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a b s t r a c t

It has been shown that when perfect or partial channel state information (CSI) is
available at the transmitter, the performance and capacity of a space–time coded system
can be further improved. Multilevel space–time trellis codes (MLSTTC’s) are capable of
simultaneously providing bandwidth efficiency, diversity improvement and coding gain
with significantly reduced decoding complexity, especially for larger constellations and
higher throughputs. In this paper, we present a design of combined multilevel space–time
trellis codes and beam forming based on feedback from receiver, henceforth referred to
as weighted multilevel space–time trellis codes (WMLSTTCs). The channel profile is used
to provide a beam forming scheme that achieves the better performance by properly
weighting transmitted signals. Weights are selected that matches best with a channel
profile feedback from the receiver indicative of long-term characteristics of the wireless
channel. WMLSTTCs provide improvement in performance of MLSTTCs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decade, there has been a steady increase in the demand of high data rates that are to be supported
by wireless communication applications. Recently, there has been a trend towards use of multilevel signals in order to
increase transmission speed. However, multilevel signals are more likely to be corrupted by channel noise. Thus a digital
communication system using multilevel signals generally requires an error-correcting scheme. Several multilevel coding
methods using error-correcting have been previously suggested. However, an efficient system generally could not be
constructed using a binary error-correcting code. Hideki Imai and Shuji Hirakawa [1] proposed a new multilevel coding
method that used several error-correcting codes. The transmission symbols are constructed by combining binary error-
correcting codes having different error-correcting capabilities to construct an efficient system.

The ability to detect and/or correct errors is provided by the additional transmission of redundant bits, and thus by
lowering the effective information rate per transmission bandwidth. Gottfried Ungerboeck [2] solved this problem by
providing a coding technique which improves error performance without sacrificing data rate or requiring more bandwidth
by coding channel with expanded sets of multilevel/phase signals and Soft maximum-likelihood (ML) decoding using the
Viterbi algorithm. The technique works by partitioning the signal constellation into a multilevel hierarchy and defining a
code over each level and maximizing the minimum intra-subset Euclidean distance. The binary partitions of Ungerboeck
have been generalized by Calderbank [3] which permits multidimensional signal sets to be conveniently partitioned by
extending the multilevel coding method to coset codes and to calculate minimum squared distance and path multiplicity
in terms of the norms and multiplicities of the different cosets. The multilevel structure allows the redundancy in the coset
selection procedure to be allocated efficiently among the different levels. Pottie and Taylor [4] proposed a hierarchy of codes
to match the geometric partitioning of a signal set and combinations of such codes in a multilevel scheme to reduce coding
complexity.
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Motivated by the work of Imai and Hirakawa [1], and by Calderbank [2], Nambi Seshadri [5,6] proposed 8-phase shift
keyed multilevel code constructions for the Rayleigh fading channel utilizing maximum free Hamming distance binary
convolutional codes as building blocks. A newmultistage decoding procedure that makes use of interleaving/deinterleaving
resulting in a decoder that is robust to error bursts of decoding from previous stages and provides unequal error protection
can be obtained in a flexible manner by choosing the component codes appropriately.

The combined coding and modulation introduced by Ungerboeck consists of using an equi-resolution modulation and a
unique code to increase the Euclideandistance between two transmitted sequences [4]. Khaled Fazel [6] proposed combining
multilevel coding and multiresolution modulation, and tried to optimize the different parameters of such a combination
under different conditions in a Rician fading channel. The constellation of an MRM consists of clusters of points spaced by
different distances. Each cluster may itself have sub-clusters, and so on. The distance between two clusters is higher than
the distance between two sub-clusters. Then the basic idea is to assign the most significant information bits to the clusters
and the less significant information bits to the sub-clusters.

Among the multilevel coding that has been proposed by the research community to cope with this new demand, the
utilization of multiple antennas arises as one of the best candidates due to the fact that it provides both an increase in
reliability and also in information transmission rate. Combining multiple antennas both at the transmitter and receiver
ends gives rise to the so called multi-input multi-output (MIMO) channels. For MIMO systems, many codes have been
devised for increasing the information transmission rate. More specifically, space–time codes (STCs) have been introduced
by Tarokh [7] to provide improved error performance and increasing information transmission rate. Space–time block codes
(STBC) operate on a block of input symbols producing a matrix output whose columns represent time and rows represent
antennas providing full diversity with extremely low encoder/decoder complexity. Space–time trellis codes operate on one
input symbol at a time producing a sequence of vector symbolswhose length represents antennas and provides diversity and
coding gain. Ever since Tarokh [7] has proposed design criteria for space–time trellis codes (STTCs), a number of codes [8–12]
with improved performance have been presented.

The space–time coding schemes mentioned above do not exploit the channel knowledge at the transmitter. However, if
CSI is made available at the transmitter, a beam forming scheme can provide the same diversity order as well as significantly
more array gain [13,14] than the traditional space–time codes. A combined beam forming and space–time block code
was proposed in [15,16], while combined beam forming and space–time trellis codes were developed in [17–19]. It has
been shown that such schemes can attain both coding gain and beam forming gain, thus improving system performance
dramatically. Li and Vucetic [20] evaluated the performance of space–time turbo trellis codes (STTTC) combined with
ideal beam forming over slow fading channels. Simulation results exhibit the significant performance improvement of the
proposed scheme. Jöngren [21] presented the code design using side information in the form of channel estimates at the
transmitter in conjunctionwith certain space–time codes. The transmission scheme combines the benefits of transmit beam
forming and orthogonal space–time block coding.

Yonghui Li and Branka Vucetic [22] present the design of combined space–time trellis codes and beam forming to design
weighted space–time trellis codes (WSTTCs). It was shown that WSTTCs can achieve not only a full spatial diversity order,
but also an additional time diversity order as well as an additional received SNR gain, referred to as the weighting gain and
a significant coding gain, relative to the standard STTC.

Tarokh et al. [7] combined multilevel codes (MLCs) or coset codes in a space–time (multiple transmit antenna)
environment. MLCs are concatenated with orthogonal space–time block codes (OSTBCs). They consider various partitioning
schemes, including Ungerboeck set partitioning, mixed partitioning and block partitioning. The concatenation of multilevel
codes and a space–time block code (STBC) can achieve full diversity gain and improved coding gain. In the traditional MLC
designs [23,24], the code rates of component codes are determined by the capacity rule. Shang-Chih Ma [25] proposed a
multilevel concatenated STBC scheme by combing component codes in conjunction with set partitioning of the expanded
signal constellation such that the CGD at each level is maximized to achieve better error performance in comparison with
the traditional MLC scheme.

Baghaie [26] developed multilevel space–time trellis codes (MLSTTC’s) by combining multilevel coding, STTC and
multiresolution modulation (MRM) which is capable of simultaneously providing bandwidth efficiency, diversity
improvement and coding gain with significantly reduced decoding complexity, especially for larger constellations and
higher throughputs. Baghaie [27] designed groupedmultilevel STTCs that can provide the high throughput of multi-layered
schemes while realizing larger diversity gains.

In this paper we extend the work of Baghaie [26] in which MLSTTC was designed by assuming perfect CSI available at
receiver. A novel design criterion forMLSTTCwith CSI at transmitter is proposed, that incorporates the statistical information
concerning the channel estimates. New improved Weighed MLSTTC codes are obtained using a novel combination of beam
forming and MLSTTC. We show that Weighed MLSTTC codes provide improved performance than MLSTTC. This paper is
organized as follows. In Section 2, we present a systemmodel forWeighedMLSTTC codes. In Section 3 performance analysis
of Weighed MLSTTC codes is provided. Finally, some concluding remarks are provided in Section 4.

2. Systemmodel

A block diagram of a weightedMLSTTC system is presented in Fig. 1. For simplicity, we consider N transmit antennas and
only one receive antenna.
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Fig. 1. Block diagram of weighted MLSTTC system.

The information bits at each time t are encoded first by the space–time trellis encoder designed for theQAMconstellation.
These generate N 4-QAM symbols per time slot per STTC code. The STTC codes denoted by S(1) · · · S(L) are given by:

S(1) = xt(1)1, xt(1)2, . . . , xt(1)N (1)

S(L) = xt(L)1, xt(L)2, . . . , xt(L)N . (2)
Symbols in S(1) are used to determine the most significant bits of the new QAM symbols. Similarly the N symbols

generated by S(L), are used to determine the least significant bits.
The output of space–time trellis code is fed into a symbol translator, which generates N new symbols. These N new QAM

symbols are denoted

B(1) = xt(1)1, xt(2)1, . . . , xt(L)1 (3)

B(N) = xt(1)N , xt(2)N , . . . , xt(L)N . (4)
These N new QAM symbols are then input into constellation mapper to map M-QAM constellation.
The MLSTTC system works by partitioning the underlying signal constellation using the multi-resolution modulation

(MRM) approach. The constellation of a MRM consists of clusters of points spaced by different distances. Each cluster may
itself have sub-clusters, and so on. The distance between two clusters is higher than the distance between two sub-clusters.
Then the basic idea is to assign the most significant information bits to the clusters and the less significant information bits
to the sub-clusters. Ultimately, the last bits choose a signal point within the underlying constellation.

Fig. 2 illustrates an MRM with 64-points. The 64 points in the constellation are first divided into four clusters and then
each cluster itself consists of 4 sub-clusters. Each sub-cluster ismade up of four points. This clusterization allows one to have
three resolutions: the most significant bits are mapped to the clusters, the middle significant bits to sub-clusters and the
least significant bits to the points of the sub-clusters. The performance of these resolutions depend strongly on the distances
d1, d2 and d3. The performance of such a modulation can be estimated easily by averaging over all points of the clusters. The
basic idea is to use different codes for each bit assigned to each partition level.

Fig. 3a shows the application of MRM to a 16-QAM constellation and that is used for set portioning of 64-QAM as shown
in Fig. 3b. As can be seen, the 64 points in the underlying constellation are divided into 4 clusters and each cluster into
4 sub-clusters and so forth. Thus, we use a 4-cluster as the basic unit of resolution. We partition [68] the multi-resolution
constellation by treating each cluster as a 4-QAM constellation. This enables us to directly use CSTTCs designed for 4-QAM in
our mapping process. The labeling of the signal constellation points based on the partitioning is also shown in Fig. 3, where
we have 3 clusters, each having 4 sub-clusters. The circles in the figure denote one sub-cluster of each cluster.

This clusterization allows us to have L resolutions for a M-QAM constellation, with M = 4L. We then map the output of
the first STTC Sm(1), to the clusters and the output of the next component code Sm(2) to the sub-clusters and so forth with
the output of S(L) selecting the actual constellation points to be transmitted. For the 64-QAM constellation of Fig. 3, this
results in L = 3 levels.

The output of S(L), denoted as xt(L), gets mapped to the actual constellation points, while the outputs generated by S(1)
to S(L − 1), denoted xt(1), . . . , xt(L − 1) respectively, get mapped to the virtual cluster center points (centroids) as shown
in Fig. 2, and thus label the corresponding clusters. These STTC are all designed for a 4-QAM constellation and their coded
output symbols, xt(1) to xt(L), are all drawn from 4-QAM constellations and can be represented in complex form as

xt(l) = a + jb a, bε{1, −1}. (5)
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Fig. 2. MRMwith 64 points.

Fig. 3a. 16-QAM set partitioning using convolution code.

Each point in the underlying M-QAM constellation can be represented in complex form as

Q = dx(1)x(1) + dx(2)x(2) + · · · + dx(L)x(L) (6)

where dx(1), . . . , dx(L) are the cluster distances corresponding to xt(1), . . . , xt(L), as shown in Fig. 2.
The output of constellationmapper is thenweighted byweighting parameter based on the feedback channel information

from the receiver.
The symbol transmitted at time t by the jth transmit antenna is denoted by Qt j, for 1 = j = N . We assume

• the channel exhibits quasi-static frequency flat Rayleigh fading over a frame duration. Thus, it is constant over one frame
and varies independently between frames.

• Perfect CSI is available at the receiver and transmitter.

In this paper we use beam forming coefficients as

wi(t) = ht
∗


n−

j=1

hj
2−1/2

. (7)
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Fig. 3b. 64-QAM set partitioning.

It also satisfies the power normalization constraint
n−

i=n

|wi|
2

= 1.

At time t , the symbol transmitted from the jth transmit antenna can be represented by

Qjt = wj{dx(1)xt(1)j + dx(2)xt(2)j + · · · + dx(L)xt(L)j} j = 1, . . . ,N (8)

where xt(l)j is the 4-QAM symbol generated by the lth STTC code. wj is weight for jth antenna.

3. Decoding of WMLSSTC

The decoder starts by decoding the output of the Lth component code. The estimated values of x(L), x̂(L), are then passed
to the next decoding stage and are used to decode the values of x(L − 1) and so forth. The final stage of the decoder uses
the estimates obtained from levels L to 2, namely x̂(L), x̂(L− 1), . . . , x̂(2) to obtain x̂(1). We derive decoding metrics for the
proposed multi-stage decoder. The derivation is carried out for an arbitrary number of transmit and one receive antenna.
We start by looking at the form of the received signal. Based on (6) and (9), the received signal at the receive antenna at time
t is given by

rt =

L−
l=1

N−
j=1

ht
jdx(l)xt(l)

jWj + nt . (9)

The conditional probability density function (pdf), of rt conditioned on the channel matrix and all L encoder outputs, may
then be written as

P (rt |xt(1), . . . , xt(L),Ht) (10)

where xt(l) = (xt(l)1, xt(l)2, . . . , xt(l)N), for lε{1, 2, . . . , L}.
We apply a multi-stage decoder, where xt(L) is decoded first and is passed to the next stage, where xt(L − 1) is decoded

and so forth.

3.1. Decoding of stage L

In the Lth stage, the aim is to decode xt(L). Wemake use of the Viterbi algorithm, and thus hypothesize the value of vector
xt(L). The decoder in Stage L, performs a search to maximize the likelihood function over the hypnotized values of xt(L). The
values of xt(1) to xt(L−1) are unknown at this stage and thus we treat them as ‘‘nuisance’’ variables and average them out.

P (rt |xt(L),Ht) =

−
xt (l),

l=1,...,L−1

P(xt(1), . . . , xt(L − 1))|xt(L),HtP (rt |xt(1), . . . , xt (L − 1) ,Ht) . (11)
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Since the component encoders are assumed to be independent of each other, we consider xt(1), . . . , xt(L − 1), xt(L) to be
mutually independent. Considering that the channel is also assumed to be independent of the component codes, and that
different values of xt(l) have the same probability of being transmitted, the probability P(xt(1), . . . , xt(L − 1)|xt(L),Ht) in
the expression on the right hand side of (10) reduces to a constant and can be ignored when maximizing the likelihood
function. Now focusing on the second term, on the right hand side of (10) we can write

P (rt |xt(1), . . . , xt (L − 1) , xt(L),Ht) =
1

(
√
2πσn

2)
exp



rt −

L∑
l=1

N∑
j=1

hj
tdx(l)xt(l)jwj


2

2σ n
2

 . (12)

Substituting (9) into (10) and ignoring the constant term, we obtain the likelihood function in the form

L (xt(L)) = P (rt |xt(L),Ht) ∝

−
xt (l),

l=1,...,L−1

exp



rt −

L∑
l=1

N∑
j=1

hj
tdx(l)xt(l)jwj


2

2σ n
2

 (13)

log
−
xt (l),

l=1,...,L−1

exp



rt −

L∑
l=1

N∑
j=1

hj
tdx(l)xt(l)jwj


2

2σ n
2

 (14)

as the corresponding branch metric. As mentioned previously, Stage L decodes the subset labels x(L) using the Viterbi
algorithm. More specifically, assuming that rt is the received signal at the receive antenna at time t , the branch metric
for a transition labeled xt(L)1, xt(L)2, . . . , xt(L)j is given by (13). The Viterbi algorithm is used to compute the path with the
largest accumulated metric over the duration of a data frame.

The decoded values of x(L), denoted x̂(L), are assumed to be correct and are passed on to the decoder of Stage L − 1 and
used in decoding x(L − 1) and so forth. In the next section we will look at stage k of decoding for 1 < k < L.

3.2. Decoding of intermediate stage k

The decoding of the kth stage is similar to the decoding of stage L. Now the aim is to decode xt(k). We make use of the
Viterbi algorithm and hypothesize the value of vector xt(k). Similar to what we had before, the decoder performs a search
to maximize the likelihood function over the hypothesized values of xt(k). This time however, assuming the decoding starts
from stage L, and 1 < k < L, the outputs of the stage L to k + 1 decoders (i.e. x̂(L), . . . , x̂(k + 1)) are available. Therefore,
we can take these decisions into account.

The values of xt(1), . . . , xt(k−1) are still unknown at this stage and thus are treated as‘‘nuisance’’ variables and averaged
out. The branch metric is derived using the same procedure as before. For a transition labeled xt(k)1, xt(k)2, . . . , xt(k)j the
branch metric at stage k, where 1 < k < L, can be calculated as

log


−
xt (l),

l=1,...,k−1

exp



rt −

k∑
l=1

N∑
j=1

hj
tdx(l)xt(l)jwj −

L∑
p=k+1

N∑
j=1

hj
tdx(p)x̂t(p)jwj


2

2σ n
2



 . (15)

The appearance of the decisions x̂t(p); p = k+ 1, . . . , L in the third term of the exponent. We next look at the final stage
of decoding where the estimated values of x(L), . . . , x(2) are available to the decoder.

3.3. Decoding of stage 1

Stage 1 is the final stage of decoding, where we use the Viterbi algorithm to decode the STTC generated by the S(1)
encoder. Following the same procedure as for decoding of stage L, the branch metrics for
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Fig. 4. Comparison of simulation results for MLSTTC and proposed WMLSTTC.

Stage 1 with transition labeled xt(1)1, xt(1)2, . . . , xt(1)j is given by

log


−
xt (l),

l=2,...,L

exp



rt −

L∑
l=1

N∑
j=1

hj
tdx(l)xt(l)jwj


2

2σ n
2



 . (16)

The decoded (estimated) values of x(L), . . . , x(2), denoted by x̂(L), . . . , x̂(2), are now available and are passed to the Stage
1 decoder, as shown in Fig. 4(1). Therefore, we no longer average over x(L), . . . , x(2) but instead insert the corresponding
decisions x̂(L), . . . , x̂(2), denoted by x̂(l)j, directly into the above expression. Doing so eliminates the summation over x̂(l)
and allows (13) to be reduced tort −

N−
j=1

ht
j


dx(1)xt(1)jwj −

L−
l=2

dx(l)x̂(l)
j


2

. (17)

Simulation results:
In this section, we consider a simple WMLSTTC system with two transmit (n = 2) and one receive antenna as shown in

Fig. 2. It uses L (=2) level coding and set partitioning to partition a 16-QAM constellation 2 times using 4-way partitions
into subset of constellation points [4]. Each level uses a 4-state 4-QAM STTCs designed using the trace criterion [2]. At time
t , the output of the Lth level code, denoted by Xt(L) = xt(L)j|1 ≤ j ≤ n, selects the subset of constellation points on the
Lth partitioning level [4]. The 16-QAM symbol at time t at the stream j, denoted Q j

t , is collectively defined by the 4-QAM
symbols from the 2-levels as

Q j
t = d1xt(1)j + d2xt(2)j (18)

where d1, d2 are the subset distances corresponding to xt(1)j, xt(2)j (for all) [4]. Finally, the weighted 16-QAM symbol
transmitted through antenna j at time t is given by, c jt = w

j
tQ

j
t .

At the receiver, a 2-stage decoder starts at stage 2 by decoding the level 2 code. The decision X̂t(2) on Xt(2) is passed to
the stage 1 to decode the values of Xt(1). Each stage uses the Viterbi algorithm for decoding. The branch metric is created
using a max–log approximation to the likelihood function [4].

We present simulation results forWMLSTTC system shown in Fig. 2 with two transmit and r (=1, 2, 4) receive antennas,
over a quasi-static Rayleigh fading channel, for which the fading coefficients are constant within one frame but vary
independently from one frame to another. We used d1 = 2, d2 = 1 and a frame size of 130 symbols. We assume that the
CSI is perfectly known at both the transmitter and the receiver. Each STTC provides a throughput of 2 bits/s/Hz, resulting
in an overall throughput of 4 bits/s/Hz.

For comparison purposes, we have used an MLSTTC system with the same specifications as the above WMLSTTC system
but without weighting.

Fig. 4 exhibits the frame error rate (FER) performance of WMLSTTC and MLSTTC system plotted against signal to noise
ratio (SNR). It can be noted that the performance of the MLSTTC system is dramatically improved by the weighting. It can
be seen that for two transmit and two receive antennas WMLSTTC is superior to MLSTTC by about 1.3 dB at the FER of 10−1

and for two transmit and four receive antennas WMLSTTC is superior to MLSTTC by about 1 dB at the FER of 10−2.
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4. Conclusion

This paper has shown that if perfect channel state information (CSI) is available at the transmitter, the performance of
a space–time coded system can be further improved by weighting the transmitted signals. In this reported work, we have
evaluated the performance of multilevel space–time trellis codes (MLSTTCs) combined with ideal beam forming over slow
fading channels. Simulation results showed that the proposed scheme has considerably outperformed the conventional
MLSTTCs without weighting.
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