NOTE

A Strengthened Carleman's Inequality

Y an Ping and Sun Guozheng

Department of Mathematics, Anhui Normal University, Wuhu City, Anhui 241000, The People's Republic of China

Submitted by L. Debnath
R eceived J anuary 25, 1999

> In this paper, the results given in [2] have been generalized and a new simpler proof is given. © 1999 A cademic Press
> Key Words: Carleman's inequality, M onotonicity.

In [2], the Carleman's inequality was generalized. In this note, the results given in [2] can be further generalized and a new much simpler proof can be given.
The following Carleman's inequality is well known (see [1, Chapt. 9.12]).
Theorem A. Let $a_{n} \geq 0, n=1,2, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} . \tag{1}
\end{equation*}
$$

Recently, [2] gave an improvement of Theorem A, and the following result was proved.

Theorem B (see [2, Theorem 3.1]). Let $a_{n} \geq 0, n=1,2, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1-\frac{1}{2(n+1)}\right) a_{n} . \tag{2}
\end{equation*}
$$

In this note, we shall prove the following theorem.
Theorem 1. Let $a_{n} \geq 0, n=1,2, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty}\left(1+\frac{1}{n+\frac{1}{5}}\right)^{-1 / 2} a_{n} . \tag{3}
\end{equation*}
$$

To prove Theorem 1, we first prove the following Lemma.
Lemma 1. Let $x_{n}=[1+(1 / n)]^{n}$, then

$$
\begin{equation*}
x_{n}\left(1+\frac{1}{n+\frac{1}{5}}\right)^{1 / 2}<e<x_{n}\left(1+\frac{1}{n+\frac{1}{6}}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

for every positive integer n.
Proof. We make the following auxiliary function

$$
\begin{equation*}
f(x)=x \ln \left(1+\frac{1}{x}\right)+\frac{1}{2} \ln \left(1+\frac{1}{x+\frac{1}{5}}\right), x \in[1, \infty) . \tag{5}
\end{equation*}
$$

It is easy to see that

$$
f^{\prime}(x)=-\frac{1}{x+1}+\ln \left(1+\frac{1}{x}\right)-\frac{1}{2} \frac{1}{\left(x+\frac{6}{5}\right)\left(x+\frac{1}{5}\right)}
$$

and for $x \in[1,+\infty)$, it can be shown that

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{1}{(x+1)^{2}}-\frac{1}{x(x+1)}+\frac{1}{2\left(x+\frac{1}{5}\right)^{2}}-\frac{1}{2\left(x+\frac{6}{5}\right)^{2}} \\
& =\frac{-5 x\left(25 x^{2}+10 x-7\right)-72}{1250 x(x+1)^{2}\left(x+\frac{1}{5}\right)^{2}\left(x+\frac{6}{5}\right)^{2}}<0 .
\end{aligned}
$$

Therefore, $f^{\prime}(x)$ is decreasing on $[1,+\infty)$. Then for any $x \in[1,+\infty)$, we have $f^{\prime}(x)>\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$, thus, $f^{\prime}(x)$ is increasing on $[1,+\infty)$, and $f(x)<\lim _{x \rightarrow+\infty} f(x)=1$ for $x \in[1,+\infty)$. By the definition of $f(x)$, it turns out $x_{n}[1+1 /(n+(1 / 5))]^{1 / 2}<e$.

Similarly we make the following auxiliary function

$$
\begin{equation*}
f_{1}(x)=x \ln \left(1+\frac{1}{x}\right)+\frac{1}{2} \ln \left(1+\frac{1}{x+\frac{1}{6}}\right), x \in[1,+\infty) . \tag{6}
\end{equation*}
$$

A direct calculation shows that $f_{1}^{\prime \prime}(x)>0$ for $x \in[1,+\infty)$. Thus, $f_{1}^{\prime}(x)$ is increasing on $[1,+\infty)$. Then for any $x \in[1,+\infty)$, we have $f_{1}^{\prime}(x)<$ $\lim _{x \rightarrow+\infty} f_{1}^{\prime}(x)=0$, therefore, $f_{1}^{\prime}(x)$ is decreasing on $[1,+\infty)$, and $f_{1}(x)>$ $\lim _{x \rightarrow+\infty} f_{1}(x)=1$ for $x \in[1,+\infty)$. Obviously, the definition of $f_{1}(x)$ implies that $x_{n}[1+1 /(n+(1 / 6))]^{1 / 2}>e$. Hence (4) is true for every positive integer n. This completes the proof of Lemma 1.

Remark 1. By a direct calculation, we have

$$
\begin{equation*}
\frac{6 n+2}{6 n+5}<\left(1+\frac{1}{n+\frac{1}{6}}\right)^{-1 / 2}<\left(1+\frac{1}{n+\frac{1}{5}}\right)^{-1 / 2}<\frac{2 n+1}{2 n+2} \tag{7}
\end{equation*}
$$

for every positive integer n. Thus, Theorem 2.1 in [2] is contained in Lemma 1.

Proof of Theorem 1. A ssume that $c_{m}>0$ for $m=1,2, \ldots$. By the arithmetic-geometric average inequality, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} & =\sum_{n=1}^{\infty}\left(\frac{c_{1} a_{1} \cdot c_{2} a_{2} \cdots c_{n} a_{n}}{c_{1} c_{2} \cdots c_{n}}\right)^{1 / n} \\
& =\sum_{n=1}^{\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / a}\left(c_{1} a_{1} \cdot c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \\
& \leq \sum_{n=1}^{\infty}\left(c_{1} c_{2} \cdots c_{n}\right)^{1 / n} \cdot \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} \\
& =\sum_{m=1}^{\infty} c_{m} a_{m} \sum_{n=m}^{\infty} \frac{1}{n}\left(c_{1} c_{2} \cdots c_{n}\right)^{-1 / n} \\
& =\sum_{m=1}^{\infty} c_{m} a_{m} \cdot \sum_{n=m}^{\infty} \frac{1}{n(n+1)} \\
& =\sum_{m=1}^{\infty} \frac{1}{m} c_{m} a_{m}=\sum_{m=1}^{\infty}\left(1+\frac{1}{m}\right)^{m} a_{m}
\end{aligned}
$$

By Lemma 1, we obtain

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{m=1}^{\infty}\left(1+\frac{1}{m+\frac{1}{5}}\right)^{-1 / 2} a_{m}
$$

Thus, inequality (3) is proved.

Remark 2. With the inequality (7), Theorem 1 implies Theorem 3.1 in [2].

Finally, we point out that (3.5) in [2] should be

$$
\left(c_{1} a_{1} \cdot c_{2} a_{2} \cdots c_{n} a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{m=1}^{n} c_{m} a_{m} .
$$

Otherwise, the equality (3.6) in [2] is not true.

REFERENCES

1. G. H. Hardy, J. E. Littlewood, and G. Polya, "Inequalities," Cambridge Univ. Press, London, 1952.
2. Y ang Bicheng and Lokenath Debnath, Some inequalities involving the constant e, and an application to Carleman's inequality, J. Math. Anal. Appl. 223 (1998), 347-353.
