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Abstract 

Let c(* denote the maximum number of independent vertices all of which have the same degree. We 

provide lower bounds for G(* for graphs that are planar, maximal planar, of bounded degree, or trees. 

1. Introduction 

Given a graph G and an integer k, deciding whether the independence number of 

G is at least k [S, 81 is one of the classic NP-complete problems. The mathematical 

responses to this complexity result include fast heuristics to give (hopefully) large 

independent sets as well as bounds on the independence number for particular classes 

of graphs [6,8]. Here we consider a restriction: specifically we seek an independent set 

in which every vertex has the same degree. Clearly, although this will not result in any 

computational simplification, we obtain bounds on the size of these sets. We were 

inspired by the following pseudo-Ramsey result. 

Theorem 1.1. (Albertson Cl]). Zf G is any graph with v > 6, then either G or G’ contains 

a K, in which two vertices have the same degree. 

We extend the notation of [4]. Specifically, v=v( G) will denote the number of 

vertices in a connected graph G; E = E(G) the number of edges in G; A = A( G) the 

maximum degree in G; cc=cr(G) the independence number of G; Gj the subgraph of 

G induced by the vertices of degree j; and Nj = v( Gj). The cardinality of the largest 

independent set of vertices in which all have degree j will be denoted by aj = cCj( G). The 

constant degree independence number, denoted by M* = a*( G), will be the maximum 

value of clj. 
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We show that if G is planar, a* 22~165; while if G is maximal planar, CI* > 3~/61. We 

exhibit graphs to show that these bounds are not as bad as they seem. Furthermore, 

we show that if G has bounded degree, 

while if G is a tree, a* >, (v + 2)/4. 

We exhibit infinite families of graphs to show that these bounds are sharp. 

2. Trees 

Theorem 2.1. For any tree, a* 2 (v + 2)/4. 

Proof. Excluding the case where T= K2 (the theorem is trivially true here), all vertices 

of degree 1 in a tree must be independent. Therefore c(~ = N1. Since trees are bipartite, 

az>Nz/2. Note that N1 > Nj for all ja3. This implies that ~1~ >ccj for all j>3. 

Therefore, ol* must be either aI or CQ. Thus, it must be at least their average, i.e. 

a* 9 
al+@2 
-3 

2N1+ N2 

2 4 . 

For a tree, 2s = 2v - 2 = 1 jNj. Combining this with C Nj = v yields 

N1=N,+2N,+...+(AG-2)N,G+2 

>N,+Nq+...+NdG+2. 

Substitution gives 

a* > 
N,+Nz+(N3+...+NdC+2) v+2 =p 

4 4 

We construct an infinite family of trees to show that this bound is sharp. Let T’ be 

any tree (v( T’)> 2) whose vertices have degree 3 or 1. Make every edge of T’ that is 

incident with a leaf into a path of length three. Call the resulting tree T. A sample is 

shown in Fig. 1. 

By construction, T has 

a*=NI=aI=u2=N2/2 

and 

v=N,+Nz+N3=4N1-2=4a*-2. 

Thus, 

v+2 a* =- 
4 . 
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T’ T 

Fig. 1. 

This sort of bound cannot be extended to the set of bipartite graphs. It is straight- 

forward to construct a bipartite graph with v = 2k such that a* = c(i = CI~ = ... = CQ = 2. 

3. Brooks’ bounds 

It is an immediate consequence of Brooks’ theorem that if G is connected graph that 

is neither Cz,.+ I nor Kd + 1, then CI > v/A. Happily, if G is a connected graph such that 

GZK,+i, &+ir then each Gj#Kj+1, (or C 21 + I if j = 2). Hence, we can apply the 
above inequality to each of the Gj’s separately. Consequently, Clja Nj/j. Thus 

v=C NjdC juj 

<Cja*=a*Cj=cr* 
A+1 

( ) 
2 . 

Thus, we have arrived at the following theorem. 

Theorem 3.1. a* 2 v/( d : ’ ). 

As in the case of trees, the lower bound is sharp. The construction will produce 

a graph in which 

a*=2 and v=2 
A+1 

( > 2 . 

We begin by constructing a path of cliques. Take a single vertex and join it to one 

vertex of a Kz. Join the other vertex of that K2 to one vertex of a K,. Join a different 

vertex of that K3 to one vertex of a K4. Continue. At the ith stage one vertex of Ki will 

be joined to one vertex of Ki+ 1. Finally one vertex of Kd _ 1 will be joined to one vertex 
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Fig. 2. 

of Kd. At this stage we have (“l ‘) vertices. Take a duplicate of the above construction. 

Each such path of cliques has two vertices of its Kj having degree j (for 2 <j d A - 1) 

while the remaining are deficient, i.e. have degree j- 1. Each copy of Kd has one vertex 

of degree A and A - 1 vertices that are deficient. For each deficient vertex in one path 

of cliques find the corresponding deficient vertex in the other path of cliques and join 

these two vertices. In the resulting graph G each Gj consists of two copies of 

Kj together with some 

Fig. 2. For this graph 

edges of a partial matching. An example with A = 4 is shown in 
~1=~z,=...=~d=a*=2 and ~=2(~:‘). 

4. Planar graphs 

The situation for planar graphs is more unsettled. If G is a planar graph, then the 

Four Color Theorem implies that cc2 v/4, and this bound is sharp even for graphs 

without K4’s. Using 2~ = 1 jNj, v = 1 Nj, and 2~ > 6v - 12 (which follows immediately 

from Euler’s formula) a standard argument reveals that 

5N1+4Nz+3N3+2N4+Ng>12+N,+2N8+3N9+.~.+(AG-6)NdG. 

For a maximal planar graph (i.e. a triangulation of the plane), since Euler’s formula 

is an equality and since there are no vertices of degree 1 or 2, we get 

3N3+2N4+N5=12+N,+2Ns+3N9+~~~+(AG-6)Nm 

It is straightforward to verify that in a maximal planar graph (excluding the case 

where G = K4 which easily satisfies our theorem), all vertices of degree 3 are indepen- 

dent. Therefore clj = N3. It can also be verified that each component of G4 either 

contains no KS’s or is a KS. Since Grbtzsch’s Theorem implies that G4 is 3-colorable 

[7], we have 

CL* > ~1~ 2 N4/3 or 3c(* > Nq. 

If ja 5, the Four Color Theorem [2,3] implies that 

CI* > ~j 2 Nj/4 or 4~* > Nj. 
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Combining these inequalities, we obtain, 

13cl*-12 2 N7+2Ns+3N9+...+(dG-6)Ndc. 

Let d, and da be defined so that N, = 4c(* - d7 and Ns =4a* -d8. These can be 

substituted into the preceding inequality to yield, 

cr*+d7+2d8-12 AG-6N 

3 
3 N9+...+p 

3 AC. 

We now compute an upper bound for v in terms of a*. 

V=~ Nj 
j=3 

< (20c(*-d,-ds)+ 
cr*+d,+2ds-12 

3 

Therefore, 

““> 3cr* 3 

V ’ 61a*-2d7-ds-12 ’ 61’ 

We have proved the following theorem. 

Theorem 4.1. For any maximal planar graph, CI* 2(3/61)v. 

The preceding theorem implies that any maximal planar graph with more than 21 

vertices must contain two independent vertices of the same degree. One can show by 

tedious case analysis that in such a graph, G5 cannot contain a Kq, and Gb cannot 

contain a K4 unless ~~24. We then obtain the following corollary. 

Corollary 4.2. lf G is a maximal planar graph and v > 10, then a* > 1. 

The graph in Fig. 3 shows that this result is sharp: specifically v= 10 and tl* = 1. 

The proof of Theorem 4.1 can be readily modified to produce the following theorem. 

Theorem 4.3. For any planar graph, a* 2 (2/65)v. 

The analogue to Corollary 4.2 is the following. 

Corollary 4.4. If G is a planar graph and v > 18, then a* > 1. 

The graph in Fig. 4 shows that this result is sharp. This graph has v= 18 and c1* = 1. 
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Fig. 3. 

Fig. 4. 

The principal open question arising from this work is what are the right numbers 
for Theorems 4.1 and 4.3. Perhaps if G is a maximal planar graph, 

CL* 2 (1/16)v. 
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Fig. 5. 

We conclude with a construction of an infinite family of maximal planar graphs in 

which GI* achieves the above bound. We begin with the icosahedron whose vertices 

can be partitioned into four triangles, each of which is a face boundary. We fix one of 

these as the exterior. Of the remaining three triangles one is unchanged, one has its 

interior triangulated with a vertex of degree 3, and one has its interior triangulated 

with three vertices of degree 4. Call the resulting graph Hi (illustrated in Fig. 5). 

Create Mi by pasting a copy of Hi into four independent triangles of the icosa- 

hedron. To obtain H2 paste a copy of H1 onto three independent triangles of the 

icosahedron (excluding the exterior triangle). Create M2 by pasting a copy of H2 onto 

four independent triangles of the icosahedron. In general Hj is obtained by pasting 

a copy of Hj_1 onto three independent triangles of the icosahedron, while Mj is 

obtained by pasting a copy of Hj into four independent triangles of the icosahedron. 

In each case 
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