
ELSEVIER Theoretical Computer Science 192 (1998) 20 l-23 1

Theoretical
Computer Science

A lambda-calculus for dynamic binding

Laurent Dami *

Chtre Universitaire d’lnformatique, 24, rue GPnCral-Dufbur, CH-121 I Gem&e 4. Switzerland

Abstract

Dynamic binding is a runtime lookup operation which extracts values corresponding to some
“names” from some “environments” (finite, unordered associations of names and values). Many
situations related with flexible software assembly involve dynamic binding: first-class modules,
mobile code, object-oriented message passing. This paper proposes AN, a compact extension of
the i-calculus to model dynamic binding, where variables are labelled by names, and where
arguments are passed to functions along named channels. The resulting formalism preserves
familiar properties of the I-calculus, has a Curry-style-type inference system, and has a formal
notion of compatibility for reasoning about extensible environments. It can encode records and
record extensions, as well as first-class contexts with context-filling operations, and therefore
provides a basic framework for expressing a wide range of name-based coordination mechanisms.
An experimental functional language based on iN illustrates the exploitation of dynamic binding
in programming language design.

Keywords; Lambda-calculus; Records; Contexts; Dynamic binding

1. Introduction

Computer systems are required to be increasingly “open” - able to dynamically in-

teract with other, possibly unknown or weakly specified systems, and able to coordinate

together a global computation. In order to follow this evolution, computational models

pay ever increasing attention to notions such as concurrency and distribution. How-

ever, open systems also often depend on another concept, more or less orthogonal to

the previous ones, and which seems to have been less investigated in theoretical stud-

ies: dynamic binding. This appears in a family of programming constructs in which

the runtime system includes some notions of “names” and “environments” (associations

from names to values), and where the operation of looking up some name in some

environment is performed dynamically. A number of popular languages use dynamic

binding, under various forms: quote and eval in LISP, stacks of dictionaries in FORTH

* E-mail: laurent.dami@cui.unige.ch.

0304-3975198LS19.00 @ 1998 -Elsevier Science B.V. All rights reserved
PII so304-3975(97)00150-3

202 L. Damil Theoretical Computer Science 192 (1998) 201-231

or Postscript, late binding of message names to methods in object-oriented languages,

communication channels in concurrent systems. More recently, several proposals have

been made to use first-class environments as a tool for flexible modularity [17,211;

furthermore, in the new context of coordination models and languages, most proposals

addressing distribution issues include some scheme for dynamic binding: the name

server of [22], the flexible records of Ariadne [12], the tuples of named values in

Sonia [3] are just a few examples. So in several contexts some form of dynamic

binding has been acknowledged as a good mechanism for incremental assembly and

coordination of software fragments.

When comparing these different implementations of a simple concept, it appears

that small variations in the name lookup operation or in the constructs for building

environments may generate quite different properties. Hence, formal models developed

so far for some of these paradigms, in which the dynamic binding features are implicitly

incorporated but merged with other computational aspects, are not adequate to perform

comparisons and to study dynamic binding in an abstract, general setting. For example,

several object calculi have been designed to study message-passing, but they can hardly

be used to express the semantics of LISP. By contrast, a formal model in which

dynamic binding is factored out from other computational aspects can throw some

light on the relationships between various paradigms. We propose such a model, in the

form of a il-calculus in which arguments are passed to functions along named channels
_ so it is called ;l-calculus with names, or AN for short. We also show how this model

is a natural foundation for introducing dynamic binding in a typeful way into functional

programming languages like ML [20] or Haskell [161.

Clearly, dynamic binding has an associated cost in terms of computing resources

(memory to store the environments, time to perform lookup operations), but it also has

the very appealing aspect of extensibility, i.e. the possibility to add more functionality

to an existing piece of code, without affecting its previous behaviour. This comes from

the fact that an environment defining a given set of names can be replaced by a bigger

environment, defining more names: all name lookup operations involving the original

set of names are still valid, but in addition some new lookup operations become pos-

sible. As a result, the modified code is “compatible” with the original code, which is

very convenient for software evolution. These notions are central to the spirit of object-

oriented programming, and are key factors for its success. Hence, semantic studies of

languages with dynamic binding should attempt to capture this compatibility relation-

ship, which is asymmetric, rather than usual equivalence relations between programs.

A partial answer comes from the methodologies developed for describing subtyping in

typed object calculi: one is based on “partial equivalence relationships” (PERs) [6],

which indicate when two values are equivalent at a given type, and the other is based

on coercion functions from subtypes to supertypes [S]. However, these do not directly

express the fact, very intuitive to programmers, that for example record {x = 1, y = 2)

totally subsumes record {x = I}, i.e. can safely replace it at all types. In order to deal

with this notion, we explicitly introduce a notion of runtime error in untyped AN, and

then define an operational ordering based on the observation of error generation. By

L. Damil Theoretical Computer Science 192 (1998) 201-231 203

this means, we can formally prove when an extension of a term is “compatible” with

its original term, and we get some general laws for safe program manipulations.

The expressive power of AN is close to the “uniform system of parameterization”

of [18], and to the recent calculus of contexts of [19]. However, these do not have

a formal notion of compatibility, and do not address typing issues; furthermore, AN

with its four syntactic constructs is more compact and therefore seems to be the min-

imal extension of the A-calculus to support dynamic binding. The binding structures

of [25] also deal with similar mechanisms, but with an emphasis on unification and

term rewriting. Their complex operations involving hole filling and substitution have

important applications in the field of theorem provers, but are heavy for simple pro-

gramming purposes; furthermore, these are meta-operations, not directly expressed as

computation within the language. By contrast, the label-selective calculus of [13], al-

though seemingly similar in surface, has quite different properties: labels (names) are

used to address inner A-abstractions out of their definition order. This combines label-

selection with currying, but does not support extensibility and compatibility properties

discussed above. Finally, iN is also closely related to a A-calculus with extensible

records [24,27], although not fully equivalent. Calculi of extensible records internally

distinguish between functional and record values, while AN treats everything as a func-

tion, much like the pure classical i-calculus.

This paper borrows some material from a previous presentation of the 3-N calculus

[lo], but with a different emphasis. In [lo] we were mainly concerned with inference of

principal types for ANand their use for filtering communication in a shared dataspace.

The motivation for using names and dynamic binding for coordination purposes was

discussed in some detail in this paper. Here, by contrast, we concentrate on the basic

theory of AN, on its relationships with other calculi, and on applications of the model

to programming language design. Section 2 presents the untyped calculus, together with

its main properties (confluence, context lemma, compatibility laws). Section 3 gives an

adaptation of Curry’s simple type inference system to functions with named parameters.

Section 4 discusses the encoding of record operations in AN, and compares the calculus

with record calculi. Section 5 relates this work to other calculi with environments,

contexts or labels. Finally, Section 6 displays some applications of the calculus in the

field of typed functional programming; several constructs for dynamic binding were

integrated into a prototype interpreter, with direct translation into the underlying model.

This interpreter was one of the deliverables of the European project ESPRIT BRA 9102

“Coordination”; financial support of Swiss OFES for our participation to this project

is gratefully acknowledged.

2. The untyped IZN calculus

2.1. Syntax and reduction rules

The calculus is constructed from a set V of variables and a set Jt’ of names

(or labels); both sets may be infinite, and need not be disjoint. Letters x, y,z are

204 L. Damil Theoretical Computer Science 192 (1998) 201-231

Syntax

X,Y,Z E Y-
I E Jv-

a,b,c,. . . E F

a ::= XI labelled variable

I *.
1 ;la= b)

abstraction
bind expression

close expression
runtime error

Reduction rules

(kc.a)(Z = b) +BN k.a[q := b]
(ka)! +flN a[x* := &]

&(I = b) --+BN &
&! +p,,T E

h.& -+‘pN &

variables

names
terms

(lambda-bind)
(lambda-close)

(err-bind)
(err-close)
(lambda-err)

Fig. 1. Syntax and reduction rules.

metavariables for members of Y, and I is a metavariable for members of N; concrete

names in examples are written in serif font. Letters a, b, c, . . . are metavariables for ar-

bitrary terms. The abstract syntax and reduction rules are displayed in Fig. 1. Variables

carry several values at different names, so an expression of the form XI corresponds

to the value carried by variable x at name 1. Lambda abstractions are exactly like in

the standard lambda calculus, and the notions of free and bound variables are also

the same (see [4]). We write FV(a) for the set of free variables occurring in a, and

FN(a,x) for the set of names which index free occurrences of x in a; so if xl occurs

free in a then x E FV(a) and 1 E FN(a,x). A term is closed iff it has no free variables,

and the set of closed terms is denoted by Ai. Usual application is split into two dif-

ferent parts: an expression of the form a(Z = b) (called bind expression) passes value

b under name 1 to abstraction a; an expression of the form a! (close expression) ends

a sequence of bind expressions. Finally, E is a constant representing runtime errors, i.e.

the well-known “message not understood” error of object-oriented systems; errors are

generated when trying to access a variable under a name for which that variable has no

value (because there was no corresponding bind expression on the same name). Usual

syntactic conventions apply, i.e. abstractions extend to the right as far as possible, and

multiple abstractions of the form 2x1.. . . Ax,.a are abbreviated as 2x1 . . .~,,.a.
The capture-avoiding substitution of b for all free occurrences of XI in a is written

a[xl := b]. Similarly, a[x, := b] denotes the substitution of b for all occurrences of

L. Damil Theoretical Computer Science 192 (1998) 201-231 205

variable x in a, whatever their label index may be. Avoidance of variable capture is

handled as in the standard lambda calculus, by considering equivalence classes of AN

terms under g-substitution (renaming of bound variables) [4].

One-step reduction, written --+gN, splits the usual /3-reduction rule of standard A-

calculus into bind-reduction and close-reduction rules; in addition, three other rules

ensure propagation of run-time errors. Notice how the lambda-bind rule performs a

substitution without removing the outermost i, while the lambda-close rule removes

the 3, and substitutes any remaining occurrence of the corresponding variable by c.

By contrast, B-reduction in the standard lambda calculus substitutes the variable and

removes the 3, in one single step. Following common conventions, the n-composition

of -fbN is written :fiN, the reflexive, transitive closure of +fl~ is written 3~~. and

HflN is its symmetric closure,

2.2. Embedding the classical A-calculus

Assume an “invisible name” z E ,Ir, and let n denote the set of traditional i-terms.

These can be embedded into A,v by the translation function LN[-] below:

LN[-] : /id/IN

LN[x] = x,

LN[i,x.a] = /Ix.LN[a]

LN[ab] = LN[a](z = LN[b])!

The translation preserves usual P-equality:

Lemma 1. (i) Vu, b E A. LN[a[x := b]] = LN[a][x, := LN[b]].

(ii) Vu, b E A. a --+p b =+ LN[a] A,BN LN[b].

(iii) Vu E n,c E &. LN[a]+gNc + 3b E A. [aApb] A [c+gNLN[b]].

Proof.

(i) Induction on a.

(ii) Let (ix.al)a~ be the redex involved in the reduction step a-+gb, with contracturn

al [x := ~21. This has a corresponding redex (,lx.LN[al])(z = LN[a2])! in LN[a]. After

a bind reduction and a close reduction we get LN[ar][x, := LN[a2]][x* := a]. Since no

other label than z is used in the translation, the second substitution has no effect. Then

by (i) the result is equivalent to LN[ar[x := a2]].

(iii) Every initial redex in LN[a] comes from some redex (k~.ar)a2 in a, and there-

fore is necessarily of shape (,Ix.LN[ar])(z =LN[az])! Hence the first reduction step

must be a bind reduction, yielding a new redex (ix.LN[ar][xz := LN[a2]])!. After per-

forming the close reduction, we get the exact image of the contracturn al [x := a~].

Hence, b is obtained by contraction of the redex (ix.ar)a~ in a. Cl

206 L. DamilTheoretical Computer Science 192 (1998) 201-231

So in the following we will freely use classical A-calculus syntax - unlabelled vari-

ables x and application constructs (ab) - within IN expressions, assuming this trans-

lation to be implicit.

2.3. Example: Boolean values and extensibility

Some intuition about the calculus will be given through an encoding of boolean

values. Remember that in the classical A-calculus, Church encoded true as Axy.x, false

as Axy.y, and not as Axyzxzy. The distinction between truth values is based on the

position of variables (ordering of A abstractions). The same approach could be used

in AN, but another solution for distinguishing truth values is to exploit the orthogonal

dimension provided by names:

true dZf Ax.x~~,,

false def 2x.xfalse

not dAf ilx.x(true = false)(false = true)!

E Ix.x,(true = Ix.xf,l,,)(false = lx.xtrue)!

In contrast with the Church encoding, the boolean values here use only one abstraction

level (one single A), but access the corresponding variable through different names. The

advantage is extensibility: additional names can be used for additional values, without

changing the basic protocol. For example, a three-valued logic, with an additional

unknown value and a corresponding redefinition of the not operation, is obtained as

follows:

unknown dzf Ax.x,,known

notU dgf lx.not(x(un known = unknown))

E Ax.not(z =x,(unknown = unknown))!

No recoding of true and false is needed, while in the standard Church encoding it

would be necessary to recode them as functions with three abstraction levels instead of

two. Furthermore, notU is defined incrementally as an extension of the previous not

function.

To illustrate the reduction rules, here is a “standard reduction” (reducing leftmost

outermost redex first) of the expression not true:

not true = (lx.x,(true = Ix.xf,t,,)(faIse = Ax.xtrue)!)

(2 = (;lx.xtrLle))!

-4~~ (Ax’.(lx.x&(true = Ax.y,l,,)(false = Ax.x,,,,)!)!

L. DamilTheoretical Computer Science 192 (1998) 201-231 207

-fBN (lbx.xt,,,)(true = ;Lx.xfarse)(false = J.x.xtrue)!

+/j/q (3Lx’.%x.xfa,se
*

)(false = nx.xtrue)!

+p/ (AX’.AX.Xf,,,,)!

4/3N Ax.xfalse

so the result is indeed false. Similarly, it can be verified easily that notU unknown
yields unknown, or that notU false yields true. By contrast, consider what happens

with an erroneous expression like not unknown:

not unknown = (Ax.x,(true = Ax.xfalSe)(falSe = ix.xtrue)!)

(2 = (~LXunknown I)!

--+/3N (~x’.(~-=,nknown)(true = ix.xfalse)(false = Ix.xt,,,)!)!

+pN (,?x.xUnknown)(true =)bx.xfaIS,)(fake = Ax.xtrue)!

+BN (kXUnknown)(fake = %x.xtrUe>!

--+fiN (~.=unknown)!

2.4. Conjluence

We show confluence of the calculus through an adaptation of Takahashi’s proof

for the usual A-calculus [26]; this proof itself is a simplification of the well-known

Tait method, using parallel reductions. The idea is to define a relation over terms

which simultaneously contracts several (possibly overlapping) redexes and show that

this relation has the diamond property.

Definition 2. Parallel reduction, denoted +pN, is defined inductively by the following

rules:

(reJI> XI =+,jN XI and E +fl,,I E;

if a +pN a’ and b +pN b’, then:

(err) AX.E +pN E and &(I = b) +pN E and E! +gN &

(congr) 2x.a +fiN ix.a’ and a! +flN a’!

and a(l= b) +pN a’(I= b’),

(lam-bind) (Ax.a)(l = b) +,&j! ix.a’[xl := 6’1,

(lam-close) (Ax.a)! +flN a’[x, := &I;

208 L. DamilTheoretical Computer Science I92 (1998) 201-231

Parallel reduction obeys the following properties:

Lemma 3. (i) a+gNb + a +pN b

(ii) a +pN b + a :p,~ b

(iii) [a +p,? a’] A [b +pN b’] + a[xr := b] +pN a’[xl := b’].

Proof. (1) induction on the context of the redex; (2) and (3) induction on a. 0

Following Takahashi, instead of proving that G&&J has the diamond property, we

prove a stronger statement:

Lemma 4. [a =+p~ b] + [b +BN a*], where a * is a term determined by a, according

to the following inductive dejnition:

XT =x1

&*=&

(Ax.a)*=(a(Z=b))*=(a!)*=.z ifuss

if a $ E, then

(Ix.a)* = kx.a*

(a(l= b))* =
Ax.(a’*[xl := b*]) if a = ka’

a*(l= b*) otherwise

a’*[x, := E]
(a!)*= a*,

i .

if a = Ix.a’

otherwise.

Proof. Induction on a:
- case a E xl or a E 2s: trivial
- case a E 2x.a’: either b E E, which again is trivial, or b must be of the form Ix.b’,

with a’ +pN b’. By induction hypothesis b’ +,p$ a’*, which implies b +fjN a*.
- case a E ai(Z = ~2): if al E E the result is trivial. If al z ix.ai, then b is ob-

tained either through rule congr or rule lam-bind, and therefore must be of the form

(Ix.bl)(Z= b2) or Ix.bl[xr := bz], for some bl,b2 with ai +,VJ bl,a2 +pN b2.
By induction hypothesis, we have bl +pN a{*, b2 +jN a;. Hence in either case

b ==/?N Ax.ai*[xl := a,*] = a*. Finally, if al is neither an error nor a A-abstraction,

then b must be of the form bl(l= b2), with al +pN bl,a2 +pN 62. By induction

hypothesis bl +pN a: and b2 +pN a;, so b +flj$ a*.
- case a z a’!: like preceding case. 0

Theorem 5 (Confluence).

[a :-)a~ b] A [a 3;BN c] + 3d.[b $;gN d] A [c :pN d]

L. Damil Theoretical Computer Science 192 (1998) 201-231 209

Proof. By Lemma 3, ~BN is the reflexive, transitive closure of ffiN, so to prove

confluence it suffices to show that =+,J,v has the diamond property:

IIU =pN bl] A [a =+/j/v b2] =+ 3u’.[b, =spN a’] A [b2 +p,A/ a’]

But Lemma 4 shows that such an u’ does exist, and is uniquely determined by a. 0

2.5. Term ordering

Intuitively, notU can safely be used instead of not in any context: it behaves as

not on true and false arguments, and behaves “better” on unkown argument (yielding

unknown again, while not yields an error). To formalize this idea, we observe the

error generation behaviour of terms, first in arbitrary contexts, and then in applica-

tive contexts (applicative bisimulation). In both cases, a statement a & b can be read

intuitively as “a is better than b”, or “a generates less errors than b”. As in the stan-

dard R-calculus, i,N is operationally extensional, which means that the two orderings

coincide.

Following common definitions, a context is obtained by extending the syntax with

[-] (a hole). For any context C[-1, C[u] is the term obtained by plain syntactic

substitution of a for every occurrence of the hole in C[-1, i.e. with possible capture

of free variables of a.

Definition 6. The contextual order Ectxt on /iN is defined as

a cctxt b @ v’C[-].[c[a] &,$I & =+ C’[b] $N &]

Definition 7. An applicative operation o is either a bind operation (1 = b), with b

closed, or a close operation (!). An applicative sequence 0’ is a finite list of applica-

tive operations. A closing substitution G for terms a and b is a finite list of atomic

substitutions such that both uo and ba are closed. The applicative order Lap?” on AN

is defined as:

(i) for closed a, 6: a Capp’ b H V’o’.[uo’ ::gN E + bo’ ~)BN E]

(ii) for arbitrary a, b: a CaPP1 b w ‘do.aa gapp’ ba.

Lemma 8 (Context lemma, operational extensionality).

vu, b. a 5”‘“’ b @ a Lappl b

Proof. The proof is inspired by Abramsky and Ong’s proof of operational exten-

sionality for the lazy &calculus [l]. Since an applicative context is a context, Lctxt

implies Carp’, so we are left with the reverse implication. The proof proceeds by

induction on the length of computation. Assuming (without loss of generality) that a

210 L. DamiITheoretical Computer Science I92 (1998) 201-231

and b are closed, a Ppp* b + a Cctxt b can be rewritten as -

The base case (when n = 0 and C[-] E [-I) is obvious. For the inductive step, consider

without loss of generality the following cases of closed contexts:

(i) C[-] = (nx.A[-])(L=B[-])d[-]

(ii) C[-] -(;lx.A[-])!O[-]

(iii) C[-] = (?.A[-])

(iv) C[-] E EC)--]

(v) C[-] E [-](z+=B[-])d[-]

(vi) C[-] E [-]!O[-]

(vii) C[-] E [-]

where d[-] is an applicative sequence of contexts. We proceed by case analysis:

(i) Suppose C[a] $D,+T E. This is only possible if the binding (1 = B[-1) is reduced

by rule lambda-bind or err-bind, which implies either ;Ix.A[a] ANN E or (dx.A[a]
+ k

b/ :=B[a]l)@al +pN h for some k <n. By induction hypothesis, either Ax.A[b]

:;BN E, or (Lx.A[b][xr := B[b]])d[b] ~DN E, which implies C[b] :;BN E.

(ii) Like the previous case. To have C[a] $BN E, we must have Ix.A[a] %BN E or
+ k

(A[al[x* := ~lP[al -),ON 8, for some k <n, so again we can make an appeal to

the induction hypothesis to show C[b] $pN E.

(iii) Any proof of C[a] :pN E must end by rule lambda-err, so A[a] *a~ E; then

A[b] :;a~, E by induction, and C[b] ~;BN E.

(iv) Trivial.

(v) Since a is closed, it must be either of form of form ~3, which is trivial, or

of form (Ilx.a’)Z Define D[-] za(Z=B[-])d[-1. D[-] is a context of case

(i) or (ii), and D[a] E C[a]. By an appeal to the appropriate case, we show

D[b] 3~~ E. But since D[b] E a(Z =B[b])d[b], and since a LaPPI b, we can con-

clude b(Z = B[b])d[b]:)BN E, i.e. C[b] :,BN E.

(vi) Like the previous case.

(vii) Immediate, since the left part of the implication says that if a ~BN E in the empty

applicative context, then we must have b ~)BN E. 0

Since the two orderings coincide, we will simply write C, and E for its symmetric

closure. C has the following properties:

Lemma 9. (i) C is a precongruence, i.e. VC[-],a C b =+ C[a] C C[b].

(ii) a ++BN b =S ax b.

(iii) For any term a, 0 L a C E, where Sz E AA, and A z Lx XX.

L. Damil Theoretical Computer Science 192 (1998) 201-231 ?I1

Proof. (i) Immediate from the definition of gctxt. (ii) immediate from the definition

of Carp’. (iii) f or - any applicative sequence z, E 65~~ E and CG:,j,v Sz, and

l(Q -:,, c).

Also observe that this theory identifies all unsolvable terms different from a, so in

particular Q z 1x1 . . .a~,,.!2 for any n. Moreover, with respect to the classical i-calculus

it has the particular property of possessing infinite descending chains if ., 1’ is infinite,

like for example

2x.x! Ji.x.x(Zl =al)! ~jbx.(Z1 =al)(Z2 =az)! 2

for any sequence of terms CZI,UZ,... different from E.

The ordering is immediately useful for verifying some general program laws:

Theorem 10 (Program laws). Vu, b, c,

(i) (1) (Ii $Zz) + a(Z~=b)(Z2=c)~u(Zz=c)(Zl =b)

(2) u(Z=b)(Z=c)zu(Z=b)

(ii) (1) u(Z=b)! La!

(2) u(Z=&)! %:a!

(iii) (1) x$FV(u) * uLiLx.a(Zl =xI,)...(Zn=xI,,)!

(2) x~F~(u),FN(u,y)C{z~,...I,} * lty.a=~xy.u(z, =x~,)...(z,=x~n)!

Proof. (i) Suppose a closed. If a= 0 or a~ E, the result is immediate; otherwise,

we must have a ~)BN (nx.u’). Then u(Zi = b)(Zz = c) $ph, i.x.u’[xI, :=: b][xlz := c]. Since

substitutions are capture-free, there is no occurrence of variable x in either b or C;

hence, if Ii $12, then Ax.u’[xl, := b][xj, := c] E ix.u’[x,, := C][XI, := b], and therefore

a(Zi -=~)(Z~=C)-~NU(Z~=C)(Z~ =b); similarly, if II E/Z, then u(Zr =b)(Zl=c)

t-‘p~ u(Zl = b). The general case follows directly, by quantifying over closing sub-

stitutions for a.

(ii) (1) Again suppose a closed, and a -5~~ (2x.u’). Then u(Z = b)! 3,fiv u’[x, := b]

[x* ::=c]. Since bLc, and C: is a precongruence, we have u’[xl := b][x* :=I:] &a’

[x* ::= E] c-‘p,y a.. 1 In the particular case (2) where b E E, a’[~, := E][x* := E] = a’[.~* := i:]

so we have an equivalence.

(iii) (1) Let (I, = xl,) abbreviate (1, = XI,) . . . (I, =xl”)). Using the definition of the

applicative order, we have to prove that for any applicative sequence 5, u~‘:Z+,~, I: +

(iGX.CZ(Z, = Xl,)!)’ * Zj o --+ N E. The proof proceeds by induction on the length of 6. If 6 is

empty, the result is immediate through reduction rules for errors. Otherwise, if 0’~ (!)c?,

then

~ -4

u!d C: u(Zi = E)!o’ (law (ii))

Hjj&l (ltX.U(Zi = X,)!)!J if x$FV(u)

212 L. Damil Theoretical Computer Science 192 (1998) 201-231

Finally, if 0’~ (I = b)J, then

U(Z =b)d c (/I.X.LZ(Z=b)(Zi = X[,)!)d (induction hyp.)

++~N(AX.L!(Z=X~)(Zi =Xl,)!)(Z=b)J

~(;lX.U(Zi =xr,)!)(Z=b)J (law (ii))

The proof for (2) proceeds similarly. 0

By allowing any permutation of bindings on different names, the first part of this

theorem justifies our intuition that each argument name acts as a channel which operates

in parallel with the others; in other words, functions receive arguments simultaneously

at different names. On the other hand, each name/channel can sequentially receive

several values, but only the first is taken into account. The second part of the theorem

says that any binding immediately before a close operation does no harm, i.e. supplying

information at a given name can at best be useful, can at worse be ignored, but

will never generate more run-time errors. Finally, the last part is the counterpart of

q-equality in the traditional A-calculus. Here we only have an inequality instead of

full equality in (iii)(I), because the finite set of bindings (II = xl,) . . . (I, =x1”) cannot

cover all possible arguments to a. So in the general case we can safely perform q-

reductions, but not q-expansions. However, part (iii)(2) says that if we can guarantee

that the set {II . ..Zn} covers all names used at the top-level abstraction, then both sides

are equivalent.

An easy application of the theorem above is to show that notU C not:

notU E Ix.(Ay.y,(true = false)(false = true)!)

(z =x%(unknown = unknown))!

5,~~ Ilx.x,(unknown = unknown)(true = false)(false = true)!

M Ax.x,(true =false)(false = true)(unknown = unknown)!

L Ilx.x,(true = false)(false = true)!

E not

3. Simple type assignment

This section considers an adaptation of Curry’s simple type assignment system to

AN. The syntax of simple types is:

T::=T) X (P+T

P::=(Z, :Tl,..., I, : T,) (all Zi distincts)

where T is a type constant (the type of anything, including errors), X is a type variable,

and P -+ T is an arrow type mapping a parameter type to a type. Parameter types are

L. Damil Theoretical Computer Science 192 (1998) 201-231 213

finite associations of names to types. Any name not explicitly mentioned in the set

is implicitly associated with T; therefore the empty parameter type, written 0, maps

every name to T. P(Z) denotes the type associated to name I in parameter type P, and

P\l denotes the parameter type P in which name 1 has been remapped to T; more

formally,

P(Z) =
Ti if (li:K)EP,l=l,

T otherwise

Parameter types are treated modulo the following syntactic equivalence relationship:

P, S Pz H YZ.PI(Z) E P*(I)

This says that declarations in parameter types can be arbitrarily permuted, and that

declarations of the form 1: T can be added or removed. We write dam(P) for (11 P(1)

We will use the letters T, U, V for types, P, Q for parameter types, and X, Y,Z for

type variables. As usual, arrow types associate to the right. Furthermore, we adopt a

syntactic sugar convention for types which corresponds to the similar convention for

terms in Section 2.2: type expressions of the form T + U are abbreviations for types of

form (z : T) + U; these are arrow types in which the left-hand side is a parameter type

mapping all names to T, except for the invisible name 2. Thanks to this convention,

the types of usual lambda terms (i.e. terms which do not contain names other than 7)

look exactly like in the usual lambda calculus.

Types are ordered through a subtyping relationship given in Fig. 2. Obviously, we

write T = U iff T d U and U dT. Observe that the rule for arrow types is covariant

on the right and contravariant on the left of the arrow, as usual in type systems with

subtyping. The rule top-arrow is motivated by the reduction rules for errors: EG~~BN E

for any applicative sequence Z, so T is equal to any functional type ending with T.

Lemma 11. The subtyping relation is reflexive and transitive.

Proof. Easy induction on the structure of types. 0

A basis r is a finite association of variables to parameter types; the set of variables

for which a parameter type is associated in r is denoted dam(T). If x : P E r, then r as-

sociates type P(l) to labelled variable XI; this is sometimes written T(xl). Furthermore,

T,x : P denotes the extension of basis r with association x : P (assuming x $! dam(r)).
Typing judgements for the Curry simple type system are of the form r t- a : T, saying

that “a has type T in basis r”. Such judgements are derived from the rules of Fig. 3.

This type system has an unusual aspect in comparison with many other systems, where

each type constructor has one introduction and one elimination rule. Here the arrow

type is introduced by rule abs, but is eliminated in several steps: a type (11 : T, , . . ,

214 L. Damil Theoretical Computer Science 192 (1998) 201-231

m (top> T GP ---$ T (top - arrow) X~X War)

p2 <PI T, < T2

P1--+T,<P2+T2
(arrow)

Vl E dom(P1) Udom(P2). Pl(Z)dP2(Z)

PI <p2
Ww >

Fig. 2. Subtyping rules.

rka:T (top) rt;;a:y (subs)

(uar)
T,x:Pta:T

T,x:Ptxj:P(z) rl-Ix.a:P-+T (abs)

Tta:P-+T Ttb:P(Z) (bind)

r ta(l=b):P\l-+T

r t a : 0 ---f T ~close~
rta!:T

Fig. 3. Typing rules.

1, : Tn) -+ T is progressively reduced to () + T through multiple invocations of the bind
rule; only then can it be eliminated through the close rule. This is obviously related

to the asymmetry between lambda abstractions, which introduce several named para-

meters at the same time, and the bind and close constructs, which supply parameters

in several steps.

Example 12. The boolean values of Section 2.3 have the following types:

true : (true : X) --+X

false : (false : X)+X

not : ((false : (true :X) -+X, true : (false : Y) -i Y) + 2) ----f Z

Like Curry’s original system, this type assignment system assigns many types to

any given term. For some simple cases like the examples above it is possible to find

a principal type, i.e. a type such that all other possible types for the same term can

L. Damil Theoretical Computer Science I92 (1998) 201-231 215

be generated by subsumption and substitution of type variables. However, this is not

generally true: in particular, open sequences of bind operations may have many types.

For example if a: Tl, then Ix.x(Zl =a) has type ((Ii : T,)+X)+()-+X, but more

generally it has all types of the shape

((11 : Tl,..., l,:T,)-tx)3(/2:T2,...,Zn:T,)~X

for n > 1. In order to capture all of these in a single type scheme, it is necessary to

resort to a more powerful type system, like the one studied in [lo], which uses a

mechanism similar to the “row variables” of record calculi [23,27].

The type system posesses the usually expected properties: types are preserved by

computation, and terms with type different from T do not reduce to a.

Theorem 13 (Subject reduction).

[[r k a : T] /I [a :pN a’]] =+ I- k a’ : T

Proof. Induction on the length of a :pN a’, following standard techniques. A complete

development is given in [lo]. 0

Lemma 14. rfrte:T, then T=T.

Proof. Proofs of E : T can only use the top axiom and subsumption. Since subtyping

is transitive (Lemma 1 l), we must have T d T, and therefore T = T. Cl

Theorem 15 (Soundness). A closing substitution rs satisfies a basis r, written CJ /= r,
ifs, VX E dom(r),VZ E dom(r(x)), t- X~CJ : r(xr). Then

[[I- t- a : T] A [T #T]] =s [% + r, ~(aa :pN E)]

Proof. Direct consequence of Theorem 13 and Lemma 14. 0

4. Modelling record operations

In this section we first show that records (i.e. named products) have a very natural

encoding in AN, and then discuss the relationship of iN with record calculi. The dual

notion of named coproducts will be treated in Section 6.3.

4.1. Products and records

First let us briefly recall how n-tuples (products) can be encoded in the usual lambda-

calculus:

(a1)...) a,)=ilx.xal...a,
(

x$2; FV(ai) .
i=l >

216 L. Damil Theoretical Computer Science 192 (1998) 201-231

This is a straightforward generalization of the well-known Church encoding for pairs.

The x argument to the A-abstraction is used to receive a selector function, which will

extract the desired values from the tuple. Projection of the product, i.e. selection of

the ith component of a n-tuple, is performed by passing to the tuple a function of the

form AX, . . .x,,.xi. Similarly, we have in AN:

Definition 16 (Records).

{Zl =q,..., Zn=a,} eLf RX.X(El =ul)...(z,=a,)! (x$lj WUi)
i=l)

a.z dAf a (2X.X/)

Here again, the A-abstraction has an argument x to receive a “selector”, to which all

named fields of the record are bound, with a closing “!“. By Theorem 10, any permu-

tation of the bindings yields an observationally equivalent function, so this justifies the

fact that the order of fields in a record is irrelevant. Furthermore, by the second part

of the same theorem, we have

ilx.x(Z* =ul)...(z,=u,)(z,+* =u,+l)...(Zn+k=un+k)!

5
AX.X(Zl =ul)...(z,=u,)!

which proves that a record with more fields can always be used in place of a record with

fewer fields. This property of records is called width subsumption; depth subsumption,

i.e. the possibility to replace the value ai at some field by some other value ui iff

uf C ui, is derived directly from the fact that c is a precongruence.

Selection of field Z in a record r is performed by passing to the record a function

of shape Ax.xl, i.e. an identity function on name Z. It can be verified easily that

{z~=ul,...,z,=u,}.zj s (ilX.X(Zl =ul)...(zn=un)!)(;lx.x~i)
*

4bN ui

Here the selector 2x.x/, only accesses one field at a time, which is the common way

to project labelled products in most record calculi. However, the “selector” function

passed to a record could as well depend on several names, i.e. access several fields

simultaneously. For example, the function

Ar.r(lx .xfut7 Xarg)

expects a record argument r, extracts from that record the fields fun and arg, and

applies the first to the second. This is like a “quoted expression” in LISP, which gets

evaluated within the environment supplied by the record; further examples will be

displayed in Section 6.

L. Damil Theoretical Computer Science 192 (1998) 201-231 217

4.2. Record extensions

Records are encoded as a list of bindings immediately followed by a close operation.

If the close operation is removed, a different kind of components is obtained, which

we will call record extensions, denoted by curly braces with an initial “+“:

Definition 17 (Record extensions).

{+l,=a ,,..., &=a,} def ~X.X(z~=a,)...(I,=a,)

a < b dAf Ax.a(bx) (x $Wa) u FV(b))

Record extensions have an open list of bindings, which can be completed later by

another component. As a result, a record extension can be composed with a record,

in order to prepend its own fields to the fields of the record. This operation is written

<< , and is exactly the same as usual functional composition. We can check by simple

computation that composition indeed behaves as a concatenation operator:

By part (i)(l) of Theorem 10, if the two sets of names {Ii . . . I,,} and {Zi . . . $,} are

disjoint, then all bindings in the result can be permuted. However, if some names

appear in both sets, then, by part (i)(2) of the same theorem, the first binding takes

precedence. In other words, if there are i, j such that 1: s lj, then only the first bind-

ing (1; = a:) is considered, and the other binding on the same name (lj = aj) can be

removed. As a consequence, the result is a new record in which fields 1; . . .11, have

been added or overridden. A similar computation shows that two record extensions can

be concatenated through the same operator <, yielding a new record extension. So

if R is a record and RE,, RE2 are two record extensions, then (R << RE,) << RE2 =
R < (RE, < REz), which is not surprising since functional composition is associative.

Since record extensions do not contain a close operation, part (ii) of Theorem 10

does not apply, so record extensions do not support width subsumption: in other words,

{+Zi =Ui ,..., li =@i,Zi+i =Ui+l,... ,l,=U,} g {+li =Ut ,... ,li=ai}

4.3. Typing record operations

If ai :Tl,...,a n:T,, then Ix.x(li =ai)...(Z,=a,)! has all types of the shape ((Ii :

T,, . . , 1, : T,,) + T) --f T. This can be captured by a fresh type variable, so we could

add the following derived rule for typing records:

r kal : Tl . . . r ka,,: T,

rk{Zl=al,..., l,=a,}:((Z~:Tl,..., Z,:T,)+X)+X

218 L. DamilTheoretical Computer Science 192 (1998) 201-231

Similarly, field selection is typed through the following derived rule:

rta:((z:X)+X)+T

r t a.1 : T

Record extensions have more complex types because the collection of bindings has

no final close operation. A family of derived typing rules can be expressed as

but, as explained in Section 3, no single principal type can capture all instances for

different values of k. The more complex system of [lo] uses families of type variables

and therefore generates principal type

((1, : TI,. . ., I, : T,,, *:X*)+Y)+(*:X*)+Y

where * :X* implicitly assigns type Xl to any label I @ {Ii . . . I,,}.

4.4. Comparison with record calculi

Motivated by research on theoretical foundations for objects [7], several record cal-

culi have been studied in the literature. In the most simple cases, only record formation

and field selection are supported, which provides no support for extensibility and in-

heritance. Other calculi provide a record concatenation operator, but with the important

restriction that the two records being concatenated should have no fields in common

[111. The calculi of [24,27] are more flexible: they use a construct of the form

a with 1= b

to extend or override field 1 in a with value b. This can be modelled directly in our

setting as a < {+I = b}. Cancelling field 1, as in [8], is equivalent to replacing it by

the error term, i.e. a < {+I = E}.

Conversely, one would imagine that 1N is encodable in a suitable record calculus,

by accumulating named parameters in records and then passing these to functions.

An apparent hurdle is the way arguments accumulate in AN: recall from Theorem 10

that a(Z=b)(Z=c) M a(Z=b), so the first bind operation takes precedence, while the

calculus of extensible records has the law

((a with I= b) with I =c) M (a with I =c)

giving precedence to the second extension. However, the following translation, proposed

by Didier R&my, and directly inspired from [24], uses a kind of “continuation-passing

L. Damil Theoretical Computer Science 192 (1998) 201-231 219

style” on records which reverses the order of record updates:

NQII = x.2

[[ix.a]] = I”X.[[U]]

[[a(/ = b)]] = %x.[[a]](x with I = [[h]])

Ka!ll = [[~I]{>

K&II = e

Although quite close to the parameter-passing mechanism of iN, this translation is nev-

ertheless not fully faithful. The precise technical study of this translation and compari-

son with various record calculi is left for another forthcoming paper; but the point where

the translation fails can be shown easily through an example: consider (lx.xl)(l = !2),

which reduces to (ix. Q) M ft. The translation is ly .(kx. x. l)(y with I = Cl) which

reduces to iy.(y with I= Q).Z. This term is not equal to Q, because it might yield E

if the argument y is a.

5. Contexts and holes

This section relates AN with the meta-operation of hole filling in the classical

i-calculus, and with other calculi involving names or contexts.

5. I. Open l-terms and contexts

We have already shown how usual I-terms can be embedded in the 3.N calculus.

Here we will extend the translation so that both open terms (terms containing free

variables) and contexts (terms containg “holes”) are encoded as ?,N terms. A higher-

order operation in AN expresses the context-filling operation with (intended!) capture

of variables.

Definition 18. Let h and e be two reserved variables in Y, i.e. not used anywhere

except for the following translation. Furthermore, assume that the set of variables from

the classical A-calculus is contained in both V and ~6’“. Then the translation LNCt[-]r.

from contexts in the traditional %-calculus into ;IN is defined inductively as

& if xEL
LNCt[xlL =

ex if x@L

LNCt[rbc.~]~ = Ax.LNC~[~],,~,

LNCt[ublL = LNCt[ulL(z = LNCt[b]L)!

LNCt[-I[, ,,.._, x,l = h(e< {+XI =x1%,. . . ,x,, =x,,))

220 L. Damil Theoretical Computer Science I92 (1998) 201-231

The parameter L keeps track of the A-abstractions crossed during the translation, so

the translation starts at the top level with an empty list. On closed A-terms, LNCt[-]L

coincides with the translation LN[-] given in Section 2.2. On open terms, free vari-

ables become lookup operations into a global environment carried by the special vari-

able e. Holes perform a local update on the environment, according to the number of

I-abstractions in their surrounding context; this is quite similar to the substitutions as-

sociated with holes in [25]. The translation yields quasi-closed AN terms, with h and

e as only free variables.

Definition 19. The operation of filling a context C[-] with a term a (which might be

another context!) is encoded in AN as

fill~(C[-],a) = (A.LNCt[C[-]]L)(le.LNCt[a]L)

Theorem 20. Context Jilling commutes with the 1N encoding, i.e.

VE z (2, =al,..., 1, =a,,}.fillL(C[-],u)[e:=E] FZ LNCt[C[u]lL[e:=E]

Proof. Induction on the shape of C[-1:

- C[-] z [-I:

fi&(C[-],a) = (Ah.h(e K {+ }))(le.LNCt[ul~)

- (Ah.h(k.e((Ay.y)x))(le.LNCt[u]L)

5~~ (;le.LNCt[u]L)(Ax.ex)

Now by the assumption on the shape of E, Ix .Ex M E through Theorem 10 (iii)(2),

so ((le.LNCt[u]L)(ilx.ex))[e :=E] M ((;le.LNCt[ulL)e)[e := E] 3,pw LNCt[u]L[e:=E]

- C[-] zx: LNCt[x]L does not contain any occurrence of h, so

fi&(C[-],a) E (Ih.LNCt[x]L)(/Ze.LNCt[u]L)

-TSBN LNCt[xlL

= LNCt[C[u]]t

- C[-] 5 Ix.A[-1:

fi&(C[-],a) E (~hx.LNCt[A[-]],:L)(~e.LNCt[ul~)

tspN A.x.(~~.LNC~[A[-]],:~)(A~.LNC~[~],,L)

G Ix.fill,:&4-],a)

U31 a ::= x 1 2ix.a 1 a f b

[181 a ::= x 1 data x : a 1 let x +a in b 1 supply x+a to b

[l9] a ::= x 1 k.a I ab I @{II : XI ,..., 1, : x,}.a I

exec a 1 lam1 a I app a b I l

[15] a ::= x I 2x.a I ab (Xp I Xa / a@rb

L. Damil Theoretical Computer Science 192 (1998) 20X-231 221

By induction hypothesis, this is equivalent to

Ax.LNCt[A[a]lx:L = LNCt[Ax.A[a]]L E LNCt[C[a]]L

- C[-] =A[-p-1:

fillL(C[-],a) E (Ah.LNCt[A[-]]L(x = LNCt[B[-]]L)!)

(Ae.LNCt[a]L)

HUN ((lh.LNCt[A[-]]L)(Ae.LNCt[a]L))

(z = (E,h.LNCt[B[-]]L)(Ae.LNCt[a]L))!

= fillL(A[-1, a)(7 = fillL(B[-1, a))!

By induction hypothesis, this is equivalent to

LNCt[A[a]]L(z = LNCt[B[a]]L)! 3 LNCt[C[a]]L 0

For the sake of simplicity, the h variable was implicitly labelled by z in this encoding,

following the convention of Section 2.2. As a result, the context-filling operation simul-

taneously fills all occurrences of the hole. More complex context-filling systems have

been studied [19, 151 in which holes are decorated with labels; occurrences of holes

are partitioned into classes with common labels, which can be filled independently.

A similar behaviour could be obtained here by a simple modification of our encoding

scheme, using labelled instances of the h variable, and using separate bind operations

to fill separate classes of holes.

5.2. Related calculi

The idea of embedding contexts, environments, holes or names as first-class con-

structs in the /l-calculus has motivated several recent proposals, which are summarized

in Fig. 4.

The label-selective calculus [131 uses variables and A-abstractions as in the classical

%-calculus, but assigns a label to each abstraction level. As a result, application

Fig. 4. Related calculi.

222 L. DamiITheoretical Computer Science 192 (1998) 201-231

constructs are not forced to follow the order of the abstractions: they can directly

address an inner abstraction. This simple extension of the i-calculus supports out-of-

order parameter passing, but not extensibility: a function still has to be fed by a number

of arguments corresponding exactly to the number of its parameters. Hence, the prop-

erties of this calculus are clearly different from 1N and from other calculi described

below. Lee and Friedman managed to simulate the label-selective calculus within their

system [191, and it is likely that a similar exercise could be done within AN; however

the encoding involves fairly elaborate constructions and therefore does not establish

any direct or instructive correspondence between the two models.

The unified system of parameterization (USP) of Lamping [18] is much closer to

AN, except that name abstractions occur independently at each name, instead of being

related to a common A. The data construct abstracts over a given name, and the supply

construct passes an argument along a named channel, much like our bind construct.

However, since data parameters are “transparent”, and commute with the other con-

structs of the language, it is as if all data abstractions were done at a unique global

level; hence, for example,

supply x +- 1 to (supply xc 2 to (data x : x + (data x : x)))

yields 4 and not 3 as one would perhaps expect. This is likely to create some difficulties

related to substitutions and capture of data parameters when trying to implement the lan-

guage. Moreover, the fact that there are no multiple abstraction levels and no operation

corresponding to our close construct implies the absence of subsumption and extensi-

bility. For example, Lamping’s encoding of “bounds” {id 1 t expl, . . . , idN t exp N}
as

data body : supply id 1 +-- expl, . . . , idN c expN to body

is almost like our record extensions of Section 4.2, but, as in our case, these do not

obey the width subsumption law.

The A-calculus with contexts ilC of [19] distinguishes between “source code” (con-

texts with holes) and “compiled code” (A-terms), and has internal operators for assem-

bling source code and “compiling” it. The @ construct abstracts over a set of labels,

which are associated to some variables within the body of the abstraction. In order

to pass an argument to one of these labelled parameters 1, one first “captures” this

label through an operator lam,, yielding a usual &abstraction, and then uses the app

construct to apply this abstraction to the given argument. Among the calculi considered

here, K is the only one which, like ilN, has multiple levels of name spaces through

hierarchies of abstractions, and has a construct (namely exec) for “closing” a name

space and passing to the next level. As a matter of fact, its expressive power seems

comparable to AN, since a simulation of ;1N is displayed in [19], while we can go

L. Damil Theoretical Computer Science 192 (1998) 201-231 223

through the reverse exercise:

[[Q(1) =x1,. . . ,l, =~,}.a]] = Re.[[u[x, := e.l,]. . . [x, := e.1,]]]

[[lam1 a]] = AeAx.a(e< {+x=x,})

[[app a b]] = le.(ae)(be)

[[i]] = E

However, since X so far has no associated theory, it is not obvious to check whether

equational properties of the calculi are preserved through translations in both direc-

tions. Furthermore, we feel that AN is closer to classical A-calculus syntax and con-

ventions, and therefore requires less adaptation efforts to inherit known results from the

i.-calculus.

Finally, the typed context calculus of [15], announced very recently, uses holes X,

hole abstractions &Ku, and a hole-filling operation a@?& b. This is an explicitly typed

calculus, in which types are useful to work out the mechanics of substitutions and

hole filling, and to guarantee that no unfilled hole ever gets evaluated. However, the

price to pay is some drastic restrictions on term formation: in particular, the hole-filling

operation @ is indexed by a type environment, and therefore requires to know statically

much information about the context and the term filling it. An additional constraint

comes from the fact that holes are only allowed to occur linearly, i.e. exactly once, in

a well-typed term. Moreover, the 6 construct, which only abstracts one hole at a time,

imposes an ordering of hole abstractions, which is an impediment to extensibility. So it

seems doubtful that this calculus would provide an appropriate foundation for dynamic

binding.

6. Functional programming with dynamic binding

This section displays several linguistic constructs for exploiting dynamic binding in

the framework of functional programming languages, on the basis of the 3.N model. ’

Dynamic binding brings support for incremental assembly of software fragments. This

section mostly uses informal examples, but the formal translation T[-] into 1N is fully

given in Appendix B.

6.1. Functions, named parameters, und scoping

The language has two kinds of functions: (i) usual A-abstractions, written like in

Haskell, which can be a-converted, like

F=\fxy--t(fx)+(fy);;

Y = \f -(\x + f (xx))(\x+f(xx));;

’ An experimental language HOP implementing these constructs as well as the record operations discussed

above is available at http://cuiwww.unige.chI&ami/Hop.

224 L. DamilTheoretical Computer Science 192 (1998) 201-231

and (ii) abstractions with named parameters, written with a set of names enclosed in

parenthesis:

F2=\(fxy)+(fx)+(fy);;

F2 is translated into Ax.(~f(z=xx)!) -t (xf(z ‘xv)!) and therefore has only one ab-

straction level, while F has the obvious translation Axyz.(n,(z = y%)!) + (x,(2 =z,)!).

Named parameters are useful to simultaneously extract several fields from a record.

For example, the expression

{x=1, y=2, z=True, w=“foo”, f=\x-+x+ 1) F2;;

yields 6: values for the named parameters f, x and y are taken from the record, and

then are substituted inside the body of the lambda abstraction.

Named parameters and usual parameters may be freely mixed in a single A-

expression. Lexical scoping is treated as in most programming languages: a local dec-

laration takes precedence over a previous declaration using the same name. However,

the previous declaration is not irremediably lost. Variables can be preceded by n oc-

currences of the scope escape operator “^“, in order to specify that one should ignore

the first 12 abstraction levels when looking for their corresponding declaration. So in

the expression

\(ab) xy (xyz)+x+~x+~~x+~~~x;;

the first summand corresponds to the innermost declaration of x, the next two summands

correspond to the outermost declaration of x, and the last summand is an error (because

after crossing three abstraction levels no declaration of name x can be found). The

formal translation of the expression above is

Ax x’ x” x”‘, XF’ + x; + x; + &

Finally, scope control can also be achieved by explicitly labelling sets of named

parameters through a ‘W’ operator:

\levellQ(abx) (xy) level3Q(xyz)+x + -x + levell@x;;

6.2. Quote and eval

Quoting is a mechanism for abstracting over all free names of an expression; because

of the similarity with LISP, it is written with a quote character:

quoted-expr = ‘(y + (\x 4 x*n) z); ;

This is a closed expression, which abstracts over the free names y, n and z, but not
over the bound name x. Quoted expressions are encoded as functions parameterized by

a record, so the expression above corresponds to

/IX.X(lY.Y, + (JJ.z * Yn)Yz)

L. Damil Theoretical Computer Science 192 (1998) 201-231 225

Evaluating quoted expressions in some context is extremely simple: just by application

of a record. For example,

quoted_expr { x=7, y=9, z=ll, n=20 };;

yields 229.

The scope escape operator can be used within quoted expressions, so that we can

finely tune between the names which should be statically scoped and those which

should be “quoted”, achieving something similar to the “backquote” operator of LISP.

For example, in

‘,xy+ ‘(Xf ^y+z);;

the names x and z are abstracted upon, so the first summand x does not refer to the

first parameter of the function. By contrast, the name y escapes the quoting operation,

and therefore is statically bound to the second parameter of the function.

Record concatenation together with quoting offers interesting possibilities for mod-

elling state operations: the function

‘\mem + mem < {+x = ‘(x + y + z) mem }; ;

takes a “memory” (just a record) as argument, adds the contents of locations X, y

and z, and puts the result back in location X. The distinction between what is called

“rvalues” and “lvalues” in imperative languages is clearly reflected by the two different

uses of name x.

Finally, the encoding of quoted terms allows us to define some operators for rellexive

programming, in order to build new quoted terms from quoted terms:

QApp = \a b + \e -+ (a e) (b e); ;

QLambda_x=\a+\e+\x-ta (e<{+ X=X });;

QApp takes two quoted terms, and creates a new term which is the application of the

first to the second. QLambdax is equivalent to the context Ax.[-1: it takes a quoted

term a, and creates a new term which is a lambda abstraction capturing free occur-

rences of x in a. Both operators are very close to the ones of [19], except that here

they are just derived operators, instead of being basic constructs of the language.

6.3. Variants

Mathematically, records are labelled products. The dual notion, i.e. labelled coprod-

ucts, is called variant. The use of coproducts in programming is to support user-defined

concrete datatypes. For example, a datatype for lists, which would be written in Haskell:

data List a = Nil / Cons a (List a)

226 L. DamiITheoretical Computer Science 192 (1998) 201-231

implicitly creates two data constructors Nil and Cons; these act as two injection func-

tions into the datatype. They can be encoded as follows in the classical il-calculus:

Nil=Ilnc.n

Consht=hzc.cht

Both constructors take two “deconstructor” functions as arguments, and invoke the

appropriate one. This approach is based on the positions of the arguments, so a list

can only be built through the two constructors displayed above. Moreover, in order to

use a list one has to pass exactly two “deconstmctor” functions to it, corresponding

to the two possible cases - empty list or non-empty list. In consequence, the List

datatype cannot be extended in an incremental way into another datatype with more

constructors, like for example a Circular constructor which would encode circular lists.

By contrast the notion of “variant”, i.e. labelled coproduct, makes each data construc-

tor (injection function) independent of the others, and independent of the datatype in

which it is used. Following the notation of [7], we write variants with square brackets.

In the simple case, these can be just a set of labels, like enumerated types in C or Pas-

cal, so for example we can encode boolean values as [true], [false], or colors as [red],

[green], [blue], etc. However, variants can also construct more complex datatypes, like

a different version of lists:

Nil = [nil]; ;

Cons = \h t -+ [cons h t]; ;

The expression within square brackets must start with a name (the “label” of the

variant), followed by an applicative sequence. The encoding of variants is again very

similar to the standard encoding of coproducts in the &calculus: each data constructor

takes a collection of “deconstructors” as arguments, and then invokes the appropriate

one. The only difference is that the deconstructors are distinguished by names, instead

of positions. So, for example, we have

[nil] = rlX.Xnil

[cons h tl = /2x.xcons h t

All constructors use only one abstraction level ;Ix, so the encoding can be consistently

extended with a new constructor, which would access variable x under a new name.

In order to use a variant, one first has to identify the label with which it was

built. Then, depending on that label, one may access its internal data and pursue the

computation. Usually this kind of deconstruction of coproducts in functional languages

is performed by a case construct. Here we do not need an additional syntactic construct:

case selection is simply achieved through records. Let us start with a simple example,

directly inspired from Section 2.3:

Not x = {true = [false], false = [true]} x; ;

And x y = {true =x, false = [false]} y; ;

L. Damil Theoretical Computer Science 192 (1998) 201-231 227

The Not function performs a case selection on its argument X, yielding [false] if x is

[true] and [true] if x is [false]. Similarly, the And function proceeds by case selection

over its y argument. These examples only involves simple variants, i.e. just labels. For

more complex variants, we need to be able to access the “internal data”. This is done

by putting functions in record fields:

Head 1 = {nil = Error “empty list”, cons = \h t + h} I; ;

The language actually has some syntactic sugar for this use of records, so we can

write, for example,

Head 1 = {nil = Error “empty list”, cons h t = h} 1; ;

which is a restricted form of pattern matching.

Now consider the definitions of Not and And above. These are functions which take

an argument, and do nothing else than applying something to it. Experienced hmc-

tional programmers will be immediately tempted to perform a so-called q-conversion,

rewriting them as

Not = {true = [false], false = [true]}; ;

And = \x + {true =x, false = [false]}; ;

which is legitimate according to Theorem 10. The advantage is that these functions can

now be extended through the “<<” operator. Again consider the example of Section 2.3,

defining a three-valued logic with an unknown value. To encode it, we just need

incremental extensions of what we already have:

NotU = Not < { + unknown = [unknown]}; ;

AndU = \x + (And x) < {+ unknown =

{true = [unknown], false = [false], unknown = [unknown]} x}; ;

The NotU and AndU functions, designed for the three-value logic, are fully compatible

with the previous versions for usual logic, i.e. existing code based on the old logic

needs no modification. This is exactly the kind of software extensibility offered by

object-oriented programming. However, here it was done just with extensible case

statements, instead of the classes/inheritance machinery. We do not claim that this

form of software reuse can totally subsume object-oriented mechanisms, but it can

complement it in some cases: for example it seems more natural to handle booleans or

lists in this way, rather than defining an abstract class List with two concrete subclasses

Nil and Cons.

7. Conclusion

3&N is a very simple extension of the classical ;l-calculus, which nevertheless has

sufficient expressing power to cover various mechanisms involving dynamic binding.

228 L. DamiITheoretical Computer Science 192 (1998) 201-231

Unlike other proposals with similar ideas [18,19,15], it has an inequational theory

and a collection of laws to formally reason about program compatibilities. Further-

more, it completely relies on standard techniques for managing substitutions and a-

equivalence, and therefore can be implemented easily using de Bruijn indices. An

adaptation of standard Curry-style type assignment is straightforward, but requires more

complex extensions, as in [lo], to get principal types; the difficulties are basically

the same as for object-oriented calculi, where the combination of polymorphism, sub-

typing and recursion is not easily captured by well-known Hindley-Milner inference

techniques.

Starting from this work, several interesting research directions are open: one is to

explore some extensions of the calculus, like adding a construct for name abstrac-

tion, or considering a “default bind” operator of the form a(* = b), binding all re-

maining arguments of a; another is to follow the Curry-Howard isomorphism and

apply the same ideas to logic, probably yielding a system with extensible and reusable

proofs.

Finally, there is much room for improvements at the language design level. Basic

support for dynamic binding offers a wealth of interesting possibilities for flexible soft-

ware construction. Some of the examples shown here, like quoting, extensible records

or variants, demonstrate the wide range of design directions which can be taken, and

give hints on how to exploit dynamic binding in higher-level coordination constructs

such as first-class modules or mobile code. Tuning up the language design so as to

provide an attractive set of useful constructs in a single high-level environment will

require more work and experimentation. However, the fact that we have a very ba-

sic underlying formalism, with well-understood equational/inequational properties, and

with a type inference algorithm, proves to be an unvaluable tool for exploring the

design space. For example, we did not realize until working out the ;IN semantics

of case statements that this construct was actually not necessary, and could be sub-

sumed by records. Similarly, the current design of record operations, with a clear

separation between “records” and “record extensions”, and with the possibility to use

records in functional position, could never have been invented without seeing the AN

translation.

Appendix A. HOP Syntax

Term syntax is displayed in Fig. 5. Precise precedence and associativity rules are

not displayed here, but standard conventions apply (i.e. “*” has higher precedence than

“+“, functional applications are left-associative, etc.). Usual conventions are also used

for building integers, strings and “names” (identifiers). For programming convenience,

HOP does not use disjoint lexical sets for the sets -Y- (“variables”) and ~6” (“names”)

of the AN-calculus; disambiguation is done according to context. The implicit rules for

disambiguation can be overridden by scope escape or explicit scoping operators.

L. Damil Theoretical Computer Science 192 (199Sj 201-231 229

term) = (integer)

((string)

I (var)
1 ‘\ ’ (plist)+ ‘->’ (term)
/ (term) (term)
/ (term) ‘(’ (name) ‘= ’

(term) ‘I’

lambda-abstraction
application
bind construct

1 (term) ‘!’

1 ‘{’ (field)+ ‘}’
1 ‘{+’ (field)+ ‘}’
1 (term) ‘C-C’ (term)

I (term) ‘. ’ (name)

I “(’ (term) ‘1’

1 ’ [’ (name) (term)* ‘I’

close construct

record

record extension
record concat.
field selection

quoted term
variunt

/ ‘-’ (term) prefix minus

I (term) (binop) (term)
/ ‘(’ (term) ‘1’

var) = ‘-‘* (name) optional scope escape

I (name) ‘Cl’ (name) explicit scoping

plist) = (name) “usual” param.

I [(name) ‘@‘I ‘(’ (name)+ ‘1’ named param.

I [(name) ‘@‘I ‘(*>’ implicit param.

(field) = (name) (pZist)* ‘=’ (term)
(binop) = ‘+’ 1 ‘-’ I ‘*’ (‘/’ integer arithmetic

I ‘<’ (‘>’ 1 ‘< = ’ I ‘> = ’ I ’ = = ’ I ‘/ = ’ integer comparison

/ ‘i-k’ string concatenation

Fig. 5. Syntax.

Appendix B. Translation from HOP to i,N

The translation function T[-]_ displayed in Fig. 6 is subscripted by a stack D of

declarations, recording the names declared at each lambda abstraction. A declaration

d may be of shape

- (x, 1), saying that name 1 corresponds to variable x,,

- (x, {I, . In}), saying that name Zi corresponds to variable xi,, or

- (x, *), saying that any name I corresponds to variable XI.

Pushing the declaration d on top of stack D is written d : D. Translation of top-level

expressions starts with an empty stack. In all cases where an abstraction 2x.. is

generated, it is implicitly understood that x is a new variable.

230

T

T[\E -’ ~ID = Ix. T[al(x,r):o
T[\(Zl . . . 2, I-’ ~ID = LX. T[~I(~,(-LL}):D

T[\(*>-> a]~ = Ix. T[a](,,*):~
‘[\I 9(11 . . . be) -’ u]D = 21. T[u](l,{l,...l.}):D

T[\2 @(*I-> u]D = 12. T[a]([,,):D
T[-v][, = E

TPlu = T[uID
T[l](,,l/):~ =x, if 2 E Z’, T[Z]o otherwise

T[Z],x,{,,,,.~n},:D =XI if 3Zi. Z z Zi, T[Z]D otherwise

V~(,*):D = xt
T[Z Q I’],, = E

1

ZP if Z E 1” A 3Zi. I’ E Zi

T[Z @ ~'](P,{I,.,&}):D = E if Z E I” A l(3Zi. I’ E Zi)

T[Z @ 2’1~ otherwise

T[Z @ Z’](~),,,~~J):D = T[Z @ Z’]D

T[Z Q Z’](~!,*):D = Zp if I= I”, T[Z 0 Z’]D otherwise

T[{ j-1 . ..fn }]D=L= Tf[fl]D... Tf [fnld

T[{+ fl...fn }]D=A= Tf[fl]D... Tf[.fn]D

T[u << b]D = Ix.T[u]D(T[~]D X)

T[U . z]D = T[a]D(;lx.xl)
T[’ (u > ID = Ax.x(A~.T[uI(,,):D)

Tf [IPI . . . p,, = a]D = (I =T[\pl . . . pn -7 a]D>

T[&]D = T[u]D(z =T[~]D)!

T[CZul . . .a, 1]D = Ax.xrT[ul]o.. .T[u,]D

Fig. 6. Translation.

References

L. Damil Theoretical Computer Science 192 (1998) 201-231

[l] S. Abramsky, C.-H. L. Ong, Full abstraction in the lazy lambda calculus, Inform. Comput. 105 (1993)

159-267.

[2] J.-M. Andreoli, C. Hankin, D. Le Metayer (Eds.), Coordination Programming: Mechanisms, Models,

Semantics, Imperial College Press, London, 1996.

[3] M. Banville, Sonia: an adaptation of linda for coordination of activities in organizations, in: [9],

pp. 57-74.

[4] H. Barendregt, The Lambda-Calculus, its Syntax and Semantics, Studies in Logic and the Foundations

of Mathematics, North-Holland, Amsterdam, 1984.

[5] V. Breazu-Tannen, T. Coquand, C.A. Gunter, A. Scedrov, Inheritance as implicit coercion, Inform.

Comput. 93 (1991) 172-221; also in: [14], pp. 197-245.

[6] K. Bruce, G. Longo, A modest model of records, inheritance, and bounded quantification, Inform.

Comput. 87 (1990) 196-240; also in: [14], pp. 151-195.

[7] L. Cardelli, A semantics of multiple inheritance, Inform. Comput. 76 (1988) 138-164.

[8] L. Cardelli, J. Mitchell, Operations on records, Mathematical Structures in Computer Science, Cambridge

Univ. Press, Cambridge, 1991, pp. 3-48; also in: [14], pp. 295-350.

[9] P. Ciancarini, C. Hankin (Eds.), Proc. Coordination Languages and Models ‘96, Lecture Notes in
Computer Science, vol. 1061, Springer, Berlin, 1996.

[lo] L. Dami, Type inference and subtyping for higher-order generative communication, in: [2], pp. 98-138.

L. Damil Theoretical Computer Science 192 (1998) 201-231 231

[1 I] R. Harper, B. Pierce, A record calculus based on symmetric concatenation, in: Proc. 18th ACM Symp.
on Principles of Programming Languages, ACM Press, New York, 1991, pp. 131-142.

[121 G. Florijn, T. Besamusca, D. Greefhorst, Ariadne and HOPLa: flexible coordination of collaborative

processes, in: [9], pp. 197-214.

[13] J. Garrigue, H. Ait-Kaci, The typed polymorphic label-selective lambda calculus, in: Proc. 21st ACM

Symp. on Principles of Programming Languages, ACM Press, New York, 1994, pp. 35-47.

[14] C.A. Gunter, J.C. Mitchell (Eds.), Theoretical Aspects of Object-Oriented Programming: Types,

Semantics, and Language Design, Foundation of Computing Series, MIT Press, Cambridge, MA, 1994.

[151 M. Hashimoto, A. Ohori, A typed context calculus, preprint RIMS-1098, Research Institute for

Mathematical Sciences, Kyoto University, 1996, available at http://www.kurims.kyoto-u.ac.jp/ohori/.

[16] P. Hudak et al., The Haskell Report and Haskell Tutorial, ACM SIGPLAN Notices 27 (5) (1992).

[171 S. Jagannathan, Dynamic modules in higher-order languages, IEEE Internat. Conf. on Computer

Languages, Toulouse, France, 1994, pp. 74-87.

[18] J. Lamping, A unified system of parameterization for programming languages, in: Proc. ACM Conf. on

LISP and Func. Prog., ACM Press, New York, 1988, pp. 316-326.

[19] S.-D. Lee, D.P. Friedman, Enriching the lambda calculus with contexts: towards a theory of incremental
program construction, Proc. ACM Internat. Conf. on Functional Programming, ACM SIGPLAN Notices

31 (6) (1996) 2399250.

[20] R. Milner, M. Tofte, R. Harper, The Definition of Standard ML, MIT Press, New York, 1991.

[21] C Queinnec, D. de Roure, Sharing code through first-class environments, Proc. ACM Intemat. Conf.

on Func. Prog.; ACM SIGPLAN Notices 31 (6) (1996) 251-261.

[22] M. Radestock, S. Eisenbach, Semantics of a higher-order coordination language, in: [9], pp. 3399356.

[23] D. R&my, Typechecking records and variants in a natural extension of ML, in: Proc. 16th ACM Symp.
on Principles of Programming Languages, ACM Press, New York, 1989, pp. 242-249; also in: [14],

pp. 67-96.

[24] D. R&my, Typing record concatenation for free, in: Proc. 19th ACM Symp. on Principles of

Programming Languages, ACM Press, New York, 1992, pp. 166-176; also in: [14], pp. 351-372.

[25] C. Talcott, A theory of binding structures and applications to rewriting, Theoret. Comput. Sci. II2

(1993) 999143.

[26] M. Takahashi, Parallel reductions in I-calculus, Inform. Comput. 118 (1) (1995) 120-127.

[27] M. Wand, Type inference for record concatenation and multiple inheritance, Inform. Comput. 93 (I)

(1991) l-15.

