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Boštjan Brešar
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Abstract

Almost-median and semi-median graphs are two natural generalizations of the well-known class of
median graphs. In this note we prove that a semi-median graph is almost-median if and only if it does not
contain any convex cycle of length greater than four.
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1. Introduction

Classes of graphs that admit isometric embeddings into hypercubes have been investigated
for many years now. A hierarchy of these classes was proposed by Imrich and Klavžar [7], and
was further studied in [4]. The hierarchy was extended also to the nonbipartite case of classes of
isometric subgraphs of Hamming graphs; see [2,5].

Median graphs are undoubtedly the most well known and well studied class of isometric
subgraphs of hypercubes (see a survey [10] and the references therein). Two natural
generalizations of median graphs, almost-median and semi-median graphs, were introduced [7]
with the intention of shedding more light on the recognition complexities of some classes in the
hierarchy. The results regarding the recognition of these classes that followed [3,9] gave some
partial improvements (for instance, almost-linear algorithms for some special classes of almost-
median graphs were found). However, the best known recognition complexity for isometric
subgraphs of hypercubes remains O(mn) [8], and the same holds for the newly introduced classes
in general. It is an open question whether this is optimal (for each of these classes), and an answer
will likely require further knowledge about their structure.
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Almost-median and semi-median graphs have been characterized in [3], using a certain
expansion procedure by means of which one can inductively describe these two classes. In this
note we present a new characterization of almost-median graphs of different flavor: among semi-
median graphs they are precisely the graphs that possess no convex cycles C2n , for n ≥ 3. This
result was conjectured by Peterin in [12].

In the next section we fix the notation and state some necessary preliminary results, and in the
last section we prove the characterization of almost-median graphs.

2. Notation and preliminaries

For a graph G, the distance dG(u, v), or briefly d(u, v), between vertices u and v is defined
as the number of edges on a shortest u, v-path. A subgraph H of G is called isometric if
dH (u, v) = dG(u, v) for all u, v ∈ V (H). A subgraph H of G is convex if for any u, v ∈ V (H),
all shortest u, v-paths belong to H .

The Cartesian product G�H of graphs G and H is the graph with vertex set V (G) × V (H)

in which the vertex (a, x) is adjacent to the vertex (b, y) whenever ab ∈ E(G) and x = y, or
a = b and xy ∈ E(H). The graphs K2�Pn are called ladders. The Cartesian product of k copies
of K2 is a hypercube or k-cube Qk . Isometric subgraphs of hypercubes are called partial cubes.
An important subclass of partial cubes is the class of median graphs [11]. These are the graphs
in which there exists a unique vertex x to every triple of vertices u, v, and w such that x lies
simultaneously on a shortest u, v-path, a shortest u, w-path, and a shortest w, v-path.

For partial cubes, the following vertex sets play a crucial role. Let ab be an edge of a
connected, bipartite graph G = (V, E). Then

Wab = {w ∈ V | dG(a, w) < dG(b, w)},

Uab = {w ∈ Wab | w has a neighbor in Wba}.

By abuse of language we shall use the same notation for the sets Wab, Uab and the subgraphs
induced by them.

Clearly, Wab and Wba are disjoint. Moreover, as all graphs considered are bipartite, V (G) =

Wab ∪ Wba . Djoković [6] proved that a graph G is a partial cube if and only if it is bipartite
and if for any edge ab of G the subgraph Wab is convex. It follows from results in [1] that
median graphs are precisely the bipartite graphs in which all Uab’s are convex. By this result, the
following notions make sense.

A bipartite graph is a semi-median graph if it is a partial cube in which for any edge ab the
subgraph induced by Uab is connected. Similarly, a bipartite graph is an almost-median graph if
it is a partial cube such that for any edge ab the subgraph induced by Uab is isometric.

Two edges e = xy and f = uv of G are in the Djoković–Winkler [6,13] relation Θ if

dG(x, u) + dG(y, v) 6= dG(x, v) + dG(y, u).

Clearly, Θ is reflexive and symmetric. Winkler [13] proved that a bipartite graph is a partial cube
if and only if Θ = Θ∗, where Θ∗ denotes the transitive closure of Θ . We will need the following
basic property of Θ ; see [8]:

Lemma 1. Suppose P is a walk connecting the endpoints of an edge e. Then P contains an edge
f with eΘ f .

The following lemma also follows from the definition of the relation Θ .
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Lemma 2. Suppose P is a shortest path in a graph. Then no two edges of P are in relation Θ .

Let G be a bipartite graph, and let e = xy and f = ab be two edges such that d(x, a) <

d(x, b). It is easy to see that e and f are in relation Θ precisely when d(x, a) = d(y, b) =

d(x, b) − 1 = d(y, b) − 1. The following lemma is then easy to derive.

Lemma 3. Let G be a bipartite graph and C an isometric cycle in G. Two edges of C are in
relation Θ precisely when they are antipodal in C.

Another relevant relation defined on the edge set of a graph is δ. We say an edge e is in relation
δ to an edge f if e and f are opposite edges of a 4-cycle without diagonals in G or if e = f .
Clearly δ is reflexive and symmetric. Moreover, it is contained in Θ . Thus its transitive closure
δ∗ is contained in Θ∗. In [7] it is shown that a bipartite graph is a semi-median graph if and only
if Θ = δ∗, in analogy with Winkler’s characterization of partial cubes.

Suppose e = e1δe2δ . . . δek = f is a sequence of edges by virtue of which e and f are in
relation δ∗. If, in addition, the endpoints of these edges induce two paths, then the union of the
squares that contain ei , ei+1 for i = 1, 2, . . . , k − 1 forms a ladder, that is, the Cartesian product
of a path of length k−1 by an edge. In such a case we shall frequently use the expression that two
edges e, f in relation δ∗ are connected by a “ladder” (or by “isometric ladder”, if the two paths,
sides of the ladder, are isometric). In this language, a partial cube is an almost-median graph if
and only if every two edges in relation Θ are connected by an isometric ladder.

3. The characterization

Theorem 4. A graph G is almost-median if and only if G is a semi-median graph that contains
no convex cycle C2n , for n > 2.

Proof. Let G be an almost-median graph. Then G is also semi-median. Suppose G has a convex
cycle C on at least 6 vertices. Then any two antipodal edges in C are in relation Θ , yet they are
not connected by an isometric ladder, since it would contradict the convexity of C . This is in
contradiction with G being almost-median which proves one direction of the theorem.

For the converse, let G be a semi-median graph that contains no convex cycle C2n , for n > 2.
The assumption that G is not almost-median will lead us to a contradiction. If G is not almost-
median then there are two edges ab and xy which are in relation Θ but no ladder between them
is isometric. Among all such pairs of edges in G let them be chosen so that their distance n ≥ 2
is as small as possible. Let C be a cycle formed by a shortest path a = u0, u1, u2, . . . , un = x ,
edge xy, a shortest path y = vn, vn − 1, . . . , v1, v0 = b and edge ba. We shall prove that C is
convex which provides the desired contradiction. The proof is by induction on n.

First assume n = 2. Then C is isomorphic to C6, and it is clear that C is induced (otherwise
either abΘxy is violated or an isometric ladder between ab and xy exists contrary to our
assumption). We now derive that C is isometric because G is bipartite. To see that C is convex is
now easy and is left to the reader (the proof is very similar to, but simpler, than those in cases 2
and 3 below).

In what follows assume that n ≥ 3, that is, C has more than 6 vertices. The assumption that
there exists a path P that violates convexity of C will lead us to a contradiction. We may assume
that P connects two vertices of C so that internal vertices of P are not on C , and that P is a
shortest path between its end-vertices. We distinguish three cases.

Case 1. Suppose P is a shortest path between uk and vm that is shorter than at least one of
the paths on C between uk and vm . (Note that in this case 0 < k < n and 0 < m < n.) Since
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uk ∈ Wab, vm ∈ Wba there exists an edge e = uv on P that is in relation Θ with ab. Observe that
P creates two cycles together with C of which at least one is shorter than C . Since C is a shortest
cycle in G with respect to having two edges in relation Θ with no isometric ladder between them,
we infer that there is an isometric ladder between ab and e or between xy and e (to prevent the
shorter cycle contradicting the minimality of C). Without loss of generality we may assume that
there is an isometric ladder between ab and e = uv. Let wz be the edge on this ladder, forming a
square together with ab. We claim that w 6= u1. Indeed, if w = u1, then d(w, x) = d(a, x) − 1,
and since wzΘxyΘab we have d(w, x) = d(a, x) − 1 = d(z, y) = d(b, y) − 1. Thus the cycle
formed by wz, xy, and the shortest paths between w and x , and z and y would be shorter than C .
However, wz and xy are also not connected by an isometric ladder (because such a ladder would
imply the existence of an isometric ladder between ab and xy), so we get in contradiction with
the minimality of C . This proves that w 6= u1, and by symmetry z 6= v1. Next we claim that aw

is not in relation Θ with any edge on C between u0 and uk . Suppose awΘut ut+1 Then we infer
that d(w, ut+1) = d(a, ut+1) − 1; hence

d(w, x) = d(a, x) − 1.

Since wzΘabΘxy we get

d(w, x) = d(a, x) − 1 = d(z, y) = d(b, y) − 1

which leads us to the same contradiction with minimality as earlier (namely, wzΘxy and the
distance between wz and xy is smaller than n, yet there is no isometric ladder between them,
because the ladder obtained from such an isometric ladder by adding ab would be an isometric
ladder between ab and xy).

Now consider a walk (which is in fact a path) between a and w that first traverses the path
u1, . . . , uk , then goes along P between uk and u, and then traverses one side (in Wab) of the
isometric ladder that connects uv with wz. By Lemma 1 there exists an edge on this walk that
is in relation Θ with aw. We already proved that such an edge is not on C , and it is also not on
the ladder because the ladder is isometric (by Lemma 2 no two vertices on a shortest path can
be in relation Θ). We derive that aw is in relation Θ with an edge of P . By applying the same
reasoning in the subgraph Wba we infer that bz is in relation Θ with some edge on P . Since
awΘbz, we derive that two edges of P are in relation Θ . So by Lemma 2, P is not a shortest
path, and this case is concluded.

Case 2. P is a shortest path between uk and vm that is of the same length as both paths on C
between uk and vm . Let C1 and C2 be the cycles that P creates with C ; note that they are of the
same length as C . Since P is a shortest path, all its edges are pairwise not in relation Θ . Hence,
combining Lemma 1 and a simple counting argument, for every edge e on P exactly one edge
on C1 (respectively C2) exists that is in relation Θ with e. Hence all edges of C1 (respectively
C2) on C between uk and vm are pairwise not in relation Θ , and thus they form a shortest path
between uk and vm on C1 (respectively C2). We infer that uk−1ukΘvmw, where w is a neighbor
of vm on P , and also uk+1ukΘvmw (if k = 0 then replace uk−1 by v0, and if k = n then replace
uk+1 by vn). By transitivity of the relation Θ this implies uk−1ukΘuk+1uk which is clearly a
contradiction.

Case 3. P is a shortest path connecting two vertices of C in Wab (or Wba). Since the path
between u0 and un (as well as the path between v0 and vn) is a shortest path, we infer that P
is of the same length as the path between the corresponding vertices on C . This observation
combined with Case 1 implies that C is isometric. We may assume without loss of generality
that uk, wk+1, . . . , wm−1, um is a path of length m − k in Wab whose internal vertices are not
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in C . Note that the cycle C ′ (obtained by replacing in C the path uk, uk+1, . . . , um−1, um with
the path uk, wk+1, . . . , wm−1, um) is also isometric for the same reason as C is. We infer that
edges ukuk+1 and ukwk+1 are in relation Θ with the same (the antipodal) edge of C in Wba . This
is in contradiction with the transitivity of the relation Θ , and so this case is also complete.

We conclude that C is convex, a desired contradiction. �
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