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Abstract

It is well known that a nondeterministic Turing machine can be simulated in polynomial time by
a so-called guess-and-verify machine. It is an open question whether an analogous simulation exists
in the context of space-bounded computation. In this paper, a negative answer to this question is
given for ordered binary decision diagrams (OBDDs) and one-way Turing machines. If it is required
that all nondeterministic guesses occur at the beginning of the computation, this can blow up the
space complexity exponentially in the input length for these models. This is a consequence of the
following main result of the paper. There is a sequence of boolean functions f,: {0,1}"—{0,1} such
that f, has nondeterministic OBDDs of polynomial size that use at most (1/3) - (11/3)1/3 logn- (1+o0(1))
nondeterministic guesses for each computation, but f, already requires exponential size if only at most
(I—¢)-(1/3)- (n/3)1/3 logn nondeterministic guesses may be used, where £¢>0 is an arbitrarily small

constant.
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1. Introduction and definitions

So far, there are only few models of computation for which it has been possible to analyze the
power of nondeterminism and randomness. Apart from the obvious question whether or not
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nondeterminism or randomization helps at all to decrease the complexity of problems, we may
also be interested in the following, more sophisticated questions:

e How much nondeterminism or randomness is required to exploit the full power of the
respective model of computation? Is there a general upper bound on the amount of these
resources which we can make use of?

e How does the complexity of concrete problems depend on the amount of available
nondeterminism or randomness?

For Turing machines, we even do not know whether nondeterminism or randomness helps
at all to solve more problems in polynomial time, and we seem to be far away from
answers to questions of the above type. On the other hand, nondeterminism and randomness
are well understood, e.g., in the context of two-party communication complexity. It is a
challenging task to fill the gap in our knowledge between the latter model and the more
“complicated’ ones.

In this paper, we consider space-bounded models of computation in the nonuniform as well as
the uniform setting. Besides boolean circuits and formulae, branching programs are one of the
standard nonuniform models of computation.

Definition 1.

® A (deterministic) branching program (BP) on the set of input variables X = {x1,...,x,} is a
directed acyclic graph with one source and two sinks. The sinks are labeled by 0 and 1 and the
interior nodes are labeled by variables from X. Interior nodes have two outgoing edges also
labeled by 0 and 1, resp. This graph represents a boolean function f: {0,1}" —{0,1} on X as
follows. In order to evaluate f for a given assignment a = (ay, ...,a,)€{0,1}" to the input
variables, one follows a path starting at the source. At an interior node labeled by x;, the path
continues with the edge labeled by «; (this is called a zest of the variable x;). The output for a is
the label of the sink reached in this way.

® A nondeterministic branching program is syntactically a deterministic branching program on
two disjoint sets of variables X and Y = {yy, ..., y.}. The variables from these sets are called
decision variables and nondeterministic variables, resp. Nodes labeled by the two types of
variables are called decision nodes and nondeterministic nodes, resp. On each path from the
source to one of the sinks, each nondeterministic variable is allowed to appear at most once. A
nondeterministic branching program computes the output 1 on an assignment « to the variables
in X iff there is an assignment b to the nondeterministic variables such that the 1-sink is reached
for the path belonging to the complete assignment consisting of ¢ and . Such a path to the 1-
sink is called an accepting path.

e The size of a deterministic or nondeterministic branching program G, denoted by |G|, is the
number of nodes in G. The (nondeterministic) branching program size of fis the minimum size of
a deterministic (nondeterministic) branching program representing f.

The size of nondeterministic BPs as defined above is polynomially related to that according to the
well-known alternative definition using unlabeled nondeterministic nodes and assuming that
the successor of such a node is guessed nondeterministically [18], as well as to the size of
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switching-and-rectifier networks [22]. A natural measure for the amount of nondeterminism
consumed by a nondeterministic BP is obtained as follows.

Definition 2. The (worst-case) number of nondeterministic guesses of a nondeterministic BP G is
defined as the maximal number of nondeterministic nodes on a path from the source to one of the
sinks.

Observe that the minimal number of nondeterministic variables required to label all
nondeterministic nodes in a BP such that the read-once property for these variables is satisfied
is identical to the maximal number of nondeterministic guesses on a path from the source to one
of the sinks. Hence, the number of nondeterministic variables is also a measure for the amount of
nondeterminism used by the BP.

For a history of results on BPs, we refer to the monograph [25] of Wegener. We only mention
that a tight connection between the complexity theory of BPs and that of Turing machines is
established by the well-known fact that the logarithm of the size complexity of BPs is essentially
equal to the space complexity for the nonuniform (advice taking) variant of Turing machines.
This is true for the deterministic as well as for the nondeterministic models.

Proving superpolynomial lower bounds on the size of BPs for explicitly defined boolean
functions is a fundamental open problem, even in the deterministic case. Nevertheless, several
interesting restricted types of BPs could be analyzed quite successfully, and for some of these
models even exponential lower bounds could be proven. The goal in complexity theory is to
provide proof methods for more and more general types of BPs, and on the other hand, to extend
these methods also to the nondeterministic or randomized case.

Here we deal with ordered binary decision diagrams (OBDDs) that are one of the restricted
types of BPs whose structure is especially well understood in the deterministic case.

Definition 3. Let 7 be a permutation of {1, ...,n}. An-OBDD on X = {xy, ..., x,} is a BP with the
restriction that the order of variables on each path from the source to one of the sinks is consistent
with 7, i.e., the list of these variables is a sublist of X1, ..., X(,). We call a graph an OBDD if it is
a 1-OBDD for some permutation 7. The permutation = is called the variable order of the OBDD.

OBDDs have been invented as a data structure for the representation of boolean functions and
have proven to be very useful in various fields of application. For many applications it is crucial
that one can work with OBDDs of small size for the functions that have to be represented. Hence,
lower and upper bounds on the size of OBDDs are also of practical relevance. There are two
nondeterministic variants of the OBDD model that we consider in this paper.

Definition 4. Let G be a nondeterministic BP on variables from XU Y, where Y = {yi, ..., »}
contains the nondeterministic variables. Let = be a permutation of {I,...,n}. We call G a
nondeterministic n-OBDD if the order of the X-variables on all paths from the source to one of the
sinks in G is consistent with n. If there is a permutation 7’ of {l,...,n+r} such that G is
syntactically a 7’-OBDD on XU Y (according to Definition 3), then we call G a synchronous
nondeterministic ©'-OBDD.
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We only remark that there are also nondeterministic variants of OBDDs that have
been proposed for practical use. Since we want to study OBDDs as a model of computation,
it is important that nondeterminism may be used in the model in the same way as by
Turing machines. We consider the following variants of the standard Turing machine
(TM). In this paper, all TMs are equipped with a read-only input tape and a single
work tape.

Definition 5.

® A nonuniform Turing machine (also called advice-taking Turing machine) is a TM with
an additional read-only tape, called advice tape. On input x, this tape is automatically
loaded with an advice string a(|x|)€{0,1}", where a:N—{0,1}" is an arbitrary function.
The space used for input x is the sum of the space required on the work tape and [ log|a(|x|)| ].
A nonuniform Turing machine computes a sequence of functions f,:{0,1}"—>{0,1}
for neN.

o A one-way Turing machine moves its input head to the right after reading a cell on the input
tape. The input is terminated by a special end marker.

e ForneN, let m, be a permutation of {1, ...,n}. A Turing machine with input orders (,),y is a
one-way TM that, prior to its computation, permutes an input string of length n on its input
tape according to the order x, without resource consumption. An ordered Turing machine is a
TM that works as described for some sequence of input orders.

A one-way or ordered TM with space bound s(n), n the input length, has a work tape of length
s(n) that is delimited by start and end markers.

Nondeterministic variants of the above models are defined by allowing transitions to two
successor configurations, where such a transition does not depend on the symbol under the input
head and does not move this head.

Observe that one-way TMs are special ordered TMs. Nondeterministic OBDDs and the
nonuniform variant of nondeterministic ordered TMs are closely related. We obtain the following
simulation result, which is proven analogously to the relationship between BPs and unrestricted
nonuniform TMs (see, e.g., [25]).

Proposition 6.

(1) Let (Gy), . be a sequence of nondeterministic OBDDs with variable orders (m,), .y, size s(n) =
Q(n), and r(n) nondeterministic variables such that each G, represents a function
Jn:{0,1}Y">{0,1}. Then there is a nonuniform nondeterministic TM with input orders
(7). that computes the sequence of functions ( f,),cn. runs in space O(log s(n)), and takes at
most r(n) nondeterministic steps during each computation.

(2) Let a nonuniform nondeterministic TM with input orders (m,), .y be given that runs in space
s(n) = Q(logn), takes at most r(n) nondeterministic steps during each computation, and
computes the sequence of functions (fy),cn- Then there is a sequence of nondeterministic
OBDDs (G,), .y With variable orders (m,), ., such that G, represents f, and has size 2°¢") and
at most r(n) nondeterministic variables.
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This proposition justifies the definition of nondeterministic OBDDs and allows to transfer
complexity results for OBDDs to ordered TMs and vice versa.

2. Previous and new results

Previous results for branching programs. Several exponential lower bounds on the size of
deterministic, nondeterministic, and randomized variants of OBDDs have been proven by
exploiting corresponding results on one-way communication complexity [1,5,11,15,23,24]. In this
situation where the standard problem of proving exponential lower bounds on the size of OBDDs
can be considered solved, we can dare to tackle the more challenging questions concerning the
resources nondeterminism and randomness mentioned at the beginning of the introduction.

The dependence of the OBDD size on the resource randomness has been dealt with to some
extent by the author [23]. Analogous to a well-known result of Newman [19] for randomized
communication complexity, it could be shown that a logarithmic number of random bits is always
sufficient and for some functions also necessary to exploit the full power of randomness for
OBDD:s.

What do we know about the resource nondeterminism? In the context of communication
complexity theory, Hromkovi¢ and Schnitger [9] have proven that, contrary to the randomized
case, imposing a logarithmic bound on the number of nondeterministic bits restricts the
computational power of the model. An asymptotically exact tradeoff between one-way
communication complexity and the number of nondeterministic bits has been proven by
Hromkovi¢ and the author [10]. Klauck [14] has established a round hierarchy in the case where
the available amount of nondeterminism is limited. This is contrary to the situation for unlimited
nondeterminism, where each nondeterministic protocol can be simulated by a nondeterministic
one-way protocol.

These results lead to the conjecture that there should be sequences of functions that have
nondeterministic OBDDs of polynomial size, but that require exponential size if the amount of
nondeterminism, measured in the number of nondeterministic variables, is logarithmically
bounded in the input length. But although lower bounds on the size of nondeterministic OBDDs
can immediately be obtained by using the results on one-way communication complexity, the
upper bounds do not carry over. Proving a tradeoff between size and nondeterminism turns out to
be a difficult task even for OBDDs. A first result of this kind has been presented in [10]. The
sequence of functions considered there can be represented by (unrestricted) nondeterministic
OBDD:s of size (n/log n)°"°¢" in the input length n, while nondeterministic OBDDs with O(log n)
nondeterministic variables require size 2" . So far, it has been open to obtain a similar result with
a polynomial upper bound for unrestricted nondeterministic OBDDs.

Previous results for Turing machines. The dependence of complexity on the available amount of
randomness or nondeterminism has also been studied for some time in the uniform setting. In the
absence of sufficiently strong lower bound methods for the standard model of polynomial-time
TMs, one has resorted to prove relativized separations or collapses of complexity classes,
completeness results, or results under yet unproven conjectures. Of the first type is the seminal
work of Kintala and Fischer [12,13] who have introduced complexity classes between P and NP
defined in terms of nondeterministic polynomial-time TMs using limited amounts of
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nondeterminism. Several subsequent papers have continued this line of research later on, see, e.g.,
[2,4,6,7,21].

Here we are concerned with space as the primary resource and look at subclasses of L and NL,
the classes of languages recognizable by deterministic and nondeterministic TMs, resp., with
logarithmic space bound (“‘logspace” for short in the following). Because of Proposition 6, we are
interested in one-way logspace TMs that have been studied to some extent due to their
relationship to some important open problems in formal language theory and complexity theory.
Hartmanis and Mahaney [8] have investigated the classes 1L and 1NL of languages recognizable
by one-way logspace TMs and nondeterministic one-way logspace TMs, resp. They have shown
that 1IL#1INL (by looking at a uniform variant of the string non-equality problem from
communication complexity theory) and have defined a natural complete problem for INL under
one-way logspace reductions. Furthermore, they have proven that INL<L iff L = NL. Finally,
they have introduced the class ENL of all languages recognizable by nondeterministic TMs that
may use nondeterministic moves only after reading the complete input (‘‘nondeterminism at the
end”) and have shown that NL has unary complete languages (with respect to logspace
reductions) iff ENL = NL. (In fact, Hartmanis and Mahaney used the name “RNL” for the class
called “ENL” here.)

The famous open “LBA problem™ is the question of whether the context-sensitive languages
coincide with those languages recognizable by deterministic linear-bounded automata. Niepel [20]
has introduced the one-way variant 1ENL of the class ENL and has exploited the ideas of
Hartmanis and Mahaney to show that the statements 1ENL = 1L and ENL =L are both
equivalent to an affirmative answer to the LBA problem.

It is well known that there is a polynomial-time simulation of arbitrary nondeterministic TMs
by so-called guess-and-verify machines that guess all nondeterministic bits in advance and store
them in a special location. It is no longer obvious how this can be done in the context of space-
bounded computation. Niepel [20] has investigated the classes BNL and 1BNL of languages
recognizable by nondeterministic logspace TMs and nondeterministic one-way logspace TMs,
resp., that only use nondeterministic moves before reading their input (‘“‘nondeterminism at the
beginning”), i.e., they work in the guess-and-verify mode. She has proven that IENL < 1BNL and
ENL<=BNL. Altogether, this gives us the following relations among the classes for logspace TMs
mentioned so far:

IL1ENL<IBNL<INL, and L<ENL<BNL<NL.

It is easy to see that 1L < 1BNL (consider again the string non-equality problem). Hence, at least
one of the first two inclusions in the first chain of inclusions is proper, but to the best of our
knowledge, this has not yet been proven for either of them. It has also been open so far whether
IBNL#1INL, i.e., whether forcing the machines to work in the guess-and-verify mode really
restricts the power of nondeterministic one-way TM:s.

Summary of new results. We present a sequence of functions that have synchronous
nondeterministic OBDDs of polynomial size with (1/3) - (n/3)1/ 3logn- (1 + o(1)) nondetermi-
nistic variables (where 7 is the input length), but that require exponential size in the synchronous
model if only at most (1 — &) - (1/3) - (n/3)"* log n nondeterministic variables may be used, where
£¢>01is an arbitrarily small constant. As a corollary, we obtain that even general nondeterministic
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OBDDs that may use only at most O(log n) nondeterministic variables have exponential size for
the considered functions. Furthermore, this function also shows that requiring all nondetermi-
nistic variables to be tested at the top of a general nondeterministic OBDD may blow up the size
exponentially.

For the proof of the tradeoff result, it is important to consider synchronous nondeterministic
OBDDs. But it is not obvious whether the general type of nondeterminism is really more
powerful. We show that the OBDD sizes for the two models are polynomially related if the
number of nondeterministic variables is not limited, but that the size for the synchronous model
may be exponentially larger if such a limit exists.

Finally, we apply our first result to derive similar results for one-way TMs. We show that
requiring nondeterministic one-way TMs to work in the guess-and-verify mode may increase the
space complexity from logarithmic in the input length for the general model to linear for the
restricted model. In particular, we obtain that IBNL<& INL.

Overview on the rest of the paper. In Section 3, we present some tools from communication
complexity theory needed for the proofs of our lower bounds. In Section 4, the tradeoff between
OBDD size and the number of nondeterministic variables is proven. Section 5 deals with the
relationship between general and synchronous nondeterministic OBDDs. Section 6 contains the
results for one-way TMs. We conclude the paper with a summary and an open problem.

3. Tools from communication complexity theory

In this section, we define deterministic and nondeterministic communication protocols and state
two lemmas required for the proof of the main theorem of the paper. For a thorough introduction
to communication complexity theory, we refer to the monographs of Hromkovi¢ [9] and
Kushilevitz and Nisan [17].

A deterministic two-party communication protocol is an algorithm by which two players, called
Alice and Bob, cooperatively evaluate a function f': X x Y — {0, 1}, where X and Y are finite sets.
Alice obtains an input xe X and Bob an input ye Y. The players determine f(x,y) by sending
messages to each other. Each player is assumed to have unlimited (but deterministic)
computational power to compute her (his) messages. The (deterministic) communication
complexity of fis the minimal number of bits exchanged by a communication protocol by which
Alice and Bob compute f(x,y) for each input (x,y)e X x Y.

Here we only consider protocols with one round of communication, so-called one-way
communication protocols. In a one-way communication protocol, Alice sends a single message to
Bob who has to output the result of the protocol, which may depend on his input and the message
he has obtained. We use DA~B(f) to denote the (deterministic) one-way communication
complexity of f, by which we mean the minimum number of bits sent by Alice in a deterministic
one-way protocol for f. Furthermore, we also consider nondeterministic one-way protocols.

Definition 7. A nondeterministic one-way communication protocol for a function f: X x Y- {0, 1}
is a collection of deterministic one-way protocols Py, ..., Py, where d = 2", with f(x,y) =1 iff
there is an ie{l,...,d} such that P;(x,y) =1. The number r is called the number of
nondeterministic bits of P. Let the number of witnesses of P for an input (x,y) be accp(x,y) =
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|{i | Pi(x,y) = 1}|. Furthermore, let the (private) nondeterministic complexity of P be N(P) =
r + max; <;<q D(P;), where D(P;) denotes the deterministic complexity of P;. The nondeterministic
one-way complexity of f, NA~B(f), is the minimum of N(P) over all protocols P as described
above. By the nondeterministic one-way complexity of f with restriction to r nondeterministic bits
and w witnesses for accepted inputs, N,ff;;’ B(f), we mean the minimum complexity of a
nondeterministic protocol P for f that uses r nondeterministic bits and that satisfies accp(x,y) =>w
for all (x,y)ef~'(1). Finally, we define N*~B(f) = NA7B(f).

The following well-known function plays a central role in this paper.

Definition 8. For an arbitrary boolean vector a = (ay, ...,ax), let num(a) = Ef;l a; 2!, Define
the function IND, on inputs x = (x1, ..., x,) and y = (y1, ..., ¥[1ogn]) DY IND,(X, ) = Xpum(y)+1 if
num(y)€e{0,...,n — 1} and IND,(x,y) = 0 otherwise.

This function is referred to as “index” or “‘pointer function” in the literature. We may regard x
as a memory contents and num(y) + 1 as an address in this memory. Kremer et al. [16] have
shown that IND, has complexity Q(n) for randomized one-way communication protocols with
bounded error (see [9,17] for a definition of randomized communication protocols). It is easy to
see that essentially log n bits of communication are sufficient and also necessary to compute IND,,
by nondeterministic one-way protocols. Here we will require the following more precise lower
bound on the nondeterministic one-way communication complexity of IND,, that also takes the
number of nondeterministic bits and the number of witnesses for accepted inputs into account:

Lemma 9. NA>B(IND,)>nw - 27" 4.

This is a special case of a result derived by Hromkovi¢ and the author [10] for a more
complicated function. Since this result is an important ingredient in the proof of our main result,
we provide a proof for it.

Proof. Let P be a nondeterministic one-way protocol for IND,, with r nondeterministic bits and
accp(x,y)=w for all (x,y)eIND,!(1). Hence, there are d = 2" deterministic one-way protocols
Py, ..., P; that compute f as described in Definition 7. For i =1, ...,d, let g; be the function
computed by P;. Obviously, g; <IND,.. Observe that, by averaging, there is an index ipe {1, ..., d}
such that |g;!'(1)|=w[IND,"'(1)|/d. It is easy to see that [IND,'(1)]=n-2""'. Hence,
g5 (1)|=nw -2, We prove that for any function g with g<IND,, D*~8(g)>|g7"(1)|/2".
From this, the lemma follows.

We consider the communication matrix M, of g<IND,, which is the 2" x 2lognT_matrix with
0- and 1-entries defined by M,(x,y) = g(x,y) for xe {0, 1}" and ye{0, 1311 1t is a well-known
fact that DA~8(g) = [logk ], where k is the number of different rows of M,,.

Hence, it is sufficient to prove that logk>|g~'(1)|/2". Let ai,...,a;€{0,1} be the
different rows of M. By the definition of IND,,, only the first » entries of each a; can be nonzero.

2[log n
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Let m; be the number of occurrences of a; in the matrix M, and let /; be the number of ones in a;.
Then m; + --- + my = 2". The key observation for the proof is that a; can occur in at most 2"~/
rows of M, since g<IND,. Hence, m; <2"’i or, equivalently, /; <n — log m;. We obtain an upper
bound on the number of ones in M, by maximizing the function f': R" - R with f(xy, ..., x,) =
Zf;l xi(n —log x;) for xi, ..., xx € R subject to the constraints x;>0 for all i =1, ...,k and x| +
-+ + x; = 2". By the method of Lagrangian multipliers, it follows that the maximum is attained
for x; = - = x; = 2"/k. We thus obtain the upper bound |g~!(1)|<2" - log k, which yields the
desired lower bound on logk. [

Finally, we briefly revisit the well-known standard method for proving lower bounds on the
OBDD size, using the formalism from [24]. This makes use of the following reducibility concept
from communication complexity theory (due to [3]).

Definition 10 (Rectangular reduction). Let Xy, Y, and X, Y, be finite sets. Let f: Xy X
Yr—{0,1} and g: X, x Y,—{0,1} be arbitrary functions. Then we call a pair (¢,¢p,) of
functions ¢, : Xy —> X, and ¢, : Yy — Y, a rectangular reduction from f to g if g(¢,(x), 2(y)) =
f(x,y) for all (x,y)eX; x Y. If such a pair of functions exists for f* and g, we say that f is
reducible to g.

We describe the proof method only for the special case of nondeterministic OBDDs that is
important for this paper.

Lemma 11. Let g be a boolean function defined on the variable set X = {xi,...,x,} and let ©
be a permutation of {l,....n}. W.lo.g. (by renumbering) we may assume that m is the
identity. Suppose there is a boolean function f defined on inputs from X x Y, where X and Y
are finite sets, and a pe{l,...,n— 1} such that f is reducible to g:{0,1} x {0,1}"7—-{0,1}.
Let G be a (general) nondeterministic n-OBDD for g that uses at most r nondeterministic
variables and has w accepting paths for each input accepted by g. Then |[log|G|]|=

NAZB(f) —r.

rw

4. Tradeoff between OBDD size and nondeterminism

Now we are ready to present the main result of the paper. We consider the following function.

Definition 12. Let N = 3k*m and m = n + [logn]. We define the function MINDy, (“masked
k-fold index function™) on (disjoint) variable vectors s' = (s}, ..., s},.), &' = (¢}, ..., #,,), and v’ =
(ul,...,u, ), where ie{l,...,k}. The vectors s' and ¢ are used as bit masks by which variables
from u' are selected. Let an input ((s', 71, u'), ..., (s, &, 1)) € {0, 1}°*" be given. If one of the
vectors s' does not contain exactly n ones, or one of the vectors # does not contain exactly [ logn ]
ones, let MINDy ,((s', ', 0"), ..., (s5, 5, %)) = 0. Otherwise, let p;; < --- <p;, be the positions of
the ones in s', and let ¢;; < -+ <{i1ogn] b€ the positions of the ones in f,wherei=1,...,k, and
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define
MIND;{_’,I((SI7 b, (R uE))
1 1 1 1
- IND"((upl,l’ ""upl,n>’ (uljl,l’ ""uql.[log n]))
- AIND, (14 b ), (i )
A A n upk‘” “.’upk.n ’ qu.l7 “.’uqk.[lugn] ’

Theorem 13 (Main Result).

(1) The function MINDy , can be represented by synchronous nondeterministic OBDDs using
k[ logn| nondeterministic variables in size O(k*n’ logn); but

(2) every synchronous nondeterministic OBDD representing the function MINDy , and using at

o« e . . . N—r/k
most r nondeterministic variables has size 222"

Setting k = n in the above theorem, we obtain the following separation result.

Corollary 14. Let N = 3n*(n+ [logn), which is the input length of MIND,,,.

(1) The function MIND,,, can be represented by synchronous nondeterministic OBDDs using
n[logn] = (1/3) - (N/3)"*log N - (1 + o(1)) nondeterministic variables in size O(N°/* log N);
but

(2) every synchronous nondeterministic OBDD representing MIND,,, with at most O(log N)

nondeterministic variables requires size 2% ) It still requires size 2% ) if only (1—¢)-
(1/3)- (N/3)1/3 log N nondeterministic variables may be used, where ¢>0 is any constant.

Proof. We first express n and log n in terms of the input length. We have N = 3n® - (1 +6,,) and
log N = 3logn - (1+ ) for some 8,5, >0 with 8,5, —0 for n— oo. Thus, n = (N/3)"*- (1 +
5n)_1/3 and logn = (1/3) -log N - (1 + 5;)_1. Substituting k = n, the upper bound in part (1) of
Theorem 13 becomes O(k*n*logn) = O(n’ logn) = O(N>/*log N). If r = O(log N), and hence,
also r = O(logn), the lower bound in part (2) is of order 220 = 22(V')_ Finally, let r<(1 —¢) -
(1/3) - (N/3)1/3 log N. Expressing N in terms of », this implies r<(1 —¢) -nlogn - (1 + 5,,)1/3(1 +
&Y. Thus, 2777k = Q(n~="+¢) and 220277 = 290") — 22" 7

Corollary 15. The function MIND,, ,, with input length N requires exponential size in N for (general)
nondeterministic OBDDs with O(log N) nondeterministic variables. Furthermore, it also requires
exponential size for (general) nondeterministic OBDDs with the restriction that no nondeterministic
variable may appear after a decision variable on a path from the source to a sink (i.e., all
nondeterministic variables have to be tested at the top of the graph).

Proof. Let G be a nondeterministic OBDD for MIND,, with nondeterministic variables
V1, .-, Vr, Where r = O(logn). In G we replace yy, ..., y, with constants in all the different possible
ways, obtaining deterministic OBDDs Gi, ..., Go». We construct a synchronous nondeterministic
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OBDD G’ representing the same function as G by nondeterministically choosing between
G\, ..., Gy using nondeterministic nodes at the top of the new graph. Since r = O(logn), |G'| is at
most polynomially larger than |G|. Hence, the first claim follows from the lower bound in
Corollary 14.

Now we consider the second claim. Let G be a nondeterministic OBDD for MIND,, , where no
nondeterministic variable is tested after a deterministic variable. The OBDD G has a part
consisting of nondeterministic nodes at the top by which one of the deterministic nodes of G is
chosen. We replace the nondeterministic nodes by a tree whose nodes are labeled by the minimal
possible number r of nondeterministic variables. This does not change the represented function
and can only decrease the size. We obviously have r<[log|G|]. Now either r<(1 —¢)-nlogn
and we obtain an exponential lower bound by Theorem 13, or r> (1 —¢) - nlogn and we get the
lower bound |G|=>2""! = 2", O

In the remainder of the section, we prove Theorem 13. We start with the easier upper bound.

Proof of Theorem 13, part (1). The function MINDy, is the conjunction of k copies of the
following function. The ‘“masked index function” MIND, is defined on the variable vectors
S =(S1y ey Skm)s t = (t1, .y tim), and u = (uy, ..., ugy), where m =n+ [logn|, by

MIND;,(s, ,u) = INDy((tp, s -, tp, ), (Ugys -+ Ugproy 1))

in the case that p; <--- <p, and q; <--- <qiog »] are the positions of ones in the s- and z-vector,
resp., and MIND,,(s, z,u) = 0 otherwise. The essence of the proof is to construct sub-OBDDs for
the k copies of MIND,, in MINDy , and to combine these sub-OBDDs afterwards by identifying
the 1-sink of the ith copy with the source of the (i + 1)th one, fori=1, ...,k — 1.

Thus, we first construct a synchronous nondeterministic OBDD G for a single function
MIND,,. We use the variable order described by

Y1y o5 Vlogn]sS1, L1y UL, 82, 2, U2y« Skmy Lo s Uiam s

where yi, ..., ¥[10gn] are the nondeterministic variables. With a tree of nondeterministic
nodes labeled by the y-variables at the top of G, a deterministic sub-OBDD G, from Gy, ..., G,
is chosen. The number de {1, ...,n} is interpreted as a guess of the address for the index function
IND,,.

We describe the construction of G;. While testing the variables in the chosen order, we store the
number of ones already seen in the s- and the #-vector, resp. We only need nodes for storing
numbers from {0,...,n} and {0,...,[logn]}, resp., on each level of the OBDD, since the
function yields the output 0 for larger numbers of ones. Using this information, we can find the
variables u,, ...,up, and uy,, ...,uy,, . for the evaluation of MIND,. We compare the real
address num(uy, , ..., Uy, ) + 1 with the guessed address d and output the addressed bit uy, in
the positive case and 0 otherwise. During the computation, we only need to store the addressed bit
up, 1f it is found before all address bits have been checked.

Altogether, G, has size O(k(n + logn) - n - logn). Thus, the overall size of G is O(kn® log n). The
OBDD for MINDy, contains k copies of OBDDs of this type and therefore has size
O(k*n*logn). O
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We now turn to the proof of the lower bound. A straightforward idea is to apply the
standard proof method from Lemma 11. The “k-fold index function” (without bit masks)
defined in the following appears to be a suitable candidate for a rectangular reduction to
MINDy,.

Definition 16. For inputs x' = (x{, ..., x;,)€{0, 1}" and y' = (3], ..., ¥} 10 1) €10, 1Mo where
i=1,...k, let

INDkﬂ((xl, ...,xk), (yl, ...,yk)) = IND,,(xl,yl)/\ /\INDn(xk,yk).

We would like to consider nondeterministic one-way protocols for INDy, according to
the partition of the variables where Alice has (x',...,x*) and Bob (y',...,»%). It has been
shown in [10] that in this case, the players essentially cannot do better than evaluate all k copies
of IND, independently which requires k[logrn| nondeterministic bits. It is easy to see
that a rectangular reduction from INDy, (with this partition of the variables) to MINDy,
is possible if the variables of different blocks (s,#,u') are “‘completely interleaved” in the

given variable order of the nondeterministic OBDD. Let x/,...,x%, ~be the list of variables
in s, #,u" in arbitrary order. Then an “interleaved order” is described by x}, x7, ..., x}
1,2 k 1 2 k : . .

X3, X5, oy Xy ooey Xags X3gms -+ s Xag- BUt there i1s no reason why we should expect that the

nondeterministic OBDD uses such an order. Intuitively, an order of the type defined below is
more suitable.

Definition 17. For i =1, ..., k, let x' = (x}, ..., x}). An order = of the variables x}, 1 <i<k and
1<j<n, is called blockwise with respect to x',...,x* if there are permutations (b, ...,b;) of
{1,...,k} and (ji1, ...,jin) of {1,...,n} for i =1, ...,k such that 7 is the order described by

xb] b b by xbk by

JL i T O T O Wk

The x' are called blocks in this context. For the ease of notation, we may assume that the blocks
are simply ordered according to x',...,x* in = and that the variables within each block are
ordered as in the definition of x'.

For MINDy., we consider orders which are blockwise with respect to (s',#',u') if we ignore the
nondeterministic variables. Such an order is used in the proof of the upper bound of MINDy .
We may even believe that this is “the best choice.” Our first idea for reducing INDy , to MINDy,
does no longer work for blockwise orders. This is because the standard proof method only allows
to bound the number of nodes on a single ““‘cut” through the OBDD, and we do not know how we
can avoid “bad cuts” with only few nodes in the case of a blockwise order. Hence, we have to find
a new way to deal with this kind of orders.

In general, we even do not have a blockwise order, but an arbitrary one. We have defined the
function MINDy,, in such a way that we can select a suitable suborder by fixing the bit mask
vectors. Although we cannot select an interleaved order as a suborder, we can at least turn an
arbitrary order into a blockwise one.
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Lemma 18. Leg G be a synchronous nondeterministic OBDD for MINDy, ,,. Let 1 be the suborder of
the decision variables in G. Then there are assignments to the s- and t-variables of MINDy , such that
by applying these assignments to G one obtains a synchronous nondeterministic OBDD G’ for the
Sfunction INDy,, that is no larger than G, uses at most as many nondeterministic variables as G, and
where the decision variables are ordered according to m, described by

x%, ...,x,ll,y%, ...,yl[logﬂ,x%, ...,x,zz,yf, ...,y%logﬂ, ...,x’f, ...,xﬁ,y’f, ...,ylflogn]

after renaming the selected u-variables.

Proof. Let L be the list of the u-variables of MINDy , ordered according to n. Only by deleting
variables, we obtain a sublist of L where the variables appear in a blockwise order with respect to
the ' as blocks. This is done in steps = 1, ..., k. Let L, be the list of variables we are still working
with at the beginning of step ¢, and let m, be the minimum number of variables in all blocks which
have not been completely removed in the list L,. We start with L; = L and m; = km. At the end,
the algorithm outputs the list of variables L', which is initially empty.

In step ¢, let p be the smallest index in L, such that the sublist of elements with indices

1,...,p contains exactly m = n+ [logn| variables of a block . Let b, = i and choose indices
Jil, ---»Jrm such that the variables u_f.tf], ...,uj’[ | are under the first p variables of L,. Append these

variables to the output list L'. Afterwards, delete the first p variables and all variables of the block
u from L, to obtain L, ;.

It is easy to verify that m,>(k —t+ 1)m for t = 1, ..., k, and hence, the above algorithm can
really be carried out sufficiently often. Let

b by b by b b
ujl,l’ Tt jl_m’ujz,l’ Y ""u.ik.l’ 0 Tkem
be the obtained sublist L’ of variables. For i = 1, ..., k, fix s’ such that it contains ones exactly at

the positions jii,...,jin, and fix # such that it contains ones exactly at the positions
Jint1s -5 Jint[logn]- It 18 @ simple observation that, in general, assigning constants to variables
may only reduce the OBDD size and the number of variables, and the OBDD obtained by the
assignment (nondeterministically) represents the restricted function. [

Hence, we are left with the task of proving a lower bound on the size of synchronous
nondeterministic OBDDs with “few’” nondeterministic variables for the function INDy , and the
blockwise variable order 7y, on the decision variables. Essentially, our plan is again to decompose
the whole OBDD into sub-OBDDs which are responsible for the evaluation of the single copies of
IND,.

It is easy to see that [logn | nondeterministic variables are already sufficient to evaluate a
single copy of IND,, in polynomial size by an OBDD with an arbitrary variable order. Hence,
there will always be some copies which have only polynomially many nodes in a nondeterministic
OBDD of minimal size representing MINDy.,. The difficulty for the proof is that we have to
estimate the amount of nondeterminism ‘“used up” for one copy of IND,,. This cannot be done by
the known proof methods (it is easy to see that it does not work to simply count the number of
nondeterministic variables in each part). The following lemma solves this problem. It is crucial for
the proof of this lemma that we consider synchronous nondeterministic OBDDs.
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Lemma 19 (Nondeterministic Partition Lemma). Let f,, be a boolean function on n variables and let

ficn be the boolean function defined on the variable vectors X', ..., x* consisting of n variables each by

Sien(x o X0 = (XN A - Afu(XF). Let my be a blockwise variable order with respect to x', ..., x*.
Let G be a synchronous nondeterministic OBDD for fi., where the decision variables are ordered
according to my, and which uses r nondeterministic variables.

Then there are synchronous nondeterministic OBDDs Gy and G, with the order my on the decision

variables and numbers r1 €0, ...,r} and we{l, ...,2"} such that:

(1) [GI|<|G| and |G2| <|G];

(2) G, represents f,, uses at most r| nondeterministic variables, and there are at least w accepting
paths in Gy for each input in f;7'(1);

(3) G, represents fy_1 , and uses at most r — ry + [ log w | nondeterministic variables.

Proof. Let G be as described in the lemma. Suppose that the order 7y of the decision variables is

given by x}, ..., x! ...,x’f, ...,xﬁ. Let r; be the number of nondeterministic variables tested before

IR4AS7R)
x} (thus, r — r; nondeterministic variables are tested after x!). Let y! and y? be vectors with the
nondeterministic variables tested before and after x!, resp.

For the construction of Gy, we consider the set of nodes in G reachable by assignments to x!
and y'. We replace such a node with the 0-sink, if the 1-sink of G is not reachable from it by
assignments to x2, ..., x* and )2, and with the 1-sink, otherwise. The resulting graph is called G;.
It can easily be verified that it represents f,. We define w as the minimum of the number of
accepting paths in G; for an input in f,!(1). Thus G fulfills the requirements of the lemma.

The OBDD G, is constructed as follows. Choose an assignment aef; ! (1) to x! such that G, has
exactly w accepting paths for a. Let G, be the nondeterministic OBDD on y', x?, ..., xf and y?
obtained from G by fixing the x'-variables according to a. The top of this graph consists of
nondeterministic nodes labeled by y'-variables. Call the nodes reached by assignments to y! ““cut
nodes.” W.l.o.g., we may assume that none of the cut nodes represents the 0-function. (Otherwise,
we remove the node, as well as all nodes used to reach it and the nodes only reachable from it.
This does not change the represented function.)

By the choice of ¢ and the above assumption, there are at most w paths belonging to
assignments to y' by which cut nodes are reached, hence, the number of cut nodes is also bounded
by w. Now we rearrange the top of the graph G, consisting of the nodes labeled by y'-variables
such that only the minimal number of nondeterministic variables is used. Obviously, [ logw ]
nondeterministic variables are sufficient for this. Call the resulting graph G,. This is a
synchronous nondeterministic OBDD that obviously represents f;_;, and uses at most
r —ry + [ log w| nondeterministic variables. [

According to the plan outlined above, it remains to prove a lower bound for INDy, and
blockwise variable orders.

Lemma 20. Let my, be a blockwise order on the variables of INDy,, with respect to the blocks (x',y"),
where x' = (x,...,x") and y' = ()}, ...,y"[logn]), such that all x'-variables appear before the

?7"n
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Y'-variables for each i. Let G be a synchronous nondeterministic OBDD for INDy, that has r
nondeterministic variables and whose decision variables are ordered according to my. Then
[log|G|T = Q(n-27"/%).

Proof. Let s;,(n) be the minimal size of a synchronous nondeterministic OBDD for INDy,, with
at most r nondeterministic variables and the order =, for the decision variables. We claim that

[log sy, (n)]=2/k2 . n. 27"k,

From this we obtain the lower bound in the lemma. We prove the above inequality by induction
on k, using the Partition Lemma for the induction step. The required lower bounds on the size of
sub-OBDDs will be derived by the standard lower bound method for OBDDs (Lemma 11).

Case k = 1: By Lemma 9, NA”B(IND,)>n-27""! +r. Lemma 11 yields [logs;,(n)]=>2""-
n-27".

Case k>1: Suppose that the claim has been shown for sx_; ., for arbitrary /. Let G be a
synchronous nondeterministic OBDD for INDy , with r nondeterministic variables and order m,
on the decision variables.

We first apply the Partition Lemma to obtain synchronous nondeterministic OBDDs G| and G,
with their decision variables ordered according to n, and numbers r; and w with the following
properties:

® (G represents IND,, uses at most r; nondeterministic variables, and there are at least w
accepting paths for each input accepted by IND,;
® G, represents INDy_;, and uses at most » — r; + [ log w | nondeterministic variables.

Furthermore, |G,|<|G| and |G;|<|G|. By Lemma 9, NAZB(IND,)>nw-27"~! +r;. Applying

W
Lemma 11, we get a lower bound on |G;|. Together with the induction hypothesis we have

[log|G1H >nw - 2*V1*1 and
|710g|G2H 221/(](71)72 -n- 2*(V*V1+|—10g W—|)/(k71)'
It follows that

[log Sk,r(n)—l >max{nw . 2—1‘1—1721/(k—1)—2 ‘- 2—(r—r1+log w+1)/(k—1)}’

where we have removed the ceiling using [logw | <logw + 1. The two functions within the
maximum expression are monotonously increasing and decreasing in w, resp. Thus, the minimum
with respect to w is attained if

nw - 27r171 — 21/(k71)72 - 27(r7r1+10g w+1)/(k71)7

or equivalently,
Wl H/k=1) — =1 y=r/(k=1)  ri(1+1/(k=1))

Solving for w, we obtain

W= 21/](72 i 27!‘/]{ X 2I’|+1.
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By substituting this into the above estimate for [ log s ,(n) |, we obtain the desired result,

[log sp,(n) ]=2%2.n. 27"k, O

Finally, we put all things together to complete the proof of the main theorem.

Proof of Theorem 13, part (2). Let G be a synchronous nondeterministic OBDD for MINDy,
with r nondeterministic variables. By Lemma 18, we obtain a synchronous nondeterministic
OBDD ¢’ for INDy , with |G'| < |G|, at most r nondeterministic variables and the blockwise order
7, on the decision variables as described in the above lemma. Applying the lemma, we get the
desired lower bound. [

5. Synchronous versus general nondeterministic OBDDs

In this section, we investigate the relationship between the restricted variant of nondeterministic
OBDDs with a variable order on a// variables (called synchronous nondeterministic OBDDs) and
the general variant where only the decision variables have to be ordered. We first observe that the
two models are equivalent if the number of nondeterministic variables is not limited.

Theorem 21. Let G be a (general) nondeterministic OBDD that represents the boolean function f on
n variables and uses r(n) nondeterministic variables. Then there is a synchronous nondeterministic
OBDD G' that is isomorphic to G apart from the labels at its nondeterministic nodes, also represents
f and uses r'(n) = (n + 1)r(n) nondeterministic variables.

Proof. Let xi,...,x, and yi, ..., ., be the decision and nondeterministic variables of G, resp.
W.lo.g., assume that xy, ..., x, is the order of the decision variables in G. In order to obtain the
synchronous nondeterministic OBDD G', we replace yi, ..., px, With new nondeterministic
variables y_;, where 0<i<n and 1<;<r(n). The variable order for G’ is described by

0 0 1 1 2 2
Vs woos Ve XU V1 s Vrluys X2, V15 woes Voo oo X Vs ooy V-

We obtain G’ as follows. Our aim is to relabel the nondeterministic nodes on paths between
x;- and x;1-nodes by ¥}, ..., yf,(n), but we have to take into account that not all x;-variables may be

tested on paths from the source to the sinks. The replacements are carried out bottom-up in G by
starting breadth-first traversals at all x;-nodes fori = n,n — 1, ..., 1. These traversals stop at nodes
that have already been considered or at the sinks. Finally, the nondeterministic variables on paths
starting at the source and leading to a node that has already been considered are replaced by

W, ...,y(r)(n). O

The above construction leads to a considerable increase of the number of nondeterministic
variables used in the OBDD. It is an obvious question whether we can also obtain a synchronous
nondeterministic OBDD that is not much larger than the original graph and uses essentially the
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same amount of nondeterminism. In the following, we answer this question in the negative sense.
We consider the following function.

Definition 22. Let k,/, neN withk</andletm =n+ [logn]. Fori=1, ...,/ letb’ = (s, ¢, ),
where s' = (s, ...,st ), ' = (¢, ...,8 ), and v’ = (u}, ...,u, ) are vectors of boolean variables.
Define the function fi /, on boolean variables a, ...,a, and the vectors b', ..., b’ as follows. If
(a1, ...,a,) does not contain exactly k ones, then let fi/,((a1,b'), ..., (as,b")) = 0. Otherwise, let
ij<--<ip be the positions of ones in (ai,...,as) and let fi n((a1,b),...,(as,b")) =
MINDy,, (b, ..., b¥).

Theorem 23.

(1) The function fy s, has a (general) nondeterministic OBDD of polynomial size in the input length
with k[ logn'| nondeterministic variables.

(2) Let ¢>0 be any constant and suppose that ¢ is divisible by k. Let G be a synchronous
nondeterministic OBDD that represents fi. s , and uses at most (1 — &)/ [ log n'| nondeterministic

variables. Then there is a constant ¢>0 such that [log|G|]>min{(e/2)k logn, cn®/*}.

Proof. Upper bound, part (1): We use the variable order aj,b',...,a,,b’, where the order
within each b = (s, /') is the same as in the construction of the nondeterministic OBDDs for
MIND, in the upper bound for MINDy , (proof of Theorem 13, part (1)). While testing the
variables in the chosen order, we evaluate k copies of the function MIND, defined on the
variables belonging to the b’ with @; = 1. This can be done in the same way as in the construction
for the proof of Theorem 13, we only need & sets of [ log#n | nondeterministic variables each that
are used at the appropriate places depending on the values of a1, ..., a,. If ay, ..., a, do not contain
exactly k ones, then the 0-sink is reached. Using the earlier results, it is obvious that the whole
construction can be done in polynomial size. The number of nondeterministic variables is
k[logn].

Lower bound, part (2): Our aim is to show that a synchronous nondeterministic OBDD for f; /,
essentially cannot do better than the obvious one that uses a separate set of [logn |
nondeterministic variables for each of the blocks b', ..., d", since it is not known in advance
which of these blocks are used for the evaluation of MINDy,.

Let G be a synchronous nondeterministic 7-OBDD for f;,, that uses r<(1 —¢)/[logn ]
nondeterministic variables, where ¢>0 is any constant. For i = 1, ..., //k, let ¢;€{0, 1}/ be the
assignment to (ay, ...,a,) such that the blocks pU=Dk+1 bk are used for the evaluation of
MINDy , in fj ¢, if the a-variables are set to constants according to ¢;. Let G; be the OBDD that is
obtained from G by the replacement of variables according to ¢;. Then G; is a synchronous

nondeterministic --OBDD for the function MINDy, defined on the variables in p(=DA+1 " pik,

We apply Lemma 18 to fix the variables in the s- and #-vectors of »U~D 1 bk such that
we obtain a synchronous nondeterministic OBDD G} for INDy;, from G; that has its

decision variables ordered blockwise with respect to the blocks w1kt 4 and is no larger

than G;. The complete variable order 7; of G/ that we obtain by deleting the fixed variables from =

i—D)k+1 ik
s

contains the same nondeterministic variables as 7 and the variables in u! u'.
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Let /¥ be the number of nondeterministic variables tested before the first u-variable according to
n;. As in the proof of Corollary 15, we may assume that only the minimal number of
nondeterministic variables needed to reach the first decision nodes in G} is used. This implies the
lower bound

[log|Gj| =17, (1)

Let r; be the number of nondeterministic variables tested after the first u-variable and before
the last u-variable according to w;. The sets of nondeterministic variables between the first
and the last u-variable according to the variable orders 7; are disjoint by definition. Furthermore,
each variable order 7; is a suborder of . Hence, r| + -+ + r/ <r. By averaging, there is at least
one iy such that r;, <r/(//k). We may assume that no nondeterministic variable is tested after
the last u-variable in G’ , since nodes labeled by such variables can be replaced with the 0- or

107

I-sink. Thus, Gj has at most r% + r/(//k) nondeterministic variables altogether. By Lemma 20,
we obtain

[og]G | ] = @(n- 274 = (2701, @

If r%>(s/2)k[logn], then [log]Gl/.OH >(¢/2)k[logn] by the lower bound (1). If
r%g(e/Z)k[logn], then by the lower bound (2) and the fact that r<(1 —¢)/[logn| due to
the hypothesis,

[log|G, |1 =Q(n- 27Ky — Q- 2@/ Megn1=(1=0)log n Ty — (/2
Altogether,
[10g|G| 1> [log|Gj,| 1> log|G} | 1>min{(e/2)k[ logn, cn/*},

for some suitable constant ¢>0, as desired. [

Corollary 24. For any constant 6 with 0<6 <1, let gy be the boolean function on N variables defined
by gy = fisn withk =n, / =n‘, and c = [ 3/0 — 2'|. Then gy has the following properties.

(1) The function gy can be represented by a (general) nondeterministic OBDD of polynomial size in
N with r(N) = O(N°/?log N) nondeterministic variables; but
(2) each synchronous nondeterministic OBDD that represents gy and has at most

(1 —&)(N/3)'"°r(N) nondeterministic variables, ¢>0 any constant, requires exponential size
in N.

Proof. The input length of gy is N =3k/m+/. We have N =3n“2(1+7y,) and
logN = (c+2)logn(l +7v,) for some vy,,v,>0 with 9,7, -0 for n—o. Hence, n=
(N/3HY DA 497D and  logn = (1/(c+2))log N(1+7,)"". Furthermore, d/4<1/
(c+2)=1/[3/0]<6/3and (c—1)/(c+2)=1-0.

By the upper bound from Theorem 23, gy can be represented in polynomial size by a
nondeterministic OBDD using r(N) = k[logn] = n[logn] = O(N%/log N) nondeterministic
variables. This proves part (1). Now let G be a synchronous nondeterministic OBDD for gy with
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¥ (N)<(1 = ¢)(N/3)'°r(N) nondeterministic variables. Since 1 —d< (¢ — 1)/(c +2),
F(N) <(1 =) (N/3) V()
= (1= &)’ ' (147,) ()
< (I —¢/2)n[logn] = (1 —¢/2)/[logn]

for sufficiently large n. Hence, the lower bound from Theorem 23 implies that [log|G|]| =
Q(n#/*) = Q(N®/1%) and thus part (2) follows. [

This shows that the construction in Theorem 21 cannot be improved significantly.

6. Results for one-way Turing machines

In this section, we apply the tradeoff between OBDD size and the number of nondeterministic
variables from Section 4 to derive a similar result for nonuniform as well as for uniform one-way
TMs.

Let 1L/Poly, 1ENL/Poly, 1BNL/Poly, and 1NL/Poly be the nonuniform analogs of the
classes 1L, IENL, 1IBNL, and 1NL considered in the introduction. The new classes are defined by
using nonuniform TMs with polynomially bounded advice strings instead of uniform TMs. The
uniform classes are obviously contained in their nonuniform counterparts if we identify a
sequence boolean functions (f,),.y With the language A4 =J,.n f, '(1). Analogously to the
uniform case, we obtain:

Proposition 25.

(1) 1L/Poly= 1ENL/Poly = 1BNL/Poly = INL/Poly; and
(2) L/Polyc ENL/Poly< BNL/Poly=NL/Poly.

Proof. Only the inclusions 1ENL/Poly < IBNL/Poly and ENL/Poly = BNL/Poly are nontrivial,
and these can be proven using the ideas for the uniform case due to Niepel [20]. To make the
paper self-contained, we revisit her construction for the one-way case, the two-way case is handled
analogously.

Suppose that M is a IENL-TM that uses space s(n) = ©(logn) for input length n. The TM M
can be decomposed into two sub-machines M| and M, that work as follows. Machine M is a
deterministic one-way TM with space bound s(n) that reads the input x and generates a word w(x)
of length s(|x|) on its work tape. Machine M, is a nondeterministic TM that uses space at most
for inputs of length n, reads w(x) and outputs 0 or 1.

We now construct a BNL-TM M’ with space bound s(n) for input length n that simulates M.
The machine M’ uses extra tracks wherever required and thus can store up to O(logn) additional
bits. On an input x, M’ first guesses w(x) on its work tape. This can be done in the obvious way,
since the work tape of M’ as well as the string w(x) have length s(|x|). Then M’ simulates M, on
this word w(x) as input, for which it needs at most space w(x)<s(|x|) due to the space restriction
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of M,. Finally, M’ simulates M, to check whether w(x) has been correctly guessed. This can again
be done with space s(|x|).

It is now easy to see that the whole simulation also works if both machines M; and M, have
access to an advice tape with the same contents. [

For the uniform case, it is an open question whether nondeterminism at the end of
the computation of a logspace TM helps anything, i.e., whether ENL#L and 1ENL#1L.
Somewhat surprisingly, it is trivial to answer these questions in the negative sense for the
nonuniform case:

Proposition 26. ENL/Poly = L/Poly and 1ENL/Poly = 1L /Poly.

Proof. This is most easily seen by taking polynomial-size nondeterministic BPs and nondetermi-
nistic OBDDs, resp., for representing the sequences of functions in the considered classes. The
claim follows by observing that the source of a subgraph of nondeterministic nodes at the end of a
BP can be replaced either with the 0- or with the 1-sink, depending on whether the 1-sink is
reachable from it. [

On the other hand, we can use the results from Section 4 for proving that one-way TMs with
nondeterminism at the beginning of the computation are really weaker than unrestricted
nondeterministic one-way TMs in the nonuniform setting:

Theorem 27. 1BNL/Poly< INL/Poly.

Proof. We consider the sequence of functions (MIND,, ),y (this can be extended to a sequence
defined on arbitrary input lengths by adding dummy variables). Taking Proposition 6 from the
introduction into account, the upper bound follows from part (1) of Corollary 14 and the lower
bound from Corollary 15. [

Finally, we even have an analogous result for the uniform setting.
Theorem 28. 1BNL < INL.

Proof. We consider the language of accepted inputs of the functions MIND,,,, neN. To make
this precise, we regard each xe{0,1}" of length |x| = 3n*(n+ [logn]) for some neN as an
assignment to the Variables of MIND,,,, according to the variable order b!, ..., 5", where b =
(sh, 2, ... i ou Yfori=1,...,nand m=n+ [logn], and define

A={xe{0,1}"|IneN:3n*(n+ [logn]) = |x| A MIND, ,(x) = 1}.

By Corollary 15, this language is not contained in the class IBNL (since it is not even contained in
1BNL /Poly). Furthermore, the same ideas as in the proof of the upper bound part of Theorem 13
also yield a uniform one-way logspace TM for 4. We only have to cope with the technical
problem that a one-way TM does not have access to its input length at the beginning.
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We construct a nondeterministic one-way TM M for A whose space bound s(N), N the input
length, is the logarithm of the upper bound on the size of the OBDDs from Theorem 13, i.e.,
S(N)=1(5/3)logN + c¢] for some constant ¢>0. Using a counter that records the actual
position on the input tape, M can determine the input length after reading the whole input. At the
beginning of the computation for an input xe{0, 1}*, the machine uses the s(]x|) marked cells on
its work tape to nondeterministically guess a number ne {1, ..., 25()} If xe 4, there is a such an n
with 3n%(n + [logn) = |x|, since each suitable n satisfies n<|x| and we have |x|<2*(").

The machine M then carries out the same algorithm as in the proof of the upper bound of
Theorem 13 checking whether MIND,, ,(x) = 1. If M runs out of input bits during the algorithm
or it finds out that |x|#3n*(n+ [n]) at the end, the output is 0. Otherwise, M can output
MIND,, ,(x). Hence, Ae INL. [

It is obvious that 1L/Poly& IBNL/Poly and 1ENL&IBNL. As a separating language,
consider, e.g., A= {x#y|x,ye{0,1}", x#y} (the uniform string non-equality problem
mentioned in the introduction). This language is contained in IBNL, but not in 1L/Poly =
1ENL/Poly. Altogether, the known relations among the classes for one-way TMs are now as
follows:

1L/Poly = 1ENL/Poly< IBNL/Poly< INL/Poly, and 1L<1ENL<IBNL<INL.

The problem whether nondeterminism at the end really helps for uniform one-way TMs still
remains open (which is not surprising given the fact that it is equivalent to the LBA problem).

7. Conclusion

We have shown that the following restrictions may increase the size of nondeterministic
OBDDs for a sequence of functions f,:{0,1}"—{0,1} from a polynomial to an exponential
function in #:

e limiting the number of nondeterministic variables to O(logn);

e requiring that all nondeterministic variables are tested at the top;

® requiring synchronous nondeterminism and allowing only an increase of the number of
nondeterministic variables by a factor of n'=, >0 any constant.

On the other hand, any general nondeterministic OBDD can be made synchronous while
remaining polynomially large if we allow an increase of the nondeterministic variables by a factor
of n+ 1.

As a by-product, these results have also led to a deeper understanding of the structure of
nondeterministic OBDDs. Nevertheless, the subject seems rich and interesting enough to warrant
further study. For example, one may try to analyze the influence of the resource nondeterminism
for more general types of BPs. It is already a challenging task to try to prove a tradeoff between
the size of nondeterministic read-once BPs and the number of nondeterministic variables. In a
deterministic read-once BP, each variable may appear at most once on each path from the source
to one of the sinks. A nondeterministic read-once BP fulfills this restriction with respect to
decision as well as nondeterministic variables.
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Open Problem. Find a sequence of functions f,:{0,1}" —{0, 1} such that f, has polynomial size
for unrestricted nondeterministic read-once BPs, but requires exponential size if only O(logn)
nondeterministic variables may be used.

One may again try the conjunction of several copies of a function that is easy for
nondeterministic read-once BPs, but a new approach is required for the proof of the respective
lower bound.
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