Excerpt – Direct Bonded Copper

Presented by

Douglas C. Hopkins, Ph.D.

312 Bonner Hall University at Buffalo Buffalo, NY 14620-1900 607-729-9949, fax: 607-729-7129

Courtesy of Curamic Electronics

Authors thank

Curamik[®] Electronics

for providing information and photos

Courtesy of Curamic Electronics

DCB Process

- Oxygen reduces the melting point of Cu from 1083°C to 1065°C (Eutectic melting temperature).
- Oxidation of copper foils or injection of oxygen during high temperature annealing (1065°C and 1080°C) forms thin layer of eutectic melt.
- Melt reacts with the Alumina by forming a very thin Copper-Aluminum-Spinel layer.
- Copper to copper is fused the same way.
- Copper-Aluminum-Nitride (AlN) DBC is possible. The AlN-Surface must be transformed to Alumina by high temperature oxidation.

DBC Process

Courtesy of Curamic Electronics

DBC - Interfaces

© 2003, D. C. Hopkins

Flow Chart of DBC Processing

Masking

- High precision screen printers for high volume
- Semiautomatic and fully automatic with pattern recognition
- Redundant equipment
- Photomasking for high density circuits
- Air conditioned clean rooms

Courtesy of Curamic Electronics

Etching

- Specially designed precision etchers for thick copper layers
- Automatic chemistry control
- Mask stripping integrated
- 3 separate high volume lines in operation
- Controlled by SPC

d.hopkins@ieee.org

Courtesy of Curamic Electronics

Plating / Final Cleaning

- Fully automatic high volume plating line for electroless Ni + Au
- Controlled by SPC
- Final cleaning for Cu integrated
- Parallel backup lines
- Solderability and wire bond testing

Courtesy of Curamic Electronics

Laser Machining

- Fully automatic high precision CO₂ lasers with pattern recognition
- Designed for high volume throughput
- Scribing and drilling
- Multiple equipment
- Controlled by SPC

Courtesy of Curamic Electronics

Features of DBC Substrates

- Low thermal coefficient of expansion despite relatively thick copper layers (TCE = 7.2, 7.4, 10.6, et 0.2 mm / 12 mil conner)
 - (TCE = 7.2 7.4 10-6 at 0.3 mm / 12 mil copper)
- High current carrying capability with thick copper (Copper width 1mm / 40mil, height 0.3mm / 12mil, continuous flow 100amps = temp rise of 14 - 17 °C)
- − High peel strength of copper to Al2O3 \geq 60N/cm; AlN \geq 45N/cm at 50mm/min peel speed
- High thermal conductivity
 (Al2O3 = 24W/mK; AlN =170 W/mK)
- Low capacitance between front- and backside copper (Appr. 18pF/cm2 for 0.63mm ceramic thickness)

Relative Heat Flux (W/sqm)

Courtesy of Curamic Electronics

Courtesy of Curamic Electronics

Courtesy of Curamic Electronics

Power Module – Thermal Resistance

Thermal Resistance as a function of Substrate Thermal Conductivity

Chip area = 100mm²; ceramic thickness; 0,635mm; copper baseplate 3mm; power dissipation 100W; solder 0,070mm

Courtesy of Curamic Electronics

Thermal Mass

Junction temperature as function of the dynamic thermal resistance

Courtesy of Curamic Electronics

Flexural Strength of DBC

as a function of copper thickness

Courtesy of Curamic Electronics

Flexural Strength of HPS DBC

Compared with Blank HPS (optimized Alumina) Ceramic

Courtesy of Curamic Electronics

Top view

Cross section

Courtesy of Curamic Electronics

Thermal Cycling Reliability

Standard Alumina DBC with and w/o Dimples

Courtesy of Curamic Electronics

Average Life N0 – (Weibull)

Courtesy of Curamic Electronics

Special Substrates

- Active Metal Brazed (AMB)
- Refractory Metallization
- Substrates with vias
- Substrates with lead offs
- 3-Dimensional substrates
- DBC Packages
- Water cooled substrates

Via Technology

Both sides flat surface. Ceramic hole One side flat surface. Ceramic hole diameter min. 1.0mm R<100 $\mu\Omega$ diameter min. 1.0mm R<100 $\mu\Omega$

One side flat surface low cost. Ceramic hole diameter 2.5mm (0.3mm copper layer) R<100 $\mu\Omega$

Courtesy of Curamic Electronics

© 2003, D. C. Hopkins

Vias in DBC Substrates

- High current front to back feed-through
 - 100 A current
 - 100 µOhm
- For backside groundplane or shield
- Both hermetic
- Version 1 can be used as thermal path also

Courtesy of Curamic Electronics

Integral Terminals

- Terminals made of same copper sheet as circuit
- High electrical conductivity due to solid metal without interface resistance
- Very high reliability

Courtesy of Curamic Electronics

d.hopkins@ieee.org

Courtesy of Curamic Electronics

3-Dimensional DBC

- For very high density circuits
- Extremely reliable due to integral connectors
- Base for power
- Sidewalls for non-power components
- Assembled flat and bend up

Package Types

Courtesy of Curamic Electronics

Package Types

© 2003, D. C. Hopkins

Kovar Frame Brazed on DBC Substrate

Glass Sealed Feed-Through

Courtesy of Curamic Electronics

Fluid Cooled DBC

- Lowest thermal resistance of all available solutions for COB
- Rth ranging from 0.08 to 0.02 K/W using Al2O3 or AlN
- Power dissipation up to 3 kW on 2" x 2"
- Extremely compact design
- Modular system assembly

Liquid flow-through micro channels

Courtesy of Curamic Electronics

Micro Channels

Courtesy of Curamic Electronics

Micro Channel Water Cooled Module

Half bridge 6 IGBT **12 Diodes** 62 mm Standard module size 450 A **Cooling water** temperature up to 80°C possible

Courtesy of Curamic Electronics

R_{thja} as a Function of Water Flow

Courtesy of Curamic Electronics

Module comparison

Conventional v. Integrated water cooling

- $1 \rightarrow$ Standard module on closed cooling system (calculation)
- $2 \rightarrow$ Module with integrated cooling system (measurement: soldered Al₂O₃ ceramics)
- $3 \rightarrow$ Module with integrated AIN substrate

Courtesy of Curamic Electronics