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Abstract

In this paper, we generalize the utility theory to allow to use various performance measures, including utilities, costs and
fitness, and probability theory we extend to uncertainty theory, including probabilities, fuzzy sets and rough sets. The deci-
sion theory is defined typically as the combination of utility theory and probability theory. We generalize the decision the-
ory as the performance measure theory and uncertainty theory. Bounded rational agents look for approximate optimal
decisions under bounded resources and uncertainty. The $-calculus process algebra for problem solving applies the cost
performance measures to converge to optimal solutions with minimal problem solving costs, and allows to incorporate
probabilities, fuzzy sets and rough sets to deal with uncertainty and incompleteness. The approach is illustrated to find
the optimal solutions with or without uncertainty. The same approach can be used to find solutions of the totally optimi-
zation problem, representing the tradeoff between the best quality and least costly solutions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The decision theory is defined typically as the combination of utility theory and probability theory. In this
paper we generalize the decision theory as the performance measure theory and uncertainty theory.

AI typically deals with dynamic, incomplete and uncertain domains where conventional algorithms do not per-
form well because of intractability or even undecidability. If so, the need for the new computational theory serving
better new real-world applications and not hampered by computational explosion is obvious. Simply, in the solu-
tion of computational problems, the complexity of the reasoning process/search should be taken into account.

Von Neumann and Morgenstern [26] in 1944 gave the foundations of the decision theory using utilities
and probabilities. Fifty years later Russell and Norvig [24] in the most popular AI textbook argued that
the decision theory = utility theory + probability theory. However, their book describes much more than
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the utility theory and probability theory. Over 50 years, computer science and AI, in particular, have been
changed dramatically. In this paper, we argue that the old approach to decision theory has to be extended
to incorporate new approaches to optimization and uncertainty.

We generalize the utility theory to allow to use various performance measures, including utilities, costs and
fitness, and probability theory we extend to uncertainty theory, including probabilities, fuzzy sets and rough sets.

Resource-based reasoning [20,24], called also anytime algorithms, trading off the quality of solutions for the
amount of resources used, seems to be particularly well suited for the solution of hard computational prob-
lems in real time and under uncertainty. Additionally, new superTuring models of computation [11,13] trying
to provide non-algorithmic solutions to the TM undecidable problems, can and should be useful for solutions
of real-world problems. On the other hand, process algebras [21] are currently the most mature approach to
concurrent and distributed systems, and seem to be the appropriate way to formalize multiagent systems.

The $-calculus, presented in this paper, belongs to superTuring models of computation and provides sup-
port to handle intractability and undecidability in problem solving. Turing Machines and algorithms have
been dominating computer science since 1960s. However, in 1990s it turned out that many areas require stron-
ger models, and that Turing Machines and recursive algorithms do not represent a definitive limit of problem
solving. In particular, the dynamic interaction of clients and servers on Internet, robot sensing and acting, and
an infinite adaptation from evolutionary computation cannot be properly described using TMs and recursive
algorithms. They require a violation of some or all requirements of recursive algorithms: the finiteness and/or
well defined meaning of each step. The TM model is to weak to describe properly Internet, evolution, or robot-
ics, because it is a closed model, which requires that all inputs are given in advance, and the TM is allowed to
use an unbounded but only a finite amount of resources at a time (e.g., time or memory). By superTuring com-

putation we mean any computation that cannot be carried out by a Turing Machines as well as any (algorith-
mic) computation carried out by a Turing Machine. Algorithms and computers that are more powerful than
Turing Machines are called super-recursive algorithms and superTuring computers, respectively. Examples of
superTruing models of computation include Turing’s c-machines, o-machines, u-machines, von Neumann’s
cellular automata, interaction machines, neural networks, site and internet machines, inductive turing
machines, persistent turing machines, evolutionary turing machines, p-calculus, $-calculus. For more details,
the reader is referred to [11,13,25,3]. In this paper, we present the $-calculus to represent uncertainty and
approximate reasoning, and we do not discuss its expressiveness. However, the precise optimal solutions found
as the limit in infinite number of steps, and discussed in this paper, belong to super-recursive algorithms [3].
The expressiveness of $-calculus, i.e., its super-recursive features are discussed in more details in [8,18].

Technically, the $-calculus is a process algebra derived from Milner’s p-calculus [21] extended by von Neu-
mann/Morgenstern’s costs/utilities [26] and a very general search method, called the kX-optimization [16].
This novel search method allows to simulate many other search algorithms (of course, not all), including
A*, minimax, expectiminimax, hill climbing, dynamic programming, evolutionary algorithms, neural net-
works. The search tree can be infinite – this in the limit allows to solve non-recursively some undecidable prob-
lems (for instance, the halting problem of the universal turing machines, or to approximate a nonexisting
universal search algorithm).

For solutions of intractable problems the total optimization is utilized to provide an automatic way to deal
with intractability by optimizing together the quality of solutions and search costs.

This paper is organized as follows. In Section 2, the outline of problem solving performance by optimiza-
tion under bounded resources is presented. In particular, the notions of completeness, optimization, search
optimization, and total optimization are discussed. Section 3 contains necessary details of the $-calculus,
needed for understanding the following sections. The syntax and semantics based on the kX-optimization
are presented. The standard cost performance measure has been defined. Section 4 summarizes basic results
allowing to find solutions at all (completeness), to find the best quality solutions (optimality), to find any solu-
tions with minimal amount of time or memory (search optimality), and, finally, to find the best quality solu-
tions with minimal amount of resources used (total optimality). Section 5 illustrates the $-calculus approach to
problem solving without uncertainty using as an example the A* search algorithm simulated by the $-calculus
kX-meta search. Next, the A* is extended to AU* (A* with uncertainty) and solved by applying the $-calculus
kX-meta search with standard cost function incorporating either probabilities, or fuzzy set or rough set mem-
bership functions. Section 6 contains conclusions and problems to be solved in the future.
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2. Measuring problem solving performance: optimization under bounded resources

The performance of search algorithms (intelligence of an agent) can be evaluated in four ways (see e.g. [24])
capturing whether a solution has been found, its quality and the amount of resources used to find it.

Definition 1 (On completeness, optimality, search optimality, and total optimality). We say that the search
algorithm is

– Complete if it guarantees reaching a terminal state/solution if there is one.
– Optimal if the solution is found with the optimal value of its objective function.
– Search Optimal if the solution is found with the minimal amount of resources used (e.g., the time and
space complexity).
– Totally Optimal if the solution is found both with the optimal value of its objective function and with the
minimal amount of resources used.
Definition 2 (On problem solving as a multiobjective minimization problem). Given an objective function f :
A · X! R, where A is an algorithm space with its input domain X and codomain in the set of real numbers,
R, problem solving can be considered as a multiobjective minimization problem to find a* 2 AF and x* 2 XF,
where AF � A are terminal states of the algorithm space A, and XF � X are terminal states of X such that
f ða�; x�Þ ¼ minff1ðf2ðaÞ; f3ðxÞÞ; a 2 A; x 2 Xg;

where f3 is a problem-specific objective function, f2 is a search algorithm objective function, and f1 is an aggre-
gating function combining f2 and f3.

Without losing generality, it is sufficient to consider only minimization problems. An objective function f3

can be expanded to multiple objective functions if the problem considered has several objectives. The aggre-
gating function f1 can be arbitrary (e.g., additive, multiplicative, a linear weighted sum). The only requirement
is that it captures properly the dependence between several objectives. In particular, if f1 becomes an identity
function, we obtain the Pareto optimality
f ða�; x�Þ ¼ minfðf2ðaÞ; f3ðxÞÞ; a 2 A; x 2 Xg:

Using Pareto optimality is simpler, however we lose an explicit dependence between several objectives (we
keep a vector of objectives ignoring any priorities, on the other hand, we do not have problems combining
objectives if they are measured in different ‘‘units’’, for example, an energy used and satisfaction of users).
For fixed f2 we consider an optimization problem – looking for minimum of f3, and for fixed f3 we look
for minimum of search costs – search optimum of f2.

Objective functions allow capturing convergence and the convergence rate of construction of solutions
much better than symbolic goals. Obviously every symbolic goal/termination condition can be expressed as
an objective function. For example, a very simple objective function can be the following: if the goal is satisfied
the objective is set to 1, and if not to 0. Typically, much more complex objective functions are used to better
express evolutions of solutions.

Let (A*,X*) denotes the set of totally optimal solutions. In particular X* denotes the set of optimal solu-
tions, and A* the optimal search algorithms.

Let Y be a metric space, where for every pair of its elements x, y there is assigned the real number
D(x,y) P 0, called distance, satisfying three conditions:

1. D(x,x) = 0,
2. D(x,y) = D(y,x),
3. D(x,y) + D(y,z) P D(x, z).

The distance function can be defined in different ways, e.g., as the Hamming distance, Euclidean distance,
D(x) = 0 if x satisfies termination condition and D(x) = 1 otherwise. To keep it independent from representation,
and to allow to compare different solving algorithms, we will fix the distance function to the absolute value of
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difference of the objective functions D(x,y) = jf(x) � f(y)j. We extend the definition of the distance from the pairs
of points to the distance between a point and the set of points D(x,Y) = min{jf(x) � f(y)j;y 2 Y}

In problem solving, we will be interested in the distance to the set of optimal solutions Y*, i.e., in the dis-
tance D((a,x), (A*,X*)), and in particular D(x,X*), D(a,A*), where x 2 X is the solution of the given problem
instance, and a 2 A is the algorithm producing that solution.

Definition 3 (On solution convergence). For any given problem instance, its solution evolved in the discrete
time t = 0,1,2, . . . , will be said to be

– convergent to the total optimum iff there exists such s that for every t > s D((a[t], x[t]), (A*,X*)) = 0,
– asymptotically convergent to the total optimum iff for every e,1 > e > 0, there exists such s that for every
t > s D((a[t],x[t]), (A*,X*)) < e,
– convergent with an error e to the total optimum, where1 > e > 0 iff there exists such s that for every t > s
D((a[t], x[t]), (A*,X*)) 6 e,
– divergent, otherwise.

If solution is convergent and s is fixed, then the convergence is recursive, otherwise it is superrecursive.
Asymptotic convergence is superrecursive (the time is unbounded).

Search can involve single or multiple agents. For multiple agents search can be cooperative, competitive, or
random. In cooperative search other agents help to find an optimum, in competitive search – they distract to
reach an optimum, and in random search other agents do not care about helping or distracting to reach an
optimum. Search algorithms can be online, where action execution and computation are interleaved, and off-

line, where the complete solution is computed first and executed after without any perception.

3. The $-calculus algebra of bounded rational agents

The $-calculus is a mathematical model of processes capturing both the final outcome of problem solving as
well as the interactive incremental way how the problems are solved. The $-calculus is a process algebra of
bounded rational agents for interactive problem solving targeting intractable and undecidable problems. It
has been introduced in the late of 1990s [9,11,13,25,15,16]. The $-calculus (pronounced COST calculus) is a for-
malization of resource-bounded computation (also called anytime algorithms), proposed by Dean, Horvitz,
Zilberstein and Russell in the late 1980s and early 1990s [20,24]. Anytime algorithms are guaranteed to pro-
duce better results if more resources (e.g., time, memory) become available. The standard representative of
process algebras, the p-calculus [21] is believed to be the most mature approach for concurrent systems.

The $-calculus rests upon the primitive notion of cost in a similar way as the p-calculus was built around a
central concept of interaction. Cost and interaction concepts are interrelated in the sense that cost captures the
quality of an agent interaction with its environment. The unique feature of the $-calculus is that it provides a
support for problem solving by incrementally searching for solutions and using cost to direct its search. The
basic $-calculus search method used for problem solving is called kX-optimization. The kX-optimization rep-
resents this ‘‘impossible’’ to construct, but ‘‘possible to approximate indefinitely’’ universal algorithm. It is a
very general search method, allowing the simulation of many other search algorithms, including A*, minimax,
dynamic programming, tabu search, or evolutionary algorithms. Each agent has its own X search space and its
own limited horizon of deliberation with depth k and width b. Agents can cooperate by selecting actions with
minimal costs, can compete if some of them minimize and some maximize costs, and be impartial (irrational or
probabilistic) if they do not attempt optimize (evolve, learn) from the point of view of the observer. It can be
understood as another step in the never ending dream of universal problem solving methods recurring
throughout all computer science history. Because the $-calculus, similar like Turing Machine, is a generic tool
for problem solving, its applications are enormous. The $-calculus is applicable to robotics [7,12], software
agents, neural nets, and evolutionary computation [10]. In particular, it has been applied for the design of
special-purpose CCL language to control the group of undersea autonomous vehicles [5,12,6] and general-pur-
pose CO$T language for problem solving [14]. It has been used to simulate by one algorithm – the kX-opti-
mization both single and multiple, global and local sequence alignment algorithms [1,2], to model
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polymorphic viruses [17]. Potentially $-calculus could be used for design of cost languages [14], cellular evolv-
able cost-driven hardware, DNA-based computing and bioinformatics [1], electronic commerce, data mining,
machine vision, and quantum computing [16]. The $-calculus leads to a new programming paradigm cost lan-

guages [14] and a new class of computer architectures cost-driven computers.

3.1. The $-calculus syntax

In $-calculus everything is a cost expression: agents, environment, communication, interaction links, infer-
ence engines, modified structures, data, code, and meta-code. $-Expressions can be simple or composite. Sim-
ple $-expressions a are considered to be executed in one atomic indivisible step. Composite $-expressions P

consist of distinguished components (simple or composite ones) and can be interrupted.

Definition 4 (The $-calculus). The set P of $-calculus process expressions consists of simple $-expressions a
and composite $-expressions P, and is defined by the following syntax:
a
 ::¼
 ($i2I Pi)
 cost

j
 (!i2I c Pi)
 send Pi with evaluation through channel c
j
 ( i2I c Xi)
 receive Xi from channel c
j
 ( 0i2I Pi)
 suppress evaluation of Pi
j
 (ai2I Pi)
 defined call of simple $-expr. a with parameters Pi
j
 (�ai2I Pi)
 negation of defined call of simple $-expression a
P
 ::¼
 (�i2I a Pi)
 sequential composition

j
 ðki2I P iÞ
 parallel composition

j
 (di2I Pi)
 cost choice

j
 (]i2I Pi)
 adversary choice

j
 (ti2I Pi)
 general choice

j
 (fi2I Pi)
 defined process call f with parameters Pi, and its
associated definition (:¼(fi2I Xi)R) with body R
The indexing set I is a possibly countably infinite. In the case when I is empty, we write empty parallel com-
position, general, cost and adversary choices as ? (blocking), and empty sequential composition (I empty and
a = e) as e (invisible transparent action, which is used to mask, make invisible parts of $-expressions). Adaptation
(evolution/upgrade) is an essential part of $-calculus, and all $-calculus operators are infinite (an indexing set I is
unbounded). The $-calculus agents interact through send-receive pair as the essential primitives of the model.

Sequential composition is used when $-expressions are evaluated in a textual order. Parallel composition is
used when expressions run in parallel and it picks a subset of non-blocked elements at random. Cost choice is
used to select the cheapest alternative according to a cost metric. Adversary choice is used to select the most
expensive alternative according to a cost metric. General choice picks one non-blocked element at random.
General choice is different from cost and adversary choices. It uses guards satisfiability. Cost and adversary
choices are based on cost functions. Call and definition encapsulate expressions in a more complex form (like
procedure or function definitions in programming languages). In particular, they specify recursive or iterative
repetition of $-expressions.

Simple cost expressions execute in one atomic step. Cost functions are used for optimization and adaptation.
The user is free to define his/her own cost metrics. Send and receive perform handshaking message-passing
communication, and inferencing. The suppression operator suppresses evaluation of the underlying $-expres-
sions. Additionally, a user is free to define her/his own simple $-expressions, which may or may not be negated.

3.2. The $-calculus semantics: the kX-search

In this section we define the operational semantics of the $-calculus using the kX-search that captures the
dynamic nature and incomplete knowledge associated with the construction of the problem solving tree.
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The basic $-calculus problem solving method, the kX-optimization, is a very general search method provid-
ing meta-control, and allowing to simulate many other search algorithms, including A*, minimax, dynamic
programming, tabu search, or evolutionary algorithms [24]. The problem solving works iteratively: through
select, examine and execute phases. In the select phase the tree of possible solutions is generated up to k steps
ahead, and agent identifies its alphabet of interest for optimization X. This means that the tree of solutions
may be incomplete in width and depth (to deal with complexity). However, incomplete (missing) parts of
the tree are modeled by silent $-expressions e, and their cost estimated (i.e., not all information is lost).
The above means that kX-optimization may be if some conditions are satisfied to be complete and optimal.
In the examine phase the trees of possible solutions are pruned minimizing cost of solutions, and in the execute
phase up to n instructions are executed. Moreover, because the $ operator may capture not only the cost of
solutions, but the cost of resources used to find a solution, we obtain a powerful tool to avoid methods that are
too costly, i.e., the $-calculus directly minimizes search cost. This basic feature, inherited from anytime algo-
rithms, is needed to tackle directly hard optimization problems, and allows to solve total optimization prob-
lems (the best quality solutions with minimal search costs). The variable k refers to the limited horizon for
optimization, necessary due to the unpredictable dynamic nature of the environment. The variable X refers
to a reduced alphabet of information. No agent ever has reliable information about all factors that influence
all agents behavior. To compensate for this, we mask factors where information is not available from consid-
eration; reducing the alphabet of variables used by the $-function. By using the kX-optimization to find the
strategy with the lowest $-function, meta-system finds a satisfying solution, and sometimes the optimal one.
This avoids wasting time trying to optimize behavior beyond the foreseeable future. It also limits consider-
ation to those issues where relevant information is available. Thus the kX-optimization provides a flexible
approach to local and/or global optimization in time or space. Technically this is done by replacing parts
of $-expressions with invisible $-expressions e, which remove part of the world from consideration (however,
they are not ignored entirely – the cost of invisible actions is estimated).

Definition 5 (The kX-Optimization meta-search procedure). The kX-optimization meta-search procedure kXi[t]
for the ith agent, i = 0,1,2, . . . , from an enumerable universe of agent population and working in time
generations t = 0,1,2, . . . is a complex $-expression (meta-procedure) consisting of simple $-expressions
initi[t], seli[t], exami[t],goali[t], $i[t], complex $-expression loopi[t] and execi[t], and constructing solutions,
its input xi[t], from predefined and user defined simple and complex $-expressions. For simplicity, we will
skip time and agent indices in most cases if it does not cause confusion, and we will write init, loop, sel, exam,
goali and $i. Each ith agent performs the following kX-search procedure kXi[t] in the time generations
t = 0,1,2, . . .
(:¼(kXi[t] xi[t])(�(init (kXi[0] xi[0]))
 // initialize kXi[0] and xi[0]

(loop xi[t + 1]))
 // basic cycle: select, examine, execute
)

where loop meta-$-expression takes the form of the select-examine-execute cycle performing the kX-optimiza-

tion until the goal is satisfied. At that point, the agent re-initializes and works on a new goal in the style of the
never ending reactive program:
(:¼(loop xi[t])
 // loop recursive definition

ðtð�ðgoali½t�ðkXi½t�xi½t�ÞÞ
 // goal not satisfied, default goal min($i(kXi[t] xi[t]))
(sel xi[t])
 // select: build problem solution tree k step deep, b wide

(exam xi[t])
 // examine: prune problem solution tree in cost and in
adversary choices

(exec(kXi[t] xi[t]))
 // execute: run optimal xi n steps and update kXi param.

(loop xi[t + 1]))
 return back to loop
(� (goali[t](kXi[t] xi[t]))
 goal satisfied – re-initialize search

(kXi[t] xi[t])))
)

More details on the kX-search, including inference rules of the labeled transition system, observation and
strong bisimulations and congruences, can be found in [16].
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3.3. Probabilistic, fuzzy sets and rough sets performance measure

The domain of the cost function is a problem-solving derivation tree constructed by the kX-optimization
meta-procedure. The derivation tree consists of nodes/states S and edges/actions E. Both kXi[t] and xi[t] $-
expressions form own trees, where kXi[t] tree is responsible for generation, pruning and evaluation of xi[t] tree
representing a problem solution. The xi[t] tree is problem-specific. On the other hand, the kXi[t] tree has a fixed
form initi followed by two branches goali, seli, exami, execi,goali, seli, exami, execi, . . . , and goali, kXi[t]. To
avoid the complexity to analyze and synchronize two trees for total optimization, both trees can be com-
pressed/collapsed into a single tree, where states/nodes represent a Cartesian product of states of xi[t] and
kXi[t], and edges/actions are labeled by Cartesian product of simple $-expressions from x[t] and corresponding
$-expressions from kX[t]. We will denote by h : x[t]! kX[t] an isomorphism mapping x[t] to corresponding
kX[t]. Each agent will have each own such single ‘‘doubled’’ tree, representing two trees, i.e., the population
of agents will be represented by a vector of trees (a forest). In such a way, a problem-solving tree will capture
both solutions and the search process. For optimization or search optimization, one component in the dou-
bled tree (either x[t] or kX[t]) can be omitted.

The cost function $3 measures the quality of solutions (costs of xi[t]), and sometimes only the costs of sub-
tree (for example cost of leaves representing the final complete solutions if kX[t] works in the style of evolu-
tionary computation with gp = 1). The cost function $2 measures the costs of search (costs of kXi[t]), and the
$1 aggregating function combines costs of solutions and search.

Let’s define the cost of the problem-solving tree T recursively as a cost of the root node, cost of transitive
actions leading to new states, and cost of corresponding subtrees, with new states being their roots. This will
combine costs of the search and the solution quality as $ : T! R1, where R1 ¼ R [ f1g, i.e.,
$ðkXi½t�; xi½t�Þ ¼ $1ð$2ðhðxi½t�ÞÞ; $3ðxi½t�ÞÞ ¼ $1ð$2ðkXi½t�Þ; $3ðxi½t�ÞÞ;

where $1 is an aggregating cost function, $2 is a search cost function, and $3 is the problem-specific cost function.

In this paper, both $2 and $3 will take the same uniform form of the standard cost function defined below,
and $1 will take a form of addition, i.e., $(kXi[t],xi[t]) = $2(kXi[t]) + $3(xi[t]). Without compromising a gener-
ality, it is sufficient to define costs of $-expressions P for either $2 or $3, because cost of solutions and search
will be simply a sum of both $2 and $3. Technically, $j is defined on the problem-solving tree, consisting of
nodes and edges expressed by $-expressions, and representing both a solution and meta-search procedure,
as the function mapping the tree to a real number: $j : P! R1; j ¼ 2; 3.

Let v : Ae ! R1 be costs of simple cost expressions, including a silent expression. They are context depen-
dent, i.e., they depend on states. In particular, cost of e may depend which cost expression is made invisible by
e. Technically, $ is defined on the problem-solving tree, consisting of nodes and edges expressed by $-expres-
sions, as the function mapping the tree to a real number: $i : P! R1; i ¼ 2; 3. Thus it is sufficient to define
costs of $-expressions P. Note that the value of the cost function (or its estimate) can change after each loop
iteration (evaluation of a simple cost expression).

Definition 6 (A standard cost function). For every $-expression P its cost ($jP), j = 1,2,3 is defined as below:

1. ($j ?) = +1;

2. ð$j eÞ ¼ 0 for observation congruence;
ðv eÞ for strong congruence;

�

3. ($j a) = ca + (v a), where ca ¼
0 a does not block;
þ1 a blocks;

�
ð$j �aÞ ¼ 1

ca
þ ðv �aÞ;

4. ð$j ðti2I P iÞÞ ¼
Ri2I ðpi � ð$jP iÞÞ for probability-based cost function;
ð$j P lÞ; l ¼ argmaxi2I mi for fuzzy set-based cost function;
ð$j P lÞ; l ¼ argmaxi2I li for rough set-based cost function;

8<
:

where pi is the probability of choice of the ith branch, mi is a fuzzy set membership function of choice of the
ith branch, and li is a rough set membership function of the ith branch choice

5. ($j (di2I Pi)) = (mini2I ($j Pi));

6. ($j (]i2I Pi)) = (maxi2I ($j Pi));
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7. ð$j ð�i2I a P iÞÞ ¼ ð$j aÞ þ Ri2I ð$j P 0iÞ, where P 0i represents a possible change of Pi by receive or return value
by a;

8. ð$j ki2I P iÞ ¼

RJ�I pJ � ðð$j fajgj2J Þ þ ð$j ðki2I�J ;j2J P i P 0jÞÞÞ
for probability-based cost function;
ðð$j fajgj2LÞ þ ð$jðki2I�L;j2L P i P 0jÞÞÞ
L ¼ argmaxJ�I mJ ; for fuzzy set-based cost function;
ðð$j fajgj2LÞ þ ð$jðki2I�L;j2L P i P 0jÞÞÞ
L ¼ argmaxJ�IlJ ; for rough set-based cost function;

8>>>>>><
>>>>>>:
where pJ is the probability of choice of the Jth multiset, mJ is a fuzzy set membership function of choice of
the Jth multiset, and lJ is a rough set membership function of the Jth multiset choice;

9. ($j (fi2I Qi)) = ($j P{Qi/Xi}) where (:¼(fi2I Xi)P).

Cost choice calculates costs as the minimum of costs of its components. Adversary choice cost is defined as
the cost of its most expensive component. General choice cost has been defined as the average component cost
if to use probabilities to represent uncertainty, or the maximum if to use fuzzy sets [27] or rough sets [22].
Sequential composition cost adds costs of its components. Parallel composition cost selects a nonempty mul-
tiset that does not block. It has been defined as the average component cost. Alternatively, parallel composi-
tion could select a specific multiset to be executed, e.g., the maximum subset that does not block (for the
maximum concurrency semantics), or the subset with the minimal costs (probably the most interesting alter-
native, on the other hand, increasing costs of the kX-search). However, both these alternatives we will leave as
viable choices for the user who can overwrite the cost of parallel composition definition if it is preferable. Cost
of the recursive (user defined) function call is calculated as the cost of its body.

4. The $-calculus support for intractability: optimization under bounded resources, completeness, optimality,

search optimality and total optimality

It is important to determine whether the $-calculus kX-optimization will find a solution (will reach a
terminal state – the goal of computation) if there is one, whether solutions are optimal, and what is
the search cost associated with problem-solving, i.e., whether the $-calculus search is complete, optimal,
search optimal, and totally optimal. In particular, search optimality and total optimality is crucial for
the solution of intractable problems, because it takes into account an amount of resources available for
an agent.

Definition 7 (On completeness of the $-calculus search). The $-calculus search is complete if the kX-
optimization starting from its initial state (kX[0],x[0]) guarantees to reach a state (kX[t], x[t]) satisfying the
goal condition pending there is one.

Formally, the completeness of search belongs to decision problems. Reaching an arbitrary terminal/goal
state is equivalent to the halting problem of the Turing machine and is undecidable. Thus completeness of
search guarantees that the problem of reaching the goal becomes decidable.

Definition 8 (On elitist selection of the $-calculus search). The $-calculus search will use an elitist strategy if
states selected for expansion in the next loop iteration of the kX-optimization will contain states with the most
promising (i.e., minimal) costs.

Using elitism will allow to expand the most promising parts of the tree only.

Definition 9 (On admissibility of the $-calculus search). The $-calculus search will be admissible if the costs of
silent $-expressions are not overestimated.

The admissibility requirement will prohibit to stop prematurely search if a non-optimal goal is found that
may look a more promising than the optimal goal. Note that elitist selection concept is typical for evolutionary
algorithms, and admissibility for heuristic search, e.g., the A* algorithm.
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Definition 10 (On optimality of the $-calculus search). The $-calculus search of the ith agent is optimal if the
kX-optimization has its goal condition set to the optimum of the problem-specific cost function and $3i(xi[t]) is
convergent (or asymptotically convergent) to the set of optimal solutions X �i .

For on-line algorithms with n > 0, the optimal solution will be restricted to a specific n value of steps sched-
uled for execution in the execution phase. For off-line search algorithms with n = 0, the optimal solution will
be the complete solution scheduled for execution in the execution phase.

Theorem 1 (On optimality of the $-calculus search). For a given kX-optimization procedure kXi[0] with an

initial problem solution xi[0], if the $-calculus search of the ith agent satisfies four conditions:

1. the goal condition is set to the optimum of the problem-specific cost function $3i(xi[t]) with the optimum $�3i,
2. search is complete,
3. elitist selection is used, and
4. search is admissible,

then the kX-optimization will find the optimum x�i of $3i(xi[t]) in an unbounded number of iterations t = 0,1,2,. . .,
and that optimum will be maintained thereafter.

Proof. By completeness, the kX-search reaches (perhaps in an infinite number of loop iterations) a goal state
that is equivalent to the optimal state. By elitism the optimum will be maintained (i.e., not lost), because the rate
of convergence is guranteed to be greater than or equal to zero. The rate of convergence cannot be permanently
equal to 0, because if other more promising nodes exist, the admissibility will guarantee that they will have to be
expanded. By admissibility the premature stopping in a local optimum will be prevented, because an optimal
state will be always looking as a more promising. Always the most promising node (the cheapest one, according
to the $3i metric) will be in the group of nodes selected for expansion in a new iteration, because the kX-opti-
mization expands all nodes in order of increasing $3i values, thus it must eventually expand the optimal (reach-
able) goal state. Both conditions imply that the kX-optimization will eventually converge (asymptotically
converge), perhaps requiring an infinite number of generations, to the optimum x�i of $3i. h

Definition 11 (On search optimality of the $-calculus search). The $-calculus search of the ith agent is search
optimal if the kX-optimization has its goal condition set to the optimum of the search cost function together
with problem-specific goal condition, and $2i(kXi[t]) is convergent (or asymptotically convergent) to the set of
optimal solutions kX�i .

Theorem 2 (On search optimality of the $-calculus search). For a given kX-optimization procedure kXi[0] with

an initial problem solution xi[0], if the $-calculus search of the ith agent satisfies four conditions:

1. the goal condition requires additionally to reach the optimum of the search algorithm cost function $2i(kXi[t])

with the optimum $�2i,
2. search is complete,
3. elitist selection is used, and
4. search is admissible,

then the kX-optimization will find the optimum kX�i of $2i(kXi[t]) in an unbounded number of iterations

t = 0,1,2, . . . , and that optimum will be maintained thereafter.

Proof. The proof is analogous to the proof of optimality. The only difference is that now costs of problem-specific
solutions are ignored (costs of nodes are treated as 0), and costs of edges representing cost of the kX-optimization
are taken into account. Besides minimal costs of search, we still require that a specific problem is solved. h

A total optimality provides a direct and elegant method to deal with intractability of problem solving
search. It will use a power of evolution to avoid expensive search methods. In other words, both the solutions
and algorithms producing the solutions will be evolved (but for the price that perhaps the quality of solutions
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found would be worse compared to solutions where we ignore search costs, i.e., total optima in most cases are
different than problem-specific optima).

Definition 12 (On total optimality of the $-calculus search). The $-calculus search of the ith agent is totally
optimal if the kX-optimization has its goal condition set to the optimum of the cost function $i(kXi[t],xi[t]) and
$i(kXi[t],xi[t]) is convergent/asymptotically convergent to the set of optimal solutions ðkX�i ;X

�
i Þ.

Theorem 3 (On total optimality of the $-calculus search). For a given kX-optimization procedure kXi[0] with

an initial problem solution xi[0], if the $-calculus search of the ith agent satisfies four conditions:

1. the goal condition is set to the optimum of the search algorithm cost function $i(kXi[t], xi[t]) with the optimum $�i ,
2. search is complete,
3. elitist selection is used, and
4. search is admissible,
then the kX-optimization will find the optimum ðkX�i ; x
�
i Þ of $i(kXi[t],xi[t]) in an unbounded number of iterations

t = 0,1,2, . . . , and that optimum will be maintained thereafter.

Proof. Analogous to theorem on optimality of the kX-search. h
5. Approximate reasoning in environments with uncertainty

The real world problems by necessity (caused by complexity of the problem or environment, the lack or
imprecise information) has to deal with uncertainty of sensors, actions, perceptions. There are various
approaches to deal with uncertainty: probability theory, Zadeh’s fuzzy sets, the Dempster–Shaffer theory of
evidence, Pawlak’s rough sets, Reiter’s default logic, McCarthy’s circumscription, or McDermott/Doyle’s
nonmonotonic logic [24]. All these methods are used separately, and it is very difficult to say which one is
the best to express uncertainty. The most compiling result is de Finetti theorem [4,24] that claims that the
probability methods always will outperform (will give higher payoffs) other methods that violate axioms of
probability theory. However, that claim is based on the assumption that the real world is ruled by probabil-
ities, and not for example by fuzzy sets or nonmonotonic logic.

For this reason, it would be desirable to have models that allow to compare and experiment with various
approaches to uncertainty. The $-calculus allows at this moment to use either probabilities, fuzzy sets or rough sets.

For illustration we will consider the robot trying to find the shortest path with or without uncertainty. The
possible scenario to test the optimality/total optimality could be a robot navigating from the starting to the
terminal point, where the trajectory of the robot is a subject to uncertainty (wheels are slippery, sensors mea-
surements are imprecise). Thus we can interpret that the robot, instead of the desired point/state, may reach
several points/states measured either with some probability, or fuzzy set, or rough set membership function.
The robot tries to find the shortest path with or without uncertainty by solving the kX-optimization problem,
or to find a shortest path and, additionally, to minimize the time spent on the trajectory computation at the
same time for the total optimization problems.

The A* algorithm belongs to the best known examples of heuristic search (due to Hart et al., 1968, also
called the best-path search [19]). A* selects the path with the shortest length expanding the most promising
node in the search tree (or, in a more general case, in a locally finite graph). To do that it selects the node with
the minimal value of the evaluation function f(n) = g(n) + h(n), where g(n) gives the path cost from the start
node to node n, and h(n) is the estimated cost of the cheapest path from n to the goal. A* is complete on locally
finite graphs, path optimal if cost estimates are admissible, with an exponential time and space search cost.

We will present A*, working as a special case of the $-calculus kX-optimization meta-search general pro-
cedure from previous section. For illustration, intentionally, we use the same example as in [24] with A as
a root, D, F, I, J as goal states, and values of f(n) written near to the states Fig. 1.

We need only three operators from the $-calculus: cost ($), cost choice (d) and sequential composition (�) to
describe the work of A* (if to not count the operators of the meta-system kX-optimization).d and � are needed to
express possible solutions, and $ is used by the kX-optimization in the examine phase to select the most promising



Fig. 1. A complete search tree from which A* builds dynamically its own subtree.
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node for expansion. The system consists of one agent only which is interested in everything, i.e., X ¼A ¼ A1 ¼
f�;d; tA; tB; tC; tG; tH ;A;B;C;D;E; F ;G;H ; I ; J ;Kg, the alphabet of simple $-expressions B ¼ B1 ¼ fA;B;C;
D;E; F ;G;H ; I ; J ;Kg for the LTS tree, and it uses a standard cost function $ = $1($2,$3) = $2 + $3, where $1 is
an aggregating function in the form of addition, $2 represents costs of kX-search, and $3 = f = g + h represents
the quality (cost) of solutions generated by A*. Both $2 and $3 use a standard cost function from previous section.
Because general choice and parallel composition are not used, thus it is irrelevant whether probabilities, fuzzy
sets or rough sets were selected in the standard cost function. Strong congruence is used, i.e., strongcong = 1
and estimates of costs of e (representing the heuristic h) can be different than 0. In other words, the cost of invisible
actions is taken into account. The number of steps in the derivation tree selected for optimization in the examine
phase k = 1, the branching factor b =1, and the number of steps selected for execution in the examine phase
n = 0, i.e., execution is postponed until the optimum is found. The default goal is the minimum of $. gp, reinf

and update flags are reset. This means that costs of simple $-expressions and e cost estimates, received from
the user in the init phase, remain fixed over loop iterations.

5.1. Optimization without uncertainty: simulation of A*

The user provides the structure of the tree in the form of the subtrees with roots/parents A,B,C,G,H,
i.e.,subtrees tA, tB, tC, tG, tH: (:¼tA (d (� A tB)(� A tG))), (:¼ tB (d (� B tC)(� B D))), (:¼ tC (d (� CE)
(� CF))), (:¼ tG (d (� GtH)(� GI))), (:¼ tH (d (� H J)(� HK))). This structure will be used in the sel phase
to build incrementally the tree by applying the structural congruence inference rule from the LTS.

Only $3 is used, i.e., $ = $3 – an optimal path is looked for, ignoring the costs of A* search algorithm. The
goal is the minimum of $3. In other words, costs of kX[t] $-expression is ignored. Then consecutive steps
(cycles) of the kX-optimization simulate exactly A* step after step (we write actions of kX[t] and its corre-
sponding constructed solution $-expression x[t] instead of the cartesian product kX[t] · x[t]):

0. t = 0, initialization phase init from the kX[t] is executed: tA = (� AeA) – the initial $-expression is provided
by the user telling that the tree tA consists of the root A and eA representing an invisible (not constructed
yet) part of the tree.
A is selected for expansion with the cost ($(tA)) = ($3(tA)) = ($3 (� AeA)) = (0 + 12). The initial tree consists
of the root state A with cost 0, an empty action eA representing a missing tree that contains a path to the goal
with estimated cost 12.

1. t = 1, first loop iteration:
Because A is not the goal state (goal fails and goal succeeds), the first loop iteration consisting of select, exam-
ine, and execute phases replaces an invisible eA one step deep (k = 1) by two possible children B and G using
the structural congruence inference rule for the definition of tA.
Select phase sel: eA = (d(� tB)(� tG)) = (d(� BeB)(� GeG)) is appended to an existing tree resulting in tA =
(d(� A BeB)(� A GeG)).
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Examine phase exam: ($3(d(� A BeB)(� A GeG))) = min($3(� A B) + $3(eB),$3(� A G) + $3(eG)) = min
(10 + 5,8 + 5), G is not the goal (i.e., min of $3), thus it is selected for expansion and execution is postponed
(n = 0), and G’s follow-up eG will be substituted by two children H and I of G in the next loop iteration.

2. t = 2, second loop iteration:
Select phase sel: eG = (d(� H eH)(� I eI)) is appended to an existing tree.
Examine phase exam: ($3(d(� A BeB)(� A G HeH) (� A G IeI))) = min((10 + 5), (16 + 2), (24 + 0)), B selected
for the expansion (more precisely, its follow-up eB, no pruning is performed, because A* keeps all generated
nodes in the memory).

3. t = 3, third loop iteration:
Select phase sel: eB = (d(� CeC)(� D eD))examine phase exam: ($3(d(� A B tCeC) (� A B DeD)(�A G HeH)(� A

G IeI))) = min((20 + 5), (20 + 0), (16 + 2), (24 + 0)), H selected.

4. t = 4, fourth loop iteration:
Select phase sel: eH = (d(� J eJ) (� K eK)).
Examine phase exam: ($3(d(� A B C eC)(� A B D eD)(� A G H J eJ) (� A G H K eK)(� A G I eI))) =
min((20 + 5), (20 + 0), (24 + 0), (24 + 5), (24 + 0)), D selected, which is the goal and the end of the optimal
path (� A B DeD) with path cost 20.
Execute phase exec: the kX-optimization stops its search, the optimal path is executed using the tree built in
previous cycles, and the kX-search re-initializes for the new problem to solve.

Note that this simulation of A* is correct, because it simulates precisely step after step the A* algorithm. Thus
if A* is complete and optimal, the same applies to the kX-optimization search (proven by Theorem 1). More-
over, the kX-optimization may simulate many other search algorithms [14], and this represents its power
and versatility.

Note that the kX-optimization reaches the optimal solution in spite of optimizing locally one step ahead
only. Note that the estimates of not expanded nodes yet, represented by the empty/invisible e are admissible,
i.e., not overestimates. Due to use of the kX-search, the variations of A* (new search algorithms - related to A*,
but not being A* any more) can be considered with various values of parameters k, b, X and n. In particular,
changing n 5 0, causes that erroneous actions will be executed, and then the value of optimum for such an on-
line algorithm can be different than for the classical A* offline algorithm with n = 0. Note that A* keeps all
nodes in memory (no pruning) which guarantees that the optimal nodes will not be accidently removed.
On the other hand, A* may run out of memory quite fast because of the exponential space complexity. In other
words, we have to take into account the costs of search too.
5.2. Optimization with uncertainty: AU* with probabilities

We will call the algorithm AU* (from A* with uncertainty). Let us assume that in node B the robot wheels
slip either making the robot to turn towards C with probability (or fuzzy set or rough set membership func-
tion) 0.4 or D with probability 0.6. In node G the robot makes turns either towards H with probability (or
fuzzy set or rough set membership function) 0.3 or I with probability (or fuzzy set or rough set membership
function) 0.7. These uncertainties can be modeled by the $-calculus general choice operator The user provides
the structure of the tree with in the form of the subtrees with roots/parents A, B, C, G, H, i.e., subtrees tA, tB,
tC, tG, tH: (:¼tA(d(� A tB)(� A tG))), (:¼tB(t(� B tC)(� B D))), (:¼tC(d(� C E)(� C F))), (:¼tG(t(� G tH)(� G

I))), (:¼tH(d(� H J)(� H K))). This structure will be used in the sel phase to build incrementally the tree by
applying the structural congruence inference rule from the LTS.

Only $3 is used, i.e., $ = $3 – an optimal path is looked for, ignoring the costs of AU* search algorithm. The
goal is the minimum of $3. We will illustrate firstly AU* with standard cost function using probabilities in gen-
eral choice:
0.t = 0, initialization phase init from the kX[t] is executed: tA = (� AeA) – the initial $-expression is provided
by the user telling that the tree tA consists of the root A and eA representing an invisible (not constructed yet)
part of the tree.
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A is selected for expansion with the cost ($(tA)) = ($3(tA)) = ($3 (� A eA)) = (0 + 12). The initial tree consists
of the root state A with cost 0, an empty action eA representing a missing tree that contains a path to the goal
with estimated cost 12.

1.t = 1, first loop iteration:
Because A is not the goal state ðgoal fails and goal succeedsÞ, the first loop iteration consisting of select, exam-
ine, and execute phases replaces an invisible eA one step deep (k = 1) by two possible children B and G using the
structural congruence inference rule for the definition of tA.
Select phase sel: eA = (d(� tB)(� tG)) = (d(�B eB)(�G eG)) is appended to an existing tree resulting in tA = (d(�
A B eB)(� A GeG)).Examine phase exam: ($3(d(� A B eB)(� A G eG))) = min($3(� A B) + $3(eB),$3(� A
G) + $3(eG)) = min(10 + 5,8 + 5), G is not the goal (i.e., min of $3), thus it is selected for expansion and execu-
tion is postponed (n = 0), and G’s follow-up eG will be substituted by two children H and I of G in the next loop
iteration.

2.t = 2, second loop iteration:
Select phase sel: eG = (t(� H eH)(� I eI)) is appended to an existing tree.
Examine phase exam: ($3(d(� A B eB)(� A G(t(� H eH)(� I eI))))) = min((10 + 5), (8 + 0.3 * (8 + 2) +
0.7 * (16 + 0))) = min(15,22.2), B selected for the expansion (more precisely, its follow-up eB, no pruning
is performed, because AU* keeps all generated nodes in the memory).

3.t = 3, third loop iteration:
Select phase sel: eB = (t(�C eC)(� D eD)).Examine phase exam: ($3(d(� A B(t(� tC eC)(�D eD))) (� A G(t (�H
eH)(� IeI)))))=min((10 + 0.4 * (10 + 5) + 0.6 * (10 + 0)), (8 + 0.3 * (8 + 2) + 0.7 * (16 + 0))) = min(22,22.2),
C and D selected. Because D is the goal and the end of the optimal path (�A B DeD) with path cost 20, then the
search is terminated.
Execute phase exec: the kX-optimization stops its search, the optimal path is executed using the tree built in
previous cycles, and the kX-search re-initializes for the new problem to solve. However, the optimal path will
be executed only 60% of time, and 40% of time node C will be reached instead (and then terminal node F that
is cheaper than E).
5.3. Optimization with uncertainty: AU* with fuzzy sets or rough sets

AU* with standard cost function using fuzzy set or rough set membership functions in general choice is pre-
sented below. The fuzzy set membership function is defined in a conventional way, the rough set membership
function is defined as in [23] lB

X ðxÞ ¼ jX \ BðxÞj=jBðxÞj.

0. t = 0, initialization phase init from the kX[t] is executed: tA = (� A eA).
A is selected for expansion with the cost ($(tA)) = ($3(tA)) = ($3(� A eA)) = (0 + 12).

1. t = 1, first loop iteration:
Select phase sel: eA = (d(�tB)(� tG)) = (d(� B eB)(� G eG)) is appended to an existing tree resulting in
tA = (d(� A B eB)(� A G eG)).
Examine phase exam: ($3(d(� A B eB)(� A G eG))) = min($3(� A B) + $3(eB), $3(� AG) + $3(eG)) = min(10 +
5,8 + 5), G is not the goal (i.e., min of $3), thus it is selected for expansion and execution is post-
poned (n = 0), and G’s follow-up eG will be substituted by two children H and I of G in the next loop
iteration.
2. t = 2, second loop iteration:
Select phase sel: eG = (t(� H eH)(� I eI)) is appended to an existing tree.Examine phase exam: ($3(d(�A
B eB)(� AG(t(� H eH)(� IeI))))) = min((10 + 5), (16 + 0)). Because the membership function of I is larger
than of H, I was selected in general choice. From B and I, B as cheaper has been selected for the expansion
(more precisely, its follow-up eB, no pruning is performed, because AU* keeps all generated nodes in the
memory).

3. t = 3, third loop iteration:
Select phase sel: eB = (t(� C eC)(� D eD)).
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Examine phase exam: ($3(d(� A B(t(� tC eC)(� D eD))) (� A G(t(� H eH)(� I eI))))) = min(20 + 0,24 + 0), D

selected. Because D is the goal and the end of the optimal path (� A B DeD) with path cost 20, then the
search is terminated.
Execute phase exec: the kX-optimization stops its search, the optimal path is executed using the tree built in
previous cycles, and the kX-search re-initializes for the new problem to solve. However, the optimal path
will be executed with certainty 0.6.

Adding uncertainty, increases the complexity of the optimal solution search. For illustration purposes, we
decided to associate uncertainties with two nodes only. Otherwise we would have twice more nodes compared
to the original A*, i.e., every cost choice node should be followed by general choice node (something in the
style of expectiminimax [24]).

For total optimization the $-calculus can incorporate the search cost by optimizing the total cost instead
of the cost of solutions only. This will use additionally a search cost function $2 and an aggregating cost
function $1 in the decision process. Although the total optimization looks like much more complex than a
regular optimization, in reality it is not. A small overhead (by taking care about reasoning process itself)
allows automatically abandon expensive searches, because the kX-search will avoid them as more costly.
The price that we pay is that the totally optimal solutions can be of worse quality than ‘‘regular’’ optimal
solutions.
6. Conclusions

In this paper we presented the theory for approximate reasoning based on anytime algorithms and allowing
to express uncertainty in three different ways: using either probability theory, or fuzzy sets, or rough sets. The
approximation of solutions is based on ideas of anytime algorithms finding incrementally better approxima-
tions of solutions in successive loop iterations of the kX-optimization meta-search procedure. Capturing of
uncertainty is possible because the $-calculus general choice operator allows to incorporate either probabili-
ties, of fuzzy set membership functions, or rough set membership functions. This allows potentially to exper-
iment with various approaches to uncertainty under the same unifying framework. The same applies to the
possibility to experiment with various search algorithms. The kX-optimization allows to simulate many typical
search algorithms and to construct new search algorithms.

In the paper, we presented an extension of A* search algorithm, called AU* using either probabilities, fuzzy
sets or rough to express uncertainty. The same ideas can be incorporated to multiple agents and to the situ-
ations where both the best quality and least costly solutions are looked for. These are totally optimal solutions
that automatically allow to deal with the intractability of search space.

One of the claims of probability theory is that any other methods violating axioms of probability theory
(e.g., fuzzy sets or rough sets) will lead to worse payoffs as expressed by the de Finetti’s theorem [4,24]. It
is an open problem under which conditions this claim is valid. That claim is based on the assumption that
the only correct description of the real world is by using probabilities, and not for example by fuzzy sets or
rough sets.

The extension of this work could be twofold: a new axiomatization of the utility theory allowing to incor-
porate fuzzy sets and rough sets instead of probabilities and the standardization of the cost performance mea-
sures that may lead to a new cost paradigm of programming languages. Of course, it would be desirable to
include other approaches to uncertainty, like nonmonotonic logic, or Dempster–Schafer theory of evidence.
Then it would be possible truly to write that the modern Decision Theory = Performance Measure The-

ory + Uncertainty Theory [15] rather than Utility Theory + Probability Theory [24]. This is left for future
research, and a current contribution can be seen as a correct step in this direction.
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