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Abstract 

Dynamic binding is a runtime lookup operation which extracts values corresponding to some 
“names” from some “environments” (finite, unordered associations of names and values). Many 
situations related with flexible software assembly involve dynamic binding: first-class modules, 
mobile code, object-oriented message passing. This paper proposes AN, a compact extension of 
the i-calculus to model dynamic binding, where variables are labelled by names, and where 
arguments are passed to functions along named channels. The resulting formalism preserves 
familiar properties of the I-calculus, has a Curry-style-type inference system, and has a formal 
notion of compatibility for reasoning about extensible environments. It can encode records and 
record extensions, as well as first-class contexts with context-filling operations, and therefore 
provides a basic framework for expressing a wide range of name-based coordination mechanisms. 
An experimental functional language based on iN illustrates the exploitation of dynamic binding 
in programming language design. 
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1. Introduction 

Computer systems are required to be increasingly “open” - able to dynamically in- 

teract with other, possibly unknown or weakly specified systems, and able to coordinate 

together a global computation. In order to follow this evolution, computational models 

pay ever increasing attention to notions such as concurrency and distribution. How- 

ever, open systems also often depend on another concept, more or less orthogonal to 

the previous ones, and which seems to have been less investigated in theoretical stud- 

ies: dynamic binding. This appears in a family of programming constructs in which 

the runtime system includes some notions of “names” and “environments” (associations 

from names to values), and where the operation of looking up some name in some 

environment is performed dynamically. A number of popular languages use dynamic 

binding, under various forms: quote and eval in LISP, stacks of dictionaries in FORTH 
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or Postscript, late binding of message names to methods in object-oriented languages, 

communication channels in concurrent systems. More recently, several proposals have 

been made to use first-class environments as a tool for flexible modularity [ 17,211; 

furthermore, in the new context of coordination models and languages, most proposals 

addressing distribution issues include some scheme for dynamic binding: the name 

server of [22], the flexible records of Ariadne [12], the tuples of named values in 

Sonia [3] are just a few examples. So in several contexts some form of dynamic 

binding has been acknowledged as a good mechanism for incremental assembly and 

coordination of software fragments. 

When comparing these different implementations of a simple concept, it appears 

that small variations in the name lookup operation or in the constructs for building 

environments may generate quite different properties. Hence, formal models developed 

so far for some of these paradigms, in which the dynamic binding features are implicitly 

incorporated but merged with other computational aspects, are not adequate to perform 

comparisons and to study dynamic binding in an abstract, general setting. For example, 

several object calculi have been designed to study message-passing, but they can hardly 

be used to express the semantics of LISP. By contrast, a formal model in which 

dynamic binding is factored out from other computational aspects can throw some 

light on the relationships between various paradigms. We propose such a model, in the 

form of a il-calculus in which arguments are passed to functions along named channels 
_ so it is called ;l-calculus with names, or AN for short. We also show how this model 

is a natural foundation for introducing dynamic binding in a typeful way into functional 

programming languages like ML [20] or Haskell [ 161. 

Clearly, dynamic binding has an associated cost in terms of computing resources 

(memory to store the environments, time to perform lookup operations), but it also has 

the very appealing aspect of extensibility, i.e. the possibility to add more functionality 

to an existing piece of code, without affecting its previous behaviour. This comes from 

the fact that an environment defining a given set of names can be replaced by a bigger 

environment, defining more names: all name lookup operations involving the original 

set of names are still valid, but in addition some new lookup operations become pos- 

sible. As a result, the modified code is “compatible” with the original code, which is 

very convenient for software evolution. These notions are central to the spirit of object- 

oriented programming, and are key factors for its success. Hence, semantic studies of 

languages with dynamic binding should attempt to capture this compatibility relation- 

ship, which is asymmetric, rather than usual equivalence relations between programs. 

A partial answer comes from the methodologies developed for describing subtyping in 

typed object calculi: one is based on “partial equivalence relationships” (PERs) [6], 

which indicate when two values are equivalent at a given type, and the other is based 

on coercion functions from subtypes to supertypes [S]. However, these do not directly 

express the fact, very intuitive to programmers, that for example record {x = 1, y = 2) 

totally subsumes record {x = I}, i.e. can safely replace it at all types. In order to deal 

with this notion, we explicitly introduce a notion of runtime error in untyped AN, and 

then define an operational ordering based on the observation of error generation. By 
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this means, we can formally prove when an extension of a term is “compatible” with 

its original term, and we get some general laws for safe program manipulations. 

The expressive power of AN is close to the “uniform system of parameterization” 

of [18], and to the recent calculus of contexts of [19]. However, these do not have 

a formal notion of compatibility, and do not address typing issues; furthermore, AN 

with its four syntactic constructs is more compact and therefore seems to be the min- 

imal extension of the A-calculus to support dynamic binding. The binding structures 

of [25] also deal with similar mechanisms, but with an emphasis on unification and 

term rewriting. Their complex operations involving hole filling and substitution have 

important applications in the field of theorem provers, but are heavy for simple pro- 

gramming purposes; furthermore, these are meta-operations, not directly expressed as 

computation within the language. By contrast, the label-selective calculus of [13], al- 

though seemingly similar in surface, has quite different properties: labels (names) are 

used to address inner A-abstractions out of their definition order. This combines label- 

selection with currying, but does not support extensibility and compatibility properties 

discussed above. Finally, iN is also closely related to a A-calculus with extensible 

records [24,27], although not fully equivalent. Calculi of extensible records internally 

distinguish between functional and record values, while AN treats everything as a func- 

tion, much like the pure classical i-calculus. 

This paper borrows some material from a previous presentation of the 3-N calculus 

[lo], but with a different emphasis. In [lo] we were mainly concerned with inference of 

principal types for ANand their use for filtering communication in a shared dataspace. 

The motivation for using names and dynamic binding for coordination purposes was 

discussed in some detail in this paper. Here, by contrast, we concentrate on the basic 

theory of AN, on its relationships with other calculi, and on applications of the model 

to programming language design. Section 2 presents the untyped calculus, together with 

its main properties (confluence, context lemma, compatibility laws). Section 3 gives an 

adaptation of Curry’s simple type inference system to functions with named parameters. 

Section 4 discusses the encoding of record operations in AN, and compares the calculus 

with record calculi. Section 5 relates this work to other calculi with environments, 

contexts or labels. Finally, Section 6 displays some applications of the calculus in the 

field of typed functional programming; several constructs for dynamic binding were 

integrated into a prototype interpreter, with direct translation into the underlying model. 

This interpreter was one of the deliverables of the European project ESPRIT BRA 9102 

“Coordination”; financial support of Swiss OFES for our participation to this project 

is gratefully acknowledged. 

2. The untyped IZN calculus 

2.1. Syntax and reduction rules 

The calculus is constructed from a set V of variables and a set Jt’ of names 

(or labels); both sets may be infinite, and need not be disjoint. Letters x, y,z are 
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Syntax 

X,Y,Z E Y- 
I E Jv- 

a,b,c,. . . E F 

a ::= XI labelled variable 

I *. 
1 ;la= b) 

abstraction 
bind expression 

close expression 
runtime error 

Reduction rules 

(kc.a)(Z = b) +BN k.a[q := b] 
(ka)! +flN a[x* := &] 

&(I = b) --+BN & 
&! +p,,T E 

h.& -+‘pN & 

variables 

names 
terms 

(lambda-bind) 
(lambda-close) 

(err-bind) 
(err-close) 
(lambda-err) 

Fig. 1. Syntax and reduction rules. 

metavariables for members of Y, and I is a metavariable for members of N; concrete 

names in examples are written in serif font. Letters a, b, c, . . . are metavariables for ar- 

bitrary terms. The abstract syntax and reduction rules are displayed in Fig. 1. Variables 

carry several values at different names, so an expression of the form XI corresponds 

to the value carried by variable x at name 1. Lambda abstractions are exactly like in 

the standard lambda calculus, and the notions of free and bound variables are also 

the same (see [4]). We write FV(a) for the set of free variables occurring in a, and 

FN(a,x) for the set of names which index free occurrences of x in a; so if xl occurs 

free in a then x E FV(a) and 1 E FN(a,x). A term is closed iff it has no free variables, 

and the set of closed terms is denoted by Ai. Usual application is split into two dif- 

ferent parts: an expression of the form a(Z = b) (called bind expression) passes value 

b under name 1 to abstraction a; an expression of the form a! (close expression) ends 

a sequence of bind expressions. Finally, E is a constant representing runtime errors, i.e. 

the well-known “message not understood” error of object-oriented systems; errors are 

generated when trying to access a variable under a name for which that variable has no 

value (because there was no corresponding bind expression on the same name). Usual 

syntactic conventions apply, i.e. abstractions extend to the right as far as possible, and 

multiple abstractions of the form 2x1.. . . Ax,.a are abbreviated as 2x1 . . .~,,.a. 
The capture-avoiding substitution of b for all free occurrences of XI in a is written 

a[xl := b]. Similarly, a[x, := b] denotes the substitution of b for all occurrences of 
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variable x in a, whatever their label index may be. Avoidance of variable capture is 

handled as in the standard lambda calculus, by considering equivalence classes of AN 

terms under g-substitution (renaming of bound variables) [4]. 

One-step reduction, written --+gN, splits the usual /3-reduction rule of standard A- 

calculus into bind-reduction and close-reduction rules; in addition, three other rules 

ensure propagation of run-time errors. Notice how the lambda-bind rule performs a 

substitution without removing the outermost i, while the lambda-close rule removes 

the 3, and substitutes any remaining occurrence of the corresponding variable by c. 

By contrast, B-reduction in the standard lambda calculus substitutes the variable and 

removes the 3, in one single step. Following common conventions, the n-composition 

of -fbN is written :fiN, the reflexive, transitive closure of +fl~ is written 3~~. and 

HflN is its symmetric closure, 

2.2. Embedding the classical A-calculus 

Assume an “invisible name” z E ,Ir, and let n denote the set of traditional i-terms. 

These can be embedded into A,v by the translation function LN[-] below: 

LN[-] : /id/IN 

LN[x] = x, 

LN[i,x.a] = /Ix.LN[a] 

LN[ab] = LN[a](z = LN[b])! 

The translation preserves usual P-equality: 

Lemma 1. (i) Vu, b E A. LN[a[x := b]] = LN[a][x, := LN[b]]. 

(ii) Vu, b E A. a --+p b =+ LN[a] A,BN LN[b]. 

(iii) Vu E n,c E &. LN[a]+gNc + 3b E A. [aApb] A [c+gNLN[b]]. 

Proof. 

(i) Induction on a. 

(ii) Let (ix.al)a~ be the redex involved in the reduction step a-+gb, with contracturn 

al [x := ~21. This has a corresponding redex (,lx.LN[al])(z = LN[a2])! in LN[a]. After 

a bind reduction and a close reduction we get LN[ar][x, := LN[a2]][x* := a]. Since no 

other label than z is used in the translation, the second substitution has no effect. Then 

by (i) the result is equivalent to LN[ar[x := a2]]. 

(iii) Every initial redex in LN[a] comes from some redex (k~.ar)a2 in a, and there- 

fore is necessarily of shape (,Ix.LN[ar])(z =LN[az])! Hence the first reduction step 

must be a bind reduction, yielding a new redex (ix.LN[ar][xz := LN[a2]])!. After per- 

forming the close reduction, we get the exact image of the contracturn al [x := a~]. 

Hence, b is obtained by contraction of the redex (ix.ar )a~ in a. Cl 
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So in the following we will freely use classical A-calculus syntax - unlabelled vari- 

ables x and application constructs (ab) - within IN expressions, assuming this trans- 

lation to be implicit. 

2.3. Example: Boolean values and extensibility 

Some intuition about the calculus will be given through an encoding of boolean 

values. Remember that in the classical A-calculus, Church encoded true as Axy.x, false 

as Axy.y, and not as Axyzxzy. The distinction between truth values is based on the 

position of variables (ordering of A abstractions). The same approach could be used 

in AN, but another solution for distinguishing truth values is to exploit the orthogonal 

dimension provided by names: 

true dZf Ax.x~~,, 

false def 2x.xfalse 

not dAf ilx.x(true = false)(false = true)! 

E Ix.x,(true = Ix.xf,l,,)(false = lx.xtrue)! 

In contrast with the Church encoding, the boolean values here use only one abstraction 

level (one single A), but access the corresponding variable through different names. The 

advantage is extensibility: additional names can be used for additional values, without 

changing the basic protocol. For example, a three-valued logic, with an additional 

unknown value and a corresponding redefinition of the not operation, is obtained as 

follows: 

unknown dzf Ax.x,,known 

notU dgf lx.not(x( un known = unknown)) 

E Ax.not(z =x,(unknown = unknown))! 

No recoding of true and false is needed, while in the standard Church encoding it 

would be necessary to recode them as functions with three abstraction levels instead of 

two. Furthermore, notU is defined incrementally as an extension of the previous not 

function. 

To illustrate the reduction rules, here is a “standard reduction” (reducing leftmost 

outermost redex first) of the expression not true: 

not true = (lx.x,(true = Ix.xf,t,,)(faIse = Ax.xtrue)!) 

(2 = (;lx.xtrLle ))! 

-4~~ (Ax’.(lx.x&(true = Ax.y,l,,)(false = Ax.x,,,,)!)! 



L. DamilTheoretical Computer Science 192 (1998) 201-231 207 

-fBN (lbx.xt,,,)(true = ;Lx.xfarse)(false = J.x.xtrue)! 

+/j/q (3Lx’.%x.xfa,se 
* 

)(false = nx.xtrue )! 

+p/ (AX’.AX.Xf,,,,)! 

4/3N Ax.xfalse 

so the result is indeed false. Similarly, it can be verified easily that notU unknown 
yields unknown, or that notU false yields true. By contrast, consider what happens 

with an erroneous expression like not unknown: 

not unknown = (Ax.x,(true = Ax.xfalSe)(falSe = ix.xtrue)!) 

(2 = (~LXunknown I)! 

--+/3N (~x’.(~-=,nknown )(true = ix.xfalse)(false = Ix.xt,,,)!)! 

+pN (,?x.xUnknown)(true = )bx.xfaIS,)(fake = Ax.xtrue)! 

+BN (kXUnknown)(fake = %x.xtrUe>! 

--+fiN (~.=unknown )! 

2.4. Conjluence 

We show confluence of the calculus through an adaptation of Takahashi’s proof 

for the usual A-calculus [26]; this proof itself is a simplification of the well-known 

Tait method, using parallel reductions. The idea is to define a relation over terms 

which simultaneously contracts several (possibly overlapping) redexes and show that 

this relation has the diamond property. 

Definition 2. Parallel reduction, denoted +pN, is defined inductively by the following 

rules: 

(reJI> XI =+,jN XI and E +fl,,I E; 

if a +pN a’ and b +pN b’, then: 

(err) AX.E +pN E and &(I = b) +pN E and E! +gN & 

(congr) 2x.a +fiN ix.a’ and a! +flN a’! 

and a( l= b) +pN a’( I= b’), 

(lam-bind) (Ax.a)(l = b) +,&j! ix.a’[xl := 6’1, 

(lam-close) (Ax.a)! +flN a’[x, := &I; 
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Parallel reduction obeys the following properties: 

Lemma 3. (i) a+gNb + a +pN b 

(ii) a +pN b + a :p,~ b 

(iii) [a +p,? a’] A [b +pN b’] + a[xr := b] +pN a’[xl := b’]. 

Proof. (1) induction on the context of the redex; (2) and (3) induction on a. 0 

Following Takahashi, instead of proving that G&&J has the diamond property, we 

prove a stronger statement: 

Lemma 4. [a =+p~ b] + [b +BN a*], where a * is a term determined by a, according 

to the following inductive dejnition: 

XT =x1 

&*=& 

(Ax.a)*=(a(Z=b))*=(a!)*=.z ifuss 

if a $ E, then 

(Ix.a)* = kx.a* 

(a(l= b))* = 
Ax.(a’*[xl := b*]) if a = ka’ 

a*(l= b*) otherwise 

a’*[x, := E] 
(a!)*= a*, 

i . 

if a = Ix.a’ 

otherwise. 

Proof. Induction on a: 
- case a E xl or a E 2s: trivial 
- case a E 2x.a’: either b E E, which again is trivial, or b must be of the form Ix.b’, 

with a’ +pN b’. By induction hypothesis b’ +,p$ a’*, which implies b +fjN a*. 
- case a E ai(Z = ~2): if al E E the result is trivial. If al z ix.ai, then b is ob- 

tained either through rule congr or rule lam-bind, and therefore must be of the form 

(Ix.bl)(Z= b2) or Ix.bl[xr := bz], for some bl,b2 with ai +,VJ bl,a2 +pN b2. 
By induction hypothesis, we have bl +pN a{*, b2 +jN a;. Hence in either case 

b ==/?N Ax.ai*[xl := a,*] = a*. Finally, if al is neither an error nor a A-abstraction, 

then b must be of the form bl(l= b2), with al +pN bl,a2 +pN 62. By induction 

hypothesis bl +pN a: and b2 +pN a;, so b +flj$ a*. 
- case a z a’!: like preceding case. 0 

Theorem 5 (Confluence). 

[a :-)a~ b] A [a 3;BN c] + 3d.[b $;gN d] A [c :pN d] 
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Proof. By Lemma 3, ~BN is the reflexive, transitive closure of ffiN, so to prove 

confluence it suffices to show that =+,J,v has the diamond property: 

IIU =pN bl] A [a =+/j/v b2] =+ 3u’.[b, =spN a’] A [b2 +p,A/ a’] 

But Lemma 4 shows that such an u’ does exist, and is uniquely determined by a. 0 

2.5. Term ordering 

Intuitively, notU can safely be used instead of not in any context: it behaves as 

not on true and false arguments, and behaves “better” on unkown argument (yielding 

unknown again, while not yields an error). To formalize this idea, we observe the 

error generation behaviour of terms, first in arbitrary contexts, and then in applica- 

tive contexts (applicative bisimulation). In both cases, a statement a & b can be read 

intuitively as “a is better than b”, or “a generates less errors than b”. As in the stan- 

dard R-calculus, i,N is operationally extensional, which means that the two orderings 

coincide. 

Following common definitions, a context is obtained by extending the syntax with 

[-] (a hole). For any context C[-1, C[u] is the term obtained by plain syntactic 

substitution of a for every occurrence of the hole in C[-1, i.e. with possible capture 

of free variables of a. 

Definition 6. The contextual order Ectxt on /iN is defined as 

a cctxt b @ v’C[-].[c[a] &,$I & =+ C’[b] $N &] 

Definition 7. An applicative operation o is either a bind operation (1 = b), with b 

closed, or a close operation (!). An applicative sequence 0’ is a finite list of applica- 

tive operations. A closing substitution G for terms a and b is a finite list of atomic 

substitutions such that both uo and ba are closed. The applicative order Lap?” on AN 

is defined as: 

(i) for closed a, 6: a Capp’ b H V’o’.[uo’ ::gN E + bo’ ~)BN E] 

(ii) for arbitrary a, b: a CaPP1 b w ‘do.aa gapp’ ba. 

Lemma 8 (Context lemma, operational extensionality). 

vu, b. a 5”‘“’ b @ a Lappl b 

Proof. The proof is inspired by Abramsky and Ong’s proof of operational exten- 

sionality for the lazy &calculus [l]. Since an applicative context is a context, Lctxt 

implies Carp’, so we are left with the reverse implication. The proof proceeds by 

induction on the length of computation. Assuming (without loss of generality) that a 
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and b are closed, a Ppp* b + a Cctxt b can be rewritten as - 

The base case (when n = 0 and C[-] E [-I) is obvious. For the inductive step, consider 

without loss of generality the following cases of closed contexts: 

(i) C[-] = (nx.A[-])(L=B[-])d[-] 

(ii) C[-] -(;lx.A[-])!O[-] 

(iii) C[-] = (?.A[-]) 

(iv) C[-] E EC)--] 

(v) C[-] E [-](z+=B[-])d[-] 

(vi) C[-] E [-]!O[-] 

(vii) C[-] E [-] 

where d[-] is an applicative sequence of contexts. We proceed by case analysis: 

(i) Suppose C[a] $D,+T E. This is only possible if the binding (1 = B[-1) is reduced 

by rule lambda-bind or err-bind, which implies either ;Ix.A[a] ANN E or (dx.A[a] 
+ k 

b/ :=B[a]l)@al +pN h for some k <n. By induction hypothesis, either Ax.A[b] 

:;BN E, or (Lx.A[b][xr := B[b]])d[b] ~DN E, which implies C[b] :;BN E. 

(ii) Like the previous case. To have C[a] $BN E, we must have Ix.A[a] %BN E or 
+ k 

(A[al[x* := ~lP[al -),ON 8, for some k <n, so again we can make an appeal to 

the induction hypothesis to show C[b] $pN E. 

(iii) Any proof of C[a] :pN E must end by rule lambda-err, so A[a] *a~ E; then 

A[b] :;a~, E by induction, and C[b] ~;BN E. 

(iv) Trivial. 

(v) Since a is closed, it must be either of form of form ~3, which is trivial, or 

of form (Ilx.a’)Z Define D[-] za(Z=B[-])d[-1. D[-] is a context of case 

(i) or (ii), and D[a] E C[a]. By an appeal to the appropriate case, we show 

D[b] 3~~ E. But since D[b] E a(Z =B[b])d[b], and since a LaPPI b, we can con- 

clude b(Z = B[b])d[b]:)BN E, i.e. C[b] :,BN E. 

(vi) Like the previous case. 

(vii) Immediate, since the left part of the implication says that if a ~BN E in the empty 

applicative context, then we must have b ~)BN E. 0 

Since the two orderings coincide, we will simply write C, and E for its symmetric 

closure. C has the following properties: 

Lemma 9. (i) C is a precongruence, i.e. VC[-],a C b =+ C[a] C C[b]. 

(ii) a ++BN b =S ax b. 

(iii) For any term a, 0 L a C E, where Sz E AA, and A z Lx XX. 
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Proof. (i) Immediate from the definition of gctxt. (ii) immediate from the definition 

of Carp’. (iii) f or - any applicative sequence z, E 65~~ E and CG:,j,v Sz, and 

l(Q -:,, c). 

Also observe that this theory identifies all unsolvable terms different from a, so in 

particular Q z 1x1 . . .a~,,.!2 for any n. Moreover, with respect to the classical i-calculus 

it has the particular property of possessing infinite descending chains if ., 1’ is infinite, 

like for example 

2x.x! Ji.x.x(Zl =al)! ~jbx.(Z1 =al)(Z2 =az)! 2 

for any sequence of terms CZI,UZ,... different from E. 

The ordering is immediately useful for verifying some general program laws: 

Theorem 10 (Program laws). Vu, b, c, 

(i) (1) (Ii $Zz) + a(Z~=b)(Z2=c)~u(Zz=c)(Zl =b) 

(2) u(Z=b)(Z=c)zu(Z=b) 

(ii) (1) u(Z=b)! La! 

(2) u(Z=&)! %:a! 

(iii) (1) x$FV(u) * uLiLx.a(Zl =xI,)...(Zn=xI,,)! 

(2) x~F~(u),FN(u,y)C{z~,...I,} * lty.a=~xy.u(z, =x~,)...(z,=x~n)! 

Proof. (i) Suppose a closed. If a= 0 or a~ E, the result is immediate; otherwise, 

we must have a ~)BN (nx.u’). Then u(Zi = b)(Zz = c) $ph, i.x.u’[xI, :=: b][xlz := c]. Since 

substitutions are capture-free, there is no occurrence of variable x in either b or C; 

hence, if Ii $12, then Ax.u’[xl, := b][xj, := c] E ix.u’[x,, := C][XI, := b], and therefore 

a(Zi -=~)(Z~=C)-~NU(Z~=C)(Z~ =b); similarly, if II E/Z, then u(Zr =b)(Zl=c) 

t-‘p~ u(Zl = b). The general case follows directly, by quantifying over closing sub- 

stitutions for a. 

(ii) (1) Again suppose a closed, and a -5~~ (2x.u’). Then u(Z = b)! 3,fiv u’[x, := b] 

[x* ::=c]. Since bLc, and C: is a precongruence, we have u’[xl := b][x* :=I:] &a’ 

[x* ::= E] c-‘p,y a.. 1 In the particular case (2) where b E E, a’[~, := E][x* := E] = a’[.~* := i:] 

so we have an equivalence. 

(iii) (1) Let (I, = xl,) abbreviate (1, = XI, ) . . . (I, =xl”)). Using the definition of the 

applicative order, we have to prove that for any applicative sequence 5, u~‘:Z+,~, I: + 

(iGX.CZ(Z, = Xl,)!)’ * Zj o --+ N E. The proof proceeds by induction on the length of 6. If 6 is 

empty, the result is immediate through reduction rules for errors. Otherwise, if 0’~ (!)c?, 

then 

~ -4 

u!d C: u(Zi = E)!o’ (law (ii)) 

Hjj&l (ltX.U(Zi = X,)!)!J if x$FV(u) 
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Finally, if 0’~ (I = b)J, then 

U(Z =b)d c (/I.X.LZ(Z=b)(Zi = X[,)!)d (induction hyp.) 

++~N(AX.L!(Z=X~)(Zi =Xl,)!)(Z=b)J 

~(;lX.U(Zi =xr,)!)(Z=b)J (law (ii)) 

The proof for (2) proceeds similarly. 0 

By allowing any permutation of bindings on different names, the first part of this 

theorem justifies our intuition that each argument name acts as a channel which operates 

in parallel with the others; in other words, functions receive arguments simultaneously 

at different names. On the other hand, each name/channel can sequentially receive 

several values, but only the first is taken into account. The second part of the theorem 

says that any binding immediately before a close operation does no harm, i.e. supplying 

information at a given name can at best be useful, can at worse be ignored, but 

will never generate more run-time errors. Finally, the last part is the counterpart of 

q-equality in the traditional A-calculus. Here we only have an inequality instead of 

full equality in (iii)( I), because the finite set of bindings (II = xl, ) . . . (I, =x1”) cannot 

cover all possible arguments to a. So in the general case we can safely perform q- 

reductions, but not q-expansions. However, part (iii)(2) says that if we can guarantee 

that the set {II . ..Zn} covers all names used at the top-level abstraction, then both sides 

are equivalent. 

An easy application of the theorem above is to show that notU C not: 

notU E Ix.(Ay.y,(true = false)(false = true)!) 

(z =x%(unknown = unknown))! 

5,~~ Ilx.x,(unknown = unknown)(true = false)(false = true)! 

M Ax.x,(true =false)(false = true)(unknown = unknown)! 

L Ilx.x,(true = false)(false = true)! 

E not 

3. Simple type assignment 

This section considers an adaptation of Curry’s simple type assignment system to 

AN. The syntax of simple types is: 

T::=T ) X ( P+T 

P::=(Z, :Tl,..., I, : T,) (all Zi distincts) 

where T is a type constant (the type of anything, including errors), X is a type variable, 

and P -+ T is an arrow type mapping a parameter type to a type. Parameter types are 
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finite associations of names to types. Any name not explicitly mentioned in the set 

is implicitly associated with T; therefore the empty parameter type, written 0, maps 

every name to T. P(Z) denotes the type associated to name I in parameter type P, and 

P\l denotes the parameter type P in which name 1 has been remapped to T; more 

formally, 

P(Z) = 
Ti if (li:K)EP,l=l, 

T otherwise 

Parameter types are treated modulo the following syntactic equivalence relationship: 

P, S Pz H YZ.PI(Z) E P*(I) 

This says that declarations in parameter types can be arbitrarily permuted, and that 

declarations of the form 1: T can be added or removed. We write dam(P) for (11 P(1) 

We will use the letters T, U, V for types, P, Q for parameter types, and X, Y,Z for 

type variables. As usual, arrow types associate to the right. Furthermore, we adopt a 

syntactic sugar convention for types which corresponds to the similar convention for 

terms in Section 2.2: type expressions of the form T + U are abbreviations for types of 

form (z : T) + U; these are arrow types in which the left-hand side is a parameter type 

mapping all names to T, except for the invisible name 2. Thanks to this convention, 

the types of usual lambda terms (i.e. terms which do not contain names other than 7) 

look exactly like in the usual lambda calculus. 

Types are ordered through a subtyping relationship given in Fig. 2. Obviously, we 

write T = U iff T d U and U dT. Observe that the rule for arrow types is covariant 

on the right and contravariant on the left of the arrow, as usual in type systems with 

subtyping. The rule top-arrow is motivated by the reduction rules for errors: EG~~BN E 

for any applicative sequence Z, so T is equal to any functional type ending with T. 

Lemma 11. The subtyping relation is reflexive and transitive. 

Proof. Easy induction on the structure of types. 0 

A basis r is a finite association of variables to parameter types; the set of variables 

for which a parameter type is associated in r is denoted dam(T). If x : P E r, then r as- 

sociates type P(l) to labelled variable XI; this is sometimes written T(xl). Furthermore, 

T,x : P denotes the extension of basis r with association x : P (assuming x $! dam(r)). 
Typing judgements for the Curry simple type system are of the form r t- a : T, saying 

that “a has type T in basis r”. Such judgements are derived from the rules of Fig. 3. 

This type system has an unusual aspect in comparison with many other systems, where 

each type constructor has one introduction and one elimination rule. Here the arrow 

type is introduced by rule abs, but is eliminated in several steps: a type (11 : T, , . . , 
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m (top> T GP ---$ T (top - arrow) X~X War) 

p2 <PI T, < T2 

P1--+T,<P2+T2 
(arrow) 

Vl E dom(P1) Udom(P2). Pl(Z)dP2(Z) 

PI <p2 
Ww > 

Fig. 2. Subtyping rules. 

rka:T (top) rt;;a:y (subs) 

(uar) 
T,x:Pta:T 

T,x:Ptxj:P(z) rl-Ix.a:P-+T (abs) 

Tta:P-+T Ttb:P(Z) (bind) 

r ta(l=b):P\l-+T 

r t a : 0 ---f T ~close~ 
rta!:T 

Fig. 3. Typing rules. 

1, : Tn) -+ T is progressively reduced to () + T through multiple invocations of the bind 
rule; only then can it be eliminated through the close rule. This is obviously related 

to the asymmetry between lambda abstractions, which introduce several named para- 

meters at the same time, and the bind and close constructs, which supply parameters 

in several steps. 

Example 12. The boolean values of Section 2.3 have the following types: 

true : (true : X) --+X 

false : (false : X)+X 

not : ((false : (true :X) -+X, true : (false : Y) -i Y) + 2) ----f Z 

Like Curry’s original system, this type assignment system assigns many types to 

any given term. For some simple cases like the examples above it is possible to find 

a principal type, i.e. a type such that all other possible types for the same term can 
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be generated by subsumption and substitution of type variables. However, this is not 

generally true: in particular, open sequences of bind operations may have many types. 

For example if a: Tl, then Ix.x(Zl =a) has type ((Ii : T,)+X)+()-+X, but more 

generally it has all types of the shape 

((11 : Tl,..., l,:T,)-tx)3(/2:T2,...,Zn:T,)~X 

for n > 1. In order to capture all of these in a single type scheme, it is necessary to 

resort to a more powerful type system, like the one studied in [lo], which uses a 

mechanism similar to the “row variables” of record calculi [23,27]. 

The type system posesses the usually expected properties: types are preserved by 

computation, and terms with type different from T do not reduce to a. 

Theorem 13 (Subject reduction). 

[[r k a : T] /I [a :pN a’]] =+ I- k a’ : T 

Proof. Induction on the length of a :pN a’, following standard techniques. A complete 

development is given in [lo]. 0 

Lemma 14. rfrte:T, then T=T. 

Proof. Proofs of E : T can only use the top axiom and subsumption. Since subtyping 

is transitive (Lemma 1 l), we must have T d T, and therefore T = T. Cl 

Theorem 15 (Soundness). A closing substitution rs satisfies a basis r, written CJ /= r, 
ifs, VX E dom(r),VZ E dom(r(x)), t- X~CJ : r(xr). Then 

[[I- t- a : T] A [T #T]] =s [% + r, ~(aa :pN E)] 

Proof. Direct consequence of Theorem 13 and Lemma 14. 0 

4. Modelling record operations 

In this section we first show that records (i.e. named products) have a very natural 

encoding in AN, and then discuss the relationship of iN with record calculi. The dual 

notion of named coproducts will be treated in Section 6.3. 

4.1. Products and records 

First let us briefly recall how n-tuples (products) can be encoded in the usual lambda- 

calculus: 

(a1 )...) a,)=ilx.xal...a, 
( 

x$2; FV(ai) . 
i=l > 



216 L. Damil Theoretical Computer Science 192 (1998) 201-231 

This is a straightforward generalization of the well-known Church encoding for pairs. 

The x argument to the A-abstraction is used to receive a selector function, which will 

extract the desired values from the tuple. Projection of the product, i.e. selection of 

the ith component of a n-tuple, is performed by passing to the tuple a function of the 

form AX, . . .x,,.xi. Similarly, we have in AN: 

Definition 16 (Records). 

{Zl =q,..., Zn=a,} eLf RX.X(El =ul)...(z,=a,)! ( x$lj WUi) 
i=l ) 

a.z dAf a (2X.X/) 

Here again, the A-abstraction has an argument x to receive a “selector”, to which all 

named fields of the record are bound, with a closing “!“. By Theorem 10, any permu- 

tation of the bindings yields an observationally equivalent function, so this justifies the 

fact that the order of fields in a record is irrelevant. Furthermore, by the second part 

of the same theorem, we have 

ilx.x(Z* =ul)...(z,=u,)(z,+* =u,+l)...(Zn+k=un+k)! 

5 
AX.X(Zl =ul)...(z,=u,)! 

which proves that a record with more fields can always be used in place of a record with 

fewer fields. This property of records is called width subsumption; depth subsumption, 

i.e. the possibility to replace the value ai at some field by some other value ui iff 

uf C ui, is derived directly from the fact that c is a precongruence. 

Selection of field Z in a record r is performed by passing to the record a function 

of shape Ax.xl, i.e. an identity function on name Z. It can be verified easily that 

{z~=ul,...,z,=u,}.zj s (ilX.X(Zl =ul)...(zn=un)!)(;lx.x~i) 
* 

4bN ui 

Here the selector 2x.x/, only accesses one field at a time, which is the common way 

to project labelled products in most record calculi. However, the “selector” function 

passed to a record could as well depend on several names, i.e. access several fields 

simultaneously. For example, the function 

Ar.r(lx .xfut7 Xarg ) 

expects a record argument r, extracts from that record the fields fun and arg, and 

applies the first to the second. This is like a “quoted expression” in LISP, which gets 

evaluated within the environment supplied by the record; further examples will be 

displayed in Section 6. 
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4.2. Record extensions 

Records are encoded as a list of bindings immediately followed by a close operation. 

If the close operation is removed, a different kind of components is obtained, which 

we will call record extensions, denoted by curly braces with an initial “+“: 

Definition 17 (Record extensions). 

{+l,=a ,,..., &=a,} def ~X.X(z~=a,)...(I,=a,) 

a < b dAf Ax.a(bx) (x $Wa) u FV(b)) 

Record extensions have an open list of bindings, which can be completed later by 

another component. As a result, a record extension can be composed with a record, 

in order to prepend its own fields to the fields of the record. This operation is written 

<< , and is exactly the same as usual functional composition. We can check by simple 

computation that composition indeed behaves as a concatenation operator: 

By part (i)(l) of Theorem 10, if the two sets of names {Ii . . . I,,} and {Zi . . . $,} are 

disjoint, then all bindings in the result can be permuted. However, if some names 

appear in both sets, then, by part (i)(2) of the same theorem, the first binding takes 

precedence. In other words, if there are i, j such that 1: s lj, then only the first bind- 

ing (1; = a:) is considered, and the other binding on the same name (lj = aj) can be 

removed. As a consequence, the result is a new record in which fields 1; . . .11, have 

been added or overridden. A similar computation shows that two record extensions can 

be concatenated through the same operator <, yielding a new record extension. So 

if R is a record and RE,, RE2 are two record extensions, then (R << RE,) << RE2 = 
R < (RE, < REz), which is not surprising since functional composition is associative. 

Since record extensions do not contain a close operation, part (ii) of Theorem 10 

does not apply, so record extensions do not support width subsumption: in other words, 

{+Zi =Ui ,..., li =@i,Zi+i =Ui+l,... ,l,=U,} g {+li =Ut ,... ,li=ai} 

4.3. Typing record operations 

If ai :Tl,...,a n:T,, then Ix.x(li =ai)...(Z,=a,)! has all types of the shape ((Ii : 

T,, . . , 1, : T,,) + T) --f T. This can be captured by a fresh type variable, so we could 

add the following derived rule for typing records: 

r kal : Tl . . . r ka,,: T, 

rk{Zl=al,..., l,=a,}:((Z~:Tl,..., Z,:T,)+X)+X 
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Similarly, field selection is typed through the following derived rule: 

rta:((z:X)+X)+T 

r t a.1 : T 

Record extensions have more complex types because the collection of bindings has 

no final close operation. A family of derived typing rules can be expressed as 

but, as explained in Section 3, no single principal type can capture all instances for 

different values of k. The more complex system of [lo] uses families of type variables 

and therefore generates principal type 

((1, : TI,. . ., I, : T,,, *:X*)+Y)+(*:X*)+Y 

where * :X* implicitly assigns type Xl to any label I @ {Ii . . . I,,}. 

4.4. Comparison with record calculi 

Motivated by research on theoretical foundations for objects [7], several record cal- 

culi have been studied in the literature. In the most simple cases, only record formation 

and field selection are supported, which provides no support for extensibility and in- 

heritance. Other calculi provide a record concatenation operator, but with the important 

restriction that the two records being concatenated should have no fields in common 

[ 111. The calculi of [24,27] are more flexible: they use a construct of the form 

a with 1= b 

to extend or override field 1 in a with value b. This can be modelled directly in our 

setting as a < {+I = b}. Cancelling field 1, as in [8], is equivalent to replacing it by 

the error term, i.e. a < {+I = E}. 

Conversely, one would imagine that 1N is encodable in a suitable record calculus, 

by accumulating named parameters in records and then passing these to functions. 

An apparent hurdle is the way arguments accumulate in AN: recall from Theorem 10 

that a(Z=b)(Z=c) M a(Z=b), so the first bind operation takes precedence, while the 

calculus of extensible records has the law 

((a with I= b) with I =c) M (a with I =c) 

giving precedence to the second extension. However, the following translation, proposed 

by Didier R&my, and directly inspired from [24], uses a kind of “continuation-passing 



L. Damil Theoretical Computer Science 192 (1998) 201-231 219 

style” on records which reverses the order of record updates: 

NQII = x.2 

[[ix.a]] = I”X.[[U]] 

[[a(/ = b)]] = %x.[[a]](x with I = [[h]]) 

Ka!ll = [[~I]{> 

K&II = e 

Although quite close to the parameter-passing mechanism of iN, this translation is nev- 

ertheless not fully faithful. The precise technical study of this translation and compari- 

son with various record calculi is left for another forthcoming paper; but the point where 

the translation fails can be shown easily through an example: consider (lx.xl)(l = !2), 

which reduces to (ix. Q) M ft. The translation is ly .(kx. x. l)(y with I = Cl) which 

reduces to iy.(y with I= Q).Z. This term is not equal to Q, because it might yield E 

if the argument y is a. 

5. Contexts and holes 

This section relates AN with the meta-operation of hole filling in the classical 

i-calculus, and with other calculi involving names or contexts. 

5. I. Open l-terms and contexts 

We have already shown how usual I-terms can be embedded in the 3.N calculus. 

Here we will extend the translation so that both open terms (terms containing free 

variables) and contexts (terms containg “holes”) are encoded as ?,N terms. A higher- 

order operation in AN expresses the context-filling operation with (intended!) capture 

of variables. 

Definition 18. Let h and e be two reserved variables in Y, i.e. not used anywhere 

except for the following translation. Furthermore, assume that the set of variables from 

the classical A-calculus is contained in both V and ~6’“. Then the translation LNCt[-]r. 

from contexts in the traditional %-calculus into ;IN is defined inductively as 

& if xEL 
LNCt[xlL = 

ex if x@L 

LNCt[rbc.~]~ = Ax.LNC~[~],,~, 

LNCt[ublL = LNCt[ulL(z = LNCt[b]L)! 

LNCt[-I[, ,,.._, x,l = h(e< {+XI =x1%,. . . ,x,, =x,,)) 
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The parameter L keeps track of the A-abstractions crossed during the translation, so 

the translation starts at the top level with an empty list. On closed A-terms, LNCt[-]L 

coincides with the translation LN[-] given in Section 2.2. On open terms, free vari- 

ables become lookup operations into a global environment carried by the special vari- 

able e. Holes perform a local update on the environment, according to the number of 

I-abstractions in their surrounding context; this is quite similar to the substitutions as- 

sociated with holes in [25]. The translation yields quasi-closed AN terms, with h and 

e as only free variables. 

Definition 19. The operation of filling a context C[-] with a term a (which might be 

another context!) is encoded in AN as 

fill~(C[-],a) = (A.LNCt[C[-]]L)(le.LNCt[a]L) 

Theorem 20. Context Jilling commutes with the 1N encoding, i.e. 

VE z (2, =al,..., 1, =a,,}.fillL(C[-],u)[e:=E] FZ LNCt[C[u]lL[e:=E] 

Proof. Induction on the shape of C[-1: 

- C[-] z [-I: 

fi&(C[-],a) = (Ah.h(e K {+ }))(le.LNCt[ul~) 

- (Ah.h(k.e((Ay.y)x))(le.LNCt[u]L) 

5~~ (;le.LNCt[u]L)(Ax.ex) 

Now by the assumption on the shape of E, Ix .Ex M E through Theorem 10 (iii)(2), 

so ((le.LNCt[u]L)(ilx.ex))[e :=E] M ((;le.LNCt[ulL)e)[e := E] 3,pw LNCt[u]L[e:=E] 

- C[-] zx: LNCt[x]L does not contain any occurrence of h, so 

fi&(C[-],a) E (Ih.LNCt[x]L)(/Ze.LNCt[u]L) 

-TSBN LNCt[xlL 

= LNCt[C[u]]t 

- C[-] 5 Ix.A[-1: 

fi&(C[-],a) E (~hx.LNCt[A[-]],:L)(~e.LNCt[ul~) 

tspN A.x.(~~.LNC~[A[-]],:~)(A~.LNC~[~],,L) 

G Ix.fill,:&4-],a) 



U31 a ::= x 1 2ix.a 1 a f b 

[181 a ::= x 1 data x : a 1 let x +a in b 1 supply x+a to b 

[l9] a ::= x 1 k.a I ab I @{II : XI ,..., 1, : x,}.a I 

exec a 1 lam1 a I app a b I l 

[15] a ::= x I 2x.a I ab ( Xp I Xa / a@rb 
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By induction hypothesis, this is equivalent to 

Ax.LNCt[A[a]lx:L = LNCt[Ax.A[a]]L E LNCt[C[a]]L 

- C[-] =A[-p-1: 

fillL(C[-],a) E (Ah.LNCt[A[-]]L(x = LNCt[B[-]]L)!) 

(Ae.LNCt[a]L ) 

HUN ((lh.LNCt[A[-]]L)(Ae.LNCt[a]L)) 

(z = (E,h.LNCt[B[-]]L)(Ae.LNCt[a]L))! 

= fillL(A[-1, a)(7 = fillL(B[-1, a))! 

By induction hypothesis, this is equivalent to 

LNCt[A[a]]L(z = LNCt[B[a]]L)! 3 LNCt[C[a]]L 0 

For the sake of simplicity, the h variable was implicitly labelled by z in this encoding, 

following the convention of Section 2.2. As a result, the context-filling operation simul- 

taneously fills all occurrences of the hole. More complex context-filling systems have 

been studied [ 19, 151 in which holes are decorated with labels; occurrences of holes 

are partitioned into classes with common labels, which can be filled independently. 

A similar behaviour could be obtained here by a simple modification of our encoding 

scheme, using labelled instances of the h variable, and using separate bind operations 

to fill separate classes of holes. 

5.2. Related calculi 

The idea of embedding contexts, environments, holes or names as first-class con- 

structs in the /l-calculus has motivated several recent proposals, which are summarized 

in Fig. 4. 

The label-selective calculus [ 131 uses variables and A-abstractions as in the classical 

%-calculus, but assigns a label to each abstraction level. As a result, application 

Fig. 4. Related calculi. 



222 L. DamiITheoretical Computer Science 192 (1998) 201-231 

constructs are not forced to follow the order of the abstractions: they can directly 

address an inner abstraction. This simple extension of the i-calculus supports out-of- 

order parameter passing, but not extensibility: a function still has to be fed by a number 

of arguments corresponding exactly to the number of its parameters. Hence, the prop- 

erties of this calculus are clearly different from 1N and from other calculi described 

below. Lee and Friedman managed to simulate the label-selective calculus within their 

system [ 191, and it is likely that a similar exercise could be done within AN; however 

the encoding involves fairly elaborate constructions and therefore does not establish 

any direct or instructive correspondence between the two models. 

The unified system of parameterization (USP) of Lamping [18] is much closer to 

AN, except that name abstractions occur independently at each name, instead of being 

related to a common A. The data construct abstracts over a given name, and the supply 

construct passes an argument along a named channel, much like our bind construct. 

However, since data parameters are “transparent”, and commute with the other con- 

structs of the language, it is as if all data abstractions were done at a unique global 

level; hence, for example, 

supply x +- 1 to (supply xc 2 to (data x : x + (data x : x))) 

yields 4 and not 3 as one would perhaps expect. This is likely to create some difficulties 

related to substitutions and capture of data parameters when trying to implement the lan- 

guage. Moreover, the fact that there are no multiple abstraction levels and no operation 

corresponding to our close construct implies the absence of subsumption and extensi- 

bility. For example, Lamping’s encoding of “bounds” {id 1 t expl, . . . , idN t exp N} 
as 

data body : supply id 1 +-- expl, . . . , idN c expN to body 

is almost like our record extensions of Section 4.2, but, as in our case, these do not 

obey the width subsumption law. 

The A-calculus with contexts ilC of [19] distinguishes between “source code” (con- 

texts with holes) and “compiled code” (A-terms), and has internal operators for assem- 

bling source code and “compiling” it. The @ construct abstracts over a set of labels, 

which are associated to some variables within the body of the abstraction. In order 

to pass an argument to one of these labelled parameters 1, one first “captures” this 

label through an operator lam,, yielding a usual &abstraction, and then uses the app 

construct to apply this abstraction to the given argument. Among the calculi considered 

here, K is the only one which, like ilN, has multiple levels of name spaces through 

hierarchies of abstractions, and has a construct (namely exec) for “closing” a name 

space and passing to the next level. As a matter of fact, its expressive power seems 

comparable to AN, since a simulation of ;1N is displayed in [19], while we can go 
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through the reverse exercise: 

[[Q(1) =x1,. . . ,l, =~,}.a]] = Re.[[u[x, := e.l,]. . . [x, := e.1,]]] 

[[lam1 a]] = AeAx.a(e< {+x=x,}) 

[[app a b]] = le.(ae)(be) 

[[i]] = E 

However, since X so far has no associated theory, it is not obvious to check whether 

equational properties of the calculi are preserved through translations in both direc- 

tions. Furthermore, we feel that AN is closer to classical A-calculus syntax and con- 

ventions, and therefore requires less adaptation efforts to inherit known results from the 

i.-calculus. 

Finally, the typed context calculus of [15], announced very recently, uses holes X, 

hole abstractions &Ku, and a hole-filling operation a@?& b. This is an explicitly typed 

calculus, in which types are useful to work out the mechanics of substitutions and 

hole filling, and to guarantee that no unfilled hole ever gets evaluated. However, the 

price to pay is some drastic restrictions on term formation: in particular, the hole-filling 

operation @ is indexed by a type environment, and therefore requires to know statically 

much information about the context and the term filling it. An additional constraint 

comes from the fact that holes are only allowed to occur linearly, i.e. exactly once, in 

a well-typed term. Moreover, the 6 construct, which only abstracts one hole at a time, 

imposes an ordering of hole abstractions, which is an impediment to extensibility. So it 

seems doubtful that this calculus would provide an appropriate foundation for dynamic 

binding. 

6. Functional programming with dynamic binding 

This section displays several linguistic constructs for exploiting dynamic binding in 

the framework of functional programming languages, on the basis of the 3.N model. ’ 

Dynamic binding brings support for incremental assembly of software fragments. This 

section mostly uses informal examples, but the formal translation T[-] into 1N is fully 

given in Appendix B. 

6.1. Functions, named parameters, und scoping 

The language has two kinds of functions: (i) usual A-abstractions, written like in 

Haskell, which can be a-converted, like 

F=\fxy--t(fx)+(fy);; 

Y = \f -(\x + f (xx))(\x+f(xx));; 

’ An experimental language HOP implementing these constructs as well as the record operations discussed 

above is available at http://cuiwww.unige.chI&ami/Hop. 
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and (ii) abstractions with named parameters, written with a set of names enclosed in 

parenthesis: 

F2=\(fxy)+(fx)+(fy);; 

F2 is translated into Ax.(~f(z=xx)!) -t (xf(z ‘xv)!) and therefore has only one ab- 

straction level, while F has the obvious translation Axyz.(n,(z = y%)!) + (x,(2 =z,)!). 

Named parameters are useful to simultaneously extract several fields from a record. 

For example, the expression 

{x=1, y=2, z=True, w=“foo”, f=\x-+x+ 1) F2;; 

yields 6: values for the named parameters f, x and y are taken from the record, and 

then are substituted inside the body of the lambda abstraction. 

Named parameters and usual parameters may be freely mixed in a single A- 

expression. Lexical scoping is treated as in most programming languages: a local dec- 

laration takes precedence over a previous declaration using the same name. However, 

the previous declaration is not irremediably lost. Variables can be preceded by n oc- 

currences of the scope escape operator “^“, in order to specify that one should ignore 

the first 12 abstraction levels when looking for their corresponding declaration. So in 

the expression 

\(ab) xy (xyz)+x+~x+~~x+~~~x;; 

the first summand corresponds to the innermost declaration of x, the next two summands 

correspond to the outermost declaration of x, and the last summand is an error (because 

after crossing three abstraction levels no declaration of name x can be found). The 

formal translation of the expression above is 

Ax x’ x” x”‘, XF’ + x; + x; + & 

Finally, scope control can also be achieved by explicitly labelling sets of named 

parameters through a ‘W’ operator: 

\levellQ(abx) (xy) level3Q(xyz)+x + -x + levell@x;; 

6.2. Quote and eval 

Quoting is a mechanism for abstracting over all free names of an expression; because 

of the similarity with LISP, it is written with a quote character: 

quoted-expr = ‘(y + (\x 4 x*n) z); ; 

This is a closed expression, which abstracts over the free names y, n and z, but not 
over the bound name x. Quoted expressions are encoded as functions parameterized by 

a record, so the expression above corresponds to 

/IX.X(lY.Y, + (JJ.z * Yn)Yz) 
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Evaluating quoted expressions in some context is extremely simple: just by application 

of a record. For example, 

quoted_expr { x=7, y=9, z=ll, n=20 };; 

yields 229. 

The scope escape operator can be used within quoted expressions, so that we can 

finely tune between the names which should be statically scoped and those which 

should be “quoted”, achieving something similar to the “backquote” operator of LISP. 

For example, in 

‘,xy+ ‘(Xf ^y+z);; 

the names x and z are abstracted upon, so the first summand x does not refer to the 

first parameter of the function. By contrast, the name y escapes the quoting operation, 

and therefore is statically bound to the second parameter of the function. 

Record concatenation together with quoting offers interesting possibilities for mod- 

elling state operations: the function 

‘\mem + mem < {+x = ‘(x + y + z) mem }; ; 

takes a “memory” (just a record) as argument, adds the contents of locations X, y 

and z, and puts the result back in location X. The distinction between what is called 

“rvalues” and “lvalues” in imperative languages is clearly reflected by the two different 

uses of name x. 

Finally, the encoding of quoted terms allows us to define some operators for rellexive 

programming, in order to build new quoted terms from quoted terms: 

QApp = \a b + \e -+ (a e) (b e); ; 

QLambda_x=\a+\e+\x-ta (e<{+ X=X });; 

QApp takes two quoted terms, and creates a new term which is the application of the 

first to the second. QLambdax is equivalent to the context Ax.[-1: it takes a quoted 

term a, and creates a new term which is a lambda abstraction capturing free occur- 

rences of x in a. Both operators are very close to the ones of [19], except that here 

they are just derived operators, instead of being basic constructs of the language. 

6.3. Variants 

Mathematically, records are labelled products. The dual notion, i.e. labelled coprod- 

ucts, is called variant. The use of coproducts in programming is to support user-defined 

concrete datatypes. For example, a datatype for lists, which would be written in Haskell: 

data List a = Nil / Cons a (List a) 
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implicitly creates two data constructors Nil and Cons; these act as two injection func- 

tions into the datatype. They can be encoded as follows in the classical il-calculus: 

Nil=Ilnc.n 

Consht=hzc.cht 

Both constructors take two “deconstructor” functions as arguments, and invoke the 

appropriate one. This approach is based on the positions of the arguments, so a list 

can only be built through the two constructors displayed above. Moreover, in order to 

use a list one has to pass exactly two “deconstmctor” functions to it, corresponding 

to the two possible cases - empty list or non-empty list. In consequence, the List 

datatype cannot be extended in an incremental way into another datatype with more 

constructors, like for example a Circular constructor which would encode circular lists. 

By contrast the notion of “variant”, i.e. labelled coproduct, makes each data construc- 

tor (injection function) independent of the others, and independent of the datatype in 

which it is used. Following the notation of [7], we write variants with square brackets. 

In the simple case, these can be just a set of labels, like enumerated types in C or Pas- 

cal, so for example we can encode boolean values as [true], [false], or colors as [red], 

[green], [blue], etc. However, variants can also construct more complex datatypes, like 

a different version of lists: 

Nil = [nil]; ; 

Cons = \h t -+ [cons h t]; ; 

The expression within square brackets must start with a name (the “label” of the 

variant), followed by an applicative sequence. The encoding of variants is again very 

similar to the standard encoding of coproducts in the &calculus: each data constructor 

takes a collection of “deconstructors” as arguments, and then invokes the appropriate 

one. The only difference is that the deconstructors are distinguished by names, instead 

of positions. So, for example, we have 

[nil] = rlX.Xnil 

[cons h tl = /2x.xcons h t 

All constructors use only one abstraction level ;Ix, so the encoding can be consistently 

extended with a new constructor, which would access variable x under a new name. 

In order to use a variant, one first has to identify the label with which it was 

built. Then, depending on that label, one may access its internal data and pursue the 

computation. Usually this kind of deconstruction of coproducts in functional languages 

is performed by a case construct. Here we do not need an additional syntactic construct: 

case selection is simply achieved through records. Let us start with a simple example, 

directly inspired from Section 2.3: 

Not x = {true = [false], false = [true]} x; ; 

And x y = {true =x, false = [false]} y; ; 
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The Not function performs a case selection on its argument X, yielding [false] if x is 

[true] and [true] if x is [false]. Similarly, the And function proceeds by case selection 

over its y argument. These examples only involves simple variants, i.e. just labels. For 

more complex variants, we need to be able to access the “internal data”. This is done 

by putting functions in record fields: 

Head 1 = {nil = Error “empty list”, cons = \h t + h} I; ; 

The language actually has some syntactic sugar for this use of records, so we can 

write, for example, 

Head 1 = {nil = Error “empty list”, cons h t = h} 1; ; 

which is a restricted form of pattern matching. 

Now consider the definitions of Not and And above. These are functions which take 

an argument, and do nothing else than applying something to it. Experienced hmc- 

tional programmers will be immediately tempted to perform a so-called q-conversion, 

rewriting them as 

Not = {true = [false], false = [true]}; ; 

And = \x + {true =x, false = [false]}; ; 

which is legitimate according to Theorem 10. The advantage is that these functions can 

now be extended through the “<<” operator. Again consider the example of Section 2.3, 

defining a three-valued logic with an unknown value. To encode it, we just need 

incremental extensions of what we already have: 

NotU = Not < { + unknown = [unknown]}; ; 

AndU = \x + (And x) < {+ unknown = 

{true = [unknown], false = [false], unknown = [unknown]} x}; ; 

The NotU and AndU functions, designed for the three-value logic, are fully compatible 

with the previous versions for usual logic, i.e. existing code based on the old logic 

needs no modification. This is exactly the kind of software extensibility offered by 

object-oriented programming. However, here it was done just with extensible case 

statements, instead of the classes/inheritance machinery. We do not claim that this 

form of software reuse can totally subsume object-oriented mechanisms, but it can 

complement it in some cases: for example it seems more natural to handle booleans or 

lists in this way, rather than defining an abstract class List with two concrete subclasses 

Nil and Cons. 

7. Conclusion 

3&N is a very simple extension of the classical ;l-calculus, which nevertheless has 

sufficient expressing power to cover various mechanisms involving dynamic binding. 
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Unlike other proposals with similar ideas [18,19,15], it has an inequational theory 

and a collection of laws to formally reason about program compatibilities. Further- 

more, it completely relies on standard techniques for managing substitutions and a- 

equivalence, and therefore can be implemented easily using de Bruijn indices. An 

adaptation of standard Curry-style type assignment is straightforward, but requires more 

complex extensions, as in [lo], to get principal types; the difficulties are basically 

the same as for object-oriented calculi, where the combination of polymorphism, sub- 

typing and recursion is not easily captured by well-known Hindley-Milner inference 

techniques. 

Starting from this work, several interesting research directions are open: one is to 

explore some extensions of the calculus, like adding a construct for name abstrac- 

tion, or considering a “default bind” operator of the form a(* = b), binding all re- 

maining arguments of a; another is to follow the Curry-Howard isomorphism and 

apply the same ideas to logic, probably yielding a system with extensible and reusable 

proofs. 

Finally, there is much room for improvements at the language design level. Basic 

support for dynamic binding offers a wealth of interesting possibilities for flexible soft- 

ware construction. Some of the examples shown here, like quoting, extensible records 

or variants, demonstrate the wide range of design directions which can be taken, and 

give hints on how to exploit dynamic binding in higher-level coordination constructs 

such as first-class modules or mobile code. Tuning up the language design so as to 

provide an attractive set of useful constructs in a single high-level environment will 

require more work and experimentation. However, the fact that we have a very ba- 

sic underlying formalism, with well-understood equational/inequational properties, and 

with a type inference algorithm, proves to be an unvaluable tool for exploring the 

design space. For example, we did not realize until working out the ;IN semantics 

of case statements that this construct was actually not necessary, and could be sub- 

sumed by records. Similarly, the current design of record operations, with a clear 

separation between “records” and “record extensions”, and with the possibility to use 

records in functional position, could never have been invented without seeing the AN 

translation. 

Appendix A. HOP Syntax 

Term syntax is displayed in Fig. 5. Precise precedence and associativity rules are 

not displayed here, but standard conventions apply (i.e. “*” has higher precedence than 

“+“, functional applications are left-associative, etc.). Usual conventions are also used 

for building integers, strings and “names” (identifiers). For programming convenience, 

HOP does not use disjoint lexical sets for the sets -Y- (“variables”) and ~6” (“names”) 

of the AN-calculus; disambiguation is done according to context. The implicit rules for 

disambiguation can be overridden by scope escape or explicit scoping operators. 
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term ) = ( integer ) 

( ( string ) 

I ( var ) 
1 ‘\ ’ ( plist )+ ‘->’ ( term ) 
/ ( term ) ( term ) 
/ ( term ) ‘(’ ( name ) ‘= ’ 

( term ) ‘I’ 

lambda-abstraction 
application 
bind construct 

1 ( term ) ‘!’ 

1 ‘{’ (field )+ ‘}’ 
1 ‘{+’ (field )+ ‘}’ 
1 ( term ) ‘C-C’ ( term ) 

I ( term ) ‘. ’ ( name ) 

I “(’ ( term ) ‘1’ 

1 ’ [’ ( name ) ( term )* ‘I’ 

close construct 

record 

record extension 
record concat. 
field selection 

quoted term 
variunt 

/ ‘-’ ( term ) prefix minus 

I ( term ) ( binop ) ( term ) 
/ ‘(’ ( term ) ‘1’ 

var ) = ‘-‘* ( name ) optional scope escape 

I ( name ) ‘Cl’ ( name ) explicit scoping 

plist ) = ( name ) “usual” param. 

I [( name ) ‘@‘I ‘(’ ( name )+ ‘1’ named param. 

I [( name ) ‘@‘I ‘(*>’ implicit param. 

(field) = (name) (pZist)* ‘=’ (term) 
( binop ) = ‘+’ 1 ‘-’ I ‘*’ ( ‘/’ integer arithmetic 

I ‘<’ ( ‘>’ 1 ‘< = ’ I ‘> = ’ I ’ = = ’ I ‘/ = ’ integer comparison 

/ ‘i-k’ string concatenation 

Fig. 5. Syntax. 

Appendix B. Translation from HOP to i,N 

The translation function T[-]_ displayed in Fig. 6 is subscripted by a stack D of 

declarations, recording the names declared at each lambda abstraction. A declaration 

d may be of shape 

- (x, 1), saying that name 1 corresponds to variable x,, 

- (x, {I, . In}), saying that name Zi corresponds to variable xi,, or 

- (x, *), saying that any name I corresponds to variable XI. 

Pushing the declaration d on top of stack D is written d : D. Translation of top-level 

expressions starts with an empty stack. In all cases where an abstraction 2x.. is 

generated, it is implicitly understood that x is a new variable. 
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T 

T[\E -’ ~ID = Ix. T[ al(x,r):o 
T[\(Zl . . . 2, I-’ ~ID = LX. T[ ~I(~,(-LL}):D 

T[\(*>-> a]~ = Ix. T[ a](,,*):~ 
‘[\I 9( 11 . . . be ) -’ u]D = 21. T[ u](l,{l,...l.}):D 

T[\2 @(*I-> u]D = 12. T[ a]([,,):D 
T[-v][, = E 

TPlu = T[uID 
T[l](,,l/):~ =x, if 2 E Z’, T[Z]o otherwise 

T[Z],x,{,,,,.~n},:D =XI if 3Zi. Z z Zi, T[Z]D otherwise 

V~(,*):D = xt 
T[Z Q I’],, = E 

1 

ZP if Z E 1” A 3Zi. I’ E Zi 

T[Z @ ~'](P,{I,.,&}):D = E if Z E I” A l(3Zi. I’ E Zi) 

T[Z @ 2’1~ otherwise 

T[Z @ Z’](~),,,~~J):D = T[ Z @ Z’]D 

T[Z Q Z’](~!,*):D = Zp if I= I”, T[ Z 0 Z’]D otherwise 

T[ { j-1 . ..fn } ]D=L= Tf[ fl]D... Tf [ fnld 

T[ {+ fl...fn } ]D=A= Tf[ fl]D... Tf[ .fn]D 

T[ u << b]D = Ix.T[u]D(T[~]D X) 

T[ U . z]D = T[ a]D(;lx.xl) 
T[ ’ ( u > ID = Ax.x(A~.T[uI(,,):D) 

Tf [IPI . . . p,, = a]D = (I =T[\pl . . . pn -7 a]D> 

T[ &]D = T[ u]D(z =T[~]D)! 

T[ CZul . . .a, 1 ]D = Ax.xrT[ul]o.. .T[u,]D 

Fig. 6. Translation. 
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