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A recent trend in the literature has been to characterize healthcare activities in terms of complex systems
theory. Complexity has often been loosely and variously defined, with meanings ranging from ‘‘not sim-
ple’’ to ‘‘complicated’’ to ‘‘intractable.’’ In this paper, we consider various aspects of complexity and how
they relate to modern healthcare practice, with the aim of developing research approaches for studying
complex healthcare environments. We propose a theoretical lens for understanding and studying com-
plexity in healthcare systems based on degrees of interrelatedness of system components. We also
describe, with relevant caveats, how complex healthcare systems are generally decomposable, rendering
them more tractable for further study. The ideas of interrelatedness among the components of a system
as a measure of complexity and functional decomposition as a mechanism for studying meaningful sub-
components of a complex system can be used as a framework for understanding complex healthcare sys-
tems. Using examples drawn from current literature and our own research, we explain the feasibility of
this approach for understanding, studying, and managing complex healthcare systems.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The term ‘‘complexity’’ is often used in the scientific literature to
define tasks or systems ranging from complicated to intractable,
with a general meaning of being ‘‘not simple.’’ As noted by a Nobel
laureate and co-founder of the Santa Fe Institute, ‘‘a variety of dif-
ferent measures would be required to capture all our intuitive ideas
about what is meant by complexity and by its opposite, simplicity’’
[10]. What is generally acknowledged in prior research is that def-
initions of complexity are ambiguous, context-dependent [19], and
subjective [10]. While researchers have referred to complexity of
healthcare practice as an important consideration for patient safety
and quality [1,17,22,24,32,36], it is important to note that some of
this work has been met with skepticism (e.g., [21,26]), provoking
responses that the key ideas of complexity theory used in health-
care are often distorted ideas ‘‘trotted out in the guise of complex-
ity’’ [21] and are merely the ‘‘emperor’s new toolkit’’ [26].

Complexity theory has been used to study different aspects of
healthcare, including management [24], continuity of care [33],
nursing [18], and decision-making [6]. For example, Bar-Yam [1]
built his analysis of the entire US healthcare system around an
organizational definition of complexity, in which complex organi-
zations (such as those engaged in healthcare practice) were distin-
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guished by their designated tasks. These tasks were numerous,
diverse, and performed by unique individuals. In contrast, Innes
and colleagues [15] considered the individual patient consultation
as their unit of analysis and highlighted features of this encounter
that were analogous to those exhibited by complex adaptive sys-
tems, such as non-linearity (leading to uncertainty) and adaptation
to the influence of outside agencies [23]. Most of the prior work on
healthcare complexity is descriptive and provides limited insights
for researchers and practitioners on how to study and understand
complex systems.

In this paper, we propose a theoretical lens for understanding
and studying complexity in healthcare systems, in particular in
dynamic settings such as intensive and emergency care environ-
ments. This theoretical lens, predicated on the interrelatedness be-
tween the components of a complex system, provides both
researchers and practitioners an approach to understanding and
managing complexity. Drawing from prior studies and our own re-
search, we provide examples as to how this perspective can be
used to identify, study and potentially solve current, relevant prob-
lems in the healthcare domain. For this purpose, we consider the
various senses of the term ‘‘complexity’’ and how they relate to
modern healthcare practice, with the aim of facilitating better-in-
formed research approaches to studying complex healthcare
settings.

2. Defining complexity and its properties

Early characterizations of complexity emerged from physics
(e.g., chaos theory, network complexity), computer science (e.g.,
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Fig. 1. The range of complexity depending on number of and degree of interrelat-
edness between components.
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computational complexity, cellular automata) [13,34], economics,
biology, and philosophy (e.g., time-space dimensions of complex-
ity) [10]. Other related characterizations have described complex-
ity as arising from the nature of problems in relation to their
solution. For example, ‘‘wicked’’ [27] or ‘‘ill-structured’’ [30] prob-
lems have been attributed to have characteristics of complexity.
Newer scientific disciplines have appropriated and adapted charac-
terizations of complexity to fit their fields of study, as well. While
there is considerable overlap among the many definitions [10], sig-
nificant disagreement about the notion of complexity and the nat-
ure of complexity science remains [23].

We define complexity in terms of one of the most commonly ac-
cepted notions—the interrelatedness of components of a system [29–
31]. By interrelatedness we mean influence of system components
on each other. In this sense, complexity is relative: it increases
with number of components in a system, number of relations be-
tween them, and uniqueness of those relations. This latter notion
of uniqueness reflects the idea that expanding a system by mere
repetition or simple transformations of relations and components
does not substantively contribute toward its complexity. While
the sheer number of components of a system may make it ‘‘compli-
cated,’’ it is the degree and number of relationships between the
components, both manifest and latent, that make it inherently
complex. This interrelatedness among components of complex sys-
tems manifests as properties, or features, of the system, such as
non-decomposability and emergence, nonlinear behavior, and in
some cases self-organization. Several researchers (e.g., [27,29–
31]) have described these properties as identifying characteristics
of complex systems. These properties, however, can also be under-
stood as consequences of the interrelatedness of system compo-
nents. Accordingly, we describe two particularly noteworthy
properties of complex systems in terms of interrelationships:
non-decomposability and non-linear behavior.

Non-decomposability is often a consequence of the web of
interrelationships between complex system components. It means
that such systems cannot be understood by attending to their indi-
vidual components in isolation. That is, to the extent that compo-
nents of complex systems are examined in isolation—by ignoring
component interrelations—less can be understood about the sys-
tem. It is important to consider, however, that some interrelations
are usually more substantial than others, such that non-decompos-
ability is not absolute. Non-decomposability does not mean that
complex systems cannot be studied; rather, it implies that the fo-
cus or granularity in studying such systems needs to accommodate
the constraints of interrelations.

An important behavioral outcome of interrelations, a sort of
‘‘non-decomposability of actions,’’ is that of emergence [8,9,16].
Interactions between components of complex systems, due to their
interrelations, often lead to unexpected behavioral properties of
such systems. These properties typically cannot be predicted from
the behavioral characteristics of individual system components. A
particular form of emergence, self-organizing system behavior,
may also occur.

Interrelations between system components tend to complicate
responses of complex systems to external influence. That is, as sys-
tems become more complex, they tend toward increasingly nonlin-
ear behavior. Linearity is characterized as predictability and
proportionality of behaviors in response to external influences;
increasingly complex systems tend to behave less predictably
and proportionately [24]. When very small influences effect large
changes, such behaviors are termed ‘‘chaotic.’’ One implication of
the nonlinearity of complex systems is their relatively greater
detachment, or ‘‘freedom,’’ from direct response to environmental
influences. This ability of complex systems to maintain certain
characteristics despite environmental influences, often termed
robustness [4], has inspired the resilience engineering approach
[14], which aims to improve the ability of error-critical systems,
including the healthcare system, to tolerate human error.

3. Effects of complexity: challenges for ‘‘computability’’

One of the critical effects of system complexity is on its ‘‘com-
putability.’’ In other words, there is a cost involved—in terms of
cognitive, computational, temporal, or physical resources required
or expended—when working within or on such systems. For exam-
ple, individuals working within complex systems often expend
substantial cognitive or physical effort in performing tasks, or they
may employ heuristics (i.e., mental shortcuts) to cope. Likewise, for
external observers trying to understand complex systems, the
interrelatedness of components introduces significant challenges
to effectively understanding the system, and important aspects of
such systems are sometimes ignored to their peril. Understanding,
describing, predicting, and managing are fundamental goals for indi-
viduals who work within complex systems, as well as for those
who study them.

How the number of components and (unique) interrelations be-
tween components instantiates system complexity can be under-
stood by considering representatively low and high combinations
of both. Based on number of components and degree of related-
ness, several combinations are possible, with each of these combi-
nations exhibiting different computability challenges. The
computability of a complex system (or a component of a complex
system) is important to consider, as it is a measure for determining
the extent to which one is able to describe, predict, and possibly
manage a complex system. We consider four conditions to charac-
terize the range of system complexity. These four conditions are
not in any way comprehensive. Several intermediate conditions
are possible, depending on numbers of components and degrees
of interrelatedness. Our primary purpose is to show the significant
range of complexity that can manifest in systems. A summary of
these conditions is provided in Fig. 1. In the description that fol-
lows, we provide an example in which each condition occurs in a
clinical practice setting.

1. Few components, low interrelatedness. These systems are sim-
ple, with low computational costs, making them relatively easy
to understand, describe, predict, and manage under various cir-
cumstances. Moreover, such systems are readily decomposable
and exhibit near-linear behavior under most circumstances. An
example of few components (physician, note, and computer
interface) and relations (inputs and computer responses) would
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be a physician simply copying patient medical information from
their hand-written note into an electronic medical record (EMR)
interface.

2. Many components, low interrelatedness. Such systems are com-
plicated, in the sense that they contain a large number of com-
ponents, but the relations between those components are few.
This adds computational costs only to the extent that more sys-
tem components must be considered. As such, these systems
can be described, predicted, and managed, albeit at a linearly
higher computational cost in comparison to simple systems.
For example, consider an EMR system used by multiple person-
nel (physicians, nurses, pharmacists, and billing administra-
tors), each interacting with the system in a limited manner
for their specific role-based tasks.

3. Few components, high interrelatedness. Such systems are
relatively complex and require significant computational costs.
The relatively small number of components makes them more
amenable to description but significantly more difficult to pre-
dict or manage. High interrelatedness within the system leads
to lesser decomposability. We can possibly study such systems
as a ‘‘whole’’ (due to their relatively small number of compo-
nents), rather than decompose them into functional subcompo-
nents. For example, consider the interactions between team
members in a critical care unit during a trauma situation (e.g.,
a ‘‘code blue’’). The team responding to a code may include only
a few members, but the interaction between team members can
be extremely divergent, depending on the situation. Shetty et al.
[28], for example, found considerable divergence in the perfor-
mance (deviation from protocol, errors) between two similar
teams for identical resuscitation simulation scenarios, showing
the significantly varied behavior of highly interdependent small
critical care teams.

4. Many components, high interrelatedness. Such systems are
complex and often present very high computational costs. Due
to the high interrelatedness between their large numbers of
components, such systems are challenging to describe and
much more challenging to predict or manage. For example,
multiple critical care teams attending to traumas from a mass
casualty event have to deal with multiple patients with differ-
ent conditions, with a significantly changed work environment
(e.g., trauma protocols). Such a scenario would be a com-
pounded case of the example presented in condition 3 above,
resulting in a significant number of components (i.e., large
numbers of patients and patient care teams) and high interre-
latedness (within and across team members) to manage work-
flow in this critical care setting.

In order to study the behavior of systems, one has to understand
the nature of organization of the components [35]—that is, identify
components and interrelationships between components. In condi-
tions 1 and 2, where the degree of interrelatedness is low, it is pos-
sible to describe, predict and manage the behavior of the system. In
conditions 3 and 4, the significant number of interrelationships be-
tween components can cause highly erratic and unpredictable sys-
tem behavior.
4. Studying complex systems

Complex systems can appear very different, depending on the
aspects, granularity, and circumstances the researcher chooses to
focus on. It is important to note, however, that such changes in per-
spective do not change the complexity of the system, as the sys-
tem’s complexity is intrinsic and defined by the interrelations of
all of its components, regardless of whether those interrelations
are examined. Some aspects of interest, levels of analysis, or
situations may reveal significant system complexity, whereas oth-
ers may not. Thus, challenges that come with studying complex
systems depend very much on the research questions that are
posed and levels of detail and precision to which answers are
sought.

As researchers, we cannot satisfactorily characterize complex
systems from a global perspective alone. As presciently observed
by Herbert Simon decades before the emergence of complexity sci-
ence as a unified field, one cannot study the complexity of a system
without ‘‘specifying the content of complexity’’ [31]. In other
words, Simon made a case for complex systems to be decomposed,
wherever possible, into smaller functional components and the rela-
tions between them. Decomposition, in this context, is the process
of characterizing a system in terms of subsystems, or components,
and the relations between them in order to characterize them in
terms of discernable interrelations between relatively simpler
components. Groen and Patel [12] utilized similar perspectives
on interrelatedness for analyzing the nature of coherence in med-
ical text.

The challenge, then, is to identify the right ‘‘sizes’’ of compo-
nents and the interrelationships that exist across these compo-
nents. In other words, to extract information from a complex
system, ‘‘one must focus on the right level of description’’ [11].
The task of cutting a system at its seams requires significant study
of behaviors of components, component interrelationships, and
most importantly, whether the isolated subset of the system is rep-
resentative and appropriate for studying the problem at hand. The
key concern here is the identification of the appropriate granularity
and seams of functional components that can be further studied.
Appropriate decomposition must be based on the nature of the
problem being solved, the purpose of studying the complex system
(i.e., describe, understand, predict, or manage), and the expected
implications of studying the system [11].

In order to decompose a complex system into its constituent
components, one has to first identify components (at an appropriate
level of granularity). Next, the degree (or strength), uniqueness,
and number of relationships between the various components
must be determined. Degree of interrelatedness between compo-
nents affects the system functioning. For example, tight coupling
between two components means that their behavior is strongly
linked. At the same time, a weak relationship indicates lesser
dependence. Influence between components may also be charac-
terized as probabilistic, correlational, or directional. Slicing, or dis-
regarding, strong or unique interrelationships may have
significantly greater effects than disregarding weak or redundant
relationships in overall system behavior. For example, for studying
physician handoff practices within emergency care settings, it is
likely that issues related to the transfer of patient-related informa-
tion are more important to consider than those related to resource
availability or bed management. In other words, while creating a
functional slice for studying emergency care handoff practices, it
is more important to consider the patient-information component
than the resources or bed management component.

The nature of the problem being solved and the purpose of
studying the complex system are often driven by the research
objectives and the context within which the problem is studied.
In the example presented above regarding physician handoff prac-
tices in critical care settings, the creation of a functional slice was
driven by the research question (i.e., studying handoff practices).
Accordingly, researchers and clinicians should make appropriate,
conscious decisions regarding which relationships to ignore and
which to preserve, rather than implicitly making such decisions.
While it is often impossible to make a ‘‘perfect’’ functional decom-
position of a complex system, understanding relationships be-
tween various components should be utilized to decompose the
system at its internal boundaries, or ‘‘natural seams.’’
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Toward that aim, the possibility of ‘‘latent’’ interrelationships
between components should also be considered. System behavior
often varies under different conditions that may or many not ex-
pose the nature of relationships between the various components
within the system. Some relationships remain latent under most
conditions and appear only under certain specific conditions. Such
conditions can be considered as states of system ‘‘perturbation.’’
For example, the functioning of an ED changes when there is a sud-
den influx of critical patients from a mass casualty event. Accord-
ingly, workflow, clinician activities, group behavior, and handoff
processes tend to be significantly different from normal working
conditions. Several aspects of the ED workflow changes, including
that off-service personnel are brought in for clinical support, trau-
ma protocols are adopted, and teaching (i.e., in teaching hospitals)
is suspended [25]. In such situations, apparently new dependencies
arise or weak ones may be strengthened (such as the activation of
trauma protocols or suspending teaching, in the example).
Depending on the complex problem being studied, it is important
to consider varied system conditions and relationships that such
conditions can expose.

Until now, we have been considering systems that may poten-
tially be decomposed into smaller functional components for eval-
uation and analysis. Such complexity is referred to as organized
complexity. Some systems are not amenable to decomposition:
for example, those that have all their components interconnected.
Weaver [35] describes this as disorganized complexity. In systems
(or their functional components) in which disorganized complexity
is substantial, the focus has to be on describing these systems in
terms of statistical or limiting parameters (e.g., averages, limits,
or boundaries). There are many cases of such disorganized com-
plexity in clinical systems. For example, consider an ED where
the arrival of new patients on a specific day is less predictable
but it is possible to ascertain averages of patient arrival rates over
a fixed period of time (say, one month). As researchers and practi-
tioners, it is important to be cognizant of disorganized complexity
and that appropriate variables must be considered for their
description.
5. Examples of studying complex systems

One of the purposes of this paper is to develop an approach for
the study of complex systems. As previously mentioned, our per-
spective is based on the principle of functional decomposition of a
complex system: the problem to be solved has to be specified, fol-
lowed by delineating the components of the system and the rela-
tionships among them, and, finally, isolating appropriate
components of the system for study. While there is no set of gen-
eral heuristics that can be applied for functional decomposition of
every system, the above-mentioned stages can be used as a high-
level road map. As examples to further explain our perspective,
we draw on three research papers. These example papers were se-
lected under the following criteria: (a) the authors describe the
environment that they are studying as a complex healthcare set-
ting, and (b) they use some form of functional decomposition pro-
cess to identify components and specific relationships between
components.
5.1. Workflow modeling in critical care

Malhotra et al. [20] developed a model of intensive care unit
(ICU) workflow by decomposing the workflow activities to that
of individual clinicians. In order to develop a cognitive model
and to identify the potential sources of errors in workflow, they
decomposed the ICU workflow into temporally organized (a) criti-
cal zones of activities, (b) knowledge resources that were used
while a clinician (attending, nurse, resident) was in one of the crit-
ical zones, and (c) the errors that occurred during these activities.
In other words, they decomposed ICU workflow into specific work
activities both at the individual and collaborative level, identified
the potential relationships between the work activities by a tem-
poral sequencing of critical zones, and, finally, used the relation-
ships to identify the sources of errors or breakdowns. The
authors use the metaphor of a picture puzzle to explain the con-
ceptual underpinnings of their work. By breaking down the prob-
lem into individual pieces that have unique characteristics and
relationships, a model of components of the ICU workflow system
was developed. The components of the model that were combined
were those that were ‘‘sensible and informative’’ [20]. In this study,
the authors decompose the problem of ICU workflow into individ-
ual activities and the cognitive requirements associated with those
activities. By focusing on individuals (attending physicians, resi-
dents, nurses) and related work activities, the authors innovatively
reduce the complex network of activities in the ICU to a compre-
hensible scale. Using layers of other variables including location
of activities and temporal sequences, they developed and made
intelligible a complex model of ICU workflow.

5.2. ED to ICU transfer

Chalfin et al. [5] investigated the association between the length
of ED boarding and outcomes for critically ill patients. Using pa-
tient data on transfers from the project IMPACT database, they
found that patients with longer ED boarding time (P6 h) had in-
creased hospital length of stay (LOS) and higher mortality rates.
In other words, the authors found an association between ED LOS
and ICU patient outcomes, taking into account several available
objective patient characteristics (e.g., age, gender, resuscitation
status, and Acute Physiological and Chronic Health Evaluation II
score).

The authors describe a study where they considered ED to ICU
patient transfers based on specific patient parameters: patient
characteristics, patient acuity, medical conditions, LOS, and out-
comes (e.g., mortality). The slice of the selected research problem
was limited to certain available and, indeed, relevant parameters.
The important point to note here is that there are several more
parameters that can potentially influence ED to ICU transfers—for
example, role of non-clinical teams (e.g., bed management teams),
ED crowding (leading to delays), ICU census, physician expertise,
and availability of clinical resources (e.g., X-ray techs). While, most
of these factors can influence ED to ICU patient transfers, the paper
attempts to decompose the problem into studying only a set of pa-
tient characteristics (age, gender, APACHE II score) and its influ-
ence of ICU outcomes. As such, in this study, the authors
decompose the problem (i.e., ED to ICU transfer) to a simplified
version, taking into account only patient condition, ignoring sev-
eral ‘‘interrelated’’ components that potentially could affect ED to
ICU transfers. This may be an appropriate strategy, but it is impor-
tant to be cognizant of how it may have limited the potency of its
conclusions for understanding, describing, predicting, or managing
actual critical care environments.

5.3. Collaborative work in a psychiatric ED

Cohen and colleagues [7] characterized the cognitive processes
underlying decision making in a psychiatric emergency depart-
ment (PED) using the theoretical framework of distributed cogni-
tion (DC). The PED shows many of the characteristics of complex
systems that we have described: work is inherently collaborative
and depends on relations within and across teams of diverse
clinicians, ranging from physicians to social workers, specializing
in substance abuse. Decisions in the unit are influenced by
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relationships outside the unit, including relationships to other hos-
pital units, social services, patients’ families, and, at times, local
law enforcement agencies. Consequently, the information support-
ing decision-making in this context is derived from a highly inter-
connected network of diverse agents. Restricting the focus to the
core functional unit responsible for care (usually consisting of an
attending physician, resident, nurse, and social worker) allowed
for characterization of the ways in which cognition within this unit
is distributed across teams, time, space, and artifacts, highlighting
latent flaws in the system that were predictive of errors observed
during the course of this research.

6. Conclusion

In this paper, we describe a rational approach for understanding
and studying complexity, specifically in healthcare settings. Using
degree of interrelatedness between system components as an indi-
cator of system complexity, we describe how complex systems
can typically be considered in terms of functionally smaller com-
ponents and the relations between them, based on theoretical, ra-
tional, and practical considerations. Such functional decomposition
entails a comprehensive understanding of the context of work, its
components, and principles that govern the actions of various com-
ponents within the system.

The specific nature of modern healthcare work renders it partic-
ularly amenable to functional decomposition, as work is distrib-
uted between actors (physicians, nurses, residents, and other
clinical support staff) and artifacts (information technology, ma-
chines, paper notes) (e.g., see [2,3,7]). There is often a structure in
the relationships that exist between care providers, artifacts, and
patients. While some relationships are apparent, others manifest
only under certain conditions. As such, it is possible to characterize
it as a network of actors, where (at a high level of decomposition)
the nodes are actors (or artifacts) and the edges are their relation-
ships. For example, the ED can be considered as a complex network
of clinicians (attending physicians, residents, nurses), patients, and
information technologies that are used to manage patient care. To
study handoff activities in the ED, one has to consider the clinicians
involved (actors), artifacts used (paper and electronic records) and
information being transferred. Handoff activities can be considered
as a sub-network within the larger ED network. In short, the dis-
tributed and fairly structured organization of health care settings
makes the functional decomposition approach viable.

As with any research approach, there are potential disadvan-
tages to functional decomposition. First, the process of selectively
including some components or interrelations and disregarding oth-
ers may lead to oversimplification of the problem. Second, creating
progressively smaller slices of a complex system imposes greater
demands toward understanding components and their intricate
web of interrelationships to other components. Moreover, using a
microstructure level of explanation may be difficult for people out-
side the field to conceptualize. In spite of these limitations, we be-
lieve that our approach is a useful and systematic mechanism for
understanding complexity in healthcare settings.
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