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a b s t r a c t

To theoretically compare the behavior of different algorithms, compatible performance
measures are necessary. Thus in the first part, an analysis approach, developed for evolution
strategies,was applied to simultaneous perturbation stochastic approximation on thenoisy
sphere model. A considerable advantage of this approach is that convergence results for
non-noisy andnoisy optimization can be obtained simultaneously. Next to the convergence
rates, optimal step sizes and convergence criteria for 3 different noisemodelswere derived.
These results were validated by simulation experiments. Afterward, the results were used
for a comparison with evolution strategies on the sphere model in combination with the 3
noise models. It was shown that both strategies perform similarly, with a slight advantage
for SPSA if optimal settings are used and the noise strength is not too large.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, noisy optimization has become an important research topic, especially due to the increased use of
simulation optimization and the advances in computer hardware development. Therefore, an interesting aspect concerns
the question as to what kind of strategies one should use for such optimization problems. To answer this question, one
needs to compare these strategies. One way is to do this on a purely empirical level, as it was done in the recent Black Box
Optimization Benchmarking (BBOB) at the Genetic and Evolutionary Computation Conference (GECCO) in 2009 and 2010.1
However, there is also a desire to compare strategies on a deeper and more theoretical level. Given the diverse research
fields concerned with noisy optimization (e.g. operations research, engineering optimization, evolutionary computation,
robust optimization), the strategies developedweremainly analyzedwithmethods tailored to their specific fields. This may
cause obstacles in the comparison across fields, since the derived results are not compatible and do not allow for a direct
comparison. A solution is to use a unified approach which results in the same performance measures which can then be
used as the basis for a comparison.

Such a unified approach is presented in thiswork for the analysis of Simultaneous Perturbation Stochastic Approximation
(SPSA) [1,2]. The approach itself was developed for evolution strategies [3] and will be applied here to a different type
of strategy for the first time. The aim is to derive equations for the dynamic behavior, convergence criteria and optimal
strategy parameter settings. We will show that the approach also provides insight in the short term dynamics which are
usually not captured with common analysis methods for SPSA. See Appendix A for an overview of the proofs obtained in
[1]. The presented analysis method will be applied to a restricted class of test functions. That is, simple test functions are to
be considered which allow for mathematical tractability which in turn allows to derive conclusions not (always) available
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from other approaches (e.g. optimal parameter settings). While this might be considered as a too less general approach,
we like to point out that the same approach was successfully applied to other test functions, e.g. the ridge function [4] or
ellipsoidal-type functions [5,6]. However, such analyses present a demanding task which in turnmeans that progress in this
field proceeds gradually. That is why we will consider the sphere model test function, however, in combination with three
different noise models:

• noise-free
• constant noise, where the variance of the noise remains constant
• state-dependent noise, where the variance of the noise depends on the current location in the search domain.

Thesemodels can be analyzed using the same analysis approach,which is not possible for SPSAwith themethod presented in
[2], where an additional treatment of the noise-free case was necessary [7,8]. Later on, wewill compare the results obtained
with the respective results from literature.

After introducing SPSA in Section 2, a detailed description of the steps for the theoretical approach will be given in
Section 3. A peculiarity of the approach used is that one has to consider the test function in the limit of infinite search space
dimensionality. However, in Section 4 it will be shown that the derived results will provide good approximations for finite
search space dimensionalities as well. This will be done by simulation experiments. Afterward, in Section 5 a comparison
with evolution strategies is performed. There, the equations derived will be used to obtain performance measures. In
Section 6 a summary of the work is given and conclusions from the results derived are drawn.

2. The basic SPSA algorithm

This section reviews the basic SPSA algorithm. This algorithm belongs to the class of stochastic approximation algorithms
[9], performing basically an approximate gradient descent. The pseudo code of SPSA is given in Algorithm 1. In lines 1–3 the

Algorithm 1 Simultaneous perturbation stochastic approximation
1: initialize x(1)

2: initialize a(0) and c(0)

3: choose α, γ , and A
4: for t := 1 to tmax do
5: choose perturbation vector ∆(t)

6: c(t)
= c(0)t−γ

7: f (t)
+ = f


x(t)
+ c(t)∆(t)


8: f (t)

− = f

x(t)
− c(t)∆(t)


9: g(t)

=
f (t)
+
−f (t)
−

2c(t)
∆(t)−1

◃∆−1 :=

∆−11 , ∆−12 , . . . , ∆−1N

T
10: a(t)

= a(0)(t + A)−α

11: x(t+1)
= x(t)

− a(t)g(t)

12: check termination_criterion
13: end for

initial solution vector x(1)
∈ RN is set and the strategy parameters are chosen. In SPSA the following strategy parameters 2

are used:

• α ∈ [0, 1] — reduction rate for the gradient step size factor a(t)

• γ ∈ [0, 1] — reduction rate for the gradient approximation step size factor c(t)

• a(0) > 0 — initial value of the gradient step size factor
• c(0) > 0 — initial value of gradient approximation step size factor
• A ≥ 0 — stability factor.

The core of SPSA is represented by the loop within lines 4–13. Defining tmax as maximal number of iterations, the loop is
repeated until tmax or any other termination criterion defined in line 12 is satisfied. At the start of the loop the perturbation
vector ∆(t) is chosen from a given random distribution. This distribution must satisfy the following properties [2]:

1. symmetry,
2. zero mean and finite variance,
3. finite inverse moments.

2 There exist SPSA variants which use more than these basic parameters. For examples see [2] and www.jhuapl.edu/SPSA. The web site also provides
many examples for practical problems solved with SPSA.

www.jhuapl.edu/SPSA
www.jhuapl.edu/SPSA
www.jhuapl.edu/SPSA
www.jhuapl.edu/SPSA
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The components of the perturbation vector must be independent and identically distributed (iid). A common choice is the
symmetric ±1 Bernoulli distribution. This distribution generates ±1, each with a probability of p = 0.5. Surveys [10,11]
showed that this distribution is well suited for most test functions considered. Therefore, this work will only consider this
distribution for ∆(t). Next, the current gradient approximation step size factor c(t) is determined (line 6). As recommended
in [2], c(0) should be set approximately equal to the noise at the initial point and γ = 0.101 being the smallest admissible
value fulfilling the assumptions of Spall’s convergence proof [2]. Afterward, the gradient is approximated in line 9 bymeans
of the function values at the points x(t)

± c(t)∆(t) (line 7 and line 8). Note, ∆−1 is defined as

∆−1 :=

∆−11 , ∆−12 , . . . , ∆−1N

T
(1)

where ∆1, . . . , ∆N are the components of ∆. It is a remarkable property of SPSA that it needs only two function evaluations
to approximate the gradient. This is in contrast to other methods relying on, e.g, N + 1 or 2N function evaluations using
forward and central difference approximation schemes, respectively (e.g. Implicit Filtering [12]). The update of the current
solution is done in line 11, where the approximated gradient is multiplied by the gradient step size factor a(t). This factor
depends on a(0), t , A, and α (see line 10). The recommendations for these parameters are: α = 0.602 and A ≈ 0.1tmax.
With these values and the desired minimal change in the magnitude of the components of x(1) in the first iterations one
can determine a(0) [2]. As for γ , the setting for α is equal to the smallest admissible value fulfilling the assumptions of
the convergence proof. Choosing the smallest values is beneficial for practical applications with strong noise. Note, these
recommendations are based on empirical investigations on several test functions. The theoretical asymptotic optimal values
were determined as α = 1 and γ = 1/6 in [1]. The interested reader is also referred to [2, Chapter 7].

The basic algorithm can be enhanced by using some kind of gradient smoothing and applying thresholds for the updates.
See [2] for a discussion of these options. Another improvement is the use of adaptive SPSA [13,14].Where the Hessianmatrix
is also approximated (by at least 2 more function evaluations per iteration) and then it is used for the update of the solution
vector. In thisworkwe are only concernedwith the basic algorithm, although a slightmodificationwill be introduced shortly.

3. Analysis of the dynamical behavior

For a comparison of different algorithms one can use a benchmark suite (e.g, [15, Chapter 6] which especially considers
noisy optimization and the one used in the BBOB 2009 workshop, see footnote 1), which gives information about the
performance of the algorithms over a range of test functions. But there is still a need (and desire) to compare strategies on a
theoretical level. This gives more insight about the behaviors of the algorithms. A first step was presented in [16] where
five different methods (Random Search, SPSA, Evolution Strategies (ES), Genetic Algorithms, and Simulated Annealing)
were compared. The comparison was based on the respective theoretical convergence rates for an unimodal and separable
objective function. The restriction to this function class was necessary, since for other function classes the theoretical results
were not comparable.

The approach pursued here is slightly different. Rather than using different formulations for the convergence rate, a
unique formulation for all algorithms is considered. The approach was developed in [3] for the analysis of ES. It was
successfully applied to different variants of ES anddifferent test functions (e.g., spheremodel, ridge, andquadratic functions).
In the current paper the approach will be applied to a non-ES algorithm for the first time. To this end, we restrict ourselves
to the sphere model (which is unimodal and separable) in combination with three different noise models. In the following a
detailed step-by-step description of the analysis approach will be given. First an one-iteration performance measure will be
derived. The result obtainedwill then be used to derive convergence criteria, optimal gradient step sequences, and equations
representing the overall dynamic behavior. Afterward in Section 5, a comparison of the results obtained with respective
results for ES will be presented.

3.1. Deriving the fitness gain – a one-step performance measure

First, let us start with the definition of the sphere model

f (x) = xTx, (2)

where x ∈ RN and f : RN
→ R. Since we are interested in noisy optimization, the function definition is generalized to

f (x) = xTx+ σϵ(x)N (0, 1) (3)

where the first term in (3) represents the true (non-noisy) function value and the second term represents a scalar noise
term. The noise term consists of the noise strength σϵ(x) and a standard normally distributed random scalar N (0, 1), a
common model in noisy optimization. The investigation of other noise distributions is beyond the scope of this paper. The
three different noise models under consideration are: σϵ(x) = 0 (noise-free model), σϵ(x) = const. (constant noise model),
and σϵ(x) = fnoise(x) (state-dependent noise model) where the noise strength depends on the location and vanishes at the
optimum. In the constant noise model, the variance of the noise will be constant. For the state-dependent noise model it
is assumed that σϵ will only depend on the current x(t), i.e. σϵ(x(t)) = σϵ(x(t)

± c(t)∆). With this simplification the math
involved is much more amenable as if σϵ would depend on the actual evaluated point. The same noise model was used



S. Finck, H.-G. Beyer / Theoretical Computer Science 419 (2012) 50–72 53

Fig. 1. Decomposition of the update step−a(t)g(t) with the help of Pythagoras’ theorem.

for the analysis of ES [15] which allows for a comparison of both strategies. However, as shown in [15], for N → ∞, a
frequently used assumption in the derivation process, the behavior of both models is the same. Last but not least, for all
models considered no correlation between different evaluations of the noise term is assumed, i.e. N (0, 1) is iid.

The analysis starts by considering the gradient approximation in SPSA

g(t)
=

f (t)
+ − f (t)

−

2c(t)
∆(t)−1 (4)

where f (t)
± represent the evaluation of (3) at the points x(t)

±∆(t). Due to the noise in (3) and themanner inwhich the gradient
is estimated in (4), the resulting g(t) has only limited accuracy. After all it is an approximation. To improve the accuracy, one
can use an average of multiple gradient approximations. This is achieved by adding a loop into Algorithm 1, which encloses
lines 5–9. Thus, each approximation has different ∆(t), but the same c(t). To differentiate between the different gradient
approximations a subscript w is added. Applying this idea, the gradient approximation changes from (4) to

g(t)
=

1
W

W
w=1

g(t)
w =

1
W

W
w=1

f (t)
w+ − f (t)

w−

2c(t)
∆(t)−1

w (5)

whereW is the number of gradient approximations. The function evaluations at the test points can be written with (3) as

fw

x(t)
± c(t)∆(t)

w


=

x(t)
± c(t)∆(t)

w

T x(t)
± c(t)∆(t)

w


+ σ±ϵ


x(t)Nw(0, 1)

= x(t)Tx(t)
± 2c(t)x(t)T∆(t)

w + c(t)2∆(t)T
w ∆(t)

w + σ±ϵ

x(t)Nw(0, 1). (6)

Thus, the fitness difference in (5) can be expressed as

f (t)
w+ − f (t)

w− = 4c(t)x(t)T∆(t)
w + σ̃ (t)

ϵ Nw(0, 1) (7)

where σ̃ (t)
ϵ represents the difference in the noise factors and depends on the chosen noise model. Substituting (7) into (5)

yields

g(t)
=

1
W

W
w=1


2x(t)T∆(t)

w +
σ̃ (t)

ϵ Nw(0, 1)
2c(t)


∆(t)−1

w . (8)

An analysis of above equation shows that for σ (t)
ϵ = 0, the value of c(t) has no influence on the gradient approximation. This

is typical for SPSA on quadratic functions. If σ (t)
ϵ > 0, increasing c(t) will reduce the noisy disturbance.

The next step is to decompose the gradient step,−a(t)g(t), into a vector v1 which points in the direction of the optimum
xopt and a vector with perpendicular direction v2. This enables one to determine the achieved gain in the iteration step and
the influence of the algorithm parameters on this gain. The decomposition is outlined in Fig. 1. The optimum is marked with
xopt, the solution at the start of the iteration with x(t), and the solution at the end of the iteration with x(t+1). The gradient
step from x(t) to x(t+1) is marked with−a(t)g(t). From the definition of the noisy sphere (3) it is clear that xopt = 0.3 Writing
R = ∥x(t)

∥ and r = ∥x(t+1)
∥ and using Pythagoras’ theorem one obtains

∥v1∥2 + ∥v2∥2 = ∥a(t)g(t)
∥
2 (9)

(R− ∥v1∥)2 + ∥v2∥2 = r2. (10)

3 The obtained results will still hold if an additional translation is applied to (3).
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Solving (9) and (10) yields the so-called evolution equation

r2 = R2
− 2R∥v1∥ + ∥a(t)g(t)

∥
2 (11)

which describes the change in the distance to the optimum after a single iteration step. The unknown in (11) is the norm of
vector v1, hence deriving an expression for ∥v1∥ is the next step.

By means of the scalar product one obtains

v1 = −
x(t)Ta(t)g(t)

R2
x(t). (12)

The minus in front of the fraction is due to x(t) and v1 having anti-parallel directions. Recalling that ∥x(t)
∥ = R, the norm of

v1 yields

∥v1∥ =
|a(t)x(t)Tg(t)

|

R
. (13)

Using (8) the scalar product in (13) can be written as

a(t)x(t)Tg(t)
= a(t)x(t)T


1
W

W
w=1


2x(t)T∆(t)

w +
σ̃ (t)

ϵ Nw(0, 1)
2c(t)


∆(t)−1

w


. (14)

From now on, we will use that ∆(t) obeys a symmetric±1 Bernoulli distribution. Hence, the components of ∆(t) are±1 and
according to (1) ∆(t)−1

= ∆(t) is valid. Rewriting (14) yields

a(t)x(t)Tg(t)
=

a(t)

W

W
w=1


2

x(t)T∆(t)

w

2
+

σ̃ (t)
ϵ Nw(0, 1)

2c(t)
x(t)T∆(t)

w


. (15)

So far the quantity defined by the right-hand side (rhs) of (15) is a random variable. A main idea of the analysis approach is
to use expected values and to neglect the fluctuation, similar to an ordinary differential equation approach. This will yield
asymptotic correct equations for N → ∞. As a consequence, this requires validating the obtained results for finite N by

simulation experiments as it will be done in the next section. The expectation of

x(t)T∆(t)

w

2
is

E


xT∆
2
|x

= E

 N
i=1

xi∆i

2

|xi

 = N
i=1

x2i E

∆2

i


+

N
i=1


j≠i

xixjE

∆i∆j


. (16)

Note, the iteration index t and gradient approximation index w were omitted for brevity. Since ∆ has i.i.d. components,
∆i = ±1, and E [∆i] = 0, the relations

E

∆i∆j


= E [∆i] E


∆j

= 0 and ∆2

i = 1 (17)

are valid. Using (17), (16) can be written as

E


xT∆
2
|x

=

N
i=1

x2i = R2. (18)

Now substituting (18) into (15) and taking the expectation yields

a(t)E

x(t)Tg(t)

|x

=

a(t)

W

W
w=1


2R2
+

σ̃ (t)
ϵ Nw(0, 1)

2c(t)
x(t)TE


∆(t)

w


. (19)

Recalling that E [∆i] = 0, the last term in (19) vanishes. Thus, the resulting expectation for the norm of v1 is

E [∥v1∥|R] =
a(t)

R
E

|x(t)Tg(t)

||R

=

a(t)

W

W
w=1

2R = 2a(t)R. (20)

For further analysis wewould like to have the evolution equation (11) only dependent on R, the strategy parameters (a(t),
c(t),W ), and the function parameters N and σϵ . Thus, the term ∥g(t)

∥
2 in (11) needs to be expressed with those parameters.

With (8) and recalling ∆−1 = ∆ one obtains

∥g(t)
∥
2
=

 1
W

W
w=1


2x(t)T∆(t)

w +
σ̃ (t)

ϵ Nw(0, 1)
2c(t)


∆(t)

w


2

. (21)
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This is a random variable and again we are interested in its expectation. To determine this expectation we will use the fact
that Nw(0, 1), resulting from the noise, and ∆w , used within the gradient approximation, are statistically independent. The
derivation of E


∥g(t)
∥
2

is rather technically involved and is given in detail in Appendix B. The result obtained is

E

∥g(t)
∥
2
|R

=

N
W


4R2
+

σ̃ (t)2
ϵ

4c(t)2


+ 4R2


1−

1
W


. (22)

Substituting (22) and (20) into (11) yields

E

r2|R


= R2
− 4a(t)R2

+
a(t)2N
W


4R2
+

σ̃ (t)2
ϵ

4c(t)2


+ 4a(t)2R2


1−

1
W


. (23)

With (23) it is possible to determine the expected gain by a single iteration step. Since (23) depends on R2 and r2, the non-
noisy function values at x(t) and x(t+1), this performance measure will be called the quality gain. Defining the quality gain as

q(t)
= E


R2
− r2|R


, (24)

one obtains with (23)

q(t)
= 4a(t)R2


1−

a(t)

W
(N +W − 1)


−

a(t)2Nσ̃ (t)2
ϵ

4Wc(t)2
. (25)

From above expression one obtains the necessary condition for convergence in expectation as q(t) > 0 ∀ t > T0 where
T0 ≥ 0 is constant. In the following we use (25) to derive convergence criteria and optimal gradient step sizes a(t) for the
three noise models.

3.2. Convergence criteria and optimal gradient step sizes

First, the noise-free model, σϵ = 0, will be considered. In this case the quality gain reads

q(t)
= 4a(t)R2


1−

a(t)

W
(N +W − 1)


. (26)

Convergence to the optimizer in expectation will be achieved if

4a(t)R2

1−

a(t)

W
(N +W − 1)


> 0 (27)

necessarily holds. Given that a(t) and R2 are positive scalars one obtains

a(t) <
W

N +W − 1
. (28)

Further, one can derive an optimal step size a(t) from (26) yielding the maximal change toward the optimizer. Requiring
dq(t)/da(t)

= 0 yields

4R2
− a(t)


8R2(N +W − 1)

W


= 0 (29)

which can be solved for a(t), obtaining

a(t)
nf =

W
2(N +W − 1)

. (30)

Thedenotation a(t)
nf stands for optimal a(t) in thenoise-free case. As one can see, it does not dependon t orR, thus, it is constant

(α = 0, cf. line 10 in Algorithm 1) throughout the optimization process. Note, this result is specific for the noise-free sphere
model and cannot be applied to other test function classes. Still, it allows for an insight in the algorithm’s behavior and will
be later used for the comparison with evolution strategies.

Next, the constant noise model, σϵ = const., will be considered. In this case the substitution σ̃ (t)
ϵ =


σ+ϵ
2
+

σ−ϵ
2
=

√
2σϵ will be applied to the quality gain (25). Hence, the requirement for convergence reads

4a(t)R2

1−

a(t)

W
(N +W − 1)


−

a(t)2Nσ 2
ϵ

2λc(t)2
> 0. (31)
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The convergence criterion w.r.t. a(t) yields

a(t) <
W

(N +W − 1)+ N
8R2


σϵ

c(t)

2 . (32)

Comparing (32) with the noise-free criterion (28), one can see that the upper limit of a(t) is smaller for the constant noise
model. Furthermore, a(t) now depends on the current location R and iteration t . Moreover, if R → 0 (convergence toward
xopt) a(t) must decrease. Additionally, one can derive convergence criteria w.r.t. R and σϵ . These are

R2 >
a(t)N

8

W − a(t)(N +W − 1)

  σϵ

c(t)

2
, (33)

σϵ < Rc(t)


8

W − a(t)(N +W − 1)


a(t)N

. (34)

The first criterion (33) states that for a given set of a(t), c(t),W , and σϵ , SPSAwill converge until the distance to the optimizer
is equal to the term on the rhs of (33). Thus the optimum will not be reached (for that given set), however, decreasing a(t)

or increasing c(t) orW will further reduce the distance. Since, the rhs of (33) will appear frequently throughout the text we
define

fmin(a(t), c(t)) =
a(t)N

8

W − a(t)(N +W − 1)

  σϵ

c(t)

2
, (35)

recalling that f (x(t)) = R2. Note, so far f (x) was used for the observable (noisy) function value, however, fmin represents
a true (non-noisy) function value. The second criterion (34) gives an insight on how large the noise strength can be while
SPSA is still able to converge. Note, the criteria (32)–(34) are not independent and all parameters must satisfy criterion (31).

Similar to the noise-free model, one can derive an optimal a(t). Performing the same steps as before yields

a(t)
cn =

4WR2
8R2(N +W − 1)+ N σ 2

ϵ

c(t)2

 (36)

where a(t)
cn is the optimal a(t) for the constant noise model. Comparing a(t)

cn with a(t)
nf reveals that a(t)

cn depends on R and t . If
R2
≫ σ 2

ϵ /c(t)2
=⇒ a(t)

cn ≈ a(t)
nf , while for R→ 0 =⇒ a(t)

cn → 0.
Finally, let us give some comments on c(t) for the constant noise model, which also apply to a certain extent to the state-

dependent noise model considered next. The common sequence for c(t) is given in line 6 of Algorithm 1. It is a decreasing
sequence with the constant c(0) being chosen approximately equal to the observed standard deviation of several function
evaluations at the initial point x(1). It appears from the quality gain (25), that c(t) only influences the noise term and choosing
c(t) large and constant is advantageous. 4 On the other hand, if the observed standard deviation at x(1) is sufficiently large,
this will yield a choice of c(t) (especially for the state-dependent noise-model where the noise strength increases with the
fitness) causes a reduced accuracy close to the optimizer due to numerical problems. Decreasing c(t) would increase the
noise factor σϵ/c(t) and thus decreasing q(t) (25). From previous analyses of SPSA [1] it is known, however, that the bias of
the gradient approximation for non-quadratic test function is O


c(t)2


and hence a decreasing c(t)-sequence is beneficial

in the general case.
In the state-dependent noise model the noise strength σϵ will depend on the underlying true function value. Such a

relationship is for example observed in physical measurements where the observed errors are relative to the value of the
measurement. Using σ ∗ϵ = const. and definition

σ ∗ϵ = σϵ

N
2R2

(37)

yields σϵ ∝ R2. As stated in the introduction we assume σϵ(x) = σϵ(x ± c(t)∆) for N →∞ for the state-dependent noise
model.

Now substituting σ̃ (t)
ϵ in (25) with

σ̃ (t)
ϵ =

√
2σ ∗ϵ

2R2

N
(38)

4 Increasing c(t) is only beneficial if x(t)
± c(t)∆(t) remains inside the feasible domain. However, such problems will not be considered here.
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yields the necessary condition for convergence

4a(t)R2

1−

a(t)

W
(N +W − 1)


−

2a(t)2σ ∗2ϵ R4

NWc(t)2
> 0. (39)

As before, convergence criteria for a(t), R, and σ ∗ϵ will be determined next. Convergence w.r.t. the step size factor a(t) is
achieved if

a(t) <
2NW

2N(N +W − 1)+ R2


σ∗ϵ
c(t)

2 (40)

holds. Similar to the constant noisemodel, a(t) depends on the current location. Assuming c(t) to be constant, the upper limit
for a(t) increases toward the rhs of (28) if R→ 0. The criteria w.r.t. R and σ ∗ϵ read

R2 <
2N(W − a(t)(N +W − 1))

a(t)


σ∗ϵ
c(t)

2 , (41)

σ ∗ϵ <
c(t)

R


2N(W − a(t)(N +W − 1))

a(t)
. (42)

Note the difference in the sign between (33) and (41). For the state-dependent noisemodel SPSA converges only if the initial
distance to xopt is smaller than the expression on the rhs of (41). A respective conclusion concerning themaximal admissible
σ ∗ϵ can be drawn from (42). From (42) one can conclude that choosing c(t)

∝ R is an alternate valid choice for this factor.
Apart from that one is referred to the discussion on the choice of c(t) at the end the constant noisemodel analysis on page 56.
As before, valid parameter sets must still satisfy (40).

Finally, an optimal setting for a(t) is determined by performing the same steps as before. One obtains

a(t)
sn =

W

2(N +W − 1)+ R2
N


σ∗ϵ
c(t)

2 (43)

where a(t)
sn is the optimal a(t) for the state-dependent noise model. Comparing a(t)

sn with a(t)
nf shows that both are approxi-

mately the same for R→ 0. If R or σ ∗ϵ /c(t) is large a(t)
sn tends toward 0.

3.3. Determining the dynamics with the ODE approach

To analyze the dynamic behavior for successive iterations, one could iterate (25) or use (25) as basis for a differential
equation which describes the dynamics. In the following the latter method is considered. One starts by assuming

df
dt
≈ −q (44)

where f represents the non-noisy function value. The restriction for this assumption is that the higher order derivatives of
f w.r.t. t are small. For the step sequences a(t) and c(t) the expressions from Algorithm 1

a(t)
= a(0)(t + A)−α, (45)

c(t)
= c(0)t−γ (46)

will be used. This additionally allows to determine the influence of the reduction rates α and γ on the dynamics. Moreover,
since we only consider the dynamics in the non-noisy fitness space, we will replace R2 with f in the respective equations.
Starting with the noise-free case, one obtains

f ′ +


4a(0)(t + A)−α

−
4a(0)2(N +W − 1)

W
(t + A)−2α


f = 0 (47)

where f ′ = df /dt . Since we are mostly interested in the long-term behavior we assume t + A ≈ t and for α > 0 that
t−2α/t−α

→ 0 holds. Further note that t ≥ 1 holds. See Appendix C for the detailed solution steps.
Eq. (47) is a homogeneous differential equation, stated as an initial value problem. Using

fstart := f (x(1)) (48)
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and the solution ansatz f = cexp (−Z(t)), where c is a constant and Z(t) is the integral over the respective term inside the
brackets in (47). With above assumptions the following solutions are obtained

f (x(t)) =


fstartexp (q̄(1− t)) , for α = 0,

fstartexp


4a(0)
1−α


1− t1−α


, for 0 < α < 1,

fstartt−4a
(0)

, for α = 1.

(49)

The term

q̄ =
4a(0)

W


W − a(0)(N +W − 1)


(50)

is reminiscent of the noise-free quality gain (25) with constant step size factor and normalized by R2. The respective
asymptotic behavior (t →∞) which yields

log f (x(t)) ∼ −t1−α, for 0 ≤ α < 1, (51)

f (x(t)) ∼ t−4a
(0)

, for α = 1. (52)

From (51) one can deduce that the fastest convergence rate is obtained for α = 0, i.e constant a(t). For α < 1 one observes
a log-linear convergence behavior, while for α = 1 sublinear convergence is attained. The result obtained in [7] reads

lim
t→∞

1
t
log ∥x(t)

∥ = β a.s. (53)

where β < 0 is a small constant depending on a(t). Further the proof assumes c(t) and a(t) to be constant, f three-times
continuously differentiable w.r.t. x with bounded derivatives up to order three in any bounded domain, and xopt = 0 to be
unique. Formore details and an extension of the proof see [7,8]. Forα = 0 (51) and (53) both predict a log-linear convergence
behavior. In [14] a convergence for noise-free quadratic function is presented for SPSA with additional Hessian matrix
adaptation. There the fastest convergence rate for the expected error of the trace in the Hessian matrix is ∼exp


−t1/2


which is constrained by the parameters for the Hessian approximation.

In the constant noise case, the differential equation reads

f ′ +


4a(0)t−α

−
4a(0)2(N +W − 1)

W
t−2α


f =

a(0)2Nσ 2
ϵ

2Wc(0)2
t2(γ−α), (54)

where t + A ≈ t was used. To solve this inhomogeneous differential equation a particular solution will be added to the
solution of the homogeneous equation (47). Using variation of constants, the following integral is obtained 5

c ′(t)dt =
a(0)2Nσ 2

ϵ

2Wc(0)2


t2(γ−α)exp


4a(0)

1− α
t1−α
−

4a(0)2(N +W − 1)
W (1− 2α)

t1−2α

dt. (55)

Unfortunately, this integral has a closed-form solution only for some special cases. One case of interest is α = 0 and
γ = 0, which represents constant step sizes factors a(t) and c(t). Using the initial condition (48) and adding the respective
homogeneous solution (49) to the obtained particular solution yields

f (x(t))α=0,γ=0 = fmin(a(0), c(0))+

fstart − fmin(a(0), c(0))


exp (q̄(1− t)) . (56)

where fmin(a(0), c(0)) is defined by (35). The asymptotic behavior (t →∞) of (56) reads

lim
t→∞

f (x(t)) = fmin(a(0), c(0)) =
a(0)N

8(W − a(0)(N +W − 1))

 σϵ

c(0)

2
. (57)

Eq. (57) shows that xopt cannot be reached if SPSA with constant gradient step size factor a(t) is used.
Next, the case with α = 1 is investigated, which represents SPSA with a fast decreasing gradient step size. Performing

the same steps as above yields

f (x(t))α=1 =
a(0)2Nσ 2

ϵ

2Wc(0)2

2γ − 1+ 4a(0)

 t2γ−1 − t−4a
(0)

+ fstartt−4a

(0)
, (58)

where t−2α/t−α
→ 0 was used. Due to a(0)

∝ 1/N (see (32)) the asymptotic convergence rate for N → ∞ can be written
as

f (x(t)) ∼ t2γ−1 for t →∞. (59)

5 For brevity some intermediate steps are not shown. See Appendix C for detailed solution steps.



S. Finck, H.-G. Beyer / Theoretical Computer Science 419 (2012) 50–72 59

The result obtained by Spall [2] reads

t
β
2 (x(t)

− xopt)
dist.
−−→ N (µ, Σ) as t →∞, (60)

under the conditions given in Appendix A. Further, µ and Σ are mean vector and covariance matrix of the attained normal
distribution and β = α − 2γ , which in the considered case equates to β = 1 − 2γ . Since one of the requirements for the
proof is

3γ −
α

2
≥ 0 (61)

the maximal β is β = 2
3 with γ = 1

6 . Details of the proof can be found in [1,2]. Noting that (59) is stated in terms of f (x(t))
and (60) in terms of x both state the same asymptotic convergence rate for the sphere model.

Finally, the state-dependent noise model will be considered. Using the quality gain formulation (39) where the normal-
ized noise strength σ ∗ϵ (recall σ ∗ϵ is constant during the optimization process) is used, the resulting differential equation
reads

f ′ + 4a(0)t−α


1−

a(0)t−α

W
(N +W − 1)


f −

2a(0)2σ ∗2ϵ

NWc(0)2
t2(γ−α)f 2 = 0. (62)

This differential equation is a first-order non-linear differential equation. However, (62) is a Bernoulli differential equation
which can be transformed into a linear differential equation. Using the substitutions

u = f −1 and u′ = −f −2f ′, (63)

one obtains

u′ − 4a(0)t−α


1−

a(0)t−α

W
(N +W − 1)


u = −

2a(0)2σ ∗2ϵ

NWc(0)2
t2(γ−α). (64)

This equation is of the same type as the inhomogeneous differential equation for the constant noise case (54). Hence, the
same solution steps can be performed and the same restrictions (closed-form solution only for special cases) apply. As done
for the constant noise model, the setting α = 0 and γ = 0 is considered first. Performing the appropriate steps yields

f (x(t))α=0,γ=0 =
2fstartNc(0)2


a(0)(N +W − 1)−W


−fstarta(0)σ ∗2ϵ +


fstarta(0)σ ∗2ϵ +

2
Nc(0)2


a(0)(N +W − 1)−W


exp (−q̄(1− t))

. (65)

The asymptotic behavior of (65) is

log f (x(t)) ∼ −t for t →∞. (66)

This is the same asymptotic rate as for the noise-free scenario with α = 0. In Spall’s proof, no differentiation between the
constant noise and state-dependent noise was made, hence the same result (60) applies. The second case under considera-
tion is the one with α = 1. The solution for the dynamics in this case reads

f (x(t))α=1,A=0 =
NWc(0)2 fstart


2γ − 4a(0)

− 1


−2a(0)2σ ∗
2

ϵ fstart

t2γ−1 − t4a(0)


+ NWc(0)2


2γ − 1− 4a(0)


t4a(0)

. (67)

The asymptotic analysis yields

f (x(t)) ∼ t−4a
(0)

for t →∞, (68)

i.e, the same rate as for α = 1 and the noise-free model. Note, the exponent 2γ − 1 is negative.

3.4. Summary

This section presented the detailed steps of a theoretical analysis approach developed for evolution strategies and its
application to SPSA. The function under consideration was the sphere model in combination with three different noise
models. First the quality gain, a performance measure for the one-iteration gain for the non-noisy function values, was
derived. Using the derived equations, convergence criteria and optimal gradient step sizes were determined. Afterward, an
ordinary differential equation approach, based on the quality gain equations, was used to derive the overall dynamics. The
results obtained were then compared with previous results from literature. A core assumption of the presented approach
is the neglect of the stochastic fluctuations. Therefore, the derived equations are asymptotically correct for N → ∞. To
validate the equations for finite N , simulations will be performed and compared with the equations. This is the topic of the
next section.
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Fig. 2. Results of the simulation experiments for the noise-free case. Top left: sample runs and theoretical predictions for different search space
dimensionalities. Top right: influence of the search space dimensionality N on the number of function evaluations necessary to reach ftarget . Bottom left:
influence of a(t) to reach ftarget in terms of necessary function evaluations. All sequences of a(t) considered are constant, i.e., a(t)

= a(0)
∀t . Bottom right:

number of function evaluations to reach ftarget for different number of gradient samplesW for N = 50.

4. Experimental analysis

In this section the results derived from the previous section will be compared with simulation experiments. The aim is to
show the quality of the theoretical equations for finite N . Additionally, parameter studies will be performed to gain insight
on the influence of the strategy parameter. These studies will yields insight in the general relation between the parameter
and the performance of SPSA. First, the experimental settings will be described. The basic settings for the noise-free and
constant noise model analysis were:

• The components of the start point were chosen from the N (100, 25) normal distribution for each sample anew.
• 10 samples were performed for each setting.
• The maximal number of function evaluations was set to FEsmax = 104N .
• The run was terminated when ftarget = f (xopt)+ 10−20 was reached.
• The default strategy parameters were: c(0)

= 1, γ = 0, α = 0, A = 0,W = 1, and a(t)
=

λ
2(N+λ−1) = a(t)

nf .
• The default value for the noise strength was σϵ = 1.

For the state-dependent noise, a slightly different setup has been used.
The analysis is performed for the noise-free model first. In the top left-hand plot of Fig. 2 the dynamic behavior of 10

sample runs for N = 10, 20, 40 is shown. One can clearly see the predicted log-linear convergence behavior of SPSA. Also
the theoretical predictions based on the iteration of the quality gain (25) and the solution to the homogeneous ordinary
differential equation (47) are shown. The theory predicts in both cases a slightly worse performance w.r.t. the number of
function evaluations necessary. In the top right-hand plot of Fig. 2 the influence of the search space dimensionality N on
the dynamic behavior is shown. From the curve it appears that there is a linear relation between N and the number of
function evaluations for a given value of ftarget. In the bottom left-hand plot of Fig. 2 the influence of a(t) on the dynamics
is shown. All sequences considered of a(t) are constant w.r.t. t . Note the scaling of the horizontal axis for a(t) by 1/a(t)

nf . As
one can see, the actual choice of a(t) is rather uncritical for the performance, as long as a(t) is in the range 0.5a(t)

nf . . . 1.5a(t)
nf .

For non-constant sequences of a(t), one can conclude that performance will be poor if a(t) will be outside this range. As to
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Fig. 3. Results of the simulation experiments for SPSA on the sphere model with constant noise (σϵ = 1). All results shown were obtained with a(t)
= a(t)

nf ,
c(t)
= σϵ , andW = 1 if not stated otherwise. Left: dynamics of sample runs and mean value dynamics for N = 10, 50, 100 (from left to right). Center: the

minimal fitness fmin as function of W/N . The theoretical predictions are based on Eq. (35). Right: influence of the noise as σϵ/c(0) on fmin .

the influence of gradient samples per iteration W , shown in the bottom right-hand plot in Fig. 2, increasing the W always
increases the number of function evaluations to reach ftarget. Given that W can be interpreted as a form of resampling, the
results discourage the use of it for the noise-free sphere model. More interesting is the fact, that the approximation quality
of (25) is not reduced by increasing W , while the results of the ODE approach (49) deviate strongly for large W . The reason
is that the gradient step is increasing with W (30) and thus the granularity cannot be accurately represented by the ODE
approach. However, the ODE approach still can be used as an approximation for the lower bound of the performance.

Next, the noise model with σϵ = const. is considered. First, in the left-hand plot of Fig. 3 the dynamic behavior of SPSA
with step size factor sequence a(t)

nf and σϵ = 1 is shown. Initially the same behavior as for the noise-free case is observed (see
top left-hand plot of Fig. 2), until the noisy influence is not negligible anymore and SPSA finally stagnates. As for the noise-
free model, theory and simulation results agree very well and the predicted dynamics appear closer to the observed mean
value dynamics than for the noise-free case. The (mean) fitness valuewere stagnation occurs is defined by fmin (35). In center
plot of Fig. 3 the influence of the number of gradient samples per iteration W is shown for search space dimensionalities
N = 10, 100. Increasing W yields decreasing values of fmin, albeit at the cost of more function evaluations per iteration
step. The influence of the noise strength on fmin is shown in the bottom right-hand plot of Fig. 3. Instead of using the noise
strength σϵ as main parameter, σϵ/c(0) is used. This reflects the situation where one does not exactly know the value of σϵ

and thus must estimate c(0) (which should be chosen equal to σϵ according to [2]). For the sphere it makes no differences if
either σϵ is increased or c(0) is decreased. Again, the results of the simulation experiments and the theoretical prediction by
(35) agree well.

So far only constant sequences of a(t) were considered. To improve the performance w.r.t. fmin, SPSA with a decreasing
factor a(t) is analyzed next. The theoretical results (58) and (59) predict that SPSA should converge to xopt, as t → ∞. In
the right-hand plot of Fig. 4 the dynamic behavior for different values of α is shown. One can observe that α > 0 results
in a continuously decreasing non-noisy function value, but one also observes a simultaneous decrease in the convergence
rate. Since all the curves were obtained with W = 1, one can conclude that using α > 0 has a more pronounced effect on
decreasing fmin than increasingW . Additionally, the dynamic behavior for a(t)

cn (36) is shown. It outperforms all other variants
in terms of convergence rate and obtains the lowest fmin within the given budget of function evaluations. The reason for this
is shown in the left-hand plot of Fig. 4 where the history of a(t)

cn is shown. As long as the influence of the noise is negligible
the strategy uses a(t)

nf . As soon as the noise has a noticeable influence a(t) will be decreased. For comparison the curves for a(t)

with different values of α are shown. This result suggest that an improvement of the performance can be achieved if SPSA is
operated with non-constant α-values. The development of such a sequence is beyond the scope of the presented work and
also should be further based on the performance on different objective functions.

Finally, the state-dependent noise model will be investigated. Contrary to the previous analyses, looking at the dynamic
behavior reveals no new information, cf. left-hand plot of Fig. 6. If SPSA is able to reach xopt, the dynamic curves are similar
to the noise-free case behavior in Fig. 2. Further, the quality of the agreement between the theoretical predictions and the
simulations is the same. On the other hand, if SPSA diverges one only observes the diverging behavior without gaining any
insight. However, of particular interest is the question as towhen SPSA does diverge (e.g. for which parameter setting). Since
our theoretical analysis is based on a mean value approach, it only can predict either diverging or converging behavior. To
gain more insight we define the success probability

psucc =
# samples where ftarget was reached

# all samples
. (69)

This allows to track settings where some samples reach ftarget and some do not. This requires a change in the experimental
settings to account for this behavior. The new experimental setup is:
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Fig. 4. Influence of α for the sphere model with constant noise and search space dimensionality N = 100. Left: sample run dynamics and mean value
dynamics for different sequences of a(t) . Right: sequence of a(t) for α = 0, 0.3, 0.6, 1 and a(t)

= a(t)
cn .
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Fig. 5. Experimental analysis of SPSA on the sphere with state-dependent noise. See text for the standard parameter settings. Top left: success probability
psucc to reach ftarget = 10−20 for different initial states. Top middle: success probability psucc to reach ftarget = 10−20 as function of the number of gradient
samplesW . Top right: success performance #FEs/psucc for different constant a(t) sequences. Circles indicate psucc < 1 and crosses indicate psucc = 1. Bottom
left: success performance #FEs/psucc as the function of the reduction rate α for a(t)-sequences defined by Eq. (45) with a(0)

= a(t)
nf . Bottom middle: success

performance #FEs/psucc for different constant c(0)-sequences. Bottom right: success performance #FEs/psucc for different normalized noise strengths σ ∗ϵ .

• For each set of parameter 100 samples were performed.
• The termination criteria were ftarget = 10−20 or a maximal number of function evaluations of 106N .

• The default parameters were:W = 1, σ ∗ϵ = 1, a(t)
= a(t)

nf , fstart = 3N2, γ = 0, and c(t)
= σ ∗ϵ .

The choice of a(t) was made with the intention to show how the state-dependent noise model influences the behavior of
SPSA. On the other hand, the choice of c(t) is somewhat artificial and will be discussed later.
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Fig. 6. Left: dynamical behavior of SPSA with optimal gradient step size factor a(t)
sn on the sphere model with state-dependent noise σ ∗ϵ = 1 for different

search space dimensionalities. Right: history of a(t) by using a(t)
sn (solid lines) and a(t)

nf as defined by Eq. (30) (dashed line). Note that the latter is constant
and agrees with a sequence with setting α = 0. For other choices of α, see right-hand plot of Fig. 4.

From the convergence criterion of R2 for the state-dependent noise model (41), one can infer that fstart must be smaller
than a certain value in order to achieve convergence. This is investigated firstly and the results are shown in the top left-hand
plot of Fig. 5. Using above parameter settings one can derive from (41)

fstart < 2N2 (70)

as necessary convergence condition. For N = 10 there are runs with psucc > 0 for fstart > 2N2, however, increasing N
reveals a sharp drop in psucc in the vicinity of fstart = 2N2. One can speculate, that for N →∞ a jump in psucc at fstart/N2

= 2
from 1 to 0 will appear. The middle plot in the top row of Fig. 5 shows the influence of the number of gradient samples per
iteration W . Increasing W increases psucc, albeit with a simultaneous increase in the number of function evaluations. In the
top right-hand plot of Fig. 5 the influence of using different constant gradient step sizes is shown. The results are shown in
terms of #FEs/psucc, where #FEs is the mean of the numbers of function evaluations to reach ftarget = 10−20. This measure
was introduced in [17] and represents an estimation of the success performance, i.e., the number of function evaluations
necessary to reach a given target value. It accounts for sample run being unsuccessful, meaning the target function valuewas
not achieved. In the remaining plots of Fig. 5 circles indicate runs where psucc < 1 and crosses indicate runs with psucc = 1.
One can observe, that a small a(0) is necessary to reach psucc = 1, which goes hand in hand with a slow convergence rate.
The best convergence rate is reached close to a(t)

nf , however, with psucc < 1. Using decreasing gradient step sizes as defined
by (45) with α > 0 can improve the success rate as shown in the bottom left-hand plot of Fig. 5. However, the performance
in terms of function evaluations is considerably reduced. The values for α not shown in the plots indicate runs where ftarget
was not reached within the budget of function evaluations for all samples. Finally, the influences of σ ∗ϵ and c(t) are shown
in the bottommiddle and bottom right plots of Fig. 5. While the measure #FEs/psucc remains constant for all values of σ ∗ϵ or
c(t), one observes a drop in the success probability for large σ ∗ϵ and small c(t) respectively. The curves suggest choosing c(t)

large is beneficial since it only influences the noise term. However, as stated before this might results in a reduced accuracy
of the gradient estimation close to the optimizer due to x(t)

± c(t)∆ ≈ ±c(t)∆. Therefore, using a decreasing sequence is
advisable. Such a sequence could be proportional to R which can be approximated from the function value or to σϵ which
can be obtained bymeasuring the standard deviation of several function evaluations during the run. Of course, the sequence
(46) commonly used is also valid, however, it does not use any information obtained during the run of SPSA.

Using a(t)
sn (43) improves the performance considerably as shown in Fig. 6. The success probability is always psucc = 1 and

the number of function evaluations is close to the best values for the constant gradient step sizes (where psucc < 1), cf. top
right-hand plot of Fig. 5. In the right-hand plot of Fig. 6 the history of a(t)

sn is plotted. One can observe that a(t) increases as
predicted by the theoretical analysis (43). This is contrary to the requirement limk→∞ a(t)

→ 0 which is used in the analysis
of SPSA by Spall et al. The explanation is, that at the initial point (away from the optimum) the noise is large and therefore
small a(t) are necessary (same as for the constant noisemodel). Converging toward the optimum, the noise decreases until it
is negligible. Hence, a(t) should be converging toward a(t)

nf . Again, this behavior suggests that SPSA can be improved by some
(adaptive) rule for α which uses information obtained during the run rather than being pre-determined. Such rule must be
able to decrease and increase α depending on the underlying model.

5. Comparison with evolution strategies

In this section SPSAwill be comparedwith Evolution Strategies (ESs) [18]. At first, the concept of the ESwill be introduced
shortly. Later, comparisons for each noisemodel will be performed based on performance criteria derived from the previous
theoretical analysis.
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ESs are nature-inspired strategies for optimization, which use a simplified model of Darwin’s evolution paradigm. For an
introduction into ES the reader is referred to [19]. Starting froman initial solution x,mutation is used to generate a population
of λ offspring. In the ES variants considered here, the probability distribution for the mutation obeys a normal distribution
with variance σ 2, where σ is the so-called mutation strength . The offspring are evaluated and selection is performed, where
the µ offspring with the best function value(s) (smallest in the case of minimization) are selected. The µ (µ < λ) selected
offspring, also referred to as parents, are then used for recombination to create the new solution, which forµ > 1 equals the
centroid of the selected offspring. Given the variety of ES variants we will consider two basic variants in this section only.
First, for the noise-free model the (1 + 1)-ES is used. This strategy generates 1 offspring in each generation. The selection
process compares the function value of the offspring with the function value of the current search point. In the case that the
offspring function value is better, the offspring will be the new solution, else the parental point is kept. A pseudo code of
this variant is shown in Algorithm 2. For the constant noise and the state-dependent noise model, the (µ/µI , λ)-ES is used.
This variant generates λ offspring from which the µ best will be selected (the parental solution is always discarded). By
averaging these µ offspring, the new parental centroid will be created. The respective pseudo code is shown in Algorithm 3.

Algorithm 2 The (1+ 1)-evolution strategy
1: initialize x(1) and mutation strength σ
2: g := 1
3: repeat
4: y = xg + σN (0, I)
5: if f (y) < f (xg) then
6: xg+1 ← y
7: else
8: xg+1 ← xg
9: end if

10: σ ← AF(σ ) ◃ Adaptation of σ
11: g ← g + 1
12: until any termination criterion is fulfilled

Algorithm 3 The (µ/µI , λ)-evolution strategy
1: initialize x and σ
2: set strategy parameter µ and λ ◃ usually µ ≈ λ

4 . . . λ
2

3: repeat
4: for l = 1 to λ do ◃ create offspring
5: yl = xg + σN (0, I)
6: fl = f (yl)
7: end for
8: f̃← sort( f1, . . . , fl) ◃ selection
9: xg+1 ← 1

µ

µ

i=1 yi;λ
10: σ ← AF(σ ) ◃ Adaptation of σ
11: g ← g + 1
12: until any termination criterion is fulfilled

In most variants of ES, an additional adaptation procedure for the mutation strength σ is needed. There exist different
variants for this procedure, ranging from the 1/5th rule [18] over self-adaptation procedures [20] to derandomized
adaptation procedures [21,22].6 However, in this work we will not consider the influence of the adaptation procedure.

5.1. The noise-free sphere

In this section a comparison of SPSA and ES on the noise-free sphere is performed. In detail, we will compare SPSA with
constant gradient step a(t)

nf with the (1 + 1)-ES. From [3] it is known, that the (1 + 1)-ES is – apart from the (λopt)-ES [26]
not considered here – the best performing ES on the noise-free sphere. The comparison will be based on the quality gain.
Defining the normalized quality gain as

q∗ = q
N
2R2

, (71)

6 For a more comprehensive overview see also [23,24,19,25].
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Fig. 7. Efficiency comparison of SPSA and (1+1)-ES. Left: efficiency over different step sizes. Shown are the theoretical results (dashed lines) and simulation
results for N = 10 (top solid line) and N = 100 (bottom solid line). Right: ratio of necessary function evaluations to search space dimensionality N for
reaching ftarget = 10−20 for different search space dimensionalities N .

one obtains with (25) andW = 1
q∗SPSA = 2a(t)N


1− a(t)N


. (72)

Substituting the optimal gradient step a(t)
nf (30) yields

q∗SPSA,opt =
1
2
. (73)

For ES, there exist two common performance measures, the quality gain and the progress rate. The latter measures the
progress in the objective vector space. It was shown in [27] that both measures coincide for N →∞.7 The equation for the
(1+ 1)-ES on the noise-free sphere is

q∗ES =
σ ∗
√
2π

exp

−

1
8
σ ∗2


−

σ ∗2

2


1− Φ


σ ∗

2


, (74)

where

σ ∗ = σ
N
R

and (75)

Φ(x) :=
1
√
2π

 x

−∞

exp

−

1
2
t2

dt (76)

is the cumulative distribution function of the standard normal distribution. The maximal progress for the (1+ 1)-ES occurs
at σ ∗ ≈ 1.224, cf. [3]. Finally, let us define efficiency as

ν =


q∗ES
λ

, for ES,

q∗SPSA
2W

, for SPSA,

(77)

i.e., for the (1 + 1)-ES yielding ν = q∗ES. The reason for the difference in the definition is, the difference in the number of
function evaluations per iteration step. In the left-hand plot of Fig. 7 the efficiency for both strategies is compared, based
on the theoretical equations and for simulations with N = 10 and N = 100. While SPSA reaches slightly higher efficiency
values, ES has a broader range for the step size to attain convergence. ForN = 100 both strategies are close to the theoretical
value, while for N = 10 the theoretical predictions underestimate the efficiency. In the right-hand plot of Fig. 7, the number
of function evaluations (FEs) to reach ftarget for different search space dimensionalities is shown. Again, SPSA performs better
than the (1+ 1)-ES, especially for low N .

5.2. The sphere with constant noise

For the constant noise model SPSA can reach the optimum (t → ∞) if the optimal step sequence a(t)
cn (36) or (45) with

α ≤ 1 is used. For ES, on the other hand, it will always have a approximation error (residual location error) the expected
value of which is given by [28]

fmin =
σϵN

4µcµ/µI ,λ
, (78)

7 The same can be shown for SPSA, however, it is omitted for brevity.
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Fig. 8. Comparison of (µ/µI , λ)-ES with SPSA with constant gradient step.

where cµ/µI ,λ is the so-called progress coefficient [3]

cµ/µI ,λ =
λ− µ

2π


λ

µ


∞

−∞

exp

−t2


Φ(t)λ−µ−1 (1− Φ(t))µ−1 dt (79)

with Φ(t) defined by (76). A comparison of ES with SPSA is performed under assumption that a(t)
= const. The residual

location error for SPSA with constant gradient step was determined in (35) and reads

fmin =
a(0)N

8(W − a(0)(N +W − 1))

 σϵ

c(0)

2
. (80)

Thus, both strategies will attain a residual location error and we are interested in the influence of certain parameters on the
residual location error. The results are shown in Fig. 8. The left-hand plot shows the influence of N . Two ES variants, one
with ϑ = µ/λ = 0.25 and one with ϑ = 0.5 are shown. The value of λ is calculated by

λ = 4+ ⌊3 log(N)⌋. (81)

Both ES variants display a similar behavior and scale linearly with N . For SPSA, a variant using a(t)
nf and a variant with

a(t)
= 1/(2N) are shown. Both use W = ⌊λ/2⌋ gradient samples per iteration. Thus, all strategies use the same budget

of function evaluations. For the latter choice of a(t) the gradient step size is independent of W which allows for smaller
residual location errors since a(t) remains small. In the first case, a(t) increaseswithW , however the attained residual location
error remains almost constant. The middle plot shows the influence ofW and λ. One can clearly observe that SPSA reaches
smaller residual location errors, especially the variant with a(t)

= 1/(2N). However, this variant will need much more
function evaluations to reach the vicinity of the steady state since the convergence rate is not optimal during the phase
where the influence of the noise is negligible. Finally, in the right plot the influence of the noise strength is displayed. For ES
the noisy strength equals σϵ , while for SPSA it equals σϵ/c(t) (see discussion in Section 4). The stronger increase for the SPSA
variants is due to the quadratic appearance of the noise strength in (80), while it is only linear for ES (78). Additionally, the
most significant difference between the two strategies is that the residual location error depends on the step size for SPSA.
Decreasing the gradient step size decreases the (expected) minimal distance to xopt, hence a(t)

→ 0 ⇒ fmin → 0. For ES,
the minimal distance does also depend on the step size, however, if σ ∗ → 0 (78) is obtained. Overall, one can conclude that
SPSA is able to attain smaller residual location errors than ES except for large noise strengths.

5.3. The sphere with state-dependent noise

For this noise model, the noise at the initial state is critical. From (42) we already know for SPSA that the initial distance
must be smaller than a certain value to attain convergence. For ES, one can conclude from the constant noise model, that
the initial noise strength must be connected with a residual location error which is smaller than the initial distance to xopt.
For the following comparison, we assume that both strategies are able to converge. Then, our interest lies in how efficiently
the strategies approach the optimum. Using the efficiency definition (77) and (39) one obtains

νSPSA =
a(t)N
W


1−

a(t)

W
(N +W − 1)


−

a(t)2R2

2W 2


σ ∗ϵ

c(t)

2

. (82)

From the theoretical analysis we know that the choice of c(t) is critical. Given that the algorithm itself has to deal with σϵ

instead of σ ∗ϵ ,
8 one can conclude from (82) that if c(t)

≈ R0σ
∗
ϵ is chosen, convergence can be achieved for all possible initial

8 The term σ ∗ϵ is an artificial term which is useful for the analysis, however, it never appears in the actual implementation.
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Fig. 9. Efficiency of SPSA for the sphere model with state-dependent noise. The dashed curves represent theoretical results with a(t)
= a(t)

nf , while the
solid curves represent a(t)

= a(t)
sn . Left: influence of the search space dimensionality N on the efficiency νSPSA . Right: influence of the number of gradient

approximations per iterationW on the efficiency νSPSA .

states R0. In Fig. 9 the efficiency νSPSA is shown for different gradient step sequences. The solid lines represent the results of
(82) with a(t)

= a(t)
sn , while the dashed ones are obtained with a(t)

= a(t)
nf . In both plots one can observe that using a(t)

nf can
yield νSPSA < 0 for a given set of c(t), R, and σ ∗ϵ , while using a(t)

sn the efficiency is always greater than zero. On the other hand,
substituting the respective gradient step sequences (30) or (43) into (82) and taking the limit N →∞ yields νSPSA = 0.25
for both, cf. Fig. 7. From the right-hand plot of Fig. 9 one can see that W = 1 is the best choice and that for W > 1 νSPSA
cannot reach the noise-free value of νSPSA = 0.25.

The (µ/µI , λ)-ES was thoroughly analyzed for the sphere with state-dependent noise in [27]. Since, we do not want to
reproduce this work, we will just state some of the interesting facts. First, the sphere in the limit of infinite search space
dimensionality was considered and the efficiency was derived yielding

νES =
σ ∗cµ/µI ,λ

λ


1+


σ∗ϵ
σ∗

2 − σ ∗2

2µλ
(83)

with the assumption N →∞. From (83), one can derive the following convergence criterion

σ ∗ϵ < 2µcµ/µI ,λ. (84)

This shows that increasingµ– and thereforeλ for constantϑ = µ/λ–ES should be able to converge for anyσ ∗ϵ . This behavior
is also shown in the right-hand plot of Fig. 10, where the maximal efficiency for different λ with µ ≈ λ/3 is shown. The
efficiency itself depends on σ ∗ as shown in the left-hand plot. Comparing (83) with its noise-free version (see for example
[15]), one sees that ES reaches the noise-free efficiency for σ ∗ϵ /σ ∗ → 0. The derivedmaximal efficiency is 0.202. However, a
more detailed analysis [15] showed that for finite search space dimensionalities the efficiency is reduced by decreasing N . It
was shown that the maximal efficiency is reached for intermediate values of λ. Further increasing λ reduces the efficiency,
an effect which cannot be predicted by the asymptotic (N → ∞) Eq. (83). Overall, the same result as for the other noise
models can be stated, namely that SPSA slightly outperforms ES if both strategies operate with parameter settings close to
optimality.

6. Summary and conclusion

In thiswork, simultaneous perturbation stochastic approximationwas analyzedwith the help of the theoretical approach
developed for evolution strategies. The advantage of this approach is that it can be applied to noisy and noise-free
optimization at the same time. It allows to (approximately) determine the short term dynamic behavior (t ≪ ∞).
Furthermore, the influence of the strategy parameters on the dynamic behavior of the strategy can be evaluated, which
provides valuable information for practitioners in the field. A drawback of the approach is that the results derived are only
valid for the class of functions considered and no guarantee for generalization can be given. On the other hand, the results
might be (partially) reused as done for the analysis of ESs on certain ellipsoidal functions [29]. Another simplification is that
an infinite search space dimensionality must be considered. However, simulation results showed that the equations derived
are good approximations for finite search space dimensionalities. The function under consideration in this work was the
sphere model and it was shown that the approach was able to

(a) derive theoretical approximations for the (one-step and overall) dynamics,
(b) obtain convergence criteria and optimal parameter settings.
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Fig. 10. Efficiency of (µ/µI , λ)-ES for the spheremodelwith state-dependent noise. Left: influence of the normalizedmutation strengthσ ∗ on the efficiency
νES for (3/3I , 10)-ES. Right: maximal efficiency νES in dependence of the parental population size µ with λ = 100.

Especially the derived optimal gradient step sizes showed that an improvement for SPSA can be made by using gradient
step sizes the values of which are close to the optimal ones. However, to derive an adaptive gradient step size rule, more test
functions need to be considered. First steps in this direction have been already made with the adaptive SPSA [13,14], which
uses additional function evaluations to approximate the Hessian matrix. Additionally, as for the sphere model the step size
factor c(t) plays only a minor role, however, it is expected that this will not be the case for other types of test functions.

The insights obtained from the theoretical analysis were used in the 2nd part for a comparison with simple evolution
strategies. Here we have taken advantage of using a unified theoretical approach, since the performance measures used are
compatible. For all three noisemodels (noise-free, constant noise, state-dependent noise) SPSA performed better than the ES
variants considered. In the constant noise case restriction had to be applied, given that SPSA could reach the optimumand ES
could not. However, SPSA does reach the optimum for t →∞, an information not very useful for practical considerations.
Hence, only the attained residual location error was compared neglecting any effects from step size adaptation procedures.
For the state-dependent noise model, SPSA will diverge if the initial distance to the optimum is too large. One can influence
the critical distance by use of resampling the gradient approximation, decreasing the initial gradient step size (which will
reduce the convergence rate) or increasing the gradient approximation step size c(t) (which could be problematic if a
bounded search space domain is considered). A peculiarity of SPSA is that for the constant noise model the residual location
error depends on the gradient step size. This dependency is the reasonwhy SPSA can reach the optimum (t →∞), however,
on the other hand it reduces the convergence rate. Thus, for this noise model a decreasing a(t) sequence is beneficial if the
noise cannot be neglected in the function evaluation process.

The results obtained are promising. They should encourage the use of the presented approach to other test functions and
optimization strategies. This will allow for a more detailed and comprehensive comparison of different strategies providing
the option to also design improved algorithms for noisy optimization. The results should also be extended in the future. One
improvement would be the analysis of ellipsoidal functions and possibly incorporating the adaptive version of SPSA [14].
Another question is how the results (and the analysis) can be transferred to less restrictive noisemodels, e.g., the noise being
a iid sequence with zero mean and finite second or higher order moments.
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Appendix A. Conditions and theorems for the convergence of SPSA

This appendix states the conditions and convergence theorems for SPSA form Spall’s proof [1,2]:

C1 (Gain Sequences) a(t) and c(t) > 0, a(t) and c(t)
→ 0,


∞

k=1 a
(t)
= ∞, and


∞

k=1
a(t)

2

c(t)2
<∞.

C2 (Relationship to ODE) Let f(x) be continuous on RN . With Z(t) ∈ RN representing a time-varying function (t denoting
time), suppose that the differential equation given by dZ(t)

dt = −f(Z(t)) has an asymptotically stable equilibrium point
at x∗.

C3 (Iterate boundedness) supk≥0 ∥x(t)
∥ <∞ and x(t) lies in a closed and bounded subset of the ‘‘domain of attraction’’ for

the differential equation of C2 infinitely often.
C4 (Measurement noise; relationship between the measurement noise and ∆(t)) For all t , E


(ϵ+ − ϵ−)|Ik, ∆(t)


= 0

and the ratio of measurement to perturbation is such that E


G(x(t)
±c(t)∆(t))
∆ki

2
is uniformly bounded over t and i.

(Ik = {x(1), x2, . . . , x(t)
;∆1, ∆2, . . . , ∆k−1})
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C5 (Smoothness of F ) F is three-times continuously differentiable and bounded on RN .
C6 (Statistical properties of the perturbation ∆) All ∆ki are independent for all k, i, identically distributed for all i at each

t , symmetrically distributed around zero and uniformly bounded in magnitude for all k, i.
C7 The continuity and equicontinuity assumptions about E


(ϵ∗ − ϵ−)2|Ik


from [1, Prop. 2] hold.

C8 H(x∗) is positive definite where H(x) is the Hessian matrix of f̂ (x). Further, let λi, denote the ith eigenvalue of a(0)H(x∗),
where a(0) is from the a(t)-sequence. If α = 1, then β < 2mini(λi).

C9 E

∆2

ki


→ ρ, E


∆−2ki


→ ρ

′

, and E

(ϵ∗ − ϵ−)2|Ik


→ ρ

′′

for strictly positive constants ρ, ρ
′

, and ρ
′′

(almost sure (a.s.)
in the latter case) as t →∞.

Theorem 1 ([2, p. 186]). Suppose that the conditions C1 – C6 hold. Further, suppose that x∗ is a unique minimum in the search
domain. Then, for the SPSA algorithm, x(t)

→ x∗ a.s. as t →∞.

Theorem 2 ([2, p. 186]). Suppose that the gains have the standard form a(t)
=

a(0)
(t+A)α

and c(t)
=

c(0)
kγ , k = 1, 2, . . ., with

a(0), c(0), α, and γ strictly positive, A ≥ 0, β = α − 2γ > 0, and 3γ − α
2 ≥ 0. Further, suppose that conditions C1–C6 from

Theorem 1 and conditions C7–C9 hold. Then, for the SPSA algorithm,

k
β
2 (x(t)

− x∗) dist.
−−→ N (µ, Σ) as k→∞, (A.1)

where µ and Σ are a mean vector and the covariance matrix.

Note, above proof does not apply to noise-free SPSA. A proof for this case was presented by Gerencsér and Vágó in [7,8].
In addition to this proof there exist other variants [30,31] which try to relax some of the above mentioned requirements.

As a result one obtains almost sure convergence, however, without conditions C2–C4, relaxed conditions C1 and C5, and
a weakened condition C6. For example in [31] the so-called trajectory-subsequence method is used for the analysis of the
algorithm, which seems able to handle noise-free SPSA. Additionally, a deterministic approach is given in [32].

Appendix B. Deriving ∥g∥2

In the following the steps of deriving (22) from (21) are described. The square of the gradient norm with λ gradient
approximations can be written as

∥g∥2 =

1λ
λ

l=1


2xT∆l +

σ̃ϵNl(0, 1)
2c


∆l


2

=
1
λ2

λ
l=1

λ
m=1


2xT∆l +

σ̃ϵNl(0, 1)
2c


2xT∆m +

σ̃ϵNm(0, 1)
2c


∆T

l ∆m. (B.1)

Note, the iteration counter t is not shown for brevity. Eq. (B.1) can be expanded to

∥g∥2 =
1
λ2

λ
l=1


4(xT∆l)

2
+ 2(xT∆l)

σ̃ϵNl(0, 1)
2c

+
σ̃ 2

ϵ Nl(0, 1)2

4c2


∆T

l ∆l

+
1
λ2

λ
l=1


m≠l


4(xT∆l)(xT∆m)∆T

l ∆m +
σ̃ϵNm(0, 1)

c
(xT∆l)∆

T
l ∆m

+
σ̃ϵNl(0, 1)

c
(xT∆m)∆T

l ∆m +
σ̃ 2

ϵ Nl(0, 1)Nm(0, 1)
4c2

∆T
l ∆m


. (B.2)

Defining

S1 :=
1
λ2

λ
l=1


4(xT∆l)

2
+ 2(xT∆l)

σ̃ϵNl(0, 1)
2c

+
σ̃ 2

ϵ Nl(0, 1)2

4c2


∆T

l ∆l, (B.3)

the expectation of S1 for a given point x with ∥x∥ = R yields

E [S1|x] =
1
λ2

λ
l=1

4E

(xT∆l)

2∆T
l ∆l|x


+ 2E


(xT∆l)

σ̃ϵNl(0, 1)
2c

∆T
l ∆l|x


+ E


σ̃ 2

ϵ Nl(0, 1)2

4c2
∆T

l ∆l|x


. (B.4)

The first expectation in (B.4) can be written as

E

(xT∆l)

2∆T
l ∆l|x


= E

 N
n=1


N
i=1

xi∆li

2

∆2
ln |x

 = E


N

n=1

N
i=1

N
j=1

xixj∆li∆lj∆
2
ln |x


. (B.5)
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Using

E

∆li∆lj


=


0 i ≠ j
1 i = j

(B.6)

and

∆2
ln = 1, (B.7)

one obtains

E

(xT∆l)

2∆T
l ∆l|x


=

N
k=1

N
i=1

x2i = R2N. (B.8)

The second expectation in (B.4) can be written as

E

(xT∆l)

σ̃ϵNl(0, 1)
2c

∆T
l ∆l|x


= E


N
i=1

N
j=1

xi∆li∆
2
ljz|x


, (B.9)

with z = σ̃ϵNl(0,1)
2c . Note, due to ∆ and N (0, 1) being statistically independent, the different expectations can be considered

individually. Using E

∆li∆

2
lj


= 0 for all i, j, one obtains

E

(xT∆l)

σ̃ϵNl(0, 1)
2c

∆T
l ∆l|x


= 0. (B.10)

The last expectation term in (B.4) can be written as

E


σ̃ 2
ϵ Nl(0, 1)2

4c2
∆T

l ∆l|x

=

Nσ̃ 2
ϵ

4c2
, (B.11)

since E

∆T

l ∆l

= N (see (B.6)). Now (B.8), (B.10), and (B.11) can be substituted into (B.4). This yields the following

expectation

E [S1|x] =
1
λ2

λ
l=1


4R2N +

Nσ̃ 2
ϵ

4c2


. (B.12)

The sumof the squares of the Gaussian distributed randomvariables yields aχ2-distribution. Thus, the expected value (B.12)
can be written as

E [S1|R] =
1
λ2


λ4R2N +

Nσ̃ 2
ϵ λ

4c2


=

N
λ


4R2
+

σ̃ 2
ϵ

4c2


. (B.13)

Defining

S2 :=
1
λ2

λ
l=1


m≠l

4(xT∆l)(xT∆m)∆T
l ∆m +

σ̃ϵNm(0, 1)
c

(xT∆l)∆
T
l ∆m

+
σ̃ϵNl(0, 1)

c
(xT∆m)∆T

l ∆m +
σ̃ 2

ϵ Nl(0, 1)Nm(0, 1)
4c2

∆T
l ∆m, (B.14)

the expectations of the different terms in (B.14) will be determined next. At first the expectation of 4(xT∆l)(xT∆m)∆T
l ∆m

will be obtained. Starting with

E

4(xT∆l)(xT∆m)∆T

l ∆m|x

= 4E


N
i=1

N
j=1

N
n=1

xi∆lixj∆mj∆ln∆mn |x


, (B.15)

one can group the terms according to their indices. This yields

E

4(xT∆l)(xT∆m)∆T

l ∆m|x

= 4E


N
i=1

N
j=1

N
n=1

xixj∆mj∆mn∆li∆ln |x


. (B.16)

Using (B.6), one sees that for i = n the expectation for ∆l does not vanish and that for j = n the expectation for ∆m does not
vanish. Hence, only for i = n = j the expectation is not zero. Thus, one obtains

E

4(xT∆l)(xT∆m)∆T

l ∆m|x

= 4E


N
i=1

x2i ∆
2
mi

∆2
li |x


= 4R2, (B.17)
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by using the fact ∆2
= 1. The next expectation is

E


σ̃ϵNm(0, 1)
c

(xT∆l)∆
T
l ∆m|x


= 0. (B.18)

The expectation vanishes since E

∆mj


= 0 for all j and due Nm(0, 1) and ∆ being statistically independent. A closer

inspection of the remaining terms in (B.14) reveals that they all contain either a single ∆l or ∆m term. Thus, the same
reasoning as above can be used to show that the expectations of these terms will vanish. Thus, the expectation of S2 is
obtained by substituting (B.17) into the expectation of (B.14)

E [S2|R] =
1
λ2

λ
l=1


m≠l

4R2
= 4R2


1−

1
λ


. (B.19)

Now putting everything together by substituting (B.12) and (B.19) into the expectation of (B.2) yields

E

∥g∥2|R


=

N
λ


4R2
+

σ̃ 2
ϵ

4c2


+ 4R2


1−

1
λ


. (B.20)

Appendix C. Solving the inhomogeneous differential equation

The solution of inhomogeneous differential equation appearing in the constant noise case and the state-dependent noise
case (after applying the substitution u = f −1) is described below. The differential equation has the form

f ′ + f (z1t−α
+ z2t−2α) = z3k2γ−2α, (C.1)

where f ′ = df
dkt and the zi are constants depending on the strategy and function parameters. Further t ≫ A is assumed

and for α > 0 t−2α
t−α → 0 will be assumed. First, the homogeneous solution fh will be obtained. Afterward an ansatz is used

to derive a particular solution for inhomogeneous equation fih. Finally, both solutions will be added to obtain the general
solution for (C.1). The homogeneous equations are

f ′h + fh(z1t + z2t) = 0 for α = 0 and (C.2)
f ′h + fh(z1t−α) = 0 for α > 0, (C.3)

which can be solved by using the ansatz

fh = cexp (−Z(T )) . (C.4)

The exponent Z(T ) is given by

Z(t) =


 t

T=1
z1T + z2TdT , for α = 0 t

T=1
z1T−αdT , for α > 0.

(C.5)

The solution of (C.5) yields

Z(t) =


(z1 + z2)(t − 1), for α = 0,
z1 ln(t), for α = 1,

z1
1− α


t1−α
− 1


, for α ≠ 0, 1.

(C.6)

Substituting the respective equation in (C.4), the homogeneous solution is obtained

fh =


cexp ((z1 + z2)(1− t)) , for α = 0,
ct−z1 , for α = 1,

cexp


z1
1− α


1− t1−α


, for α ≠ 0, 1.

(C.7)

The constant c is obtained by solving fh(t = 1) = fstart.
For constant noise and state-dependent noise the ansatz for the particular solution is

fih = c(t)fh, (C.8)

where fh is given by (C.7), however, without constant c. Substitution of (C.8) into (C.1) yields an integral equation for c(t)′
of type

c(t) = z3

 t

T=1
T 2(γ−α)exp (f (T )) dT , (C.9)
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where f (T ) is a function depending on the homogeneous solution. The closed-form solution of above integral exist only for
some special cases of α and γ . For some other cases the solution involves the generalized incomplete gamma function [33].
For the settings α = 0, γ = 0 and α = 1 solutions can be obtained which yield a interpretable solution. As example the
solution for α = 1 is shown in the following.

Using the ansatz
fih = c(t)t−z1 (C.10)

yields

c(t) = z3

 t

T=1
T 2(γ−1)+z1dT

=
z3

2γ − 1+ z1


t2γ−1+z1 − 1


. (C.11)

Thus, the particular solution is

fih,α=1 =
z3

2γ − 1+ z1


t2γ−1 − t−z1


. (C.12)

Then the general solution to (C.1) with α = 1 is

fα=1 =
z3

2γ − 1+ z1


t2γ−1 − t−z1


+ ct−z1 . (C.13)

As before, the constant c is determined by solving fα=1(t = 1) = fstart.
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