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WeextendBarr’swell-known characterization of the final coalgebra of aSet-endofunctorH
as the completion of its initial algebra to the Eilenberg–Moore category Alg(M) of algebras
associated to a Set-monadM, if H can be lifted to Alg(M). As further analysis, we introduce
the notion of a commuting pair of endofunctors (T ,H) with respect to a monad M and
show that under reasonable assumptions, the final H-coalgebra can be obtained as the
completion of the freeM-algebra on the initial T -algebra.
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1. Introduction

For any category C and any C-endofunctor H , there is a canonical arrow between the least and the greatest fixed points
of H , namely between its initial algebra and final coalgebra, assuming these exist. Functors for which these objects exist and
coincide were called algebraically compact by Barr [7]-for example, if the base category is enriched over complete metric
spaces [5] or complete partial orders [27], then mild conditions ensure that the endofunctors are algebraically compact.
However, if the category is just locally small, without any other enrichment, as Set, this coincidence does not happen. But
there is still something to be said: Barr [8] showed that for bicontinuousSet-endofunctors, the final coalgebra can be realized
as the completion of its initial algebra. This works whenever the functor does not map the empty set into itself, otherwise
the initial algebra would be empty. Hence some well-known examples are lost, like functors obtained from powers and
products. Barr’s result was extended to all locally finitely presentable categories by Adámek [1,2], in the sense that the
completion procedure works for hom-sets, not objects, with respect to all finitely presentable objects.

In the present paper we have focused on coalgebras whose carriers are algebras for a Set-monad, not necessarily finitary
(see for example [10,28]). Our interest arises from the following two developments. First, streams or weighted automata,
as studied by Rutten from a coalgebraic perspective [23–25] are mathematically highly interesting examples of coalgebras,
despite the fact that the type functor is very simple, just HX = k × X in the case of streams. The interesting structure arises
from k, which in typical examples is a semi-ring. In this paper, we shall bring this structure to the fore by lifting H to the
category of modules for a semi-ring, or more generally, to the category of algebras for a suitable monad. Secondly, in recent
work of Kissig and the second author [17], it turned out that it is of interest to move the trace-semantics of Hasuo–Jacobs–
Sokolova [12] from the Kleisli-category of a commutative monad to the Eilenberg–Moore category of algebras (for example,
this allows one to consider wider classes of monads). Again, for trace semantics, semi-ring monads are of special interest.

In the first part of this paper, we show that Barr’s theorem [8] extends from coalgebras on Set to coalgebras on the
Eilenberg–Moore category of algebras Alg(M) for a monad M on Set, dropping the assumption H0 ≠ 0 (hence allowing
examples like the functor H of stream coalgebras mentioned above).

We consider the situation of a Set-endofunctor H that has a lifting to Alg(M). Under some reasonable assumptions, we
are able to prove that the final H-coalgebra can be obtained as the Cauchy completion of the image of the initial algebra
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for the lifted functor, with respect to the usual ultrametric inherited from the final sequence. Moreover, the corresponding
topology is compatible with the M-algebra structure of both objects involved, in the sense that the algebra structure maps
are continuous. To provide examples,we need to understand better the initial algebra of the lifted functor. This is the purpose
of the second part of the paper, where the special case of an initial algebra that is free (as anM-algebra) is exhibited. Namely,
for two endofunctors H , T and a monad M on Set, we call (T ,H) an M-commuting pair if there is a natural isomorphism
HM ∼= MT , where M is the functor part of the monad. This notion is motivated by the fact that if both the algebra lift of H
and the Kleisli lift of T exist, then mild requirements ensure that H , the algebra lifted functor of H , is equivalent with the
extension of T to Alg(M) if and only if they form a commuting pair (T ,H). If this is the case, then one can recover the initial
algebra for the lifted endofunctorH as the freeM-algebra built on the initial T -algebra. Consequently, the finalH-coalgebra
can be realized as the completion of a freeM-algebra.

An earlier version of this paper appeared as [6]. In the present article, Section 2.4 is extended with a detailed analysis of
the completion result. Section 2.5, devoted only to examples, is new; in Appendix A, we start with a monadM and a functor
H having a Kleisli lifting Ĥ and show how to extend Ĥ from free algebras to all algebras, in the form of a left Kan extension.
Finally, due to space limitations, an example of constructing a commuting pair is detailed in Appendix B.

2. Final coalgebra for endofunctors lifted to categories of algebras

2.1. Final sequence for Set-endofunctors

Consider an endofunctor H : Set −→ Set. Denote by Coalg(H) the category of H-coalgebras and by UH : Coalg(H) −→

Set the corresponding forgetful functor. We are interested in the final object of Coalg(H), the final H-coalgebra.

Assumption I. H preserves limits of ωop-sequences.

The above assumption ensures that the final H-coalgebra exists and can be obtained by the following well-known
construction: from the unique arrow t : H1 −→ 1 we form the sequence

1 H1
too . . .oo Hn1oo Hn+11

Hntoo . . .oo (1)

Denote by Z its limit, with pn : Z −→ Hn1 the corresponding cone. As we work in Set, recall that Z can be described as a
subset of the cartesian product

∏
n≥0 H

n1, namely Z = {(xn)n≥0 | Hnt(xn+1) = xn}. By applying H to the sequence and to
the limit, we get a cone where additionally HZ −→ 1 is the unique map to the singleton set:

HZ

��

Hpn−1

��

Z

∼=

OO

zz
pn

��
1 H1

too . . .oo Hn1oo . . .Hntoo

.

The limit property and the assumption on H lead to a bijection ξ : Z −→ HZ satisfying Hpn−1 ◦ ξ = pn for all n ≥ 1. We

can now see that Z is the final H-coalgebra: for each H-coalgebra (C, C
ξC

−→ HC), there is a cone (C
αn

−→ Hn1)n≥0 over the
sequence (1), built inductively:α0 : C −→ 1 is the uniquemap; then givenαn : C −→ Hn1, constructαn+1 as the composite

C
ξC

−→ HC
Hαn
−→ Hn+11. Then the unique map αC : C −→ Z such that pn ◦ αC = αn satisfies the following diagram:

C
αC //

ξC

��

Z

ξ

��
HC

HαC // HZ

hence is a coalgebra map.
Nowwe have the final coalgebra. Wemove further and endow each setHn1 in (1) with the discrete topology (so all maps

Hnt will be continuous). Then put the initial topology [26] coming from this sequence on Z and HZ . It follows that ξ is a
homeomorphism. In particular, the topology on Z is given by an ultrametric: the distance between any two points x, y ∈ Z
is 2−n, for n the smallest natural number such that pn(x) ≠ pn(y). The cone (C

αn
−→ Hn1)n≥0 yields on any coalgebra a

topology (the initial one) and the unique map αC : C −→ Z is continuous with respect to it.
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2.2. Lifting to the category of algebras for a monad

Let M = (M,M2 m
−→ M, Id

u
−→ M) be a monad on Set (by convention, we shall use a bold symbol for a monad, and

an italic symbol for the underlying endofunctor). Denote by Alg(M) the Eilenberg–Moore category of M-algebras and by
FM

⊣ UM
: Alg(M) −→ Set the adjunction between the free and the forgetful functor. For later use, record that Alg(M) has

an initial object, namely (M0,M20
m0

−→ M0), the free algebra on the empty set, and a terminal object 1, the singleton, with
algebra structure given by the unique mapM1 −→ 1.
Definition 2.1. Let H be a Set-endofunctor. An algebra lifting of H is a functor H : Alg(M) −→ Alg(M) such that the
following diagram commutes:

Alg(M)
H //

UM

��

Alg(M)

UM

��
Set

H // Set

(2)

Besides lifting H to algebras, our interest focuses on H-coalgebras. The next result seems to be ‘‘folklore’’1:
Theorem 2.2. The following are equivalent, for a monadM and an endofunctor H on a category C:
i. Natural transformation λ : MH −→ HM satisfying

H
uH //

Hu !!B
BB

BB
BB

B MH

λ

��
HM

M2H
Mλ //

mH
��

MHM
λM // HM2

Hm

��
MH

λ // HM

(3)

ii. Lifting of H to a functorH on Alg(M).
If this is the case, then the monadM also lifts to a monad M on Coalg(H) (a monad such that UHM = MUH , see diagram below),
the categories Coalg(H) and Alg(M) are isomorphic and the adjunction FM

⊣ UM lifts to the adjunctionF ⊣ U associated with
the monad M, such that UHU = UMUH and UHF = FMUH , as in the next diagram:

Coalg(H) ⊥

M
�� F

++

UH

��

Coalg(H) ∼= Alg(M)Ull

UH
��

Set ⊥

FM
,,

H

YY Alg(M)

UM

kk

H
XX

.

Proof. We just give an outline of the proof. The equivalence 1.⇐⇒ 2. is in [15]: for anyM-algebra (X, x), the functorH acts
as HX , with algebra structure

MHX
λX // HMX

Hx // HX

and for any algebramap (X, x) −→ (Y , y), the corresponding arrowHX −→ HY respects the algebra’s structure. Conversely,
givenH , one can recover the distributive law by defining firstλ : FMH −→ HF as the transpose of H

Hu
−→ HM = HUMFM

=

UMHFM, then taking λ as

MH = UMFMH
Uλ

−→ UMHFM
= HUMFM

= HM.

Next, we can construct the monad M as follows: on objects, it isM(C, C
ξC

−→ HC) = (MC,MC
Mc

−→ MHC
λC

−→ HMC).

It has the same multiplication and unit as M, but is now restricted to H-coalgebras. It is easy to see thatH-coalgebras andM-algebras form isomorphic categories and the corresponding monadic adjunctionF ⊣ U is explicitly given by: for any

H-coalgebra (C, C
ξC

−→ HC),FC = MC seen as free algebra, with coalgebra structure MC
Mc

−→ MHC
λC

−→ HMC . Finally,U is
the forgetful functor. �

1 This is essentially a simplification of the case ‘‘monad, comonad and mixed distributive law’’ (also called an entwining) between them, as in [29],
Thm.IV.1.
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Remark 2.3. It is worth noticing that in general, the lifting is not necessarily unique (as there may be more than one
distributive law λ : MH −→ HM). For example, take G a group and HX = MX = G × X; consider H as an endofunctor
and M as a monad with natural transformations u,m obtained from the group structure. The algebras for this monad are
the G-sets. Then it is easy to see that a map f : G × G −→ G × G induces a distributive law λ : MH −→ HM if it satisfies
f (e, x) = (x, e) for all x ∈ G, where e stands for the unit of the group, and f (µ × G) = (G × µ)(f × G)(G × f ), where we
have denoted by µ(x, y) = xy the group multiplication. Take now f1(x, y) = (xy, x) and f2(x, y) = (xyx−1, x); these maps
produce two distributive laws λ1, λ2 : MH −→ HM that do not give the same lifting H , as the G-action on HX would be
(x, y, z) −→ (xy, x ⇀ z) for λ1, respectively (x, y, z) −→ (xyx−1, x ⇀ z) for λ2. Here x, y ∈ G, z ∈ X and ⇀ denotes the
left G-action on X . If the liftings were isomorphic, then the associated categories of coalgebras should also be isomorphic.
In particular, notice that H is a comonad (as any set, in particular G, carries a natural comonoid structure) and both maps
f1, f2 actually induce monad-comonad distributive laws λ1, respectively λ2. Hence each lifting carries a comonad structure,
such that the associated categories of coalgebras for the lifted functors are Eilenberg–Moore categories of coalgebras and
they should also be isomorphic. But for f1, a corresponding coalgebra is the same as a G-set (X, ⇀) endowed with a map
θ : X −→ G such that θ(g ⇀ x) = gθ(x), while for the second structure, the compatibility relation yields a crossed G-set,
i.e. θ(g ⇀ x) = gθ(x)g−1.

Assumption II. There is a lifting of H to Alg(M), given by the distributive law λ : MH −→ HM .

Remark 2.4. As the forgetful functorU creates and preserves limits, the existence of the final H-coalgebra (Z, Z
ξ

−→ HZ)
ensures that the finalH-coalgebra also exists, modeled on the same carrier. Hence despite the fact that the lifting might not
be unique, the underlying set of the finalH-coalgebra is preserved (butwith possibly different algebra structures, depending
on λ).

To see this, notice that any term Hn1 of the final sequence (1) carries an M-algebra structure, as follows: the obvious
unique M-algebra structure on 1, a0 : M1 −→ 1; then, given an : MHn1 −→ Hn1, define an+1 as the composite

MHn+11
λHn1 // HMHn1

Han // Hn+11 .
All maps in the sequence (1) are easily proved to be M-algebra maps using the commutative diagrams in (3).

Consequently, there is a unique M-algebra structure γ : MZ −→ Z such that the second row in the diagram below is
limiting in Alg(M), in particular the projections pn : Z −→ Hn1 areM-algebra morphisms:

M1

a0

��

MH1
Mtoo

a1

��

. . .oo MHn1oo

an

��

MHn+11
MHntoo

an+1

��

. . .oo MZ

Mpn

vv

γ

��
1 H1

too . . .oo Hn1oo Hn+11
Hntoo . . .oo Z

pn

hh

.

As UM creates limits and H is ωop-continuous (Assumption I), so isH . Therefore ξ : Z −→ HZ is an isomorphism in Alg(M):

MZ

γ

��

Mξ // MHZ
λZ // HMZ

Hγ

��
Z

ξ

∼=

// HZ

(4)

So ((Z, γ ), ξ) is the final H-coalgebra. Additionally, the cone (MZ
Mpn
−→ MHn1

an
−→ Hn1)n≥0 coincides with the cone

(αn : MZ −→ Hn1)n≥0 induced by the H-coalgebra structure of MZ from (4), as an ◦ Mpn = pn ◦ γ and γ is the unique
coalgebra map which makes (4) commute.

2.3. Topology on the final coalgebra

Remember that on all Hn1 we have considered the discrete topology. Endow also all MHn1 with the discrete topology
(intuitively, this corresponds to the fact that operations on algebras with discrete topology are automatically continuous)

andMZ with the initial topology coming from the cone (MZ
Mpn
−→ MHn1)n≥0.
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Proposition 2.5. The final H-coalgebra is a topological M-algebra,2 i.e. the M-algebra structure map on Z, γ : MZ −→ Z, is
continuous with respect to the topologies on Z and MZ.

Proof. By definition of the initial topology, γ is continuous if and only if all compositions pn ◦ γ are continuous. But
pn ◦ γ = an ◦ Mpn, an are continuous as maps between discrete sets and Mpn are continuous by the initial topology on
MZ . �

The above proposition can be interpreted by saying that all operations on Z are continuous (as they are obtained as limits
of operations on discrete algebras). This result relies heavily on the construction of the final coalgebra as the limit of the
sequence (1), i.e. on the property of H to preserve limits of ωop-chains. We do not know at this moment if Proposition 2.5
still holds if one drops this assumption, as there is no obvious choice for the topology on MZ . However, there is a possible
direction to follow: instead an ωop-continuous endofunctor, to use a finitary one. FollowingWorrell’s construction [30], the
final sequence would still induce a topology on Z , and the easiest way would be to take on MZ the initial topology with
respect to γ , but this is not the same as the construction pursued here.

2.4. Initial H̃-algebra and final H̃-coalgebra in Alg(M)

IfH preserves colimits of ω -sequences, then the initialH-algebra is easy to build, using a dual procedure to the one in
(1): recall that Alg(M) has an initial object, namely the free algebra on the empty set, FM0 = (M0,M20

m0
−→M0). In order to

simplify the notation, we shall identify all algebrasHnFM0 with their underlying sets HnM0. Then it is well-known that the
initialH-algebra is the colimit in Alg(M) of the chain

M0
!

−→ HM0
H!

−→ · · · −→ HnM0
Hn

!
−→ · · · (5)

where ! : M0 −→ HM0 is the unique algebra map. Denote by in : HnM0 −→ I the colimiting cocone. We do not detail this
construction any more as we did for coalgebras as it will not be used in the sequel. However, we shall need the following
(which requires only the existence in Alg(M) of the limit of the final sequence (1), respectively of the colimit of the initial
sequence (5)): there is a uniqueM-algebra morphism f : I −→ Z such that

HnM0
in //

Hns
��

I

f

��
Hn1 Z

pnoo

(6)

commutes for all n (see for example [1], Lemma 2.4), where s : M0 −→ 1 is the unique algebra map from the initial to the
final object in Alg(M). If M0 is not empty, then I will also be not empty, as it comes with a cocone of algebra maps with
non-empty domains.

We shall generalize in this section Barr’s result [8] fromSet toAlg(M), for the special case ofAlg(M) -endofunctors arising
as liftings of Set-endofunctors. The proofs use similar ideas to the ones in [8] and [1].

We start by assuming the existence of an algebra map 1 −→ M0. By the initiality ofM0 and the finality of 1, this implies
M0 ∼= 1, hence we have a zero object in the category of algebras.

Remark 2.6. There is a large class of Set-monads satisfying this condition. Some examples are: the list (or word) monad
MX = X∗, the multiset monad MX = {f : X −→ N | supp(f ) < ∞}, the power-set monad MX = PX , the lift monad
MX = 1 + X or the sub-distribution monad MX = {f : X −→ [0, 1] | supp(f ) < ∞,

∑
x∈X f (x) ≤ 1}. For all these, the

free algebra with an empty set of generators is built on the singleton set. But there are also monads for which the carrier
of the free algebra on the empty set has more than one element, as the exceptions monad MX = E + X (with E a set with
more than one element) and the double contravariant power set monad MX = P (P (X)), or it is empty, as is the case for
the monad MX = X × M, for M a monoid. It is still under work whether the results of the present paper still hold without
the assumption M0 = 1. For more details, we send the reader to [19], [20,12]. We add for later use that all the mentioned
monads withM0 = 1 are commutative, except the list monad.

We have ! : 1 = M0 −→ HM0 = H1 and t◦! = Id in Alg(M). Hence in the final sequence (1) all morphisms are split algebra
maps, the colimit is the initialH-algebra and the limit is the final H (andH)-coalgebra:

1
t

�
!

H1 � · · · � Hn1
Hnt
�
Hn!

Hn+11 � · · · (7)

2 Usually the notion of a topological algebra refers to an algebra for some finitary, algebraic theorywhose underlying set is equippedwith some topology,
such that the algebra operations are continuous [16]. As Eilenberg–Moore algebras for a Set-monad are the same as algebras for (not necessarily) finitary
algebraic theories [3], we find that the term ‘‘topological algebra’’ characterizes best the present situation.
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Theorem 2.7. Let H be an ωop-continuous Set-endofunctor and M a monad on Set such that:

i. M0 = 1;
ii. H admits a liftingH to Alg(M);
iii. The lifted functorH is ω-cocontinuous.

Then the carrier of the final H-coalgebra is the Cauchy completion of the image of the initial H-algebra under a suitable
(ultra)metric and this completion is compatible with the algebra structure (in the sense that both objects involved become
topological algebras).

Proof. Consider the following diagram (in Alg(M)), where all algebras involved have structure maps defined via the
distributive law λ, as explained immediately after Remark 2.4:

1
! // H1
t

oo // . . .oo // Hn1

in
}}zz

zz
zz

zz
z

oo
Hn

! // . . .
Hnt

oo

I
f

// Z

pn

aaDDDDDDDD

Put on I the smallest topology such that f is continuous, where Z has the structure of a topological algebra from

Proposition 2.5. This coincides with the initial topology given by the cone I
f

−→ Z
pn

−→ Hn1. Then I becomes a topological
algebra if onMI we take the topology induced by the mapMf : MI −→ MZ . In particular,Mf is continuous.

Denote by MI
ζ

−→ I the algebra structure map of I . Then f ◦ ζ = γ ◦ Mf (remember that f is an algebra map). As Z is a
topologicalM-algebra, it follows that f ◦ ζ is continuous, hence ζ is continuous.

About (in)n≥0: these maps are by construction algebra morphisms, being the components of the colimiting cocone in
Alg(M), and also continuous, as all Hn1 are discrete.

It remains to be proved that I (more precisely, the image of I under f ) is dense in Z .
First, use that limits in Alg(M) are computed as in Set to conclude that Z is Cauchy complete under the ultrametric

defined in Section 2.1: take a Cauchy sequence (x(n))n≥0 in Z with respect to the initial topology (ultrametric) and assume
d(x(n), x(m)) < 2−min(m,n) for allm, n. This implies pn ◦ f (x(n)) = pn ◦ f (x(m)) for all n < m. Thus y = (pn ◦ f (x(n)))n≥0 defines
an element of Z and lim x(n)

= y.
Next, we have to show that the image of I under the algebra morphism f is dense in Z . For this purpose, consider the

additionalM-algebra sequence of morphisms (hn)n≥0, given by

hn : Z
pn

−→ Hn1 = HnM0
Hn

!
−→ Hn+1M0

in+1
−→ I

f
−→ Z

We have pn+1 ◦hn = Hn
!◦pn. Consider now an element x ∈ Z . Then by construction (y(n)

= hn(x))n≥0 form a sequence of
elements lying in the image of f and we shall see that this sequence is convergent to x. Indeed, from pn+1(y(n)) = Hn

! ◦pn(x)
it follows that

pn(y(n)) = Hnt ◦ pn+1(y(n)) = Hnt ◦ Hn
! ◦ pn(x) = pn(x)

As the n-th projection of the n-th term of the sequence (y(n))n≥0 coincides with the n-th projection of the element x, we
have d(y(n), x) < 2−n, implying lim y(n)

= x in Z . Therefore the image of I through the canonical colimit-limit arrow is dense
in Z . �

Remark 2.8. If we consider on the initial algebra I the final topology coming from the ω-chain, this is exactly the discrete
topology (andmetric), since allHn1 are discrete, hence I would be Cauchy complete and f : I → Z automatically continuous.
No interesting connection between I and Z can be obtained in this situation.

Remark 2.9. The idea of equipping the limit of an ωop-sequence in Set with an ultrametric (obtained by considering each
component of the sequence to be discrete) goes back to Barr [8] and has also been applied by Adámek in [2]. In the first
quoted paper, the sequence in discussion is the final sequence of a Set-functor and the limit is its final coalgebra; in [2], the
sequence is derived from the final sequence of an endofunctor on a locally finitely presentable category, by applying the
functor hom(B, −), for each locally presentable object B. Although we apply the same construction of the ultrametric, what
we have new is the compatibility between the topological structure and the algebra structure, on both the initialH-algebra
I and the finalH-coalgebra Z .

In Theorem 2.7, the proof of the completeness of the final coalgebra uses a similar argument to the one in [8]. For the
density of the initial algebra, the construction of the sequence (y(n))n≥0 is borrowed from [2].

We look now at the last condition in Theorem 2.7, which requires the ω-cocontinuity of the lifted endofunctor. This
happens, for example, if the functorH itself and the forgetful functorUM from algebras to sets preserve colimits ofω-chains:
consider a chain of algebras X0 // . . . // Xn // . . . . ThenHUM(colim Xn) ∼= H(colimUMXn) ∼= colimHUMXn by
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the above assumption; butHUM
= UMH andUM reflect isomorphisms, hence the canonicalmap colimHXn −→ H(colimXn)

is an isomorphism; in particular, if H and M are ω-cocontinuous, thenH will also be.
In the case the monad is finitary there is more to say: one can drop the assumption on the cocontinuity ofH , necessary

only to ensure the convergence (in ω steps) of the initial H-sequence. To see this, start by noticing that H preserves
monomorphisms: by the finitarity of M, the forgetful functor UM preserves monomorphisms [9], no M-algebra is empty
(if M0 = 1 is assumed) and H preserves injective maps with nonempty domains (as any Set-functor). Then we have:

Proposition 2.10. Let H be anωop-continuousSet-functor andM a finitarymonad such thatM0 = 1 and a lifting of H toAlg(M)
exists. Then the initial algebra of the lifted endofunctor exists and it is a subobject of its final coalgebra.

Proof. As H is continuous, the lifted functor H will also be so. We have just seen that it preserves monomorphisms. Now
the result follows from [2], Prop. 3.4. �

We can now rephrase Theorem 2.7 as follows:

Theorem 2.11. Let H be a Set-endofunctor that preserves limits of ωop-chains andM a finitary monad on Set such that:

i. H admits a liftingH to Alg(M);
ii. M0 = 1 in Alg(M).

Then the final H-coalgebra is the Cauchy completion of the initialH-algebra under a suitable (ultra)metric.

Proof. By the previous proposition, the initial algebra forH exists and can be computed inAlg(M) as the colimit of the initial
sequence, possibly after more than ω steps (see [2], 2.2 for the transfinite construction of the initial sequence). Notice that
all we needed in the proof of Theorem 2.7 was the existence of algebra maps in : Hn1 −→ I and f : I −→ Z such that
pn ◦ f ◦ in = Id. Such morphisms are easily seen to exist also in the present situation, thus the proof of Theorem 2.7 applies
and the desired result follows. �

Before ending this Section, we want to make a connection between Theorem 2.7 and Adámek’s results [2]. Assume that
the monadM is finitary. Recall that in this case the category Alg(M) is locally finitely presentable, with finitely presentable
objects the reflexive coequalizers of free algebras on finite sets [11]. In [2], Thm. Sect. 3, the set of algebra maps Alg(M)(B, I)
is shown to be dense in Alg(M)(B, Z), for every finitely presentable algebra B, where Alg(M)(B, Z) has the limit topology
obtained by applying Alg(M)(B, −) to the final sequence (1) and considering each hom-space endowed with the discrete
topology. In the present situation, take first B to be a free algebra B = M(m) with m finite set of m elements. Then we
can identify the hom-algebra spaces with finite powers, as Alg(M)(B, −) = Alg(M)(M(m), −) ∼= Set(m, −) ∼= (−)m; in
particular, as each Hn1 is a discrete algebra, its finite power (Hn1)m will also be discrete (algebra). The resulting topology on
Alg(M)(M(m), Z) ∼= Zm will then coincide with the product topology coming from Z; in particular the completion result of
[2] (applied for B = M(m)) follows, as all spaces involved are finite products of Hn1, I and Z respectively. Move now to any
finitely presentable algebra B and write it as a quotientM(m) −→ B. Then we obtain the diagram

. . . // Alg(M(m),Hn1)oo // . . .oo Alg(M(m), I) // Alg(M(m), Z)
rr

. . . // Alg(B,Hn1)

OO

oo // . . .oo Alg(B, I)

OO

// Alg(B, Z)

OO

kk

in which each vertical arrow is injective. Endow each Alg(M(m),Hn1) with the discrete topology; then the topologies on
Alg(M(m), I) and Alg(M(m), Z) have been described above. The initial topology on Alg(B, Z) induced from the discrete
sequence (Alg(B,Hn1))n≥0 can be easily seen to be the same as the topology induced from Alg(M(m), Z); similarly,
the topology on Alg(B, I) induced from Alg(B, Z) coincides with the one from Alg(M(m), I). Consequently, the Cauchy
completion result in [2] follows from the density of I in Z .

2.5. Examples

A. Consider a Set-endofunctor H . When does a monad satisfying conditions i. and ii. of Theorem 2.7 exist? We notice that
the answer is always positive, if H is not the constant functor mapping everything to the empty set. For then H1 ≠ 0;
assuming the axiom of choice, there is (at least) one map α : 1 −→ H1. Then an example of a Set-monad satisfying
conditions i. and ii. of Theorem 2.7 is the lift monadMX = 1+X . The distributive law 1+HX −→ H(1+X) is the cotupling

of 1
α

−→ H1
H(inl)
−→ H(1+ X) and HX

H(inr)
−→ H(1+ X), where inl : 1 −→ 1+ X , inr : X −→ 1+ X are the canonical injections

into the coproduct. Later, in Example 2.13.i., we shall see a lifting obtained in this simple situation.
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B. Instead, one could start with a monad and look for endofunctors H that lift to algebras. Then:

• The identity functor trivially lifts to algebras for any monad.

• The functor part of the monad has a lifting, by the distributive law M2 m
−→ M

Mu
−→ M2. The lifted functor will be FMUM

(the functor part of the comonad associated with the adjunction FM
⊣ UM).

• If H is a constant functor at some set k, then liftings of H to the category Alg(M) are in one-to-one correspondence with
M-algebra structures on k.

• If HX = X × k, and k carries an M-algebra structure, then it is easy to see that a lift of H exists, as the forgetful functor
UM preserve products. Conversely, ifH is a lifting of H , then there is an algebra structure on k, namelyH1.

• if HX = XA, a power functor, then the lifting exists as the forgetful functor UM preserves limits.
• In fact, the last two situations exposed come from the following observation [14]: given an I-indexed collection of functors

Hi : Set −→ Set, i ∈ I , with distributive laws λi : MHi −→ HiM , there is a distributive law λ : M
∏

i∈I Hi
[Mπi]
−→∏

i∈I MHi

∏
i∈I λi

−→
∏

i∈I HiM , where πi stands for the canonical projection from the product to the i-th component.
• if HX = A + X or HX = X + X , there is no obvious distributive law λ : MH −→ HM , unless the monad preserves

coproducts (which is the case, for example, if the monad has a right adjoint, likeMX = X × M, for M a monoid). If this is
the case, then functors like H =


i∈I Hi, where each Hi has a distributive law λi : MHi −→ HiM , lift to Eilenberg–Moore

algebras byM


i∈I Hi ∼=


i∈I MHi


i∈I λi

−→


i∈I HiM .

Concluding the above, a class of (polynomial) functors for which a lifting to Eilenberg–Moore algebras exists for an arbitrary
Set-monad (no conditions at all on the monad) can be obtained from the identity functor, constant functors to sets that are
carriers ofM-algebras, products with such sets and arbitrary powers. Additionally, one can also consider functors asMG, for
any G, with distributive lawM2G

mG
−→ MG

MGu
−→ MGM (which also covers the second case above, for G = Id).

Assumption III. From now, we shall consider that all conditions in Theorem 2.7 are fulfilled.

Regarding the behavior of the endofunctor H on the empty set, there are two possible situations: H0 = 0 or not. We shall
discuss each of them in the next paragraphs.

C. If H0 = 0, the initial H-algebra will be empty. However, when lifted to algebras, the situation changes (this was our
original motivation) as the initialH-algebra is no longer empty (remember thatM0 is not empty).

Consider as a reference example the functor HX = XA
× k, built from products and powers, hence ω-continuous. The

H-coalgebras are known as deterministic automata with input set A and outputs in k: the transition map of a coalgebra
X −→ XA

× k sends a state x ∈ X to a pair: the associated next-state function next(x) : A −→ X that works when receiving
an input from A, and an output out(x) ∈ k. The final H-coalgebra is kA∗

, the set of all behavior functions that map a finite
sequence of inputs to the last observable output in k (here A∗

=


n≥0A
n denotes the freemonoid of finite words on A). Such

a functor always admits at least one lifting to Alg(M) for anymonadM, provided k is a structured output set, i.e. it carries an
algebra structure (see Paragraph B). The lifted functor is given by the same formula as H , where this time the product and
the power are computed in the category of algebras.

There are some particular cases of this functor that are worth mentioning:

Example 2.12. We start with the easiest case, when A = 1; then A∗
= N. The coalgebras for the functor HX = X × k are

usually called stream automata; the final coalgebra, denoted kω , consists of infinite sequences of consecutively observed
output values. Particularize for k = R, the case of real-valued stream coalgebras as in [24]. Consider now the monad that
sends a set X to the vector space with basis X . Explicitly, MX = {

∑
i∈Irixi | ri ∈ R, xi ∈ X, I finite set} is the set of formal

finite linear combinations of elements of X with real coefficients. The functor HX = X × R lifts to the category of vector
spaces by the distributive law M(X × R) −→ MX × R, saying that scalar multiplication is performed component-wise (a
finite linear combination of pairs with real coefficients

∑
iri(xi, si) is mapped to the pair (

∑
irixi,

∑
irisi) formed by a formal

linear combination and a real number). The lifted functor H sends a vector space X into the direct sum X ⊕ R. From any

coalgebra (C, C
ξC

−→ HC), we obtain anH-coalgebra by allowing linear combinations of transitions. Then the sequence (7)
becomes

(0) // Roo // . . .oo // Rnoo //
Rn+1oo // . . .oo

with the natural embeddings (r1, . . . , rn) → (r1, . . . , rn, 0) and projections (r1, . . . , rn, rn+1) → (r1, . . . , rn) as component
maps. The limit of the above sequence, the final coalgebra of real streams Rω , is a vector space with addition and
scalar multiplication defined component-wise. The colimit of the above is the subspace of Rω of all streams with finitely
many components nonzero. Each σ ∈ Rω is the limit of a sequence (σn)n≥0 formed with such streams, namely σn =

(σ (0), σ (1), . . . , σ (n), 0, 0, . . .).
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Example 2.13. We take now arbitrary set of inputs A, but k = {0, 1}. The transition function of a coalgebra X −→ HX =

XA
×{0, 1} provides binary outputs, deciding if a state is accepting (response 1) or not. The final sequence (1) has components

Hn1 ∼= P (An), where An denotes the set of words of length less than n over A. For any n, the connectingmapHn+11 −→ Hn1
restricts a language L ∈ P (An+1) to L\An, the sub-language formed only of words of length less than n. The final coalgebra
{0, 1}A

∗

can be identified with the set of formal languages P (A∗) over A. There are several monads for which k carries an
algebra structure (hence allowing a lift); here we mention only two of them.

i. First, one can consider k as a pointed set, i.e. an algebra for the lift monad MX = 1 + X . This can be achieved in two
ways, depending which distinguished element is chosen, leading thus to different liftings. Notice that H1 ∼= {0, 1}, thus
the choice of the distinguished element is equivalent with the choice of the map α : 1 −→ H1 from Paragraph A. An
easy calculation can show that the lifting constructed as explained in Paragraph A. is the same as the one discussed at
the beginning of Paragraph C.
(i.1) We start with the case k = ({0, 1}, 0). Denote byH0 the lifted functor. ThenH0 will send a pointed set (X, x ∈ X)

to the set HX = XA
× {0, 1} with distinguished element (fx, 0), where fx designates the constant function from A

to X , mapping all inputs in A to x. Practically, this means that an automaton is extended by adding one state which
does not accept anything. The lifted sequence (7) will have componentsHn

01 = (P (An), ∅), with connecting maps
(notice the preservation of distinguished elements):
• Hn

01 −→ Hn+1
0 1 is the inclusion: a language L ∈ P (An) formed of words of length less than n can be also seen as

a subset of An+1;
• Hn+1

0 1 −→ Hn
01 is the restriction, as described earlier, to sub-languages of words of length less than n.

The limit of the sequence (the final coalgebra) P (A∗) is again a pointed set in ∅, with projections pn : P (A∗) −→

P (An−1), pn(L) = L\(AnA∗),3 sending a language to the sub-language formed of words of length less than n.
The ultrametric inherited from the sequence: the distance between two languages L and L′ is 2−n iff L and L′ share

same words of length less than n, but differ on length n.
The colimit of the (increasing) sequence is easily seen to be


n≥0 P (An), the set of all bounded languages on A

(in the sense that the length of words in the language is bounded), again with the empty set as pointed structure.
The completion works as follows: take any language L ∈ P (A∗) and define Ln as the subset of L containing all

words in L of length less than n; then (Ln)n≥0 is a sequence of bounded languages converging to L. If A is finite, which
is the usual assumption on deterministic automata, then the colimit is just the set of all finite languages.

(i.2) Consider now k = ({0, 1}, 1). Although the underlying sets in the sequence (7) are the same as earlier, it is
instructive to see how the arrows and the structure of the pointed sets change: the lifted functorH1 now sends (X, x)
to (XA

×{0, 1}, (fx, 1)). It means thatH-coalgebras are enrichedwith onemore state, which accepts everything. The
components of the final sequence areHn

11 = (P (An), An), with connecting maps:
• Hn

11 −→ Hn+1
1 1 sends a language L ∈ P (An) to L + An (adds all words of length n);

• Hn+1
0 1 −→ Hn

01 acts the same as before, restricting a language L ∈ P (An+1) to L\An, the sub-language formed
only of words of length less than n.

The topology on the final coalgebra is the same as above, but the distinguished element changes to A∗.
The initial H1-algebra will be I =


n≥1{L + AnA∗

| L ∈ P (An)}, with A∗ as distinguished point, and maps
in : (P (An), An) −→ I, in(L) = L+AnA∗. Wemight call I the set of all co-bounded languages over A (although we do
not know if this terminology is used), in contrast to the previous case. The density of I in P (A∗) is obtained in the
following way: for a language L ∈ P (A∗), consider in I the sequence (Ln + AnA∗)n>0, with Ln defined as above, the
subset of all words in L of length less than n. Then for each n > 0, the distance between L and Ln + AnA∗ is at most
2−n, hence this sequence converges to L. Again, in the case A finite, we recognize the colimit as the pointed set of
cofinite languages.

ii. The second monad we are interested in is the power-set monad. The P -algebras are sup-lattices (posets having all
suprema); morphisms of P -algebras are the sup-preserving maps. Consider k = {0, 1} as a sup-lattice with the usual
order 0 < 1. The lifted endofunctor H will send a sup-lattice X to the product of sup-lattices XA

× {0, 1}, where XA

inherits the order from X . The components of the sequence (7) are again Hn1 = P (An−1), but this time seen with the
free sup-lattice structure, with sup-preserving maps:
• Hn1 −→ Hn+11 sends a language L ∈ P (An−1) to itself, seen now as a subset of An;
• Hn+11 −→ Hn1 restricts a language L ∈ P (An) to the sub-language L\An formed only of words of length less than n.
We obtain thus a sequence of embedding-projections pairs, hence the limit P (A∗) is also the colimit [27], with canonical
maps (in)n≥0 left adjoint to the projections (pn)n≥0. In this situation, the realization of the final H-coalgebra as a
completion of the initialH-algebra is trivial, as the latter is as large as possible.

Example 2.14. Consider A a finite set and k a semi-ring (not necessarily commutative). Recall that a semi-ring is a set
equipped with two operations: addition and multiplication, and two constants, denoted 0 and 1, such that (k, +, 0) is a
commutative monoid and (k, ·, 1) is a monoid. The two structures are connected by the usual distributive laws [24]. For

3 Here AnA∗ denotes the set of words of length at least n.
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a semi-ring k, the construct MX = {f : X −→ k | supp(f ) finite}, where supp(f ) = {x ∈ X | f (x) ≠ 0}, induces a
monad (as in [19], Section VI.4, Ex. 2, where the ring R is replaced by the semi-ring k). Algebras for this monad are called
k-modules: they are commutative monoids, with an external operation of multiplication with elements of k; in particular,
M0 is the zero module, with trivial operations. Coming back to the functor HX = XA

× k, its final H-coalgebra can be
identified with the formal power series in non-commuting A variables, while the initial H-algebra is the direct sum of A∗

copies of k (the polynomial algebra in the same variables) (in this case, finite products and coproducts coincide in Alg(M)).
The approximants of order n in the corresponding ω-sequence are Hn1 = k1+A+···+An , the polynomials in (non-commuting)
A-variables of degree at most n. We shall provide details of this for the easiest case, where A is the singleton {t}; the distance
between two elements of the final coalgebra k[[t]], i.e. between two power series f (t), g(t) in variable t , is given precisely
by 2−ord(f (t)−g(t)), where ord(f (t)− g(t)) is the order of the difference f (t)− g(t) (the smallest power of t that occurs with a
nonzero coefficient in the difference). Take a Cauchy sequence of polynomials fn(t) = an0+an1t+. . ., where only finitelymany
anj are nonzero, for each n, j ∈ N. For every r ≥ 0, there is an nr such that for every n ≥ nr , we have ord(fn(t) − fnr (t)) = r;
this implies anj = anrj for all j ≤ r and n ≥ nr . Let f (t) = an00 +an11 t + . . .. One immediately verifies that the power series f (t)
is the limit of of the sequence (fn(t))n≥0. Hence the final coalgebra k[[t]] is indeed the completion of the initial H-algebra
k[t].

D. Suppose now that H0 ≠ 0. In addition, we shall require that H preserves colimits of ω-sequences. Then the initial
H-algebra J exists and is the Set-colimit of the sequence 0 −→ H0 −→ · · · −→ Hn0 −→ · · · . Correspondingly, in the
diagram below, the first row and the second row have a colimit, respectively a limit in Set, while the colimit of the second
row is computed in Alg(M):

0 //

��

H0 //

��

. . . // Hn0

��

// ''. . . J

g

��

h

��
1 // H1oo // . . .oo // Hn1 ''oo // . . .oo I

f // Zhh

There is a unique map J
g

−→ I induced from the cocone Hn0 −→ Hn1 −→ I; if h is the initial algebra-final coalgebra
arrow for H in Set, then h = f ◦ g , with f given by (6). As h is injective by Barr’s theorem, g will also be injective. The
topology chosen for Z is the same as in Section 2.1. Because both topologies on J and I are induced by the one on Z , g is also
continuous, hence I should provide a better approximation of the final coalgebra (see next example). However, if H0 = 1
and the forgetful functor UM preserves colimits of ω-chains (which is the case if the monad does), it follows that the carrier
of the initialH-algebra I coincides with the initial H-algebra J .
Example 2.15. Consider the functorHX = A+X×X .H-coalgebras are binary systemswith exceptions inA (like termination,
deadlock, etc.). The initial H-algebra is known to be the set of all finite binary trees with leaves labeled in A, while the final
coalgebra contains the finite and infinite trees. Assume A is a non-empty semigroup (for example, any nonempty set A, with
binary operation ab = a, where a, b ∈ A). For the list monadMX = X∗, a distributive law λX : (A+X ×X)∗ −→ A+X∗

×X∗

can be described as follows: if a word w ∈ (A + X × X)∗ contains at least one entry from A, then λX (w) will be the product
in A of all entries in w belonging to A, in the order they appear, forgetting thus all other entries from X × X (for the example
mentioned above, this reduces to the first element of A inw). If not, thenw = [(x1, y1), . . . , (xn, yn)]with xi, yi ∈ X and take
λX (w) = ([x1, . . . , xn], [y1, . . . , yn]). In particular, λX (ϵ) = (ϵ, ϵ), where ϵ denotes the empty word. Now, remember that
theM-algebras are exactly the monoids. The lifted functorH sends a monoid (X, ·, eX ) to A + X × X , with component-wise
multiplication on X × X , while the multiplication on A comes from its semigroup structure; in addition, elements of A are
absorbing. The unit elementwill be (eX , eX ). The components of the initialH-sequence: for n ≥ 0,HnM0 is the set of all finite
binary trees of depth at most nwith leaves labeled in A+ {∗}, modulo the following equivalence relation on trees: if a node
has both children leaves with label ∗, then this node is considered itself a leaf, again labeled in {∗}. For themonoid structure,
notice first that multiplying two trees with only one node (labeled in A) produces a tree again with one node, labeled in
the A-product of labels, and second, that these trees with one node A-labeled are absorbing with respect to trees of greater
depth. Next, the multiplication on trees is defined inductively: if two trees t1 and t2 have children t11 and t12, respectively
t21 and t22, then t1 · t2 is the tree whose root has children t11 · t21 and t12 · t22. The tree with only one node labeled in {∗} is the
unit element. The arrows are the inclusions. It follows that the colimit I is the monoid of all finite binary trees with leaves
labeled in A+ 1, modulo the same equivalence relation as above and with the samemonoid structure. We now describe the
completion procedure: consider a tree t in the final coalgebra Z . If t is finite, then it also belongs to I , hence the constant
sequence on t will give the result. If not, define tn to be the n-th cutting of t , with label ∗ to all terminal nodes which had
children in t . Then the sequence (tn)n≥0 belongs to I and it is convergent to t , with respect to the ultrametric described in
[2], 3.8.(a).

3. M-commuting pairs of endofunctors

In the previous sectionwehave considered aSet-endofunctorHwhich admits an algebra liftingHwith respect to amonad
M. We have seen that under some assumptions, the carrier of the final H-coalgebra (which coincides with the carrier of the
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finalH-coalgebra) can be obtained as the Cauchy completion of the carrier of the initialH-algebra. We shall discuss in this
section under which conditions the initialH-algebra is free as anM-algebra and can be realized by a ‘‘similar’’ construction
(in the sense of extending a functor from Set to Alg(M), see below).

Recall that there are two ways of relating an endofunctor H on Set (or on any other category) to a monad M, using a
natural transformation, as follows:

• λ : MH −→ HM satisfying (3), which is the same as an algebra liftH : Alg(M) −→ Alg(M), UMH = HUM;
• ς : HM −→ MH satisfying

H
Hu //

uH !!B
BB

BB
BB

B HM

ς

��
MH

HM2
ςM //

Hm

��

MHM
Mς // M2H

mH

��
HM

ς // MH

(8)

It is well known that this is equivalent to the existence of a Kleisli lift, i.e. an endofunctor Ĥ : Kl(M) −→ Kl(M) such
that ĤFM = FMH , where FM : Set −→ Kl(M) is the canonical functor to the Kleisli category of the monad. In this
case, we can perform an additional construction: denote by I : Kl(M) −→ Alg(M) the comparison functor. Take the
Alg(M)-endofunctor H̄ given by the left Kan extension along I (for the construction of H̄ , see Appendix A, for C = Set).4

Composing the natural isomorphism IĤ ∼= H̄I with FM, we obtain H̄FM ∼= FMH , as in the diagram below:

Alg(M)

H̄

''
Kl(M)

Ioo Ĥ // Kl(M)
I // Alg(M)

Set
FM

ddIIIIIIIII
FM

OO

H // Set
FM

::uuuuuuuuu
FM

OO

We shall call H̄ an extension of H to algebras.

With the above notations, consider now two Set-functors T , H such that both an algebra lift of H and a Kleisli lift of T exist
andH ∼= T̄ . Then we have

MT = UMFMT ∼= UMT̄ FM

∼= UMHFM
= HUMFM

= HM

i.e.M acts like a switch (up to isomorphism) between the endofunctors T and H .

Definition 3.1. Let M = (M,m, u) be a monad on Set. A pair of Set-endofunctors (T ,H) such that HM ∼= MT is called an
M-commuting pair.

Example 3.2. One can easily obtain commuting pairs in the following situations:

• Take T = H = Id or T = H = M andM = (M,m, u) any monad;
• Consider T = H = A + (−),M = B + (−). Then commutativity of the coproduct ensures the commuting pair; similarly

for products: T = H = A× (−),M = B× (−), where this time B is a monoid (this worksmore generally, in anymonoidal
category).

To the best of our knowledge, it seems that the notion of a commuting pair has not been considered previously, although
the above examples show that it arises naturally in mathematics. We shall later see more (non-trivial) examples.

Assumption IV. Through the rest of the paper, we shall considerH , T finitary Set-endofunctors andM a finitary Set-monad.

Proposition 3.3. Assume that H has an algebra lift H and T has a Kleisli lift with respect to the monad M. Denote by T̄ the
corresponding left Kan extension. Then:

i. IfH ∼= T̄ , then (T ,H) form an M-commuting pair and for any set X, the corresponding natural bijection HMX ∼= MTX is an
isomorphism ofM-algebras, where the algebra structure of HMX is induced by the distributive law λ : MH −→ HM and MTX
is seen as a freeM-algebra.5

4 For any Set-monad M, the category Alg(M) has coequalizers [4].
5 The results in Proposition 3.3.i. hold without Assumption IV. But because in the remaining of this section we refer mostly to finitary functors, the

referees suggested we emphasize this by an Assumption.
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ii. Conversely, if (T ,H) form an M-commuting pair such that the natural bijection MTX ∼= HMX is an algebra morphism (with
M-algebra structures on HMX and MTX as before), thenH ∼= T̄ .

Proof. 1. If H ∼= T̄ , then HFM ∼= T̄ FM ∼= FMT , which can be rephrased by saying that HMX ∼= MTX is an isomorphism of
M-algebras, i.e. the following diagram commutes:

MHMX

∼=

��

λMX

// HM2X HmX

// HMX

∼=

��
M2TX

mTX // MTX

where the right vertical arrow comes from HM ∼= MT , while the left arrow is obtained by applyingM to it.
2. From HM ∼= MT and

HM = HUMFM
= UMHFM

MT = UMFMT ∼= UMT̄ FM

it follows that UMHFM ∼= UMT̄ FM, that is, the images ofH and T̄ on free algebras share (up to bijection) the same underlying
set. Taking into account that HM ∼= MT is an isomorphism ofM-algebras, we obtainH ∼= T̄ on free algebras.

AsM and T are finitary, T̄ is determined by its action on finitely generated free algebras.
Since M is finitary, UM creates filtered colimits; H being also finitary, it follows thatH is finitary too. In particular,H is

determined by its action on all finitely presentable algebras. But every finitely presentable algebra is a reflexive coequalizer
of finitely generated free algebras [11] andH , being finitary, preserves such colimits. ThereforeH will be determined by its
action on finitely generated free algebras.

It follows thatH ∼= T̄ on allM-algebras. �

Example 3.4. Take TX = 1+A×X , with A finite set andM any Set-monad. Then a Kleisli lifting of T exists, namely for each

map X
f

−→ MY , take TX
f

−→ MTY to be the composite

TX = 1 + A × X
1+A×f
−→ 1 + A × MY −→

1 + M(A × Y ) −→ M1 + M(A × Y ) −→ M(1 + A × Y )

where themap 1+A×MY −→ 1+M(A×Y ) is obtained from the canonical strength of themonad, while 1+M(A×Y ) −→

M1+M(A×Y ) uses the unit of themonad andM1+M(A×Y ) −→ M(1+A×Y ) comes from the coproduct property. Also,
it is easy to see that the extension of T toM-algebras is T̄ X = FM1+ A · X , for each algebra X , where this time the coproduct
(respectively the copower) is computed in Alg(M). If the category of M-algebras has finite biproducts (as in the case of the
monad induced by a semi-ring, see Example 2.14), then T̄ is the lifting to Alg(M) of the Set-endofunctor HX = M1 × XA.
Hence (T ,H) form a commuting pair.

The motivation for studying commuting pairs appears clearly if we combine the previous proposition with our main result
from Theorem 2.7, obtaining the following:

Corollary 3.5. Assume the assumptions of Proposition 3.3.ii. hold. If H is ωop-continuous and M0 = 1 as M-algebras, then the
final H-coalgebra is the completion of the free M-algebra built on the initial T -algebra under a suitable metric.

Proof. Follows from Theorem 2.7, by noticing that theM-image of the initial T -algebra (which exists as T is finitary, hence
ω-cocontinuous) is the initial T̄ -algebra (by construction, T̄ is finitary, so ω-cocontinuous), while H andH share same final
coalgebra. �

Example 3.6. We come back to the situation presented in Example 3.4 and take the monad induced by a semi-ring k, as
in Example 2.14. Then the initial T -algebra is A∗. The free M-algebra on A∗ is the direct sum of A∗ copies of k, that is, the
polynomial k-algebra in non-commuting A-variables k[A] (in the category of k-semimodules), while the final H-coalgebra
is kA∗

, the non-commutative power series k-algebra. The completion was described in Example 2.14.

The situation described until now in this section can be presented as follows: if two Set-endofunctors T andH are given, one
may search for an appropriatemonad such that (T ,H) form a commuting pair. As there is a special bond between algebras of
T and coalgebras of H , it is not clear whether the general case of any two (finitary) Set-endofunctors would have a solution.
But there is another possible approach: start only with one endofunctor and additionally with a (finitary) monad; then find
a distributive law inducing a Kleisli (or algebra) lift. Once this is accomplished, one should build a second endofunctor on
Set (assuming this is possible) in order to obtain a commuting pair, using the functor obtained on Alg(M).

For lifting to the Kleisli category, there is the following suitable situation: for all commutative monads M and for
all polynomial (more generally, for all analytic) functors T , a distributive law TM −→ MT can always be constructed
[22]. The commutativity of M also ensures the existence of a tensor product ⊗ on Alg(M), such that the free functor
FM

: (Set, ×) −→ (Alg(M), ⊗) is strong monoidal [13]. If the polynomial functor T is TX =


n≥0 Σn × Xn, an obvious
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choice of the Kleisli lift would give (the extension) T̄ X = ⊕n≥0FMΣn ⊗ X⊗n, where this time X denotes an M-algebra and
the coproduct ⊕ is computed in Alg(M). Assume now the monad is of effective descent type, or equivalently, that the free
functor FM is comonadic.6 Then there exists a Set-endofunctor H such that (T ,H) form a commuting pair (due to space
limitations, the construction of H can be found in Appendix B).

Lifting functors to the category of algebras seems to be more problematic, even for the simplest case of polynomial
functors (see Paragraph B):

• Take k an algebra for a monadM and H the constant functor to k. In this case, onemay form a commuting pair if and only
if k is a free M-algebra. Then T is also a constant functor; in particular, Corollary 3.5 is trivially true.

• For HX = k × X , with k the carrier of an algebra for a monadM, we make two additional assumptions: that the category
Alg(M) has finite biproducts (for example if k is a semi-ring and M is the monad induced by it, as in Example 2.14) and
that k is the carrier of a free algebra with set of generators B (if k is a semi-ring, then it is the free algebra built on the
singleton). Then there is a commuting pair (T ,H) where TX = B+ X . The final H-coalgebra is the set of all streams on k,
while theM-algebra on the initial T -algebra is the ω-copower ofMB ∼= k.

• For HX = XA, a power functor, the most convenient way of finding a commuting pair is again the existence of biproducts
in Alg(M), this time A-indexed. For then the correspondent functor will be the Set-copower TX = A · X . But in this case
no relevant answers are obtained in the initial-final (co)algebra relation, as both these objects are degenerate (empty
initial T -algebra, singleton final H-coalgebra).

• If H = MG, for any Set-functor G, there is an obviousM-commuting pair (T = GM,H = MG). Assuming the preservation
of all (co)limits required by Corollary 3.5, we get the final MG-coalgebra exhibited as completion of the M-image of the
initial GM-algebra.

4. Conclusions

Summary Given a functor H : Set −→ Set and a monad M on Set, we have studied H-coalgebras where carriers have an
M-algebra structure. More precisely, we have considered the situation where H can be lifted to a functor H on Alg(M). In
this case, the adjunction FM

⊣ UM
: Alg(M) −→ Set lifts to an adjunctionF ⊣ U : Coalg(H) −→ Coalg(H). In particular,

we may say that the final H-coalgebra is the final H-coalgebra equipped with an M-algebra structure. Theorem 2.7 then
states that the finalH-coalgebra is the completion of the initialH-algebra. To further analyze the initialH-algebra, we say
that (T ,H) form an M-commuting pair of endofunctors if MT ∼= HM . Corollary 3.5 states that in such a situation the initialH-algebra coincides with the freeM-algebra of the initial T -algebra.

Future work If the functor H is not continuous (for example the finite power-set functor), then the final sequence has to
be extended beyond ω steps. What does happen with the completion procedure on Alg(M) in such cases? We believe that
an answer to this question is worth considering in the future.

The notion of a commuting pair of endofunctors with respect to a monad, defined in the second part of this paper, seems
to be new; however, a detailed analysis andmore examples are needed in order to better understand this structure (like the
connection between bisimulations and traces). We plan to do this in a further paper.
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Appendix A

Proposition. Let C be any category,M = (M,m, u) a monad on C and H : C −→ C a functor that admits a lifting Ĥ to Kl(M).
Assume Alg(M) has coequalizers and denote by I : Kl(M) −→ Alg(M) the comparison functor. Then the left Kan extension H̄ of
IĤ along I exists and the universal arrow associated to it is a natural isomorphism.

Proof. ForC a cocomplete category, Alg(M) having coequalizers implies that it is cocomplete [18]; ifC is also small, the left
Kan extension exists with the universal arrow being an isomorphism, as I is full and faithful. However, for general C this
argument does not apply; we shall construct the functor H̄ and the natural transformation ζ : IĤ −→ H̄I associated to the
Kan extension ‘‘by hand’’.

6 This happens precisely when 2
u2

−→ M2 is injective and M0
M!

−→ M1
M(inl)
⇒

M(inr)
M(2) is an equalizer. Examples of such monads are the lift monad, the

multiset monad, the powerset monad and the subdistribution monad [21].
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We shall denote by ς : HM −→ MH the distributive law corresponding to the lifting (8). We recall the construction

of Ĥ: on objects X ∈ Ob(Kl(M)) = Ob(C), ĤX = HX , and on arrows, Ĥ(X
f

−→ MY ) = HX
Hf

−→ HMY
ςY

−→ MHY . The

comparison functor I : Kl(M) −→ Alg(M) is given by IX = (MX,mX ) and I(X
f

−→ MY ) = MX
Mf

−→ M2Y
mY

−→ MY . It is
straightforward to see that their composition will be: IĤX = (MHX,mHX ) with

IĤ(X
f

−→ MY ) = MHX
MHf // MHMY

MςY // M2HY
mHY // MHY

In order to built the functor part of the left Kan extension, we start with an M-algebra (A,MA
a

−→ A) and write it as a
coequalizer of free algebras in Alg(M):

M2A
Ma //
mA

// MA
a // A (A.1)

Define now H̄A as the coequalizer in Alg(M) (which exists by hypothesis) of the pair (MHa,mA ◦ MςA), namely

MHMA
MHa //

mA◦MςA

// MHA
πA // H̄A . It is immediate that this defines a functor onAlg(M). In particular, this construction

can be applied to free algebras. But in this situation the corresponding parallel pair of arrows leads to a split coequalizer in
Alg(M), given by

MHM2X
MHmX //

mHMX ◦MςMX

// MHMX

MHMuX

ee
mHX ◦MςX // MHX

MHuX

dd (A.2)

It follows that H̄IX = MHX on objects. To see the behavior of H̄I on arrows, start with X
f

−→ MY in C; in the diagram
below,

MHM2X

MHM2f
��

MHmX //
mHMX ◦MςMX

// MHMX

MHMf

��

mHX ◦MςX // MHX

MHf

��
MHM3Y

MHMmY

��

MHmMY //
mHM2Y ◦MςM2Y

// MHM2Y

MHmY

��

mHMY ◦MςMY // MHMY

mHY ◦MςY

��
MHM2Y

MHmY //
mHMY ◦MςMY

// MHMY
mHY ◦MςY // MHY

all three rows are split coequalizers as in (A.2); the left upper and lower squares commute serially by naturality ofm and ς
and associativity ofm, the upper right square commutes again by naturality, while for the lower right square, one also needs
to use the properties of ς as a distributive law.

Hence H̄I coincideswithIĤ . To check that indeed H̄ is the left Kan extension ofIĤ alongI, with identity as the associated
natural transformation IĤ −→ H̄I, take G : Alg(M) → Alg(M) a functor, together with the natural transformation
ζ : IĤ −→ GI. This means that we have algebra arrows ζX : MHX −→ GMX for X any object of C such that for any

X
f

−→ MY , the diagram below commutes:

MHX

ζX

��

MHf // MHMY
MςY // M2HY

mHY // MHY

ζY

��
GMX

GMf // GM2Y
GmY // GMY

(A.3)

For a given algebra (A, a), apply the above (A.3) to MA
Id

−→ MA to obtain

GmA ◦ ζMA = ζA ◦ mHA ◦ MςA (A.4)

and toMA
a

−→ A
uA

−→ MA for

GMa ◦ ζMA = ζA ◦ MHa (A.5)
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Now consider the following diagram:

MHMA

ζMA

��

MHa //
mA◦MςA

// MHA

ζA

��

πA // H̄A

θA

���
�
�

GM2A
GMa //
GmA

// GMA
Ga // GA

(A.6)

where the second row is obtained by applying G to (A.1). We have

Ga ◦ ζA ◦ MHa = Ga ◦ GMa ◦ ζMA by (A.5)
= Ga ◦ GmA ◦ ζMA by (A.1)
= Ga ◦ ζA ◦ mHA ◦ MςA by (A.4)

hence by the coequalizer property of the first row in (A.6) there is a unique algebra map θA : H̄A −→ GA. It is easy to see
that θ is natural. A similar argument as above shows that on free algebras, θMX is precisely ζX , which is the same as the
commutativity of

IĤ
Id //

ζ

!!B
BB

BB
BB

B H̄I

θI

��
GI

By construction, θ is unique with this property. We have thus obtained the desired left Kan extension. �

Appendix B

LetMbe a commutative finitarySet-monadof effective descent type and T a polynomialSet-functor, TX =


n≥0 Σn×Xn.
Let T̄ X = ⊕n≥0MΣn ⊗ X⊗n be an extension of T to Alg(M).

In this appendix we shall see how to build a Set-functor H such that HUM ∼= UMT̄ . Consequently, (T ,H) will form a
commuting pair.

Recall first howboth the tensor product (which exist as themonad is commutative) and the coproduct onAlg(M) are built
as reflexive coequalizers of freeM-algebras (see for example [13], Lemmas 3.2 and 5.1): for any twoM-algebrasMX

x
−→ X

and MY
y

−→ Y , we have

M(MX × MY )
M(x×y)

//
mX×Y ◦M(ϕ2,X,Y ) // M(X × Y ) //

M(uX×uY )

hh X ⊗ Y

where ϕ2,X,Y : MX × MY −→ M(X × Y ) is the monoidal structure map of the monad. Next, for any (countable) family of
algebras (MXn

xn
−→ Xn)n, their coproduct is the following reflexive coequalizer in Alg(M):

M


n
MXn


M(

n
xn)

//

m
n
Xn◦M(τ )

//
M


n
Xn


//

M(

n
uXn )

jj
⊕
n
Xn

Here


denotes the coproduct in Set and τ :

n
MXn −→ M(


n
Xn) is the canonical arrow from the coproduct.

In the sequel, we shall implicitly use that FM preserves any colimits and UM preserves reflexive coequalizers (M being
finitary).
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Then we can write down the diagram (B.1):

M


n
M2(M2Σn × (MX)n)


////

����

M


n
M(M2Σn × (MX)n)


//

����

M


n
(M2Σn × (MX)n)



�� ��

M


n
M2(MΣn × Xn)


////

��

M


n
M(MΣn × Xn)


//

��

M


n
(MΣn × Xn)



��
M


n
M(MΣn ⊗ X⊗n)


//// M


n
(MΣn ⊗ X⊗n)


// ⊕
n
(MΣn ⊗ X⊗n)

(B.1)

where T̄ X is in the lower right-hand corner and the last horizontal row is the reflexive coequalizer in Alg(M) giving the
coproduct ⊕; the first two vertical rows are obtained by applying M


n
M (actually, is FM

n
UMFMUM), respectively M


n
, to

the reflexive coequalizers in Alg(M) giving the tensor productsMΣn ⊗X⊗n for all n ≥ 0. AsM is finitary, these vertical rows
will still be coequalizers in Alg(M). Writing M2Σn × (MX)n and MΣn × Xn as coequalizers of free algebras and applying
M

n
, we get the first two horizontal rows.

Summing up, all three horizontal rows and first two vertical rows are reflexive coequalizers in Alg(M) and all squares
commute conveniently. Consequently, we can fill the last vertical row with arrows such that it becomes also a reflexive
coequalizer, namely

M


n

(M2Σn × (MX)n)


⇒ M


n

(MΣn × Xn)


−→ ⊕

n
(MΣn ⊗ X⊗n) (B.2)

Denote by G the comonad associated with the adjunction FM
⊣ UM. We have the following picture, with CG the cofree

functor, VG the forgetful one and K the comparison functor:

Alg(M) ⊥

⊣

CG
11

UM

��

Coalg(G)

VGrr

Set
K

<<

FM

II

Dually to the situation described at the beginning of Section 3, liftings of T̄ to the Kleisli category of this comonad are in
one-to-one correspondence with natural transformations GT̄ −→ T̄G satisfying some commutative diagrams (dual to (8)).
In order to obtain such a natural transformation, we use (B.2) twice, with connecting homomorphisms as in diagram (B.3).

M2


n
(M2Σn × (MX)n)


////

m◦

n

(Id×(Mu)n)

��

M2


n
(MΣn × Xn)


//

m◦

n

(Id×un)

��

GT̄X = M


⊕
n
(MΣn ⊗ X⊗n)



��
M


n
(M2Σn × (M2X)n)


//// M


n
(MΣn × (MX)n)


// T̄GX = ⊕

n
(MΣn ⊗ (MX)⊗n)

(B.3)

After some tedious computations, it follows that there is a unique arrow GT̄ −→ T̄G which makes the right square of (B.3)
commute and allows for a lifting of T̄ as explained before.

As by hypothesis the monad M is of effective descent type, the category of coalgebras for the associated comonad G is
equivalent to Set. Consequently, Coalg(G) has all equalizers. We can dualize now the Proposition of Appendix A to obtain
an extension of T̄ to G-coalgebras (a functor T1 such that T1C ∼= CT̄ ).

Recall that by hypothesis, K is an equivalence of categories; denote by K−1 its inverse and define a Set-endofunctor by
H = K−1T1K . Then HUM ∼= UMT̄ .
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