# Lower bounds for constant degree independent sets

# Michael O. Albertson and Debra L. Boutin\*

Mathematics Department, Smith College, Northampton, MA 01063, USA

Received 27 November 1990 Revised 14 August 1991

Abstract

Let  $\alpha^*$  denote the maximum number of independent vertices all of which have the same degree. We provide lower bounds for  $\alpha^*$  for graphs that are planar, maximal planar, of bounded degree, or trees.

#### 1. Introduction

Given a graph G and an integer k, deciding whether the independence number of G is at least k [5,8] is one of the classic NP-complete problems. The mathematical responses to this complexity result include fast heuristics to give (hopefully) large independent sets as well as bounds on the independence number for particular classes of graphs [6,8]. Here we consider a restriction: specifically we seek an independent set in which every vertex has the same degree. Clearly, although this will not result in any computational simplification, we obtain bounds on the size of these sets. We were inspired by the following pseudo-Ramsey result.

**Theorem 1.1.** (Albertson [1]). If G is any graph with  $v \ge 6$ , then either G or  $G^c$  contains a  $K_3$  in which two vertices have the same degree.

We extend the notation of [4]. Specifically, v = v(G) will denote the number of vertices in a connected graph G;  $\varepsilon = \varepsilon(G)$  the number of edges in G;  $\Delta = \Delta(G)$  the maximum degree in G;  $\alpha = \alpha(G)$  the independence number of G; the subgraph of G induced by the vertices of degree j; and  $N_j = v(G_j)$ . The cardinality of the largest independent set of vertices in which all have degree j will be denoted by  $\alpha_j = \alpha_j(G)$ . The constant degree independence number, denoted by  $\alpha^* = \alpha^*(G)$ , will be the maximum value of  $\alpha_j$ .

Correspondence to: Michael O. Albertson, Department of Mathematics, Smith College, Northampton, MA 01063, USA.

\*Current address: Department of Mathematics, Cornell University, Ithaca, NY 14853, USA.

We show that if G is planar,  $\alpha^* \ge 2\nu/65$ ; while if G is maximal planar,  $\alpha^* \ge 3\nu/61$ . We exhibit graphs to show that these bounds are not as bad as they seem. Furthermore, we show that if G has bounded degree,

$$\alpha^* \geqslant \frac{v}{\binom{\Delta+1}{2}};$$

while if G is a tree,  $\alpha^* \ge (\nu + 2)/4$ .

We exhibit infinite families of graphs to show that these bounds are sharp.

# 2. Trees

**Theorem 2.1.** For any tree,  $\alpha^* \geqslant (\nu + 2)/4$ .

**Proof.** Excluding the case where  $T = K_2$  (the theorem is trivially true here), all vertices of degree 1 in a tree must be independent. Therefore  $\alpha_1 = N_1$ . Since trees are bipartite,  $\alpha_2 \ge N_2/2$ . Note that  $N_1 > N_j$  for all  $j \ge 3$ . This implies that  $\alpha_1 > \alpha_j$  for all  $j \ge 3$ . Therefore,  $\alpha^*$  must be either  $\alpha_1$  or  $\alpha_2$ . Thus, it must be at least their average, i.e.

$$\alpha^* \geqslant \frac{\alpha_1 + \alpha_2}{2} \geqslant \frac{2N_1 + N_2}{4}.$$

For a tree,  $2\varepsilon = 2\nu - 2 = \sum j N_i$ . Combining this with  $\sum N_i = \nu$  yields

$$N_1 = N_3 + 2N_4 + \dots + (\Delta G - 2)N_{\Delta G} + 2$$
  
 $\geqslant N_3 + N_4 + \dots + N_{\Delta G} + 2.$ 

Substitution gives

$$\alpha^* \geqslant \frac{N_1 + N_2 + (N_3 + \dots + N_{\Delta G} + 2)}{4} = \frac{v + 2}{\Delta}.$$

We construct an infinite family of trees to show that this bound is sharp. Let T' be any tree (v(T')>2) whose vertices have degree 3 or 1. Make every edge of T' that is incident with a leaf into a path of length three. Call the resulting tree T. A sample is shown in Fig. 1.

By construction, T has

$$\alpha^* = N_1 = \alpha_1 = \alpha_2 = N_2/2$$

and

$$v = N_1 + N_2 + N_3 = 4N_1 - 2 = 4\alpha^* - 2$$
.

Thus,

$$\alpha^* = \frac{v+2}{4}.$$

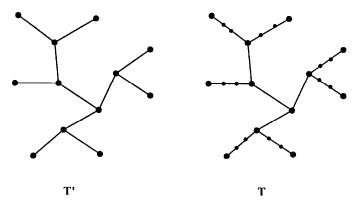


Fig. 1.

This sort of bound cannot be extended to the set of bipartite graphs. It is straightforward to construct a bipartite graph with v = 2k such that  $\alpha^* = \alpha_1 = \alpha_2 = \cdots = \alpha_k = 2$ .

## 3. Brooks' bounds

It is an immediate consequence of Brooks' theorem that if G is connected graph that is neither  $C_{2r+1}$  nor  $K_{d+1}$ , then  $\alpha \geqslant v/\Delta$ . Happily, if G is a connected graph such that  $G \neq K_{d+1}$ ,  $C_{2r+1}$ , then each  $G_j \neq K_{j+1}$ , (or  $C_{2r+1}$  if j=2). Hence, we can apply the above inequality to each of the  $G_j$ 's separately. Consequently,  $\alpha_j \geqslant N_j/j$ . Thus

$$v = \sum N_j \leqslant \sum j\alpha_j$$
  
$$\leqslant \sum j\alpha^* = \alpha^* \sum j = \alpha^* \binom{\Delta+1}{2}.$$

Thus, we have arrived at the following theorem.

**Theorem 3.1.**  $\alpha^* \ge v/(\frac{d+1}{2})$ .

As in the case of trees, the lower bound is sharp. The construction will produce a graph in which

$$\alpha^* = 2$$
 and  $v = 2 \binom{\Delta+1}{2}$ .

We begin by constructing a path of cliques. Take a single vertex and join it to one vertex of a  $K_2$ . Join the other vertex of that  $K_2$  to one vertex of a  $K_3$ . Join a different vertex of that  $K_3$  to one vertex of a  $K_4$ . Continue. At the *i*th stage one vertex of  $K_i$  will be joined to one vertex of  $K_{i+1}$ . Finally one vertex of  $K_{d-1}$  will be joined to one vertex

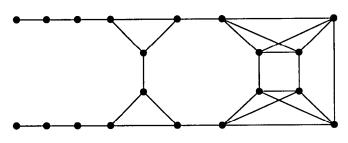


Fig. 2.

of  $K_{\Delta}$ . At this stage we have  $\binom{\Delta+1}{2}$  vertices. Take a duplicate of the above construction. Each such path of cliques has two vertices of its  $K_j$  having degree j (for  $2 \le j \le \Delta - 1$ ) while the remaining are deficient, i.e. have degree j-1. Each copy of  $K_{\Delta}$  has one vertex of degree  $\Delta$  and  $\Delta-1$  vertices that are deficient. For each deficient vertex in one path of cliques find the corresponding deficient vertex in the other path of cliques and join these two vertices. In the resulting graph G each  $G_j$  consists of two copies of  $K_j$  together with some edges of a partial matching. An example with  $\Delta=4$  is shown in Fig. 2. For this graph  $\alpha_1=\alpha_2=\cdots=\alpha_d=\alpha^*=2$  and  $\nu=2(\frac{d+1}{2})$ .

## 4. Planar graphs

The situation for planar graphs is more unsettled. If G is a planar graph, then the Four Color Theorem implies that  $\alpha \ge v/4$ , and this bound is sharp even for graphs without  $K_4$ 's. Using  $2\varepsilon = \sum jN_j$ ,  $v = \sum N_j$ , and  $2\varepsilon \ge 6v - 12$  (which follows immediately from Euler's formula) a standard argument reveals that

$$5N_1 + 4N_2 + 3N_3 + 2N_4 + N_5 \ge 12 + N_7 + 2N_8 + 3N_9 + \dots + (\Delta G - 6)N_{\Delta G}$$

For a maximal planar graph (i.e. a triangulation of the plane), since Euler's formula is an equality and since there are no vertices of degree 1 or 2, we get

$$3N_3 + 2N_4 + N_5 = 12 + N_7 + 2N_8 + 3N_9 + \dots + (\Delta G - 6)N_{\Delta G}$$

It is straightforward to verify that in a maximal planar graph (excluding the case where  $G = K_4$  which easily satisfies our theorem), all vertices of degree 3 are independent. Therefore  $\alpha_3 = N_3$ . It can also be verified that each component of  $G_4$  either contains no  $K_3$ 's or is a  $K_3$ . Since Grötzsch's Theorem implies that  $G_4$  is 3-colorable [7], we have

$$\alpha^* \geqslant \alpha_4 \geqslant N_4/3$$
 or  $3\alpha^* \geqslant N_4$ .

If  $i \ge 5$ , the Four Color Theorem [2, 3] implies that

$$\alpha^* \geqslant \alpha_i \geqslant N_i/4$$
 or  $4\alpha^* \geqslant N_i$ .

Combining these inequalities, we obtain,

$$13\alpha^* - 12 \geqslant N_7 + 2N_8 + 3N_9 + \dots + (\Delta G - 6)N_{\Delta G}$$

Let  $d_7$  and  $d_8$  be defined so that  $N_7 = 4\alpha^* - d_7$  and  $N_8 = 4\alpha^* - d_8$ . These can be substituted into the preceding inequality to yield,

$$\frac{\alpha^* + d_7 + 2d_8 - 12}{3} \geqslant N_9 + \dots + \frac{\Delta G - 6}{3} N_{\Delta G}.$$

We now compute an upper bound for v in terms of  $\alpha^*$ .

$$v = \sum_{j=3}^{\infty} N_j$$

$$= \sum_{j=3}^{8} N_j + \sum_{j=9}^{\infty} N_j$$

$$\leq (20\alpha^* - d_7 - d_8) + \frac{\alpha^* + d_7 + 2d_8 - 12}{3}.$$

Therefore,

$$\frac{\alpha^*}{v} \geqslant \frac{3\alpha^*}{61\alpha^* - 2d_7 - d_8 - 12} \geqslant \frac{3}{61}.$$

We have proved the following theorem.

**Theorem 4.1.** For any maximal planar graph,  $\alpha^* \ge (3/61)v$ .

The preceding theorem implies that any maximal planar graph with more than 21 vertices must contain two independent vertices of the same degree. One can show by tedious case analysis that in such a graph,  $G_5$  cannot contain a  $K_4$ , and  $G_6$  cannot contain a  $K_4$  unless  $\alpha_3 \ge 4$ . We then obtain the following corollary.

**Corollary 4.2.** If G is a maximal planar graph and v > 10, then  $\alpha^* > 1$ .

The graph in Fig. 3 shows that this result is sharp: specifically v = 10 and  $\alpha^* = 1$ . The proof of Theorem 4.1 can be readily modified to produce the following theorem.

**Theorem 4.3.** For any planar graph,  $\alpha^* \ge (2/65)v$ .

The analogue to Corollary 4.2 is the following.

**Corollary 4.4.** If G is a planar graph and v > 18, then  $\alpha^* > 1$ .

The graph in Fig. 4 shows that this result is sharp. This graph has v = 18 and  $\alpha^* = 1$ .



Fig. 3.

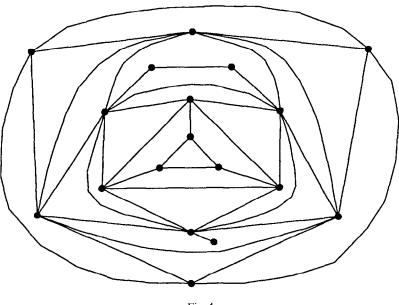


Fig. 4.

The principal open question arising from this work is what are the right numbers for Theorems 4.1 and 4.3. Perhaps if G is a maximal planar graph,

$$\alpha^* \geqslant (1/16)\nu$$
.

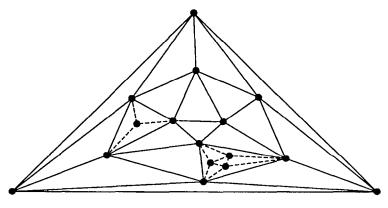


Fig. 5.

We conclude with a construction of an infinite family of maximal planar graphs in which  $\alpha^*$  achieves the above bound. We begin with the icosahedron whose vertices can be partitioned into four triangles, each of which is a face boundary. We fix one of these as the exterior. Of the remaining three triangles one is unchanged, one has its interior triangulated with a vertex of degree 3, and one has its interior triangulated with three vertices of degree 4. Call the resulting graph  $H_1$  (illustrated in Fig. 5).

Create  $M_1$  by pasting a copy of  $H_1$  into four independent triangles of the icosahedron. To obtain  $H_2$  paste a copy of  $H_1$  onto three independent triangles of the icosahedron (excluding the exterior triangle). Create  $M_2$  by pasting a copy of  $H_2$  onto four independent triangles of the icosahedron. In general  $H_j$  is obtained by pasting a copy of  $H_{j-1}$  onto three independent triangles of the icosahedron, while  $M_j$  is obtained by pasting a copy of  $H_j$  into four independent triangles of the icosahedron. In each case

$$\alpha^*(M_j) = \frac{1}{16} \nu(M_j).$$

#### References

- 1. M.O. Albertson, People who know people, Math. Mag., to appear.
- K. Appel, and W. Haken, Every planar map is four colorable: Part 1, Discharging, Illinois J. Math. 21, 429–490.
- K. Appel, W. Haken, and J. Koch, Every planar map is four colorable: Part 2, Reducibility, Illinois J. Math. 21, 491-567.
- 4. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (Elsevier, New York, 1976).
- M. Garey and D.S. Johnson, Computers and Intractiblity: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
- J.R. Griggs, Lower bounds on the independence number in terms of the degrees, J. Combin. Theory Ser. B 34 (1983) 22-39.
- H. Grötzsch, Ein drefarbensatz für dreikreisfreie netze auf der kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Nat. Reihe, 9, 109-119.
- 8. H.S. Wilf, Algorithms and Complexity (Prentice Hall, Englewood Cliffs, NJ, 1986).