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In this paper, the results given in [2] have been generalized and a new simpler
proof is given.  © 1999 Academic Press
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In [2], the Carleman’s inequality was generalized. In this note, the
results given in [2] can be further generalized and a new much simpler
proof can be given.

The following Carleman’s inequality is well known (see [1, Chapt. 9.12)).

THEOREM A. Leta, > 0,n=1,2,..., and 0 < X7 _,a, < . Then

Z (alaZ an)l/n <e Z a,. (l)
n=1

n=1

Recently, [2] gave an improvement of Theorem A, and the following
result was proved.

THEOREM B (see [2, Theorem 3.1]). Let a, >0, n=1,2,..., and
0 <X, _ja, <o Then

1

2(n+1) ) )

Y (a0 <e ¥ (1 -
n=1 n=1
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In this note, we shall prove the following theorem.

THEOREM 1. Leta, >0,n=1,2,..., and 0 < X’ _,a, < . Then
© w ~1/2
1/n 1
Z (aa;, -+ a,) <e Z 1+ 1 a,. (3)
n=1 n=1 n+ 5

To prove Theorem 1, we first prove the following Lemma.
LEMMA 1. Letx, = [1 + (1/n)]", then

1/2 1/2

1

1+ T
n+sz

xn

(4)

for every positive integer n.

Proof. We make the following auxiliary function

1

f(x) =x|n(1 + ;) + Eln 1+

1
l),xe[l,oc). (5)

X+ 5
It is easy to see that

1 in(1 1 1
x+1+”(+;)‘5u+gxx+a

fi(x) =~

and for x € [1, +), it can be shown that
1 1 1
u+1f_xu+1)+ax+@2 2(x + &’
—5x(25x2 + 10x — 7) — 72
B 1250x(x + 1)°(x + %)z(x + %)2

f1(x) =

< 0.

Therefore, f'(x) is decreasing on [1, +). Then for any x € [1, +©), we
have f'(x) > lim,_, .. f'(x) = 0, thus, f'(x) is increasing on [1, + <), and
fx) <lim, .. f(x) =1 for x €[1, +=). By the definition of f(x), it
turns out x,[1 + 1/(n + (1/5)]/? < e.

Similarly we make the following auxiliary function

1 1
fl(x) =X In(l + ;) + Eln

1+
X

1
. l),xe[l, +).  (6)

6
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A direct calculation shows that f7(x) > 0 for x € [1, + ). Thus, f;(x) is
increasing on [1, +%). Then for any x €[1, +»), we have fi(x) <
lim, .. fi(x) = 0, therefore, f;(x) is decreasing on [1, +), and f,(x) >
lim,_ .. fi(x) =1 for x €[1, +). Obviously, the definition of f,(x)
implies that x,[1 + 1/(n + (1/6)]"/2 > e. Hence (4) is true for every
positive integer n. This completes the proof of Lemma 1. |

Remark 1. By a direct calculation, we have

1 -1/2

1
n+z

2n +1

1+ <
2n + 2

(7)

< 1
6n +5

6n + 2 ( 1 )1“
<
6
for every positive integer n. Thus, Theorem 2.1 in [2] is contained in
Lemma 1.

Proof of Theorem 1. Assume that c,, >0 for m =1,2,.... By the
arithmetic—geometric average inequality, we have
c,ay - cya, - cpa, \7"

n—n

Z (aay - an)l/n = Z
n=1

= Z (C1C2 Cn l/a(clal Coa, cnan)l/n
n=1
fe’e} 1 1 n
=< Z (Cch Cn) " - Z Conlm
n=1 n m=1
o oo 1 —i/n
= Z Cmam Z _(Clcz Cn)
m=1 n=m n
Yty ¥
= c, a
m=1 e n=m I’l(l’l + 1)
1 - 1\"
= —cp,a, = 1+—] a,.
mgl m m“m mz_l( m m
By Lemma 1, we obtain
>4} <) 71/2
Y (aya, - a)"<e Y [1+ a
n=1 ! m=1 m+ "

Thus, inequality (3) is proved. |
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Remark 2. With the inequality (7), Theorem 1 implies Theorem 3.1 in

[2].
Finally, we point out that (3.5) in [2] should be

l n
1
(Clal tCaly °t Cnan) " < - Z Cmam'
nm=l

Otherwise, the equality (3.6) in [2] is not true.
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