
ELSEVIER Theoretical Computer Science 157 (1996) 267-27 1

Theoretical
Computer Science

Computational complexity of functions’

Leonid A. Levin *

Cbmputer Science Uepartment, Boston University, I1 I Cummmyton Street, Boston, MA 02215, USA

Abstract

Below is a translation from my Russian paper. I added references, unavailable to me in
Moscow. Similar results have been also given in [9] (see also 161). Earlier relevant work (classical
theorems like Compression, Speed-up, etc.) was done in [15,13,2, 1, 14,7].

I translated only the part with the statement of the results. Instead of the proof part, I appended
a later (1979, unpublished) proof sketch of a slightly tighter version. The improvement is based
on the results of Meyer and Winklmann [8] and Sipser [121. Meyer and Winklmann extended
earlier versions to machines with a separate input and working tape, thus allowing complexities
smaller than the input length (down to its log). Sipser showed the space-bounded Halting Problem
to require only additive constant overhead. The proof in the appendix below employs both
advances to extend the original proofs to machines with a fixed alphabet and a separate input
and working space. The extension has no (cvcn logarithmic) restrictions on complexity and no
ovcrhcad (beyond an additive constant). The sketch is very brief and a more detailed exposition
is expected later [ll].

1. Some remarks

We formulate the theorems in terms of the Turing Machine space. But it is clear

how to generalize them, since any complexity measure is bounded by a total recursive

function (t.r.f.) of any other one. Of course, the accuracy of a constant factor will

turn into the accuracy of some other t.r.f. We consider one tape Turing Machines with

arbitrary tape alphabets. If the alphabet has 1r2 symbols, then input and output integers

are written in the n-ary number system. The spuce PA(x) of an algorithm A is the

size (reduced by 1) of the tape used by A(x). The length of a word x is denoted l(x).

Obviously, PA(X) + 13 max(l(x), l(A(n))).

The space complexity of any function can be reduced by any constant factor, by

extending the alphabet. The inequality within a constant factor f-~ g means 33.x

.f(x) G G(x).

’ Partial translation from [4] (preliminary version is in [3]).

* E-mail: Lnd@bu.edu. Supported by NSF grant CCR-9015276.

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00163-8

268 L.A. Levinl Theoretical Computer Science 157 (1996) 267-271

Every function F is associated with a class of algorithms that compute it and with

the class of their space complexities M,v. We characterize all such classes extending

well-known Compression and Speed-up Theorems. Some computable functions do not

belong to any class MF:

Note: A partial function p can be a space of an algorithm if and only if it is itself

computable within space p(x). We call such functions simple. This requirement is weak

since usual functions p are computable in space l(p(x)) = log p(x).

We call simple an algorithm which outputs its own space. We define PA(X) = 00

when A(x) does not halt and interpret inequalities with simple functions accordingly.

Let us agree that an algorithm computes a function F if it does this everywhere in the

intersection of its domain and the domain of F.

2. Formulation of the theorems

For any simple function G, compression Theorem [131 provides a function F, com-

putable in exactly those spaces p which are simple and p + G. We generalize this

theorem for an arbitrary recursive G.

Theorem 1. For any t.r.j G there exists a t.r.f: F, with range (0, 1) computable in

exactly those spaces p which are simple and p S- G.

Compression Theorem describes a very special case of t.r.f. In [I] t.r.f. were dis-

covered which have no such exact simple lower bounds of complexity. However, the

above generalization of the Compression Theorem already describes the general case

and can be inverted as follows.

Theorem 2. For any t.r.J: F there exists a t.r.f G such that F is computable in

exactly those spaces p which are simple and p + G.

Thus, the complexity class of any t.r.f. is organized naturally, despite the Speed-up

Theorem. The point is that the set of t.r.f. is richer than the set of simple functions.

Naturally, the complexity of an arbitrary t.r.f. cannot be always characterized by a

simple function, though it is always characterizable by a t.r.f.

Let us describe the properties of the complexity classes for arbitrary t.r.f. A class

M is called canonical if:

1. all functions of A4 are simple, and some of them are total;

2. if f, g, h are simple, f, g E M, and h + min(f, g), then h E M; and

3. the class n of simple algorithms, computing the functions of M, is of type Ci,

i.e. can be defined as (p E n) u 3aVb R(a, b, p), where R is recursive.

Theorem 3. M is the cluss MF of all space complexities of some t.r.J: F ifs M is

canonical.

L. A. Leoin I Theoretical Computer Science 157 (1996~ 267-271 269

This theorem justifies the following conjecture of A.N. Kolmogorov: for any “good”

decreasing sequence of functions p, there exists a function, computable with such and

only such space complexities that exceed some of the pi’s, The Compression and

Speed-up Theorems are special cases. This conjecture also describes the general case

of complexity as it follows from Lemma 1 and Theorem 3. The above results extend

to the case of partial functions.

Theorem 4. Let A be un r.e. set. Theorems 1-3 remuin &id if the term “t.r.,f.“‘ is

repluced enery\rhere by ‘partiul r.J: with domuin A”, and inequulities like “a + h”

ure restricted to x E A.

3. Proofs

We call A-canonical a class M, satisfying conditions l-3, as adjusted in Theorem 4.

Lemma 1. For uny A-canonical M, u p.r.j: g exists, non-increusing with k und such

that g(k,x)+l(k) is simple, domain ofs(O,x) is A and p E A4 u (3kg(k.x) 4 p(x)),

fi)r unJ> simple p.

Appendix (not part of the translation)

Below is the sketch of a proof of a slightly tighter statement. It assumes separate

input and working space, thus allowing spaces 0(1x]), as in [8]. It also assumes a fixed

tape alphabet, allowing additive (rather than multiplicative) constant accuracy. The lat-

ter uses the result of [12] that the space s bounded halting problem can be solved

in space s + 0(1). Otherwise, the version is similar to the above translation. For log

of time of a Pointer Machine or of some Turing Machine versions [5] similar results

hold.

Model. To allow space limits below the input bit-length Ix/, one needs to differenti-

ate the input symbols from symbols used as memory during the computation. Instead

of separating the input tape as in [2], I prefer to separate the “ink”. While not es-

sential, this preserves the simple space-time geometry of the one-tape Turing Machine

(TM). So, we separate the state of each cell into a read-only ink and a read-write

pencil part. The ink part cannot be modified after the input is written and is ignored

for measuring space. The ink (but not necessarily pencil) string starts at the left end

of the tape after exactly one blank. The ink and pencil string and their union form

each a continuous segment without blanks. The alphabet is fixed and has at least two

symbols (0, l} besides the blank. Spwe: S,Q) or S,.t(x) is the supremum of bit-lengths

of the pencil string throughout the computation of A(x). The output may either be

left on the tape/head or its digits “flashed” sequentially at the (fixed) leftmost cell.

In some cases the pencil string starts not empty. E.g. g-constructible functions ,f‘ are

270 L.A. Levin I Theoretical Computer Science 157 (1996) 267-271

those computable in space max{t,f(x)} starting from input x and any pencil string

of length t as(x); for g = 0 we omit the prefix “g-” and for g = f replace it with

“semi-“.

Conventions. Let U(k,x) be a universal TM with (0, l} outputs. It ignores the

“padding” k2 in its program k = (kl, kz). Appropriate paddings can put any Ci program

set in the form m = u-‘({m}) for some function a with constructible U(k)-41kl. Let

p(k,x) def 4/k\ + Su(k,x) and expressions like Pi mean p(k,x). Assume 0 E m and

M = {pk : k E m}. Consider the closure z of a set M of functions under inclusion

of each h s.t. for some f, g E M, h > min{f, g} - 1 in the domain D of U(O,x). Call

sets Ml,Mz confinal if their closures contain the same constructible functions. Define

[a < b] as a, if a < b and 0 otherwise; likewise for 6. Clearly, the complexity class

of any function can be described as % above.

Construction. Now we build (cf. Lemma 1) a monotone sequence gk confinal to

M: If u(k) > t > p(k,x), let p’(k,x) dAf maXr<k{p(k,X),[U(/)<t]} <t. Otherwise,

p’(k,x) def t. Then, g(l,x) dAf p(O,x); g(k+l,x) %f pgcks()(k,x); gm(x) df%f minkg(k,x);

k, def min{ I : g(l,x) = g(k,x)}. To compute gk(X) we carry k, g&l(x) as the pencil

string length, and the largest relevant u(l) as gk- 1 (x) - a(1) (if < 21 k() or as 1. Cutting

the values of p,u to the maximum of t would not affect those values of g below t. So,

g(k,x)-21kJ is gm- constructible; gk are uniformly recursive with domain D and equal

minl<k{p[(x):lEm}, on D, except when both are < maX[<k{[a(l) < co]} = O(1).

Next we convert such {gk} intO a confinal set consisting of a single semicon-

structible recursive function G on D (cf. Theorem 2): Let b(k) dAf min,(2lk,xj+

gi(x) : g,&) > PA(X)) and K(X) def min{k : b(k) > gk(x) > pk(x)}. Then G(x) dzf

g(K(x),x)< max/Gk{g(k,x),[b(E) < co]}, for all k.

Conversely, G < pk in D implies b(k) = DC). Indeed, b(k) = 21k,xl + gl(x) < 03

while gk(x) > Pk(X) yields K(x)<k and G(x)>gk(x) > pk(x). b(k) = 00 makes

‘&(x)<pk(x) in D and pk E g.

Finally, for such G, we build a G-constructible predicate n(x) def 1 - U(K’(x),x)

with complexity class confinal to G (cf. Theorem 1): Here K’(x) dAf min{k : c(k) >

G(x) 3 pk(x)} and c(k) kf min,{2(k,x) + po(x):K’(x) = k}. ’ If II(x) = U(k,x) in D

then k $! K’(D) and c(k) = co. Then G(x)< max[<k{pk(x), [c(l) < co]} and pk E M.

Acknowledgements

My work on this extension, as well as my smooth implantation into the Western

scientific community was made possible by comprehensive support and encouragement

by Albert Meyer in 1978-80. I am among the many greatly indebted to his concern

and generosity.

’ A leaner version: c(k) dLf min,{2lk,xj + max{p&), p&c)}: n(x) # U(k,x)}.

L.A. Levinl Theoretical Computer Science 157 (1996) 267-271 271

References

[l] M. Blum, A machine-independent theory of the complexity of recursive functions, .I. ACM 14 (1967)

322-336.

[2] J. Hartmanis and R.E. Steams, On the computational complexity of algorithms, Trans. AMS 117 (1965)

285-306.

[3] L. Levin, On storage capacity for algorithms, DAN SSSR = Soviet Math. Dokl. 14 (1973).

[4] L. Levin, Computational complexity of functions, in: V.A. Kosmidiadi, N.A. Maslov and N.V. Petri.

eds., Complexity of Algorithms and Computations (Mir, Moscow, 1974) 174-185.

[5] L. Levin, Theory of computation: how to start, SIGACT News 22 (1991) 47-56.

[6] N. Lynch, “Helping”: several formalizationa, J. Symbolic Logic 40 (1975) 555-566.

[7] A.R. Meyer and P.C. Fischer, Computational speed-up by effective operators, J. Symbolic Logic 37

(1972) 55-68.

[8] A.R. Meyer and K. Winklmann, The fundamental theorem of complexity theory (preliminary version),

in: J.W. de Bakker and J. van Leeuwen, eds., Foundations of Computer Science III, Part I: Auiomata.

Data Sttwtures, Complexity, Mathematical Centre Tracts 108 (Amsterdam, 1979) 97-l 12. Also a draft,

1978.

[9] C.P. Schnorr and G. Stumpf, A characterization of complexity sequences, 2. Math. Logik Grundhqcym

Math. 21 (1975) 47-56.

[lo] J.l. Seiferas, Machine-independent complexity, In: J. van Leeuwen, ed., Handbook of Theoretud

Computer Science, Vol. A: Algorithms and Complexity (Elsevier, The MIT Press, Amsterdam, 1990)

163-186.

[l I] J.I. Seiferas and A.R. Meyer, Characterization of reliable space complexities, in preparation.

[121 hI Sipser, Halting space-bounded computations, Theoret. Compuf. Sci. 10 (1980) 335-338. Also,

FOCS-1978.

[I31 M. Rabin, Speed of computation and classification of recursive sets, Third Conv. Scient. Societies l-2.

Israel, 1959 (also Tech. Report. 3, Hebrew Univ., Jerusalem, 1960).

[141 B.A. Trakhtenbrot, Complexity of algorithms and computations, Course notes in Russian (Novosibirsk

University, USSR, 1967).

[I51 G.S. Tseitin, Talk on Math. Logic Seminar, Moscow University, 1956. Also pp. 4445 in: S.A.

yanovskaya, Math. Logic and Foundations of Math., Muth. in the USSR for 40 Years, 1: 13.--I20

(Moscow, Fizmatgiz, 1959) (in Russian).

