut nodes is also bounded

by w: Now we rearrange the top of the graph Ga consisting of the nodes labeled by y1-variables
such that only the minimal number of nondeterministic variables is used. Obviously, Jlog wn
nondeterministic variables are sufficient for this. Call the resulting graph G2: This is a
synchronous nondeterministic OBDD that obviously represents fk�1;n and uses at most

r � r1 þ Jlog wn nondeterministic variables. &

According to the plan outlined above, it remains to prove a lower bound for INDk;n and

blockwise variable orders.

Lemma 20. Let pb be a blockwise order on the variables of INDk;n with respect to the blocks ðxi; yiÞ;
where xi ¼ ðxi

1;y; xi
nÞ and yi ¼ ðyi

1;y; yi
Jlog nnÞ; such that all xi-variables appear before the

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495486

yi-variables for each i. Let G be a synchronous nondeterministic OBDD for INDk;n that has r

nondeterministic variables and whose decision variables are ordered according to pb: Then

JlogjGjn ¼ Oðn � 2�r=kÞ:

Proof. Let sk;rðnÞ be the minimal size of a synchronous nondeterministic OBDD for INDk;n with

at most r nondeterministic variables and the order pb for the decision variables. We claim that

Jlog sk;rðnÞnX21=k�2 � n � 2�r=k:

From this we obtain the lower bound in the lemma. We prove the above inequality by induction
on k; using the Partition Lemma for the induction step. The required lower bounds on the size of
sub-OBDDs will be derived by the standard lower bound method for OBDDs (Lemma 11).

Case k ¼ 1: By Lemma 9, NA-B
r ðINDnÞXn � 2�r�1 þ r: Lemma 11 yields Jlog s1;rðnÞnX2�1 �

n � 2�r:
Case k41: Suppose that the claim has been shown for sk�1;r0 ; for arbitrary r0: Let G be a

synchronous nondeterministic OBDD for INDk;n with r nondeterministic variables and order pb

on the decision variables.
We first apply the Partition Lemma to obtain synchronous nondeterministic OBDDs G1 and G2

with their decision variables ordered according to pb and numbers r1 and w with the following
properties:

* G1 represents INDn; uses at most r1 nondeterministic variables, and there are at least w
accepting paths for each input accepted by INDn;

* G2 represents INDk�1;n and uses at most r � r1 þ Jlog wn nondeterministic variables.

Furthermore, jG1jpjGj and jG2jpjGj: By Lemma 9, NA-B
r1;w

ðINDnÞXnw � 2�r1�1 þ r1: Applying

Lemma 11, we get a lower bound on jG1j: Together with the induction hypothesis we have

JlogjG1jnXnw � 2�r1�1 and

JlogjG2jnX21=ðk�1Þ�2 � n � 2�ðr�r1þJlog wnÞ=ðk�1Þ:

It follows that

Jlog sk;rðnÞnXmaxfnw � 2�r1�1; 21=ðk�1Þ�2 � n � 2�ðr�r1þlog wþ1Þ=ðk�1Þg;

where we have removed the ceiling using Jlog wnplog w þ 1: The two functions within the
maximum expression are monotonously increasing and decreasing in w; resp. Thus, the minimum
with respect to w is attained if

nw � 2�r1�1 ¼ 21=ðk�1Þ�2 � n � 2�ðr�r1þlog wþ1Þ=ðk�1Þ;

or equivalently,

w1þ1=ðk�1Þ ¼ 2�1 � 2�r=ðk�1Þ � 2r1ð1þ1=ðk�1ÞÞ:

Solving for w; we obtain

w ¼ 21=k�2 � 2�r=k � 2r1þ1:

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 487

By substituting this into the above estimate for Jlog sk;rðnÞn; we obtain the desired result,

Jlog sk;rðnÞnX21=k�2 � n � 2�r=k: &

Finally, we put all things together to complete the proof of the main theorem.

Proof of Theorem 13, part (2). Let G be a synchronous nondeterministic OBDD for MINDk;n

with r nondeterministic variables. By Lemma 18, we obtain a synchronous nondeterministic
OBDD G0 for INDk;n with jG0jpjGj; at most r nondeterministic variables and the blockwise order

pb on the decision variables as described in the above lemma. Applying the lemma, we get the
desired lower bound. &

5. Synchronous versus general nondeterministic OBDDs

In this section, we investigate the relationship between the restricted variant of nondeterministic
OBDDs with a variable order on all variables (called synchronous nondeterministic OBDDs) and
the general variant where only the decision variables have to be ordered. We first observe that the
two models are equivalent if the number of nondeterministic variables is not limited.

Theorem 21. Let G be a (general) nondeterministic OBDD that represents the boolean function f on

n variables and uses rðnÞ nondeterministic variables. Then there is a synchronous nondeterministic
OBDD G0 that is isomorphic to G apart from the labels at its nondeterministic nodes, also represents

f and uses r0ðnÞ ¼ ðn þ 1ÞrðnÞ nondeterministic variables.

Proof. Let x1;y; xn and y1;y; yrðnÞ be the decision and nondeterministic variables of G; resp.

W.l.o.g., assume that x1;y; xn is the order of the decision variables in G: In order to obtain the
synchronous nondeterministic OBDD G0; we replace y1;y; yrðnÞ with new nondeterministic

variables yi
j; where 0pipn and 1pjprðnÞ: The variable order for G0 is described by

y0
1;y; y0

rðnÞ; x1; y
1
1;y; y1

rðnÞ; x2; y
2
1;y; y2

rðnÞ;y;xn; yn
1;y; yn

rðnÞ:

We obtain G0 as follows. Our aim is to relabel the nondeterministic nodes on paths between

xi- and xiþ1-nodes by yi
1;y; yi

rðnÞ; but we have to take into account that not all xi-variables may be

tested on paths from the source to the sinks. The replacements are carried out bottom-up in G by
starting breadth-first traversals at all xi-nodes for i ¼ n; n � 1;y; 1: These traversals stop at nodes
that have already been considered or at the sinks. Finally, the nondeterministic variables on paths
starting at the source and leading to a node that has already been considered are replaced by

y0
1;y; y0

rðnÞ: &

The above construction leads to a considerable increase of the number of nondeterministic
variables used in the OBDD. It is an obvious question whether we can also obtain a synchronous
nondeterministic OBDD that is not much larger than the original graph and uses essentially the

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495488

same amount of nondeterminism. In the following, we answer this question in the negative sense.
We consider the following function.

Definition 22. Let k; c; nAN with kpc and let m ¼ n þ Jlog nn: For i ¼ 1;y; c; let bi ¼ ðsi; ti; uiÞ;
where si ¼ ðsi

1;y; si
kmÞ; ti ¼ ðti

1;y; ti
kmÞ; and ui ¼ ðui

1;y; ui
kmÞ are vectors of boolean variables.

Define the function fk;c;n on boolean variables a1;y; ac and the vectors b1;y; bc as follows. If

ða1;y; acÞ does not contain exactly k ones, then let fk;c;nðða1; b1Þ;y; ðac; bcÞÞ ¼ 0: Otherwise, let

i1o?oik be the positions of ones in ða1;y; acÞ and let fk;c;nðða1; b1Þ;y; ðac; bcÞÞ ¼
MINDk;nðbi1 ;y; bikÞ:

Theorem 23.

(1) The function fk;c;n has a (general) nondeterministic OBDD of polynomial size in the input length

with kJlog nn nondeterministic variables.
(2) Let e40 be any constant and suppose that c is divisible by k. Let G be a synchronous

nondeterministic OBDD that represents fk;c;n and uses at most ð1 � eÞcJlog nn nondeterministic

variables. Then there is a constant c40 such that JlogjGjnXminfðe=2Þk log n; cne=2g:

Proof. Upper bound, part (1): We use the variable order a1; b1;y; ac; b
c; where the order

within each bi ¼ ðsi; ti; uiÞ is the same as in the construction of the nondeterministic OBDDs for
MINDn in the upper bound for MINDk;n (proof of Theorem 13, part (1)). While testing the

variables in the chosen order, we evaluate k copies of the function MINDn defined on the

variables belonging to the bi with ai ¼ 1: This can be done in the same way as in the construction
for the proof of Theorem 13, we only need k sets of Jlog nn nondeterministic variables each that
are used at the appropriate places depending on the values of a1;y; ac: If a1;y; ac do not contain
exactly k ones, then the 0-sink is reached. Using the earlier results, it is obvious that the whole
construction can be done in polynomial size. The number of nondeterministic variables is
kJlog nn:

Lower bound, part (2): Our aim is to show that a synchronous nondeterministic OBDD for fk;c;n

essentially cannot do better than the obvious one that uses a separate set of Jlog nn
nondeterministic variables for each of the blocks b1;y; bc; since it is not known in advance
which of these blocks are used for the evaluation of MINDk;n:

Let G be a synchronous nondeterministic p-OBDD for fk;c;n that uses rpð1 � eÞcJlog nn
nondeterministic variables, where e40 is any constant. For i ¼ 1;y; c=k; let ciAf0; 1gc be the

assignment to ða1;y; acÞ such that the blocks bði�1Þkþ1;y; bik are used for the evaluation of
MINDk;n in fk;c;n if the a-variables are set to constants according to ci: Let Gi be the OBDD that is

obtained from G by the replacement of variables according to ci: Then Gi is a synchronous

nondeterministic p-OBDD for the function MINDk;n defined on the variables in bði�1Þkþ1;y; bik:

We apply Lemma 18 to fix the variables in the s- and t-vectors of bði�1Þkþ1;y; bik such that
we obtain a synchronous nondeterministic OBDD G0

i for INDk;n from Gi that has its

decision variables ordered blockwise with respect to the blocks uði�1Þkþ1;y; uik and is no larger
than Gi: The complete variable order pi of G0

i that we obtain by deleting the fixed variables from p
contains the same nondeterministic variables as p and the variables in uði�1Þkþ1;y; uik:

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 489

Let r0
i be the number of nondeterministic variables tested before the first u-variable according to

pi: As in the proof of Corollary 15, we may assume that only the minimal number of
nondeterministic variables needed to reach the first decision nodes in G0

i is used. This implies the

lower bound

JlogjG0
ijnXr0

i : ð1Þ

Let ri be the number of nondeterministic variables tested after the first u-variable and before
the last u-variable according to pi: The sets of nondeterministic variables between the first
and the last u-variable according to the variable orders pi are disjoint by definition. Furthermore,
each variable order pi is a suborder of p: Hence, r1 þ?þ rc=kpr: By averaging, there is at least

one i0 such that ri0pr=ðc=kÞ: We may assume that no nondeterministic variable is tested after
the last u-variable in G0

i0
; since nodes labeled by such variables can be replaced with the 0- or

1-sink. Thus, G0
i0

has at most r0
i0
þ r=ðc=kÞ nondeterministic variables altogether. By Lemma 20,

we obtain

JlogjG0
i0
jn ¼ Oðn � 2�ðr0

i0
þr=ðc=kÞÞ=kÞ ¼ Oðn � 2�r0

i0
=k�r=cÞ: ð2Þ

If r0
i0
4ðe=2ÞkJlog nn; then JlogjG0

i0
jn4ðe=2ÞkJlog nn by the lower bound (1). If

r0
i0
pðe=2ÞkJlog nn; then by the lower bound (2) and the fact that rpð1 � eÞcJlog nn due to

the hypothesis,

JlogjG0
i0
jn ¼ Oðn � 2�r0

i0
=k�r=cÞ ¼ Oðn � 2�ðe=2ÞJlog nn�ð1�eÞJlog nnÞ ¼ Oðne=2Þ:

Altogether,

JlogjGjnXJlogjGi0 jnXJlogjG0
i0
jnXminfðe=2ÞkJlog nn; cne=2g;

for some suitable constant c40; as desired. &

Corollary 24. For any constant d with 0odp1; let gN be the boolean function on N variables defined

by gN ¼ fk;c;n with k ¼ n; c ¼ nc; and c ¼ J3=d� 2n: Then gN has the following properties.

(1) The function gN can be represented by a (general) nondeterministic OBDD of polynomial size in

N with rðNÞ ¼ OðNd=3 log NÞ nondeterministic variables; but
(2) each synchronous nondeterministic OBDD that represents gN and has at most

ð1 � eÞðN=3Þ1�d
rðNÞ nondeterministic variables, e40 any constant, requires exponential size

in N:

Proof. The input length of gN is N ¼ 3kcm þ c: We have N ¼ 3ncþ2ð1 þ gnÞ and

log N ¼ ðc þ 2Þ log nð1 þ g0nÞ for some gn; g
0
n40 with gn; g

0
n-0 for n-N: Hence, n ¼

ðN=3Þ1=ðcþ2Þð1 þ gnÞ�1=ðcþ2Þ and log n ¼ ð1=ðc þ 2ÞÞ log Nð1 þ g0nÞ
�1: Furthermore, d=4o1=

ðc þ 2Þ ¼ 1=J3=dnpd=3 and ðc � 1Þ=ðc þ 2ÞX1 � d:
By the upper bound from Theorem 23, gN can be represented in polynomial size by a

nondeterministic OBDD using rðNÞ ¼ kJlog nn ¼ nJlog nn ¼ OðNd=3 log NÞ nondeterministic
variables. This proves part (1). Now let G be a synchronous nondeterministic OBDD for gN with

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495490

r0ðNÞpð1 � eÞðN=3Þ1�d
rðNÞ nondeterministic variables. Since 1 � dpðc � 1Þ=ðc þ 2Þ;

r0ðNÞpð1 � eÞðN=3Þðc�1Þ=ðcþ2Þ
rðNÞ

¼ ð1 � eÞnc�1ð1 þ gnÞðc�1Þ=ðcþ2Þ
rðNÞ

p ð1 � e=2ÞncJlog nn ¼ ð1 � e=2ÞcJlog nn

for sufficiently large n: Hence, the lower bound from Theorem 23 implies that JlogjGjn ¼
Oðne=4Þ ¼ OðNed=16Þ and thus part (2) follows. &

This shows that the construction in Theorem 21 cannot be improved significantly.

6. Results for one-way Turing machines

In this section, we apply the tradeoff between OBDD size and the number of nondeterministic
variables from Section 4 to derive a similar result for nonuniform as well as for uniform one-way
TMs.

Let 1L=Poly; 1ENL=Poly; 1BNL=Poly; and 1NL=Poly be the nonuniform analogs of the
classes 1L; 1ENL; 1BNL; and 1NL considered in the introduction. The new classes are defined by
using nonuniform TMs with polynomially bounded advice strings instead of uniform TMs. The
uniform classes are obviously contained in their nonuniform counterparts if we identify a

sequence boolean functions ð fnÞnAN with the language A ¼
S

nAN f �1
n ð1Þ: Analogously to the

uniform case, we obtain:

Proposition 25.

(1) 1L=PolyD1ENL=PolyD1BNL=PolyD1NL=Poly; and

(2) L=PolyDENL=PolyDBNL=PolyDNL=Poly:

Proof. Only the inclusions 1ENL=PolyD1BNL=Poly and ENL=PolyDBNL=Poly are nontrivial,
and these can be proven using the ideas for the uniform case due to Niepel [20]. To make the
paper self-contained, we revisit her construction for the one-way case, the two-way case is handled
analogously.

Suppose that M is a 1ENL-TM that uses space sðnÞ ¼ Yðlog nÞ for input length n: The TM M

can be decomposed into two sub-machines M1 and M2 that work as follows. Machine M1 is a
deterministic one-way TM with space bound sðnÞ that reads the input x and generates a word wðxÞ
of length sðjxjÞ on its work tape. Machine M2 is a nondeterministic TM that uses space at most n
for inputs of length n; reads wðxÞ and outputs 0 or 1:

We now construct a BNL-TM M 0 with space bound sðnÞ for input length n that simulates M:
The machine M 0 uses extra tracks wherever required and thus can store up to Oðlog nÞ additional
bits. On an input x; M 0 first guesses wðxÞ on its work tape. This can be done in the obvious way,
since the work tape of M 0 as well as the string wðxÞ have length sðjxjÞ: Then M 0 simulates M2 on
this word wðxÞ as input, for which it needs at most space wðxÞpsðjxjÞ due to the space restriction

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 491

of M2: Finally, M 0 simulates M1 to check whether wðxÞ has been correctly guessed. This can again
be done with space sðjxjÞ:

It is now easy to see that the whole simulation also works if both machines M1 and M2 have
access to an advice tape with the same contents. &

For the uniform case, it is an open question whether nondeterminism at the end of
the computation of a logspace TM helps anything, i.e., whether ENLaL and 1ENLa1L:
Somewhat surprisingly, it is trivial to answer these questions in the negative sense for the
nonuniform case:

Proposition 26. ENL=Poly ¼ L=Poly and 1ENL=Poly ¼ 1L=Poly:

Proof. This is most easily seen by taking polynomial-size nondeterministic BPs and nondetermi-
nistic OBDDs, resp., for representing the sequences of functions in the considered classes. The
claim follows by observing that the source of a subgraph of nondeterministic nodes at the end of a
BP can be replaced either with the 0- or with the 1-sink, depending on whether the 1-sink is
reachable from it. &

On the other hand, we can use the results from Section 4 for proving that one-way TMs with
nondeterminism at the beginning of the computation are really weaker than unrestricted
nondeterministic one-way TMs in the nonuniform setting:

Theorem 27. 1BNL=Polyk1NL=Poly:

Proof. We consider the sequence of functions ðMINDn;nÞnAN (this can be extended to a sequence

defined on arbitrary input lengths by adding dummy variables). Taking Proposition 6 from the
introduction into account, the upper bound follows from part (1) of Corollary 14 and the lower
bound from Corollary 15. &

Finally, we even have an analogous result for the uniform setting.

Theorem 28. 1BNLk1NL:

Proof. We consider the language of accepted inputs of the functions MINDn;n; nAN: To make

this precise, we regard each xAf0; 1g� of length jxj ¼ 3n2ðn þ Jlog nnÞ for some nAN as an

assignment to the variables of MINDn;n according to the variable order b1;y; bn; where bi ¼
ðsi

1; t
i
1; ui

1;y; si
nm; t

i
nm; u

i
nmÞ for i ¼ 1;y; n and m ¼ n þ Jlog nn; and define

A ¼ fxAf0; 1g� j (nAN : 3n2ðn þ Jlog nnÞ ¼ jxj4MINDn;nðxÞ ¼ 1g:

By Corollary 15, this language is not contained in the class 1BNL (since it is not even contained in
1BNL=Poly). Furthermore, the same ideas as in the proof of the upper bound part of Theorem 13
also yield a uniform one-way logspace TM for A: We only have to cope with the technical
problem that a one-way TM does not have access to its input length at the beginning.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495492

We construct a nondeterministic one-way TM M for A whose space bound sðNÞ; N the input
length, is the logarithm of the upper bound on the size of the OBDDs from Theorem 13, i.e.,
sðNÞ ¼ Jð5=3Þlog N þ cn for some constant c40: Using a counter that records the actual
position on the input tape, M can determine the input length after reading the whole input. At the

beginning of the computation for an input xAf0; 1g�; the machine uses the sðjxjÞ marked cells on

its work tape to nondeterministically guess a number nAf1;y; 2sðjxjÞg: If xAA; there is a such an n

with 3n2ðn þ Jlog nnÞ ¼ jxj; since each suitable n satisfies npjxj and we have jxjp2sðjxjÞ:
The machine M then carries out the same algorithm as in the proof of the upper bound of

Theorem 13 checking whether MINDn;nðxÞ ¼ 1: If M runs out of input bits during the algorithm

or it finds out that jxja3n2ðn þ JnnÞ at the end, the output is 0: Otherwise, M can output
MINDn;nðxÞ: Hence, AA1NL: &

It is obvious that 1L=Polyk1BNL=Poly and 1ENLk1BNL: As a separating language,

consider, e.g., A ¼ fx#y j x; yAf0; 1g�; xayg (the uniform string non-equality problem
mentioned in the introduction). This language is contained in 1BNL; but not in 1L=Poly ¼
1ENL=Poly: Altogether, the known relations among the classes for one-way TMs are now as
follows:

1L=Poly ¼ 1ENL=Polyk1BNL=Polyk1NL=Poly; and 1LD1ENLk1BNLk1NL:

The problem whether nondeterminism at the end really helps for uniform one-way TMs still
remains open (which is not surprising given the fact that it is equivalent to the LBA problem).

7. Conclusion

We have shown that the following restrictions may increase the size of nondeterministic

OBDDs for a sequence of functions fn:f0; 1gn-f0; 1g from a polynomial to an exponential
function in n:

* limiting the number of nondeterministic variables to Oðlog nÞ;
* requiring that all nondeterministic variables are tested at the top;
* requiring synchronous nondeterminism and allowing only an increase of the number of

nondeterministic variables by a factor of n1�d; d40 any constant.

On the other hand, any general nondeterministic OBDD can be made synchronous while
remaining polynomially large if we allow an increase of the nondeterministic variables by a factor
of n þ 1:

As a by-product, these results have also led to a deeper understanding of the structure of
nondeterministic OBDDs. Nevertheless, the subject seems rich and interesting enough to warrant
further study. For example, one may try to analyze the influence of the resource nondeterminism
for more general types of BPs. It is already a challenging task to try to prove a tradeoff between
the size of nondeterministic read-once BPs and the number of nondeterministic variables. In a
deterministic read-once BP, each variable may appear at most once on each path from the source
to one of the sinks. A nondeterministic read-once BP fulfills this restriction with respect to
decision as well as nondeterministic variables.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 493

Open Problem. Find a sequence of functions fn:f0; 1gn-f0; 1g such that fn has polynomial size
for unrestricted nondeterministic read-once BPs, but requires exponential size if only Oðlog nÞ
nondeterministic variables may be used.

One may again try the conjunction of several copies of a function that is easy for
nondeterministic read-once BPs, but a new approach is required for the proof of the respective
lower bound.

Acknowledgments

Thanks to Ingo Wegener for proofreading and improving the upper bound of Theorem 13 and
to Klaus-Jörn Lange for the pointer to the literature on one-way TMs and especially reference
[20]. I have further benefitted from discussions with Juraj Hromkovič, Detlef Sieling, and Ingo
Wegener. Finally, I would like to thank the two anonymous referees for their detailed and helpful
comments.

References

[1] F. Ablayev, Randomization and nondeterminism are incomparable for polynomial ordered binary decision

diagrams, in: Proceedings of 24th ICALP, Lecture Notes in Computer Science, Vol. 1256, Bologna, Italy, 1997,

pp. 195–202.

[2] C. Àlvarez, J. Dı́az, J. Torán, Complexity classes with complete problems between P and NP-C, in: Proceedings of

7th FCT, Szeged, Hungary, 1989, pp. 13–24.

[3] L. Babai, P. Frankl, J. Simon, Complexity classes in communication complexity theory, in: Proceedings of 27th

FOCS, Toronto, Ontario, Canada, 1986, pp. 337–347.

[4] R. Beigel, J. Goldsmith, Downward separation fails catastrophically for limited nondeterminism classes, in:

Proceedings of 9th Conference on Structure in Compl. Theory, Los Alamitos, California, 1994, pp. 134–138.

[5] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput. C-35 (8) (1986)

677–691.

[6] J. Dı́az, J. Torán, Classes of bounded nondeterminism, Math. Systems Theory 23 (1) (1990) 21–32.

[7] U. Feige, J. Kilian, On limited versus polynomial nondeterminism, Chicago J. Theoret. Comput. Sci. 1 (1997)

1–20.

[8] J. Hartmanis, S. Mahaney, Languages simultaneously complete for one-way and two-way log-tape automata,

SIAM J. Comput. 10 (2) (1981) 383–390.

[9] J. Hromkovič, Communication Complexity and Parallel Computing. EATCS Texts in Theoretical Computer

Science, Springer, Berlin, 1997.

[10] J. Hromkovič, M. Sauerhoff, Tradeoffs between nondeterminism and complexity for communication protocols

and branching programs, in: Proceedings of 17th STACS, Lecture Notes in Computer Science, Vol. 1770, Lille,

France, 2000, pp. 145–156.

[11] S. P. Jukna, Entropy of contact circuits and lower bounds on their complexity, Theoret. Comput. Sci. 57 (1988)

113–129.

[12] C.M.R. Kintala, Computations with a restricted number of nondeterministic steps, Ph.D. Thesis, Pennsylvania

State University, University Park, PA, 1977.

[13] C.M.R. Kintala, P.C. Fischer, Computations with a restricted number of nondeterministic steps, in: Proceedings of

9th STOC, Boulder, CO, 1977, pp. 178–185.

[14] H. Klauck, Lower bounds for computation with limited nondeterminism, in: Proceedings of 13th Conference on

Computational Complexity, Buffalo, NY, 1998, pp. 141–152.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495494

[15] M. Krause, Lower bounds for depth-restricted branching programs, Inform. Comput. 91 (1) (1991) 1–14.

[16] I. Kremer, N. Nisan, D. Ron, On randomized one-round communication complexity, Comput. Complexity 8 (1)

(1999) 21–49.

[17] E. Kushilevitz, N. Nisan, Communication Complexity, Cambridge University Press, Cambridge, 1997.

[18] C. Meinel, The power of polynomial size O-branching programs, in: Proceedings of 5th STACS, Lecture Notes in

Computer Science, Vol. 294, Bordeaux, France, 1988, pp. 81–90.

[19] I. Newman, Private vs. common random bits in communication complexity, Inform. Process. Lett. 39 (2) (1991)

67–71.

[20] I. Niepel, Logarithmisch platzbeschränkte Komplexitätsklassen, Master Thesis, Univ. Hamburg, 1987

(in German).

[21] C. Papadimitriou, M. Yannakakis, On limited nondeterminism and the complexity of the V-C dimension,

J. Comput. System Sci. 53 (2) (1996) 161–170.

[22] A.A. Razborov, Lower bounds for deterministic and nondeterministic branching programs, in Proceedings of 8th

FCT, Lecture Notes in Computer Science, Vol. 529, Gosen, Germany, 1991, pp. 47–60.

[23] M. Sauerhoff, Complexity Theoretical Results for Randomized Branching Programs, Ph.D. Thesis, Univ.

Dortmund. Shaker, Aachen, 1999.

[24] M. Sauerhoff, On the size of randomized OBDDs and read-once branching programs for k-stable functions,

Comput. Complexity 10 (2001) 155–178.

[25] I. Wegener, Branching Programs and Binary Decision Diagrams—Theory and Applications. Monographs on

Discrete and Applied Mathematics, SIAM, Philadelphia, PA, 2000.

M. Sauerhoff / Journal of Computer and System Sciences 66 (2003) 473–495 495

	Guess-and-verify versus unrestricted nondeterminism for OBDDs and one-way Turing machines
	Introduction and definitions
	Previous and new results
	Tools from communication complexity theory
	Rectangular reduction
	Tradeoff between OBDD size and nondeterminism
	Main Result
	Nondeterministic Partition Lemma
	Synchronous versus general nondeterministic OBDDs
	Results for one-way Turing machines
	Conclusion
	Acknowledgements
	References

