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a b s t r a c t

A uniform verification problem for parameterized systems is to
determine whether a temporal property is satisfied for every
instance of the system which is composed of an arbitrary
number of homogeneous processes. To cope with this problem
we combine an induction-based technique for invariant generation
and conventional model checking of finite state systems. At
the first stage of verification we try to select automatically
an appropriate invariant system. At the second stage, as soon
as an invariant of the parameterized system is obtained, we
verify it by means of a conventional model checking tool for
temporal logics. An invariant system is one that is greater (with
respect to some preorder relation) than any instance of the
parameterized system. Therefore, the preorder relation involved
in the invariant rule is of considerable importance. For this
purpose we introduce a new type of simulation preorder —
quasi-block simulation. We show that quasi-block simulation
preserves the satisfiability of formulae from ACTL?-X and that
asynchronous composition of processes is monotonic w.r.t. quasi-
block simulation. This suggests the use of quasi-block simulation
in the induction-based verification techniques for asynchronous
networks. To demonstrate the feasibility of quasi-block simulation
we implemented this technique and applied it to the verification of
the Resource ReSerVation Protocol (RSVP).
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1. Introduction

Verification plays an important role in designing reliable computer systems. Twomain approaches
to program verification are testing (Kaner et al., 1999) and formal verification (Apt and Olderog,
1997; Clarke et al., 1999). The aim of testing is to detect program failures. It helps to uncover and
correct defects of a program behavior but it cannot establish, except for trivial cases, that a program
functions properly. Since the behavior of concurrent systems is usually very complicated and tends
to be non-reproducible, many bugs are difficult to detect by conventional testing. Formal verification
approach provides a more preferred solution. It assumes that one builds a mathematical model for
the system to be analyzed, specifies the properties the system should comply with, and then applies
some appropriate mathematical techniques to check that the model satisfies the properties. Formal
verification is relatively inexpensive in comparison to exhaustive simulation; it receives an ample
algorithmic support from various branches of mathematics and manifests its strength in areas where
other verification methods are inadequate (see, for example, Clarke et al. (1993), Chehaibar et al.
(1996) and Cimatti (2000)).
Formal methods fall into the following major categories: model checking, theorem proving, and

equivalence checking. Model checking allows verification of computer system by checking that a
model M(P) (usually represented as a transition system derived from hardware or software design
P) satisfies a formal specification ϕ (usually represented as a temporal logic formula). WhenM(P) is
a finite state model then one could find a rich variety of model checking procedures (see Clarke et al.
(1999)). In what follows we will assume that each system (process) P under consideration has only
finite state set and will not distinguish P from its model (transition system)M(P).
The development of effective techniques for checking parameterized systems F = {Pk}∞k=1 is one

of the most challenging problems in verification today. The parameter k may stand for any variable
characteristics of the design Pk (say, the size of some data structures, stacks, etc.), but much attention
is given to the cases when the concurrent systems Pk are the parallel compositions p1‖p2‖ . . . ‖pk‖q of
similar processes p1, p2, . . . , pk (which are instances of a prototype process p) and some distinguished
process q (‘‘environment’’). Then the uniform verification problem for parameterized systems is
formulated as follows: given an infinite family F of systems Pk = p1‖p2‖ . . . ‖pk‖q and a temporal
formula ϕ, check that each transition systemM(Pk) satisfies ϕ.
Though Apt and Kozen (1986) proved that the problem is undecidable in general, some positive

results have been obtained for specific parameterized systems. For themost part four basic techniques,
namely, symmetry, cut-off, abstraction, and induction are employed to extend the applicability of
conventional model checking to restricted families of parameterized systems.

Symmetry

Symmetry is commonly used to avoid the combinatorial explosion in the number of states in
transition systems (see Clarke et al. (1999)). Suppose that a transition system P has a non-trivial group
G of permutations on the state set S; each permutation from G preserves both the transition relation R
and the labelling function L. Then one could replace the system P with a quotient model PG, where the
state space SG = {θ(s) : s ∈ S, θ(s) = {r : ∃σ ∈ G (σ (s) = r)}} is the set of orbits of the states in S.
If the property ϕ to be checked is invariant under G then P, s |= ϕ ⇐⇒ PG, θ(s) |= ϕ. It is obvious
that symmetry-based reduction does the job when a network topology is highly symmetric, i.e. it is a
ring, clique, hypercube, etc. The idea of exploiting symmetry for state set reductionwas introduced by
Clarke and Filkorn (1993), Emerson and Namjoshi (1995) and Emerson and Sistla (1996). Symmetry-
based reduction has been successfully applied to a number of case studies (see Calder and Miller
(2002) for a survey) and now it is implemented within a framework of many model checkers (see
Ip and Dill (1997) and Bosnacki et al. (2001)). However, in many practical cases this approach runs
into obstacles, since the problem of finding orbit representatives is as hard as graph isomorphism
problem. Manku et al. (1998) and Donaldson and Miller (2005) have demonstrated a considerable
progress in automatic symmetry detection, but this problem still remains the main critical point of
the symmetry-based reduction techniques.
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Emerson and Namjoshi (1995) demonstrated how to exploit symmetry to cope with model
checking of parameterized specifications. Suppose that a system under consideration is a token ring
Ring(n) = p1‖p2‖ . . . ‖pn−1‖pn, where pn is the initial token distribution process, and a specification
to be checked is a CTL?-X formula ϕn =

∧n
i=1 ψ[i], where ψ[i] refers only to the events occurred in

the process pi. Then Ring(n) satisfies ϕn iff Ring(2) satisfies ϕ2. Similar effect has been revealed for
parameterized specifications of some other forms.

Cut-offs

A successful application of symmetry for the verification of some parameterized networks gave
impetus to the development of cut-off technique. Its principal idea is as follows. Let ≈ be an
equivalence relation on transition systems which preserves a given set of formulae Form, i.e. ifM1 ≈
M2 then M1 |= ϕ ⇐⇒ M2 |= ϕ holds for every formula ϕ from Form. Then to check a specification
ϕ against a parameterized system F = {Pk}∞k=1 one needs only to find such N (a cut-off number) that
PN+i ≈ PN holds for every i, i ≥ 0, and check ϕ on a finite set of finite state models P1, P2, . . . , PN . The
system PN distinguished thus is called a cut-off process.
A cut-off technique was introduced by Emerson and Namjoshi (1995). They verified a family

of unidirectional token rings and used block bisimulation for the equivalence relation ≈. Cut-off
approach was successfully implemented by Emerson and Kahlon (2003) and Emerson and Kahlon
(2004) and applied to the verification of bidirectional token rings, initialized broadcast protocols, and
guarded broadcast protocols including cache coherence protocols for multiprocessor computers.

Abstraction

Abstraction is likely to be the most important technique for coping with state explosion problem
inmodel checking. It provides a way to replace a large model P with a smaller one h(P) such that h(P)
inherits some properties of P . This may be achieved by picking out a distinguished set of formulae
A and introducing an equivalence relation over the state set S such that if two states are equivalent
then for every formulaψ from A they both either satisfy or falsifyψ . Using the equivalence classes as
abstract states and defining an abstract transition relation appropriately, one gets an abstract model
h(P). If a temporal formula ϕ to be checked is built of formulae from the set A then h(P) |= ϕ =⇒
P |= ϕ.
A theoretical framework for abstraction techniques has been developed by Clarke et al. (1992),

Dams et al. (1994), Pardo (1997) and Kesten and Pnueli (2000). Abstraction also gives rise to a new
verification paradigm — counterexample guided abstraction refinement (see Clarke et al. (1999) and
Henzinger et al. (1999)).
Abstraction has been widely applied in verification of parameterized systems. With the essential

help of abstraction it does become possible to apply model checking to verify infinite families of
models (see German and Sistla (1992), Clarke et al. (1995), Lesens and Saidi (1997), Ip and Dill (1997)
and Clarke et al. (2004)). Unfortunately, the advanced abstraction techniques for parameterizedmodel
checking require user assistance in providing key elements and mappings. Therefore, in most cases
it gives effect only when it is coupled with other techniques that are more suitable for automatic
application.

Induction

The common idea of the induction technique can be summarized as follows. Define a preorder� (a
simulation or bisimulation) on transition systems and choose a class of temporal formulae Form such
that
1. the composition operator ‖ is monotonic w.r.t.�, i.e. P1 � P ′1 and P2 � P

′

2 imply P1‖P2 � P
′

1‖P
′

2;
2. the preorder� preserves the satisfiability of formulae ϕ from Form, i.e. P ′ |= ϕ andM � P ′ imply
M |= ϕ.

Then, given an infinite family F = {Pk}∞k=1, where Pk = p1‖p2‖ . . . ‖pk‖q, find a finite transition
system I such that
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3. Pn � I for some n, n ≥ 1;
4. p‖I � I.

A transition system I which meets the requirements 3 and 4 is called an invariant of the infinite
family F . Requirements 1, 3 and 4 guarantee that Pk � I holds for every k, k ≥ n. If a specification
to be checked is expressed by a formula ϕ from Form then, in view of the requirement 2, to verify this
property of the parameterized systemF it is sufficient to model check I and Pk, 1 ≤ k < n, against ϕ.
The latter may be done by means of any suitable model checking technique for finite state transition
systems.
This approach to the verification of parameterized networks was introduced by Kurshan and

McMillan (1989) and Wolper and Lovinfosse (1989) and developed in many papers (see Calder
and Miller (2002) for a survey). The central problem here is that of deriving a general method for
constructing invariants. In many cases invariants can be obtained by using the following heuristics: if
Pk+1 � Pk holds for some k then Pk may be used as an invariant I. This idea suggested by Clarke et al.
(1995, 1997) opens new ways for developing fully automated approach for verifying parameterized
networks. A typical verification scenario looks as follows.

(1) Given a parameterized system {Pk}∞k=1 and a property ϕk, a symmetry-based reduction technique
is used to degenerate ϕk to a more simple formula ψ .

(2) The formula ψ is used to generate an abstraction h such that h(h(Pi)‖h(pi+1)) � h(Pi+1) holds for
every i, i ≥ 1.

(3) Next an attempt is made to find n such that h(Pn+1) � h(Pn).
(4) As soon as such n is found a model checking technique is applied to verify the satisfiability ofψ on
the finite transition systems h(Pn) and Pk, 1 ≤ k < n.

As it may be seen from this description the right choice of abstraction h and a preorder � is of
prime importance for the successful application of this heuristic in practice. Clarke et al. (1995, 1997)
demonstrated how to derive an appropriate abstraction h from the propertyψ to be checkedwhen the
latter is represented by a finite automaton. Less attention has been paid to�. In the papers by Clarke
et al. (1995) and Emerson and Namjoshi (1995) strong simulation and block bisimulation respectively
were used as a preorder�, but as far as we know no systematic study of other possible preorders has
been made (though bisimulation equivalences were studied in detail). It is clear that the weaker the
preorder � is, the larger in number are the cases of parameterized systems for which this approach
succeeds. Furthermore, a careful choice of � makes it possible to circumvent difficulties pertaining
to abstractions: if � is loose enough an invariant Pn can be found without resorting to abstraction
h. To be certain that this effect could appear we introduced (see Konnov and Zakharov (2005)) a
block simulation preorder (which is an amalgamation of block bisimulation suggested by Emerson and
Namjoshi (1995) and visible simulation proposed by Penczek et al. (1999)) and applied this preorder
to generate straightforwardly invariants of some parameterized systems.
In this paper we continue our line of research. Since asynchronous composition of processes is not

monotonicw.r.t. block simulation in general case,we extend this preorder and introduce a quasi-block
simulationwhich isweaker than block simulation.We show that quasi-block simulation preserves the
satisfiability of formulae fromACTL?-X and that asynchronous composition of processes is monotonic
w.r.t. quasi-block simulation. This suggests the use of quasi-block simulation for generating invariants
in the induction-based verification techniques. We implemented this technique and applied it to the
verification of the Resource ReSerVation Protocol (RSVP). Hitherto formal verification of RSVPhas been
studied by Creese and Reed (1999) with the help of CSP and by Villapol (2003) in the framework of
Coloured Petri Nets. We demonstrate that induction-based verification of RSVP can be performed by
employing quasi-block simulation.
The paper is organized as follows. In Section 2we define the basic notions, including asynchronous

composition of labelled transition systems, block and quasi-block simulations on transition systems.
In Section 3 we study some essential features of quasi-block simulation. Themost important property
of quasi-block simulation is itsmonotonicityw.r.t. parallel composition of labelled transition systems.
Some strategies that alleviate the generation of invariants for tree-like networks are developed
Section 4. In Section 5 we consider RSVP as a case study and demonstrate how to verify this protocol
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Fig. 1. Examples of LTSs.

using induction technique based on quasi-block simulation for generating a suitable invariant.
Section 6 concludes with directions for future research.

2. Definitions

Definition 1. A Labelled Transition System (LTS) is a sextupleM = 〈S, S0, A, R,Σ, L〉where

• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• A is a set of visible actions (not including the invisible action τ ),
• R ⊆ S × (A ∪ {τ })× S is a labelled transition relation,
• Σ is a nonempty set of atomic propositions,
• L : S → 2Σ is an evaluation function on the set of states. �

Examples of LTSs are depicted in Fig. 1. Any triple (s, a, t) from R is called a transition. Wewill write
s

a
−→M t instead of (s, a, t) ∈ R and often elide the subscript M when it is assumed. A path π of LTS

M is a finite or infinite sequence π = s1
a1
−→ s2

a2
−→ · · ·

aj−1
−→ sj

aj
−→ · · · of transitions si

ai
−→ si+1.

Temporal specifications (or properties) of parameterized systems are expressed in temporal logics.
The logic used in the framework of induction-based verification techniques are usually the Full
Branching Time Logic CTL? or its sub-logics ACTL? and ACTL?-X. An important factor in deciding
between them is a capability of a preorder � used in the verification procedure to preserve the
satisfiability of temporal formulae. We do not define the syntax and the semantics of these logics;
they can be found in many textbooks, e.g. in Clarke et al. (1999).
LetM1 =

〈
S1, S10 , A

1, R1,Σ1, L1
〉
,M2 =

〈
S2, S20 , A

2, R2,Σ2, L2
〉
be two LTSs such thatΣ1 ∩Σ2 = ∅.

We call any pair Γ = 〈∆, 〉 a synchronizer, where ∆ ⊆ A1, and : ∆ → A2 is an injection which
binds some actions of M1 and M2. We write ∆ for the set {b ∈ A2 | ∃a ∈ ∆ : a = b}. When
introducing a synchronizer we assume that a certain action a from∆ is executed only synchronously
with its co-action a. Thus, a pair (a, a) forms a channel for communication betweenM1 andM2. One of
these actions (say, a) may be thought as an action of sending a message, whereas the other (co-action
a) is an action of receiving a message.
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Fig. 2. Examples of parallel compositions of LTSs.

We define the operation for parallel composition of processes presented by LTSs, based on the
interleaving paradigm: any two actions cannot happen at the same time.
Definition 2. The (asynchronous) parallel composition of LTSs M1 and M2 w.r.t. synchronizer Γ is an
LTSM = M1 ‖Γ M2 = 〈S, S0, A, R,Σ, L〉 such that

• S = S1 × S2,
• S0 = S10 × S

2
0 ,

• A = (A1 ∪ A2) \ (∆ ∪∆),
• Σ = Σ1 ∪Σ2,
• L((s, u)) = L1(s) ∪ L2(u),
• For every pair of states (s, u), (t, v) ∈ S and an action a ∈ A a transition ((s, u), a, (t, v)) is in R iff
one of the following requirements is met:
. a ∈ A1 \∆, u = v, (s, a, t) ∈ R1

(in this case we say thatM1 moves at the step (s, u)
a
−→ (t, v)),

. a ∈ A2 \∆, s = t , (u, a, v) ∈ R2

(in this case we say thatM1 moves at the step (s, u)
a
−→ (t, v)),

. a = τ , and there exists b ∈ ∆ such that (s, b, t) ∈ R1 and (u, b, v) ∈ R2

(in this case we say thatM1 andM2 communicate at the step (s, u)
τ
−→ (t, v)). �

Examples of some LTSs M1,M2,M3,M4 are depicted in Fig. 1. Their asynchronous parallel
compositions M1‖M3 and M2‖M4 w.r.t. a synchronizer Γ = ({{a, b}, {a→ a, b→ b}}) are depicted
in Fig. 2.
Let ϕ be a temporal formula. Denote by Σϕ the set of all basic propositions involved in ϕ. Given

an LTSM = 〈S, S0, A, R,Σ, L〉, one may separate those transitions that are either visible (i.e. marked
with an action a 6= τ ) or affect the basic propositions of ϕ:

Observ(M,Σϕ) = {(s, a, t) | (s, a, t) ∈ R and (a 6= τ ∨ L(s) ∩Σϕ 6= L(t) ∩Σϕ)}.
On the other hand, one may also distinguish some sets of transitions that seemed ‘‘significant’’ for an
observer. Any set E ⊆ R of transitionswhich includes all visible transitionswill be called a set of events
ofM . If Observ(M,Σϕ) ⊆ E then the set of events E will be called well-formedw.r.t. ϕ.

Definition 3. Let M = M ′ ‖Γ M ′′ be a parallel composition of some LTSs M ′,M ′′ and δ = s1
a1
−→

s2
a2
−→ · · ·

ai−1
−→ si

ai
−→ · · · be a path in LTSM . A projection prM ′(δ) of δ on the modelM ′ is defined by

induction on the length n of δ as follows:

• if δ = (s′1, s
′′

1) then prM ′(δ) = s
′

1,
• if δ = σ ◦ ((s′n, s

′′
n)

a
−→M (s′n+1, s

′′

n+1)) then:
. ifM ′ does not move at the step (s′n, s

′′
n)

a
−→M (s′n+1, s

′′

n+1) then prM ′(δ) = prM ′(σ );

. ifM ′ moves at the step (s′n, s
′′
n)

a
−→M (s′n+1, s

′′

n+1) then prM ′(δ) = prM ′(σ ) ◦ (s
′
n

a
−→ s′n+1);

. if M ′ and M ′′ communicate at the step (s′n, s
′′
n)

τ
−→M (s′n+1, s

′′

n+1) via a pair of synchronous

actions b, b then prM ′(δ) = prM ′(σ ) ◦ (s′n
b
−→ s′n+1). �
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Definition 4. A finite block outgoing from a state s1 w.r.t. a set of events E is a finite path B = s1
τ
−→

s2
τ
−→ · · ·

τ
−→ sm

a
−→ sm+1 such that (sm, a, sm+1) ∈ E and (si, τ , si+1) /∈ E for all i : 1 ≤ i < m. An

infinite block outgoing from a state s1 is an infinite sequence B = s1
τ
−→ s2

τ
−→ · · ·

τ
−→ sk

τ
−→ · · ·

of τ -transitions such that (si, τ , si+1) /∈ E for all i ≥ 1. �

WewriteMAXF(E, s) andMAXI(E, s) for the set of all finite and infinite blocks, respectively, outgoing
from a state sw.r.t. a set of events E.

Definition 5. Let M1 =
〈
S1, S10 , A

1, R1,Σ1, L1
〉
, M2 =

〈
S2, S20 , A

2, R2,Σ2, L2
〉
be two LTSs. Let Σ be

a subset of Σ1 ∩ Σ2, and let E1 and E2 be subsets of events of M1 and M2. Then a binary relation
H ⊆ S1× S2 is called a quasi-block simulation (qb-simulation) onM1 andM2 w.r.t.Σ , E1, E2, iff any pair
(s1, t1) ∈ H meets the following requirements:

QB1: L1(s1) ∩Σ = L2(t1) ∩Σ ,
QB2: For every finite block B′ = s1

τ
−→ · · ·

τ
−→ sm

a
−→ sm+1 ∈ MAXF(E1, s1) there is a block

B′′ = t1
τ
−→ · · ·

τ
−→ tn

a
−→ tn+1 ∈ MAXF(E2, t1) such that (sm+1, tn+1) ∈ H , and (si, tj) ∈ H

holds for every pair i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
QB3: For every infinite block B′ = s1

τ
−→ · · ·

τ
−→ sm

τ
−→ · · · ∈ MAXI(E1, s1) there is an infinite

block B′′ = t1
τ
−→ · · ·

τ
−→ tn

τ
−→ · · · ∈ MAXI(E2, t1), such that (si, tj) ∈ H holds for every

pair i, j, 1 ≤ i, 1 ≤ j. �

In what follows we will say that a block B′′ referred to in the requirements QB2 and QB3 matches a
block B′ w.r.t. H . We write M1 �

qb
Σ M2 iff there exist two sets of events E

1 and E2 of LTSs M1 and M2
and a binary relation H ⊆ S1× S2 such that H is a qb-simulation onM1 andM2 w.r.t.Σ , E1, E2, and for
every initial state s0 ∈ S10 there exists an initial state t0 ∈ S

2
0 such that (s0, t0) ∈ H . If both E

1 and E2

are well-formedw.r.t. ϕ thenwe say that the qb-simulationM1 �
qb
Σϕ
M2 is also well-formedw.r.t. ϕ. A

block simulation (M1 �bΣ M2 in symbols) is a qb-simulation w.r.t.Σ , Observ(M1,Σ), Observ(M2,Σ).
Our notion of block simulation is similar to the notion of block bisimulation which was defined by

Emerson and Namjoshi (1995) for the purpose of checking correctness properties for parameterized
distributed systems composed of similar processes connected in a ring network. It is also close
to visible simulation introduced by Browne et al. (1988) and Penczek et al. (1999). Quasi-block
simulation is an extension of block simulation. The necessity of this extension stems from the fact that
asynchronous composition of LTSs (unlike synchronous one) is not monotonic w.r.t. block simulation.
The following example reveals this effect.

Example 6. Consider LTSs M1, M2, M3, M4 depicted in Fig. 1 and their parallel compositions M13 =
M1 ‖Γ M3 and M24 = M2 ‖Γ M4 w.r.t. a synchronizer Γ = ({{a, b}, {a → a, b → b}}) depicted in
Fig. 2.
As can be seen from the definition of block simulation,M1 �b∅ M2 andM3 �

b
∅
M4. To ascertain that

there exists no block simulation for the compositionsM13 andM24 consider a finite block

B′ = (s1, t1)
τ
−→ (s2, t1)

τ
−→ (s4, t2)

c
−→ (s6, t2)

in the LTSM13. The only blocks inM24 that may match B′ are that of the form

B′′ = (u1, v1)
τ
−→ (u1, v2)

τ
−→ (u2, v3)

τ
−→ · · ·

τ
−→ (u2, v3)

c
−→ (u4, v3).

In this case the state (s1, t1) in B′ must correspond to the state (u2, v3) in B′′. But this is impossible,
since the set MAXF(Observ(M13,∅), (s1, t1)) contains a finite block which ends with a transition
(s5, t3)

d
−→ (s7, t3), whereas all finite blocks from the setMAXF(Observ(M24,∅), (u2, v3)) end with a

transition (u2, v3)
c
−→ (u4, v3).

On the other hand, if wemark all communication transitions in bothmodelsM13 andM24 (namely,
(s2, t1)

τ
−→ (s4, t2), (s3, t1)

τ
−→ (s5, t3), (u1, v2)

τ
−→ (u2, v3), and (u1, v2)

τ
−→ (u3, v4)) with the

same distinguished visible action ε instead of τ then we obtain a pair of LTSs M̃13 and M̃24 such that
M̃13 �b∅ M̃24. In fact, the latter impliesM13 �

qb
∅
M24. �



I.V. Konnov, V.A. Zakharov / Journal of Symbolic Computation 45 (2010) 1144–1162 1151

3. The basic features of quasi-block simulation

Proposition 7. M1 �bΣ M2 =⇒ M1 �
qb
Σ M2.

This statement follows immediately from the definitions above. Strange though it may seem,
qb-simulation can be reduced to block simulation.
Consider two LTSs M1 =

〈
S1, S10 , A

1, R1,Σ1, L1
〉
and M2 =

〈
S2, S20 , A

2, R2,Σ2, L2
〉
such that

M1 �
qb
Σ M2 w.r.t. sets of events E

1 and E2. Denote by ε an auxiliary visible action such that ε /∈ A1∪A2,
and build the LTSs M̃i =

〈
S i, S i0, A

i
∪ {ε}, R̃i,Σ i, Li

〉
, i = 1, 2, such that (s, a, t) ∈ R̃i iff either a 6= ε and

(s, a, t) ∈ Ri, or a = ε and (s, τ , t) ∈ E i. Thus, εmarks all those invisible transitions that are included
in the sets of events E1 and E2.

Proposition 8. M1 �
qb
Σ M2 ⇐⇒ M̃1 �

b
Σ M̃2.

Proposition 8 may have a considerable utility in checking qb-simulation, since it provides a way of
taking an advantage of efficient simulation checking algorithms (see Cleaveland and Sokolsky (2001)
and Etessami et al. (2001)) that are applicable to block simulation. Quasi-block (unlike visible or block
simulations) is preserved under asynchronous compositions of LTSs.

Proposition 9. Let Mi =
〈
S i, S i0, A

i, Ri,Σ i, Li
〉
, i = 1, 2, 3, 4, be four LTSs such that (Σ1 ∪Σ2) ∩ (Σ3 ∪

Σ4) = ∅, A1 = A2 = A′, A3 = A4 = A′′, and A′ ∩ A′′ = ∅.
LetΣ ′ andΣ ′′ be distinguished sets such thatΣ ′ ⊆ (Σ1 ∪ Σ2) andΣ ′′ ⊆ (Σ3 ∪ Σ4). Let Γ = (∆, )
be a synchronizer such that ∆ ⊆ A′, and : ∆ → A′′. Then M1 �

qb
Σ ′
M2 and M3 �

qb
Σ ′′
M4 imply

M1 ‖Γ M3 �
qb
Σ ′∪Σ ′′

M2 ‖Γ M4.

Proof. Let H ′ be a relation of qb-simulation on M1, M2 w.r.t. Σ ′, E1, E2, and H ′′ be a relation of
qb-simulation on M3, M4 w.r.t Σ ′′, E3, E4. We consider a relation H ⊆ (S1 × S3) × (S2 × S4) such
that

H = {((s1, s3), (s2, s4)) | (s1, s2) ∈ H ′ ∧ (s3, s4) ∈ H ′′}

and demonstrate that H is a relation of qb-simulation on M1 ‖Γ M3 and M2 ‖Γ M4 w.r.t. the
appropriate sets of events E ′ and E ′′.
The set of transitions E ′ in the model M1 ‖Γ M3 is defined as follows. Every transition

((s1, s3), a, (t1, t3)) is included in E ′ iff it meets one of the conditions below:

• a ∈ A′ ∧ (s1, a, t1) ∈ E1,
• a ∈ A′′ ∧ (s3, a, t3) ∈ E3,
• a = τ and for some b ∈ A′ it is true that (s1, b, t1) ∈ R1 ∧ (s3, b, t3) ∈ R3.

The set of transitions E ′′ in the modelM2 ‖Γ M4 is defined analogously.
The key idea of the proof is as follows. A qb-simulation for the compositions M1 ‖Γ M3 and

M2 ‖Γ M4 may fail only in the case when some finite block outgoing from a state (s1, s3) in the model
M1 ‖Γ M3 is too much extensive and does not fit to any block outgoing from the corresponding state
(s2, s4) in the model M2 ‖Γ M4. We show that the sets of events E ′ and E ′′ are chosen such that all
‘‘lengthy" blocks are ‘‘cut" into small pieces and these pieces satisfy the requirements QB1, QB2, and
QB3 from the Definition 5 for any pair of corresponding states ((s1, s3), (s2, s4)) ∈ H .
1. It is easy to see that the relation H satisfies the requirement QB1 due to the following chain of
equalities:

L13((s1, s3)) ∩ (Σ ′ ∪Σ ′′) = (L1(s1) ∪ L3(s3)) ∩ (Σ ′ ∪Σ ′′)
= (L1(s1) ∩Σ ′) ∪ (L3(s3) ∩Σ ′′)
= {since (s1, s2) ∈ H ′ and (s3, s4) ∈ H ′′}

(L2(s2) ∩Σ ′) ∪ (L4(s4) ∩Σ ′′) = (L2(s2) ∪ L4(s4)) ∩ (Σ ′ ∪Σ ′′)
= L24((s2, s4)) ∩ (Σ ′ ∪Σ ′′),

where L13 and L24 are the evaluation functions of LTSsM1 ‖Γ M3 andM2 ‖Γ M4 respectively.
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2. To make sure that H satisfies the requirement QB2 consider an arbitrary finite block B13 from the
setMAXF(E ′, (s1, s3)):

B13 = (s11, s
3
1)

τ
−→ (s12, s

3
2)

τ
−→ · · ·

τ
−→ (s1m, s

3
m)

a
−→ (s1m+1, s

3
m+1),

where (s11, s
3
1) = (s

1, s3), and its projections prM1(B13) and prM3(B13) on LTSsM1 andM2 respectively.
Let B1 be an arbitrary block inM1 such that prM1(B13) is a prefix of B1, and B3 be an arbitrary block in
M3 such that prM3(B13) is a prefix of B3. Then several cases are possible depending on the structure of
B1 and B3.

(1) B1 = prM1(B13) and B3 = prM3(B13). This case is possible only when a = τ and transition
(s1m, s

3
m)

τ
−→ (s1m+1, s

3
m+1) is a result of synchronous communication of M1 and M3 via some

transitions s1m
b
−→ s1m+1 and s

3
m

b
−→ s3m+1. Since (s

1, s2) ∈ H ′, (s3, s4) ∈ H ′′, there exists a pair of
blocks B2 and B4 inMAXF(E2, s2) andMAXF(E4, s4) respectively such that B2 matches B1 w.r.t. H ′

and B4 matches B3 w.r.t. H ′′. By Definition 5 this means that B2 ends with a transition s2k
b
−→

s2k+1, whereas B4 ends with a transition s
4
`

b
−→ s4`+1. Then by the definition of asynchronous

composition the modelM2 ‖Γ M4 has a block B24 such that
• B24 ends with the transition (s2k, s

4
`)

τ
−→ (s2k+1, s

4
`+1) which is a result of synchronous

communication ofM2 andM4 via s2k
b
−→ s2k+1 and s

4
`

b
−→ s4`+1,

• B2 = prM2(B24) and B4 = prM4(B24).
In fact, B24 can be obtained by interleaving arbitrarily the transitions from B2 with that from B4. It
can be readily seen that B24 matches B13 w.r.t. H .

(2) prM3(B13) 6= B3. This implies that B1 is a finite block. Since (s
1, s2) ∈ H ′ and (s3, s4) ∈ H ′′, there

exists a pair of blocks

B2 = s21
τ
−→ s22

τ
−→ · · ·

τ
−→ s2k

a
−→ s2k+1,

B4 = s41
τ
−→ s42

τ
−→ · · ·

τ
−→ s4`

τ
−→ · · · ,

such that B2 is a finite block from MAXF(E2, s2) and it matches B1 w.r.t. H ′, whereas B4 is either
a finite block from MAXF(E4, s4) (if the block B3 is finite) or an infinite block from MAXI(E4, s4)
(if the block B3 is infinite), and it matches B3 w.r.t. H ′′. Then by the definition of asynchronous
composition the modelM2 ‖Γ M4 has a finite block

B24 = (s21, s
4
1)

τ
−→ (s21, s

4
2)

τ
−→ (s22, s

4
2)

τ
−→ · · ·

τ
−→ (s2k, s

4
2)

a
−→ (s2k+1, s

4
2),

and this block matches B13 w.r.t. H .
(3) prM1(B13) 6= B1. Similar reasoning shows that in this case LTSM2 ‖Γ M4 also has a finite block B24
which matches B13 w.r.t. H .

3. Finally, we check that H satisfies the requirement QB3. Consider an arbitrary infinite block B13 from
the setMAXI(E ′, (s1, s3)):

B13 = (s11, s
3
1)

τ
−→ (s12, s

3
2)

τ
−→ · · ·

τ
−→ (s1m, s

3
m)

τ
−→ · · · ,

where (s11, s
3
1) = (s

1, s3), and its projections prM1(B13) and prM3(B13) on LTSsM1 andM2 respectively.
Let B1 be an arbitrary block inM1 whose prefix is prM1(B13), and B3 be an arbitrary block inM3 whose
prefix is prM3(B13). Then several cases are possible depending onwhetherB1 andB3 are finite or infinite
blocks.

(1) Both blocks B1 and B3 are infinite. Since (s1, s2) ∈ H ′ and (s3, s4) ∈ H ′′, there exists a pair of
infinite blocks B2 and B4 in MAXI(E2, s2) and MAXI(E4, s4) respectively such that B2 matches B1
w.r.t. H ′ and B4 matches B3 w.r.t. H ′′. Then by the definition of asynchronous composition the
modelM2 ‖Γ M4 has a block B24 which is obtained from B2 and B4 by interleaving arbitrarily the
transitions from B2 with that from B4. Clearly, B24 matches B13 w.r.t. H .
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(2) One of the blocks (say, B1) is infinite, whereas the other is finite. Since (s1, s2) ∈ H ′ and (s3, s4) ∈
H ′, there exists a pair of blocks

B2 = s21
τ
−→ s22

τ
−→ · · ·

τ
−→ s2k

τ
−→ · · · ,

B4 = s41
τ
−→ s42

τ
−→ · · ·

τ
−→ s4`

b
−→ s4`+1,

such that B2 is an infinite block fromMAXI(E2, s2)matching B1w.r.t.H ′, whereas B4 is a finite block
fromMAXF(E4, s4)matching B3 w.r.t. H ′′. Then by the definition of asynchronous composition the
modelM2 ‖Γ M4 has an infinite block

B24 = (s21, s
4
1)

τ
−→ (s21, s

4
2)

τ
−→ (s22, s

4
2)

τ
−→ · · ·

τ
−→ (s2k, s

4
2)

τ
−→ (s2k+1, s

4
2), . . .

which matches B13 w.r.t. H .

Thus, we demonstrated that the relationH satisfies all the requirements of quasi-block simulation.
Note, that for every pair of initial states s10 ∈ S

1
0 , s

3
0 ∈ S

3
0 there exists a pair of initial states s

2
0 ∈ S

2
0 ,

s40 ∈ S
4
0 such that (s

1
0, s

2
0) ∈ H

′ and (s30, s
4
0) ∈ H

′′. This impliesM1 ‖Γ M3 �
qb
Σ ′∪Σ ′′

M2 ‖Γ M4. �

Yet another simulationwhich has close relationshipswith quasi-block one is stuttering simulation.
It was introduced by Penczek et al. (1999) on the basis of stuttering bisimulation which enjoys wide
applications in the framework of partial order reduction technique (see Browne et al. (1988) and
Clarke et al. (1999)).
Let Mi =

〈
S i, S i0, A

i, Ri,Σ i, Li
〉
, i = 1, 2, be two LTSs, and Σ ⊆ Σ1 ∩ Σ2. A relation H ⊆ S1 × S2

is called a stuttering simulation w.r.t. Σ iff every pair (s′, s′′) ∈ H complies with the following
requirements:

(1) L1(s′) ∩Σ = L2(s′′) ∩Σ .

(2) For every path π ′ = s′1
a1
−→ s′2

a2
−→ · · ·

ak−1
−→ s′k

ak
−→ · · · , s′0 = s′ there is a path

π ′′ = s′′1
a1
−→ s′′2

a2
−→ · · ·

ak−1
−→ s′′k

ak
−→ · · · , s′′0 = s

′′ and partitions P ′1P
′

2 . . . , P
′′

1 P
′′

2 . . . of π
′

and π ′′, such that for every i ≥ 1 the sub-paths P ′i and P
′′

i match, i.e. (s
′, s′′) ∈ H holds for every

pair of states s′ ∈ P ′ and s′′ ∈ P ′′.

We writeM1 �stΣ M2 to indicate the existence of stuttering simulation betweenM1 andM2.

Proposition 10. M1 �
qb
Σ M2 =⇒ M1 �

st
Σ M2.

A proof of this proposition is straightforward. Since stuttering simulation preserves ACTL?-X, this
leads us to the following conclusion.

Proposition 11. Suppose that a qb-simulation M1 �
qb
Σϕ
M2 is well-formed w.r.t. a ACTL?-X formula ϕ,

and M2 |= ϕ. Then M1 |= ϕ as well.

As may be seen from the definition, stuttering simulation does not take into account any actions,
but even in the case when A1 = A2 = ∅ it is weaker than qb-simulation.

Example 12. Consider two modelsM1 andM2 depicted in Fig. 3.
The evaluation functions associate with every state exactly one of the basic propositions from the

setΣ0 = {p1, p2, p3}. It could be directly checked thatM1 �stΣ0 M2.
Suppose that there exists a qb-simulation on M1 and M2 w.r.t. some sets of events E1 and E2. It

should be noted, that the path π = s1s6s7 may correspond only to the path π ′ = u1u4u6u7 with the
partitioning s1; s6; s7 and u1; u4u6; u7 respectively. This means that the transition u4

τ
−→ u6 is not in

E2. On the other hand, the path δ = s1s2s4s6s7 may correspond only to the path δ′ = u1u2u4u6u7 with
the partitioning s1; s2s4; s6; s7 and u1; u2u4; u6; u7 respectively. Hence, u4

τ
−→ u6 has to be in E2. This

certifies thatM1 6�
qb
Σ0
M2. �
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Fig. 3. qb-simulation versus st-simulation.

The fact that qb-simulation is stronger than stuttering simulation implies that the former is easy for
checking andmore feasible for practical applications in the framework of induction-based verification
techniques.
As a result we may outline the following invariant-based approach to the verification of

parameterized asynchronous networks with the help of qb-simulation. Given an infinite family F =
{Pi}∞i=1 of network models, where each model Pi is an asynchronous parallel composition of the form
p1‖p2‖ . . . ‖pi‖q, find the least k such that Pk+1 ≺b Pk. Since Pk+1 ≺b Pk implies Pk+1 ≺qb Pk,
Proposition 9 guarantees that Pn ≺qb Pk holds for every n, n > k. If a property to be checked is
expressed by a formula ϕ from ACTL?-X then, in view of Proposition 11, to verify this property of the
parameterized system F it is sufficient to model check a finite set of finite models Pi, 1 ≤ i ≤ k,
against ϕ. As it is easy to see, the most difficult step is to establish a block simulation between finite
modelsMk andMk+1. In Section 4 we show how to implement this approach in practice.

4. Applying quasi-block simulation to the verification of asynchronous networks

There are very few papers (in fact, Calder and Miller (2002) were not aware of any) where the
induction-based verification technique is applied to asynchronous networks. Emerson and Namjoshi
(1995) thoroughly studied parameterized systems composed of identical asynchronous processes
which are arranged in a ring topology and communicate by passing a boolean token were considered.
It has been shown that for several classes of indexedACTL?-X properties a cut-off effect takes place, i.e.
the verification of the whole parameterized system can be reduced to the model checking of finitely
many instances of the system. In a certain sense, a cut-off plays a role of an invariant for such systems.
Clarke et al. (2004) extended the results of Emerson and Namjoshi from rings to some other classes
of asynchronous networks. Nevertheless, many interesting classes of parameterized asynchronous
systems do not fall into this category.
The application of invariant-based techniques to the verification of asynchronous parameterized

systemswas studied also by Shtadler and Grumberg (1990), Marelly and Grumberg (1991), and Clarke
et al. (1995, 1997). But in all these cases invariants were generated only with the help of specification
driven abstraction. Thus, for example, Clarke et al. (1997) represented parameterized systems by
network grammars, and used regular languages to express state properties. To generate invariants
they developed an unfolding heuristic: given a parameterized system {Pk}∞k=1 to find n such that
h(Pn+1) � h(Pn), where � is a strong simulation and h is an appropriate abstraction. Much attention
has been paid to the development of effective technique for constructing required abstractions.

4.1. Finding invariants in binary trees

To demonstrate the feasibility of quasi-block simulation we limit our scope to the parameterized
systems whose communication networks are binary trees. The nodes of such networks are the
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Fig. 4. The network of model p(r(r(c, c), r(c, c))).

processes of three types:

(1) the only producer attached to the root of the tree,
(2) intermediate nodes (routers), and
(3) leaf nodes (consumers).

Specifically we consider parameterized systems generated by the following network grammar G:

P → p ‖1 T
T → T ‖2 r ‖3 T
T → c ‖2 r ‖3 c
T → c

where terminals p (producer), c (consumer), and r (router) are arbitrary finite state processes; symbols
‖1, ‖2, and ‖3 are shorthand for parallel composition with respect to action synchronizers and action
renaming functions specific to each symbol. In the grammar G the producer has the only child process
and each router has exactly two child processes. We denote by L(G) the set of networks generated
by the grammar G.
As G generates only tree networks, it is more suitable to use traditional algebraic notation for

writing network grammar terms. Thus, we will write p(T ), r(T , T ), r(c, c) for the terms on the right-
hand side of the grammar rules. For instance, a term p(r(r(c, c), r(c, c))) specifies a model composed
of one producer, three routers, and four consumers; the network of this model is a tree of depth 3
depicted in Fig. 4. Sometimes a behavior of a producer is of no importance for the analysis of a model.
In this case we restrict our consideration to tree networks derived from non-terminal T only. Such
networks are specified by the terms of the form r(t1, t2). Inwhat followswhen studying qb-simulation
r(t1, t2) �

qb
Σ(r) r(t

′

1, t
′

2) between reducedmodels r(t1, t2) and r(t
′

1, t
′

2)wewill assume thatΣ(r) is the
set of atomic propositions of the topmost router r . Similarly, we assume thatΣ(p) is the set of atomic
propositions of the producer p.
We apply the induction technique to verify the infinite family of parameterized finite state systems

generated by the network grammar G specified above. The key point of our approach is that of finding
an invariant ofL(G)with respect to qb-simulation. We made an attempt to find such an invariant by
analyzing the networks derived from non-terminal symbol T .
Denote by TN the set of tree networks of depth N derived from T .

Proposition 13. If the following qb-simulations are valid

r(r(c, c), c) �qbΣ(r) r(c, r(c, c)) (1)

r(r(c, c), r(c, c)) �qbΣ(r) r(c, r(c, c)) (2)

r(c, r(c, r(c, c))) �qbΣ(r) r(r(c, c), r(c, c)) (3)

r(r(c, r(c, c)), c) �qbΣ(r) r(r(c, c), r(c, c)) (4)

r(r(c, r(c, c)), r(c, r(c, c))) �qbΣ(r) r(r(c, c), r(c, c)) (5)

then any network t from T3 is qb-simulated by the model r(r(c, c), r(c, c)), i.e. t �
qb
Σ(r) r(r(c, c), r(c, c)).
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Proof. Assertion (1) allows us to rotate a tree. Applying assertions (1) and (2) to the subtrees
of a network from T3 we conclude that for any t ∈ T3 there exists such a t ′ ∈

{r(c, r(c, r(c, c))), r(r(c, r(c, c)), c), r(r(c, r(c, c)), r(c, r(c, c)))} that t �qbΣ(r) t
′. In view of the

assertions (3)–(5) the latter is reduced to qb-simulation t �qbΣ(r) r(r(c, c), r(c, c)).
All these reductions can be made due to monotonicity of parallel composition with respect to

qb-simulation (Proposition 9). �

As it may be seen from Proposition 13 the model Inv = r(r(c, c), r(c, c)) is a keystone of our
construction.

Proposition 14. If the assertions (1)–(5) are valid, then the model Inv qb-simulates every network t from
TN , N ≥ 3, i.e. t �

qb
Σ(r) Inv.

Proof. The proof proceeds by induction on the depth N of a tree network t . The basis of induction
(N = 3) is trivial due to Proposition 13.
Suppose that Inv qb-simulates every network from TN , and let t be an arbitrary network TN+1.

Consider a tree network t ′ which is obtained from t by substituting the network Inv instead of every
bottom subtree of depth 3 in t . The network t ′ is in TN , so, by the induction hypothesis, t ′ �qb Inv. By
Proposition 13, every subtree of depth 3 is qb-simulated by Inv. Therefore, we have t �qb Inv, due to
monotonicity of parallel composition with respect to qb-simulation. �

By combining Propositions 9 and 14, we arrive at the following conclusion.

Proposition 15. If the assumptions (1) and (5) are valid then themodel p(Inv) is an invariant of the family
L(G), i.e. p(t) �qbΣ(r)∪Σ(p) p(Inv) holds for every network t of depth N,N ≥ 3, derived from non-terminal
T .

Thus, to certify that the finite model p(Inv) is an invariant of the infinite family of models L(G) it is
sufficient to make certain that the assumptions (1)–(5) are valid. In this case Propositions 11 and 15
guarantee that any property of the producer and the top router is satisfied on any tree network of
depth greater than 2 iff the property is satisfied on the invariant.

Proposition 16. Let ϕ be an arbitrary ACTL?-X formula which includes only atomic propositions from
Σ(p) ∪Σ(r). If the assertions (1)–(5) are valid then

p(Inv) |= ϕ ⇐⇒ p(w) |= ϕ holds for every networkw, w ∈

∞⋃
i=2

Ti.

4.2. Checking quasi-block simulation

When checking qb-simulation between finite models we rely on Propositions 7 and 8. Since
M1 �bΣ M2 impliesM1 �

qb
Σ M2, qb-simulation checking of the assumptions (1)–(5) can be reduced to

block simulation checking of the corresponding models.
To check that a pair of states (s, u) in some LTSs M1,M2 complies with the definition of block

simulation one should check each pair in every finite block outgoing from the states s and u. To
reduce the complexity of checking procedure we introduce a new concept of semi-block simulation.
Let Mi =

〈
S i, S i0, A

i, Ri,Σ i, Li
〉
, i = 1, 2, be two LTSs. Let Σ be a subset of Σ1 ∩ Σ2, and E1 and E2 be

some sets of events ofM1 andM2.

Definition 17. A binary relation H ⊆ S1 × S2 is called a semi-block simulation on M1 and M2 w.r.t.
Σ , E1 = Observ(M1,Σ), E2 = Observ(M2,Σ), iff every pair (s1, t1) ∈ H meets the following
requirements:

(1) L1(s1) ∩Σ = L2(t1) ∩Σ ,
(2) for every finite block B′ = s1

τ
−→ · · ·

τ
−→ sm

a
−→ sm+1 from MAXF(E1, s1) there is a block

B′′ = t1
τ
−→ · · ·

τ
−→ tn

a
−→ tn+1 inMAXF(E2, t1) such that:



I.V. Konnov, V.A. Zakharov / Journal of Symbolic Computation 45 (2010) 1144–1162 1157

(a) Item 2.a (b) Item 2.b (c) Item 2.c

Fig. 5. Semi-block simulation.

(a) if n > 1 then (s1, tn) ∈ H and (sm+1, tn+1) ∈ H;
(b) if n = 1 then (sm+1, tn+1) ∈ H;

(3) (divergency) for every infinite block B′ = s1
τ
−→ s2

τ
−→ · · ·

τ
−→ si

τ
−→ · · · fromMAXI(E1, s1,)

there exists an infinite block B′′ = t1
τ
−→ t2

τ
−→ · · ·

τ
−→ tj

τ
−→ · · · in MAXI(E2, t1,) and a

number k > 1 such that (s1, tk) ∈ H .

The items of this definition are illustrated in Fig. 5. Pairs of states connected by dashed lines must
belong to the relation H . Note, that in the definition of block simulation virtually all the combinations
of pairs in the matching blocks are required to be in the relation H . The definition of semi-block
simulation imposes weaker constraints on matching blocks, i.e. it is sufficient to check that at most
two pairs of states in matching blocks are in the relation.
We writeM1 �sbΣ M2 iff there exists a binary relation H ⊆ S

1
× S2 of LTSsM1 andM2 such that H is

a semi-block simulation onM1 andM2 w.r.t. Σ , Observ(M1,Σ), Observ(M2,Σ), and for every initial
state s0 ∈ S10 there exists an initial state t0 ∈ S

2
0 such that (s0, t0) ∈ H .

Though the constraints on matching blocks in definitions of block simulation and semi-block
simulationdiffer significantly, the former relationmaybe constructed on the basis of the latter relation
and vice versa.

Proposition 18. M1 �sbΣ M2 ⇐⇒ M1 �
b
Σ M2.

5. Example: Resource reservation protocol

To demonstrate that quasi-block simulationmakes it possible to get rid of abstraction in induction-
based invariant generation we apply this approach to the verification of Resource ReSerVation
Protocol (RSVP).
Resource reservation protocol (Braden et al., 1997) is designed to reserve resources in a network

with a guaranteed quality of service. The nodes of a network that hold these resources are called
producers (or senders). Resource reservation procedure is launched by the consumers of resources (they
are also called receivers). For instance, a consumer may reserve a download rate on the path from a
producer to play video files stored on the producerwithout visible latency. A primary feature of RSVP is
its scalability: RSVP scales to very largemulticast groups because it uses receiver-oriented reservation
requests that merge as they progress up the multicast tree. The reservation for a single receiver
does not need to travel to the source of a multicast tree (producer); it travels only until it reaches
a reserved branch of the tree. While RSVP is designed for multicast applications, it may also make
unicast data flows. RSVP is a bidirectional protocol. Resource reservation requests are sent upstream,
from consumers to producers, whereas data is sent downstream, from producers to consumers. Any
node in a network is allowed to be both a producer and a consumer. The protocol supports multiple
reservation sessions, i.e. one consumermay reserve some resources in one session and other resources
in another session. So, at the same time a host may be both a consumer in one session and a producer
in another one. RSVP does not perform its own routing; instead it uses underlying routing protocols
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to determine where it should carry reservation requests. As router processes change paths to adapt
topology changes, RSVP adapts its reservation to the new paths wherever reservations are in place.
Producers and consumers communicate by sending messages. We will restrict our consideration

to the messages of the following eight types: path, resv, path_teardown, resv_teardown, path_refresh,
resv_refresh, path_error, resv_error. A path message is sent downstream by a producer to allocate
available communication paths, whereas resv messages are sent along such paths upstream by
consumers as requests for reservation of resources. A path_teardown message is sent by a producer
when it breaks sending data. A resv_teardown message is sent by a consumer when it abandons
receiving data. From time to time path_refresh messages are sent downstream to make sure that
communication paths are still active, and resv_refresh messages are sent upstream as reservation
acknowledgements. A path_error message is sent upstream whenever an error occurs during path
allocation. A resv_error message is sent downstream when reservation error occurs.
The outline of communication in the protocol is as follows. Producers send path messages

downstream along available routes that have been created by some routing protocol. In response
to these messages consumers send upstream resv messages as reservation requests. Intermediate
nodes (we will call them routers) check, whether reservation requests may be satisfied; if such is the
case then they send reservation request upstream. The important feature of RSVP is that reservation
requests are merged when sent upstream. When reservation messages are delivered to a producer
it sends data along the selected routes to the subscribed consumers. At any time a producer or a
consumer may send a teardown message to cancel a communication session. The nodes refresh the
sessions periodically by exchanging path_refr and resv_refr messages.

5.1. A model of RSVP

Several properties of RSVP have already been verified in Creese and Reed (1999) and Villapol
(2003). Creese and Reed (1999) used CSP to construct a formal model of some fragment of RSVP to
check the property of reservationmerging in a binarymulticast tree. Villapol (2003) studied amodel of
RSVPwith one producer, one router and one consumer bymeans of Coloured Petri Nets; this approach
extended substantially the set of properties that were verified.We do not study RSVP in corpore either
and restrict our consideration to some formal scale-downmodel of RSVP. The principal simplifications
are as follows.

Topology. Following Creese and Reed (1999) we consider binary trees only. In this case only one
producer per session is allowed. The routers and consumers form a binary tree where the routers
are placed in the intermediate nodes and the consumers are placed in the leaves. The only producer
is attached to the router in the root of the tree.

Multicast versus unicast. When dealing with a unicast messaging, one has to attach a destination
(and possibly source) address to every message. In this case one should either consider models with
potentially infinite state space (as address size grows with the number of processes), or consider
models with a bounded number of consumers. In our model the producer uses multicast messages
only. A router does not necessarily send messages to both descendants anyway.

Reservation decisions. In RSVP each intermediate node uses Admission Control to check whether the
node has sufficient resources available to supply the requested quality of service. In our currentmodel
it is assumed that the routers have an unbound amount of resources, which leads to a successful
reservation on every request.We also take no account of Policy Controlwhich is intended to determine
whether the consumer has a permission to make the reservation.

Failures. We assume that all channels and processes are reliable: no messages could be lost and no
routers could be stuck.

Other abstractions. When building our model we do not touch such issues as reservation
confirmations and timeouts.
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Table 1
Validating the assertions (1)–(5). Results.

Assumption onM1
andM2

#States ofM1 #States ofM2 #Positive pairs #Negative pairs Time Memory (Mb)

(1) 1732 1277 1557 40 0.03 s 15
(2) 24993 1277 28127 471 2.8 s 16
(3) 14672 24993 27252 2281 4.68 s 18
(4) 21659 24993 34274 1947 6 s 21
(5) 1.8× 106 24993 6.8× 106 224761 11.7 h 296

The models of RSVP were implemented in the model description language Promela in the
framework of the open-source software verification tool Spin (cf. Holzmann (2003)). The usage of
Promela gave us an advantage of exploiting a simulator and model checker from Spin.
In order to verify parameterized RSVP model according to the technique described in Section 4

we break the checking procedure into two stages. At the first stage we build semi-block simulations
between the models mentioned in Proposition 13. If all the simulations are built successfully and
assertions (1)–(5) are valid, then the model p(Inv) is proved to be an invariant and the second stage
is applied. At the second stage Spin is used to check the invariant against given specifications.
The implementation of our experimental system for induction-based verification of parameterized

models CheAPS (Checker of Asynchronous Parameterized Systems) as well as a description of
parameterized model of RSVP and the results of checking this model are available at http://lvk.cs.
msu.su/∼konnov/cheaps/.

5.2. Stage 1: Computing semi-block simulations to find invariants

We implemented a naive algorithm for checking semi-block simulation which works iteratively
according to the definition above. It adds all the pairs with the same labelling of states to the relation
and then removes those pairs that do not satisfy the definition. However, in this case at the first
iteration the relation may have a very large size close to |S1| · |S2|. To avoid such effect we use a
lazy approach. All pairs in the relation are partitioned into two groups: positive pairs (that satisfy
the definition) and negative pairs (that do not satisfy it). The computation of a semi-block simulation
begins with considering the initial pairs as positives. Next, the positive pairs are checked one by one
following the definition. The computation continues while some pairs are brought into consideration
or change their status from positive to negative. Since the set of negative pairs grows monotonically
the computation will eventually terminate.
A semi-block simulation checking algorithm has been implemented in C++ using std::map to

store the relation. Our simulation checking tool built the required block simulations that validate
the assumptions (1)–(5). When checking r(r(c, r(c, c)), r(c, r(c, c))) versus Inv we had ran out of
memory (2 GB). To bypass the memory limitation we implemented a relation storage as a minimized
automaton from Spin (see Puri and Holzmann (1998)). We found that this not only drastically
decreases memory consumption, but also speeds up the computation.
The results of our experiments are depicted in Table 1. All assumptions were proved to be valid

by finding appropriate semi-block simulations. The program was running on 2.4 GHz AMD Opteron
provided by Laboratory of Computer Systems, Moscow State University.
The checking of r(r(c, r(c, c), r(c, r(c, c)))) versus Inv takes a considerable amount of time

as model state space grows rapidly with a number of processes. We have successfully optimized
the computation by using various optimization techniques: splitting positives into stable and
unstable subsets, using back propagation of negative results, pair enumeration using sequential file
representation, caching of previous queries toDFA. Thanks to the optimizationswe reduced timeof the
computation to reasonable values, though there is still room for further improvement. We believe, it
is possible to exploit symbolic and bisimulation-based techniques to find equivalent states in models,
and thus reduce state space of models significantly.

http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
http://lvk.cs.msu.su/~konnov/cheaps/
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5.3. Stage 2: Using invariants for checking properties of RSVP.

As it follows from Proposition 11 and Corollary 15, to check the whole infinite family of
networksL(G) against any ACTL?-X -specification ϕ it is sufficient to demonstrate that the invariant
p(r(r(c, c), r(c, c))) and networks p(r(c, r(c, c))), p(r(r(c, c), c)), p(r(c, c)), whose depth is less than
3, satisfy ϕ.
Our main efforts were focused on the computation of block simulation and thus finding a desired

invariant. After obtaining a desirable invariant we checked it against a number of specifications
(safety requirements). One property we checked on the model p(r(r(c, c), r(c, c))) (one producer,
three routers, and four consumers) is the requirement that the consumer does not receive path tear
acknowledge while it does not send path teardown message. This specification is expressed in Linear
Temporal Logic (and in ACTL?-X) as follows:

ϕ1 = A(G¬producer!path_tear → G¬producer?path_tear_acknowledge). (6)

The second checked property is that of reservation merging, which had been checked by Creese
and Reed (1999). In terms of our model it means that reservation request cannot appear while the
router is in ‘‘reserved’’ state:

ϕ2 = AG(router1.reserved→ ¬router1.parent!resv). (7)

The third and the fourth checked properties are reformulated versions of those that were studied
by Villapol (2003). The third property requires that a router may receive a reservation request only
when a path is set up:

ϕ3 = AG(router1?resv→ router1.state 6= ROUTER_FREE). (8)

The fourth property states: if data is transmitted via a router, then a reservation is already set up:

ϕ4 = AG(router1?data→ router1.state = ROUTER_RESV ). (9)

By applying Spin model checker we found that specification ϕ1 is satisfied on the system
p(r(r(c, c), r(c, c))) and ϕ2, ϕ3, ϕ4 are satisfied on the system r(r(c, c), r(c, c)). Due to Proposition 16
we conclude that properties {ϕi}4i=1 are satisfied on any tree of depth greater than 2.

6. Conclusions and directions for future research

In this article we have introduced a new sort of simulation relation for Labelled Transition Systems
(LTSs) — a quasi-block simulation (qb-simulation). We have proved that qb-simulation satisfies two
principal requirements: (1) it preserves the satisfiability of ACTL?-X formulae, and (2) asynchronous
parallel composition of LTSs is monotonic w.r.t. qb-simulation. Owing to these properties of qb-
simulation, the induction-based approach to parameterized model checking can be extended to
infinite families of asynchronous communicating processes. We have implemented a qb-simulation
checking algorithm and used it to find an invariant of a parameterizedmodel of Resource ReSerVation
Protocol (RSVP). This case study favours the view that induction-based technique supplied with an
efficient qb-simulation checking procedure is attractive for verification of complex families of LTSs.
Nevertheless, there is a number of tasks to be solved next to build qb-simulation up.

(1) The complexity of qb-simulation checking problem needs further consideration; as it can be seen
from Definition 5, this problem is in NP. If it happens to be NP-complete then we need a suitable
approximation to qb-simulation that can be checked in polynomial time.

(2) Network grammars provide a suitable means for the description of families of tree-like networks
composed of heterogeneous processes. In Section 4 we have demonstrated that in the case
of simple grammar G an invariant of the family L(G) can be computed pure automatically
without resorting to abstractions. It would be interesting to extend this approach to arbitrary
parameterized networks specified by context-free network grammars.

(3) We are interested also in finding such a parameterized asynchronous system whose invariants
cannot be computed with the help of qb-simulation. This system will serve as a counterexample
to reveal the limitations of qb-simulations and to outline the ways for its further improvement.
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