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Clinically applied CT arthrography to measure the sulphated glycosaminoglycan
content of cartilage
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Objective: Similar to delayed gadolinium enhanced MRI of cartilage, it might be possible to image
cartilage quality using CT arthrography (CTa). This study assessed the potential of CTa as a clinically
applicable tool to evaluate cartilage quality in terms of sulphated glycosaminoglycan content (sGAG) and
structural composition of the extra-cellular matrix (ECM).
Methods: Eleven human cadaveric knee joints were scanned on a clinical CT scanner. Of each knee joint,
a regular non-contrast CT (ncCT) and an ioxaglate injected CTa scan were performed. Mean X-ray
attenuation of both scans was compared to identify contrast influx in seven anatomical regions of
interest (ROIs). All ROIs were rescanned with contrast-enhanced mCT, which served as the reference
standard for sGAG content. Mean X-ray attenuation from both ncCT and CTa were correlated with mCT
results and analyzed with linear regression. Additionally, residual values from the linear fit between ncCT
and mCT were used as a covariate measure to identify the influence of structural composition of cartilage
ECM on contrast diffusion into cartilage in CTa scans.
Results: CTa resulted in higher X-ray attenuation in cartilage compared to ncCT scans for all anatomical
regions. Furthermore, CTa correlated excellent with reference mCT values (sGAG) (R¼ 0.86; R2¼ 0.73;
P< 0.0001). When corrected for structural composition of cartilage ECM, this correlation improved
substantially (R¼ 0.95; R2¼ 0.90; P< 0.0001).
Conclusions: Contrast diffusion into articular cartilage detected with CTa correlates with sGAG content
and to a lesser extent with structural composition of cartilage ECM. CTa may be clinically applicable to
quantitatively measure the quality of articular cartilage.

� 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

The current reference standard for osteoarthritis (OA) staging is
the Kellgren and Lawrence score based on knee radiography1.
However, this technique is not sensitive enough to detect OA at an
early stage. Sulphated glycosaminoglycan (sGAG) is a key molecule
in articular cartilage and its content is an indicator of cartilage
health2. Loss of sGAG from the articular cartilage is a hallmark of
early OA and occurs well before OA is detected radiographically3,4.
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Micro computed tomography (mCT) used together with a nega-
tively charged contrast agent (ioxaglate) is a well established
technique to image sGAG-distribution in cartilage5e7. The tech-
nique is comparable to delayed gadolinium enhanced magnetic
resonance imaging of cartilage (dGEMRIC)8e12. Previous in vitro
work has shown that there is a clear inversed relationship between
the amount of ioxaglate in the cartilage measured with mCT and the
negatively charged sGAG content of the cartilage measured with
biochemical essays (R2¼ 91e94%)5,6, and histology (R2¼77%)13.
In vivo research in small animals has also demonstrated that mCT
arthrography is able to accurately measure changes in cartilage
quality14,15.

In humans, CT arthrography (CTa) using intra-articularly injec-
ted contrast agent is an established clinical technique for imaging of
knee abnormalities16,17. However, it is solely used for detection of
morphologic derangements rather than assessment of cartilage
ublished by Elsevier Ltd. All rights reserved.
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sGAG content. In this cadaver study we determined whether it is
possible to quantitatively measure the sGAG content of human
articular cartilage with a clinical CT system, after intra-articular
injection of a contrast agent. We also investigated to what extent
the contrast influx into cartilage is influenced by the structural
composition of the extra-cellular matrix (ECM).

Methods

Cadaver specimens

Thirteen cadaveric lower extremities from eleven individuals
who had donated their bodies to science (seven female, four male;
mean age at death 74 years, age range at death 30e96 years) were
available. All extremities were freshly frozen at �20�C until start of
the experiment. Prior to first imaging, all specimens were slowly
defrosted in a cooled environment (7�C) for 5 days. All extremities
were at room temperature during imaging.

Acquisition and post-processing of non-contrast CT (ncCT) and
CTa data

ncCT was performed of all knee joints using a second generation
dual source multidetector spiral CT scanner (SOMATOM Definition
Flash, Siemens Healthcare AG, Erlangen, Germany) with a tube
voltage of 80 kV and an effective mAs-value of 3,140. Scan time per
ncCT was approximately 30 s per scan. All specimens were scanned
Fig. 1. Representative sagittally reconstructed images of a knee joint from ncCT (AeC) and
dataset showing the definition of the ROIs. (GeI), and a 3D representation of all seven ana
medial and lateral condyle of the femur (pMC/pLC); weight-bearing medial and lateral pla
in the standard anatomic axial plane. All scans were reconstructed
with an effective slice thickness of 0.75 mm and a sharp recon-
struction kernel (B75s). Multiplanar reconstruction was performed
(image pixel size 0.265 mm) [Fig. 1(AeC)].

Immediately after ncCT, 20 ml of 30% ioxaglate solution (diluted
in saline) (Hexabrix 320, Mallinckrodt, Hazelwood, MO, USA)16 was
injected intra-articularly using an 18 gauge needle. All knees were
flexed (w120�) and extended (w0�) for 5 min in order to achieve
optimal distribution of the contrast agent throughout the joint. Ten
minutes after contrast injection, all knees were rescanned using the
same CT scanner, scanning parameters (30 s/scan), and recon-
struction methods [Fig. 1(DeF)].

All scans were converted into binary datasets using one fixed
attenuation threshold (430 Hounsfield units) that was selected
visually to render the best possible segmentation of cartilage in all
datasets [Fig. 1(GeI), Supplementary Fig. 1 online]14. Using analysis
software (Skyscan, Kontich, Belgium), per knee seven regions of
interest (ROIs) were manually defined. Each cartilage ROI extended
over 40 contiguous sagittal slices. These cartilage ROIs consisted of
the central weight-bearing area of both medial and lateral femoral
condyles (wbMC and wbLC), the posterior non-weight bearing area
of both femoral condyles (pMC and pLC), both weight-bearing
medial and lateral tibial plateaus (wbMP and wbLP) and the mid-
portion of patellar cartilage (mpP) [Fig. 1(GeM)]. Anterior
margins of the weight-bearing femoral condyles and tibial plateaus
were defined at the level of the posterior aspect of the anterior
meniscal horn. The posterior margins were defined at the level of
after intra-articular contrast injection for CTa (DeF), after segmentation into a binary
lyzed ROIs (JeM): weight-bearing medial and lateral condyle (wbMC/wbLC; posterior
teau of the tibia (wbMP/wbLP); mid portion of patellar cartilage (mpP).
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the anterior aspect of the posterior meniscal horn. The posterior
non-weight bearing femoral condyle ROI extended backward from
the level of the dorsal margin of the posterior meniscal horn. We
calculated the mean X-ray attenuation of cartilage in these ROIs on
non-contrast and contrast-enhanced clinical CT scans.

Equilibrium partitioning of an ionic contrast agent using (EPIC-)mCT

Because EPIC-mCT has shown strong correlation with cartilage
sGAG content, we selected this as our reference test for sGAG
content of cartilage5,6,13. In EPIC-mCT an equilibrium-state exists
between sGAG and contrast agent after a long incubation period.
Due to the equilibrium, structural composition of the cartilage
ECM18 does not influence the interaction between contrast and
sGAG content of cartilage13.

After CTa, the knee joints were dissected into five parts: both
medial and lateral femoral condyles, both medial and lateral tibial
plateaus and the patella. Soft tissue was removed to a maximal
extent, without harming cartilage integrity. In order to achieve
equilibrium between the contrast agent and sGAG in cartilage, all
dissected specimens were incubated in an ioxaglate contrast solu-
tion for 24 h at room temperature19e21. It is advocated to use the
highest possible concentration of contrast, allowing best cartilage
segmentation to achieve highest sensitivity for changes in sGAG
content7,13. We used a 20% solution of ioxaglate, which resulted in
the best cartilage segmentation at the air/cartilage and bone/
cartilage interfaces.

EPIC-mCT was performed on a mCT scanner (Skyscan1076, Sky-
scan, Kontich, Belgium). The following scan settings were used:
isotropic voxel size of 35 mm; a voltage of 55 kV; a current of
181 mA; field of view 68 mm; a 0.5 mm aluminium filter; 198� with
a 0.4� rotation step. Scanning time per specimen was 6e10 h,
depending on the size of the specimen (condyle, plateau or patella)
which was scanned. A plastic foil was wrapped around the spec-
imen to avoid dehydration. All scans were performed using the
same settings and all data were reconstructed identically.

Using Skyscan analysis software, these datasets were segmented
using a fixed attenuation threshold between air (25 gray value) and
subchondral bone (120 gray value) that was selected visually for the
best segmentation result in all datasets. In all segmented mCT
datasets, similar ROIs of the cartilage regions corresponding with
ROIs of the clinical CTawere drawn and the mean X-ray attenuation
was calculated again. These mCT based mean attenuation values
were used as the reference for sGAG content against which the
attenuation values on ncCT and CTa were compared.

Contrast diffusion influenced by structural composition of cartilage
ECM

An important difference between the mCT and CTa scans is that
with mCT scanning, the contrast agent and sGAG are partitioned at
equilibrium. However, the principle of CTa is dependent on
a diffusion process before equilibrium, which is influenced by the
electrostatic interaction between sGAG and ioxaglate15. Therefore,
measurements from non-equilibrium CTa are also influenced by
other factors than sGAG content alone19e21. In particular, so-called
tissue dragging influences the interaction between contrast and
sGAG22,23. A high tissue drag results from an intact collagen
network and is predominantly present in the top layers of healthy
cartilage where collagen is densely packed parallel to the cartilage
surface and acts as a barrier membrane24,25. Consequently, contrast
diffusion goes slowly in regions with high tissue drag. When
collagen is structurally impaired, e.g., in OA, tissue dragging
diminishes and more contrast penetrates in comparison to healthy
cartilage due to a higher diffusion rate.
In ncCT, X-ray attenuation of cartilage results only from initial
dissimilarities in cartilage composition (e.g., collagen, sGAG and
water content). Together with the information on sGAG content
from mCT, the influence of this structural composition of the carti-
lage on CTa outcome was further investigated using statistical
models.

Statistical analysis

To assess if the influx of contrast agent into the cartilage could
be detected, we compared the attenuation values per anatomical
region between ncCT and CTa scans with paired student’s t-tests. To
evaluate to what extent the attenuation values represented sGAG
content, we fitted linear regression models of the mean X-ray
attenuation values of both the ncCT and CTa to the results of mCT
scans for each knee compartment, of which we report the Pearson’s
correlation coefficients. To test if the correlation with mCT was
different between ncCT and CTa, we compared the slopes of both
models. These analyses were performed using GraphPad (Graph-
pad Software Inc., San Diego, USA).

In this study we used 13 knees from 11 individuals. The use of
two knees from one individual could potentially lead to an over-
estimation of the correlation between mCT and CTa measure-
ments26,27. Exclusion of either one of the knees in the two patients
that were scanned bilaterally did, however, not influence the results
of our study. Therefore, we did not apply a statistical correction.

Next, we investigated to what extent the influx of contrast was
influenced by structural composition of cartilage ECM itself. The
spatial variation in X-ray attenuation inside cartilage from ncCT
scans is related to both structural composition of cartilage ECM and
its sGAG content. Thus, when ncCT attenuation values are fitted to
mCT values (representing sGAG content) using linear regression, the
residuals, which is that part of the ncCT values which is not
explained by mCT, contain information on structural composition
independent of sGAG content. When these residuals are subse-
quently added as a covariable to the linear regression model that
relates CTa to mCT values, the contribution of these residuals to the
model represent the extent to which the influx of the contrast is
influenced by structural composition of the cartilage ECM, inde-
pendent of sGAG content. These analyses were performed using
SPSS (SPSS Inc., Chicago, USA).

All P-values< 0.05were considered to be statistically significant.

Results

Cadaver subjects

After CT scanning, three extremities were excluded from the
study due to clearly visible calcifications inside the cartilage. Thus,
a total of 10 cadaveric knee joints from nine individuals were
included in the analysis (six female, three male; mean age at death
69 years; age range at death 30e94 years). Furthermore, 12 carti-
lage ROIs were not included in our data analysis because of
(motion) artefacts during mCT scanning and segmentation errors
because of severe cartilage loss15.

sGAG correlation in ncCT and CTa

Mean X-ray attenuation results showed clear differences
between the anatomical cartilage locations and between ncCT and
CTa outcomes. In all locations, cartilage attenuation increased
significantly after injection of contrast agent [Fig. 2(A)].

Cartilage X-ray attenuation in ncCT correlated moderately with
mCT (n¼ 57, R¼ 0.45; R2¼ 0.20; P¼ 0.0003). The correlation
between cartilage X-ray attenuation from CTa scans and mCT was



Fig. 2. Contrast diffusion into cartilage. Comparison of cartilage attenuation between ncCT and CTa scans. A: Box plot of mean attenuation in cartilage from CT and CTa scans per
anatomical region. Boxes range fromtwenty-fifth to seventy-fifth percentile,whiskers run frommin tomax, thehorizontal line in thebox represents themedian and theplus sign shows
themean. B: Correlated results ofmean attenuation fromEPIC-mCTand clinical CTscanswith andwithout injected contrast for all anatomical regions combined (n¼ 57). ***: P< 0.0001.
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strong (n¼ 57, R¼ 0.86; R2¼ 0.73; P< 0.0001) [Fig. 2(B)]. The slopes
of both regression lines were significantly different (P< 0.0001).

sGAG content per anatomical location

The cartilage attenuation derived from CTa for all separate
anatomical compartments correlated strongly with attenuation
from mCT [wbMP, wbLP: n¼ 17, R¼ 0.89, R2¼ 0.79, P< 0.0001;
wbMC, wbLC, pMC, pLC: n¼ 33, R¼ 0.87, R2¼ 0.75, P< 0.0001;
mpP: n¼ 8, R¼ 0.89, R2¼ 0.7P, P¼ 0.003; Fig. 3(AeC)]. There was
a clear trend for all posterior condyle regions to have lower mean
attenuation values, indicating that less contrast penetrated this less
weight-bearing cartilage. The patellar values were clustered in
a different location than the values for the other anatomical
regions. When the data was analyzed for the tibio-femoral carti-
lage, the correlation coefficient was 0.92 [n¼ 49, R2¼ 0.85,
P< 0.0001, Fig. 3(D)]. When all regions (including mpP cartilage)
were pooled, the correlation diminished slightly [n¼ 57, R¼ 0.86,
R2¼ 0.73, P< 0.0001, Fig. 3(E)].

To display the spatial agreement of both techniques, Fig. 4 shows
representative images for cartilage attenuation for bothCTa andmCT.

CTa corrected for structural composition of cartilage ECM

Figure 5 shows the results of the additional analysis into the role
of structural composition of cartilage ECM for non-equilibrium CTa
scans. When residual values from the model that fits mCT to ncCT,
which represents structural composition of the ECM independent
of sGAG, were added as a covariate to themodel that fits mCT to CTa,
the correlation coefficient was 0.95 (n¼ 57, R2¼ 0.90; P< 0.0001).

Discussion

Quantitative imaging techniques are of the utmost necessity for
development and monitoring of treatment strategies targeted at
early OA. Therefore, imaging techniques (e.g., like dGEMRIC) are
extensively studied for their capability to measure sGAG content.
This cadaver studydemonstrates that cartilage attenuation fromCTa
is influenced by ioxaglate diffusion. And intra-articular injection of
ionic ioxaglate significantly improved the correlation with the
outcome of mCT. These results are similar to previous non-clinical
reports5,20,28, supporting our hypothesis that CTa can be used as
a quantitative surrogate measure of the cartilage sGAG content.
Patellar cartilage is known to have a different structural ECM
composition29,30. In the mCT and CTa scatter plot the patellar values
were located differently than the other anatomical locations.
Exclusion of patellar cartilage from our analysis improved the
predictive value of CTa for sGAG content (R2 from 73% to 85%),
indicating that structural composition of cartilage ECM influences
the outcome of non-equilibrium CTa. When residual ncCT values
representing structural composition of cartilage ECM were
combinedwith mCT (sGAG content) as a predictive value for CTa, the
R2 values from the model fit to CTa increased from 73% to 90%. This
improvement indicates to what extent contrast diffusion into
cartilage is influenced by structural composition of cartilage ECM.
In clinical practice, a correction for different contrast diffusion rates
cannot be calculated, since a reference standard for sGAG like EPIC-
mCT is not available in clinical practice. Therefore, cartilage X-ray
attenuation from CTa does not solely resemble sGAG content, but
reflects a quality measure of cartilage which also concerns the
structural integrity of the ECM.

Despite these encouraging results, there are limitations of CTa
that need to be addressed. For example, the intra-articular injection
introduces the risk of infection and also increases the risk of patient
complaint of knee pain after injection. Furthermore, the high
concentrations of ioxaglate used in this study, could influence
cartilage electro-mechanical properties31.

CTa is best applied in early stages of OA, because with severe
sGAG loss in advanced stages of OA segmentation errors will
occur15. Usually, early OA progression develops in relatively young
patients and obviously the main concern with (repetitive) CT scans
at a younger age is radiation exposure. The total dose of the scan-
ning protocol in this study (w2 mSv) was 10 times higher in
comparison to previously defined radiation doses of routine knee
CT scans (w0.2 mSv)32. More research is needed to determine
whether the same correlation with sGAG content can be measured
if radiation dose is reduced.

Magnetic resonance imaging (MRI) uses no ionizing radiation
and during the last years, has seen a rapid improvement with
several newly developed MR-based imaging techniques to
measure articular cartilage quality (e.g., dGEMRIC, Na23 mapping,
T2 mapping, and T1rho33,34). Thanks to the more widespread
availability of 3.0 Tesla MR systems and the development of novel
MRI sequences (e.g., Ultrashort TE35, SSFP36, UTE T2*37, and
DENSE-FSE38), relatively fast MR scans can be acquired with high
in plane resolution for (semi)quantitative cartilage imaging in OA



Fig. 3. Correlation plots of mean attenuation from EPIC-mCT and CTa. A: weight-bearing cartilage of medial and lateral plateaus (n¼ 17). B: weight-bearing and posterior cartilage of
medial and lateral condyles (n¼ 17). C: mid-portion of patellar cartilage (n¼ 8). D: pooled results for both tibial and femoral compartments (n¼ 49). E: pooled results for all ROIs
(n¼ 57). The dashed lines indicate the 95% confidence interval of the best fit regression line. wbMP: weight-bearing medial plateau, wbMC: weight-bearing medial condyle, pMC:
posterior medial condyle, mpP: mid-portion patella, wbLP: weight-bearing lateral plateau, wbLC: weight-bearing lateral condyle, pLC: posterior lateral condyle.
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research. However, these techniques still have several limitations:
relative (e.g., claustrophobia) or absolute (e.g., pacemaker)
contraindications for patients to undergo MRI, relatively low
spatial resolution, and costs39.
Fig. 4. Images of both EPIC-mCT and CTa. The attenuation of cartilage regions is visualized in
sGAG-distribution.
Given our results in relation to previously reported outcomes of
in-vivo mCT arthrography studies in small animals with an intact
circulation14,15, we believe that CTa may be able to measure carti-
lage quality in human patients in a clinical setting. CT has a short
colour and representative for sGAG content. High levels of attenuation represent a low



Fig. 5. Predictive CTa value (horizontal axis) based best fitted model from EPIC-mCT
(sGAG) and ncCT residuals (cartilage ECM composition) correlated with mean
attenuation of CTa (vertical axis) (n¼ 57). The dashed lines indicate the 95% confidence
interval of the best fit regression line. wbMP: weight-bearing medial plateau, wbMC:
weight-bearing medial condyle, pMC: posterior medial condyle, mpP: mid-portion
patella, wbLP: weight-bearing lateral plateau, wbLC: weight-bearing lateral condyle,
pLC: posterior lateral condyle.
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scanning time (w30 s), generates images with a high isotropic
resolution. Therefore, CT techniques may be a valuable alternative
toMR techniques, but more research is needed for this technique to
find its place in clinics and research.

In our opinion, research should first focus on optimizing the CTa
protocol for clinical use. The reproducibility of CTa measurements
should be evaluated in an in vivo environment in which all factors
that influence CTa outcomes are present (intact circulation, muscle
tension, joint capsule strength, etc). Future studies could also focus
on the fact that recent in-vitro studies indicate that X-ray attenu-
ation of cartilage can predict certain biomechanical properties such
as compressive stiffness28. Our finding that CTa outcome is influ-
enced by sGAG and structural composition of cartilage ECM could
be used to predict the biomechanical function of articular cartilage
with CT.

In conclusion, the results of this cadaver study demonstrate the
proof-of-principle that CTa is able to measure cartilage quality in
human knee joints. A wide implementation of this quantitative
analysis of articular cartilage may detect early changes in OA
patients and may contribute to the development of new treatment
strategies.
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