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Abstract

If x is a vertex of a digraph D, then we denote by d+(x) and d−(x) the outdegree and the indegree of x, respectively.
The global irregularity of a digraph D is de5ned by ig(D) = max{d+(x); d−(x)} − min{d+(y); d−(y)} over all vertices
x and y of D (including x = y). If ig(D) = 0, then D is regular and if ig(D)6 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. In 1998, Guo and Kwak showed that, if D
is a regular c-partite tournament with c¿ 4, then every arc of D is in a directed cycle, which contains vertices from
exactly m partite sets for all m∈ {4; 5; : : : ; c}. In this paper we shall extend this theorem to almost regular c-partite
tournaments, which have at least two vertices in each partite set. An example will show that there are almost regular
c-partite tournaments with arbitrary large c such that not all arcs are in directed cycles through exactly 3 partite sets.
Another example will show that the result is not valid for the case that c=4 and there is only one vertex in a partite set.
c© 2004 Elsevier B.V. All rights reserved.
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1. Terminology and introduction

In this paper, all digraphs are 5nite without loops and multiple arcs. The vertex set and arc set of a digraph D are
denoted by V (D) and E(D), respectively. If xy is an arc of a digraph D, then we write x → y and say x dominates
y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex
of Y , then we say that X dominates Y , denoted by X → Y . Furthermore, X  Y denotes the fact that there is no
arc leading from Y to X . We also say that the set Y is weakly dominated by X . For the number of arcs from X to
Y we write d(X; Y ). If D is a digraph, then the out-neighborhood N+

D (x) = N+(x) of a vertex x is the set of vertices
dominated by x and the in-neighborhood N−

D (x)=N−(x) is the set of vertices dominating x. Therefore, if there is the arc
xy ∈E(D), then y is an outer neighbor of x and x is an inner neighbor of y. The numbers d+

D(x) = d+(x) =
∣∣N+(x)

∣∣ and
d−

D (x) = d−(x) =
∣∣N−(x)

∣∣ are called the outdegree and indegree of x, respectively. For a vertex set X of D, we de5ne
D[X ] as the subdigraph induced by X . If we speak of a cycle, then we mean a directed cycle, and a cycle of length n
is called an n-cycle. If we replace in a digraph D every arc xy by yx, then we call the resulting digraph the converse of
D, denoted by D−1.

There are several measures of how much a digraph diAers from being regular. Yeo [11] de5nes the global irregularity
of a digraph D by

ig(D) = max
x∈V (D)

{d+(x); d−(x)} − min
y∈V (D)

{d+(y); d−(y)}:

If ig(D) = 0, then D is regular and if ig(D)6 1, then D is called almost regular.
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A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite
tournament with exactly c vertices. If V1; V2; : : : ; Vc are the partite sets of a c-partite tournament D and the vertex x of D
belongs to the partite set Vi, then we de5ne V (x) = Vi. If D is a c-partite tournament with the partite sets V1; V2; : : : ; Vc

such that |V1|6 |V2|6 · · ·6 |Vc|, then |Vc|=�(D) is the independence number of D, and we de5ne �(D)= |V1|. If |Vi|=ni

for i = 1; 2; : : : ; c, then we speak of the partition-sequence (ni) = n1; n2; : : : ; nc.
This article deals with cycles containing a given arc. One result about this theme was worked out by the authors in

[7–10].

Theorem 1.1. If D is an almost regular c-partite tournament and e ∈E(D) is an arbitrary arc of D, then the following
holds:

(a) If c¿ 8, then e is contained in an n-cycle for each n∈ {4; 5; : : : ; c}.
(b) If c = 7 and there are at least two vertices in every partite set, then e is contained in an n-cycle for each

n∈ {4; 5; : : : ; c}.

In this article, the length of the cycles are not important, but the number of partite sets, which are contained in the
cycle. In 1991, Goddard and Oellermann [2] proved the following generalization of Moon’s [5] theorem that every strong
tournament is vertex pancyclic.

Theorem 1.2 (Goddard and Oellermann [2]). Every vertex of a strongly connected c-partite tournament D belongs to a
cycle that contains vertices from exactly m partite sets for each m∈ {3; 4; : : : ; c}.

Inspired by this theorem, in 1998 Guo and Kwak [4] (see also Guo [3]) studied cycles containing a given arc and
vertices from exactly m6 c partite sets in regular c-partite tournaments. In a 5rst step they proved the following theorem:

Theorem 1.3 (Guo and Kwak [4]). Let D be a regular c-partite tournament with c¿ 3. Then the following holds:

(i) Every arc of D is in a cycle, which contains vertices from exactly 3 or exactly 4 partite sets.
(ii) If c6 5 or the cardinality common to the partite sets of D is odd, then every arc of D is in a cycle, which contains

vertices from exactly 3 partite sets.

Using this theorem as basis of induction, they showed that the following three theorems are valid.

Theorem 1.4 (Guo and Kwak [4]). Let D be a regular c-partite tournament with 36 c6 5. Then every arc of D is in
a cycle that contains vertices from exactly m partite sets for all m with 36m6 c.

Theorem 1.5 (Guo and Kwak [4]). Let D be a regular c-partite tournament with c¿ 4. Then every arc of D is in a
cycle that contains vertices from exactly m partite sets for all m with 46m6 c.

Theorem 1.6 (Guo and Kwak [4]). Let D be a regular c-partite tournament with c¿ 3. If the cardinality common to
all partite sets of D is odd, then every arc of D is in a cycle that contains vertices from exactly m partite sets for all
m with 36m6 c.

Note that Theorem 1.6 implies Alspach’s [1] theorem that every regular tournament is arc pancyclic, since every partite
set of a tournament has the cardinality exactly 1.

The aim is now to carry these results of Guo and Kwak over to almost regular multipartite tournaments. In a 5rst step,
we will extend Theorem 1.3 by showing that every arc of an almost regular c-partite tournament is in a cycle containing
vertices from exactly 3 or exactly 4 partite sets, if c¿ 4 or if c¿ 3 and there are at least two vertices in each partite
set. Examples will show that there are multipartite tournaments with an arbitrary large number of partite sets that have
arcs which are not in cycles through exactly 3 partite sets. A further example will demonstrate that the condition c¿ 4 is
important, if there is only one vertex in at least one partite set. Using these results as basis of induction, we will derive
the main result of this paper.

Theorem 1.7. Let D be an almost regular c-partite tournament with c¿ 4. If there are at least two vertices in each
partite set, then every arc of D is in a cycle that contains vertices from exactly m partite sets for all m with 46m6 c.
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An example will show that the condition that there are at least two vertices in each partite set is necessary, at least for
c = 4.

2. Preliminary results

The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann and Yeo [6]). If V1; V2; : : : ; Vc are the partite sets of an almost regular c-partite tourna-
ment D such that |V1|6 |V2|6 · · ·6 |Vc|, then |Vc|6 |V1| + 2.

Lemma 2.2 (Tewes, Volkmann and Yeo [6]). If D is an almost regular multipartite tournament, then for every vertex
x of D we have

|V (D)| − �(D) − 1
2

6d+(x); d−(x)6
|V (D)| − �(D) + 1

2
:

The following observations can be found in [9] by Volkmann and Winzen.

Lemma 2.3. Let D be an almost regular multipartite tournament and x a vertex of D with |V (x)|=p. Then we observe
that

|V (D)| − p − 1
2

6d+(x); d−(x)6
|V (D)| − p + 1

2
:

In this article, we treat the case of an almost regular multipartite tournament D with �(D)=r, �(D)=r+1 or �(D)=r+2
and �(D) = r. This leads to the following two remarks:

Remark 2.4. Let �(D) = r. In this case, Lemma 2.2 yields for all x ∈V (D) that
(c − 1)r − 1

2
6d+(x); d−(x)6

(c − 1)r + 1
2

:

Hence, if r is even or if c is odd, then we see that d+(x) = d−(x) = ((c − 1)r)=2 and that D is regular.

Remark 2.5. If �(D) = r + 2, �(D) = r and ig(D)6 1, then |V (D)| − r is even. So the bounds in Lemma 2.3 can be
improved by

d+(x); d−(x) =
|V (D)| − r − 2

2
if |V (x)| = r + 2

or

d+(x); d−(x) =
|V (D)| − r

2
if |V (x)| = r:

Consequently, for the case that �(D) = r + 2, instead of Lemma 2.2, we can use the following result:

|V (D)| − r − 2
2

6d+(x); d−(x)6
|V (D)| − r

2
:

Now let us summarize some results of Lemma 2.3 and Remark 2.5.

Corollary 2.6. If D is an almost regular c-partite tournament with the partite sets V1; V2; : : : ; Vc such that r= |V1|6 |V2|
6 · · ·6 |Vc|6 r + 2, then for every vertex x of D we have

|V (D)| − r − 2
2

6d+(x); d−(x):

3. Main results

Let D be an almost regular c-partite tournament with the partite sets V1; V2; : : : ; Vc such that r= |V1|6 |V2|6 · · ·6 |Vc|.
If ab is an arbitrary arc of D such that a∈Vi and b∈Vj with 16 i; j6 c, then the following partition of V (D) is useful
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in the proofs of the next theorems:

A1 = N−(b) ∩ Vi; A2 = N+(b) ∩ Vi;

B1 = N+(a) ∩ Vj; B2 = N−(a) ∩ Vj;

X = N−(a) ∩
(

c⋃
l=1

Vl − (Vi ∪ Vj)

)
;

Y = N+(a) ∩ N−(b) ∩
(

c⋃
l=1

Vl − (Vi ∪ Vj)

)
;

Z = N+(a) ∩ N+(b) ∩
(

c⋃
l=1

Vl − (Vi ∪ Vj)

)
:

Note that some of the de5ned sets (clearly except A1 and B1) might be empty.
Suppose that X =∅. Then it follows that N−(a)=B2 and hence N+(a)=V (D)− (B2 ∪Vi). If we set d+(a)=d−(a)+�a

with �a ∈ {−1; 0; 1} and
∑

k �=i; j |Vk |=(c− 2)r+ h with 06 h6 2(c− 2), then we observe that �a = |V (D)− (B2 ∪Vi)|−
|B2| = |Vj| + (c − 2)r + h − 2|B2|. As |B2| = |Vj| − |B1| we obtain

|Vj| + �a = 2|B1| + (c − 2)r + h: (1)

Theorem 3.1. Let D be an almost regular multipartite tournament with the partite sets V1; V2; : : : ; Vc. If c¿ 4, then
every arc of D is in a cycle containing vertices from exactly 3 or exactly 4 partite sets. If |V1| = |V2| = · · · = |Vc| = r,
then this result also holds for c = 3.

Proof. According to Lemma 2.1 we can distinguish the three cases that 16 r = |V1|6 |V2|6 · · ·6 |Vc| = r + m with
m=0; 1; 2. Thus, we see that |V (D)|= cr+ k with k =0, if m=0, 16 k6 c− 1, if m=1, and 26 k6 2c− 2, if m=2.
If m = 0 and c = 3, then, according to Remark 2.4, D is regular, and Theorem 1.3 of Guo and Kwak yields the desired
result. So, if m = 0, we can investigate the case that c¿ 4.
Let ab be an arbitrary arc of D such that a∈Vi and b∈Vj with 16 i; j6 c, and let A1; A2; B1; B2; X; Y; Z; �a and h be

de5ned as in the beginning of this section.
Suppose that ab is not in a cycle, which contains vertices from exactly 3 partite sets. In particular, ab is not in a 3-cycle.

Under this assumption, we 5rstly study the domination relationships among the partition sets of V (D) listed above.
Firstly, we observe that

X → b; i:e:; N−(a) ∩ N+(b) ∩
(

c⋃
l=1

Vl − (Vi ∪ Vj)

)
= ∅; (2)

since otherwise, if there is a vertex x ∈X such that b → x, then abxa is a 3-cycle, a contradiction.
Now, we suppose that X = ∅. Since c¿ 4, (1) yields that r + 3¿ |Vj| + �a¿ 2 + 2r, from which we obtain r = 1,

|B1|=1, h=0, �a=1 and |Vj|=3. By Remark 2.5, the fact that �a 
= 0 implies that |V (a)|= |Vi|= r+1=2. Furthermore,
we observe that d−(a) = |B2| = |Vj| − |B1| = 2. Since h = 0, it remains to consider the partition-sequence 1; 1; 2; 3. If
Z = ∅, then we conclude that |Y | = |V (D) − (Vi ∪ Vj)| = 2, and thus, it follows that d−(b)¿ 3, because of Remark 2.5
and |Vj| = 3 = r + 2 a contradiction. Hence, we observe that there is a vertex z ∈ Z and |V (z)| = 1. Remark 2.5 yields
that d+(z) = d−(z) = 3. Since {a; b} → z, there is a vertex b2 ∈B2 such that z → b2 and abzb2a is a cycle with vertices
from exactly 3 partite sets, a contradiction.

These considerations lead to X 
= ∅. Analogously, we see that the case Z = ∅ is impossible.
If there is an arc a2 → x (respectively, z → b2) from A2 to X (respectively, Z to B2), then aba2xa (respectively,

abzb2a) is a cycle containing vertices from exactly 3 partite sets, a contradiction. Hence,

X → A2 and B2 → Z: (3)

If there is an arc z → a2 (respectively, b2 → x) from Z to A2 (respectively, B2 to X ), then we also have B2 → a2
(respectively, b2 → A2), because otherwise, if there is a vertex b2 ∈B2 (respectively, a2 ∈A2) such that a2 → b2, then
abza2b2a (respectively, aba2b2xa) is a cycle through exactly 3 partite sets, a contradiction. But this yields

d−(a2)¿ |X | + |B2| + |{b; z}| = d−(a) + 2

(respectively; d+(b2)¿ |Z | + |A2| + |{a; x}| = d+(b) + 2);
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a contradiction to ig(D)6 1. Hence,

A2 → Z and X → B2: (4)

Suppose now that the arc ab also does not belong to any cycle with vertices of exactly 4 partite sets. A 5rst consequence,
we observe, is that X  Z , since otherwise, if there are vertices z ∈ Z and x ∈X such that z → x, then abzxa is a cycle
with vertices from exactly 4 partite sets, a contradiction.

Assume that there exist vertices b1 ∈B1 − {b} and x ∈X such that b1 → x. If there is a vertex a2 ∈A2 such that
a2 → b1, then aba2b1xa is a cycle through exactly 3 partite sets, a contradiction. If there is a vertex z ∈ Z such that
z → b1, then abzb1xa is a cycle containing vertices from exactly 3 or 4 partite sets, a contradiction. Altogether, we see
that b1 → Z ∪ A2 ∪ {x} which implies d+(b1)¿d+(b) + 1. Because of ig(D)6 1, we conclude that d+(b1) = d+(b) + 1
and A1 −{a} → b1. If there are vertices z ∈ Z and a1 ∈A1 −{a} such that z → a1, then abza1b1xa is a cycle with vertices
from exactly 3 or exactly 4 partite sets, a contradiction. Together with (3) and (4), for every vertex z ∈ Z , this yields

d−(z)¿ |X | + |Vi| + |B2| + |{b1; b}| − |V (z) − {z}|

¿

{
d−(a) + 2 if |V (z)|6 r + 1;

d−(a) + 1 if |V (z)| = r + 2;

in both cases a contradiction either to ig(D)6 1 or to Remark 2.5. Hence, we see that X → B1.
Now, assume that there are vertices a1 ∈A1 − {a} and z ∈ Z such that z → a1. If there is a vertex x ∈X such that

a1 → x, then abza1xa is a cycle containing vertices from exactly 3 or exactly 4 partite sets, a contradiction. Together with
(3) and (4), for every vertex x ∈X , this yields

d+(x)¿ |Vj| + |A2| + |Z | + |{a; a1}| − |V (x) − {x}|

¿

{
d+(b) + 2 if |V (x)|6 r + 1;

d+(b) + 1 if |V (x)| = r + 2;

in both cases a contradiction either to ig(D)6 1 or to Remark 2.5. Summarizing our results, we see that

X  Z ∪ Vj ∪ A2 ∪ {a} and Vi ∪ X ∪ B2 ∪ {b} Z: (5)

This leads to the following lower bounds for all x ∈X (respectively, all z ∈ Z):

d+(x)¿ |Vj| + |Z | + |A2| + |{a}| − |V (x) − {x}|

¿




d+(b) + 2 if |V (x)| = r;

d+(b) + 1 if |V (x)| = r + 1;

d+(b) if |V (x)| = r + 2;

d−(z)¿ |Vi| + |B2| + |X | + |{b}| − |V (z) − {z}|

¿




d−(a) + 2 if |V (z)| = r;

d−(a) + 1 if |V (z)| = r + 1;

d−(a) if |V (z)| = r + 2:

To get no contradiction, it has to be |V (x)|; |V (z)|¿ r + 1 for all x ∈X and z ∈ Z . Furthermore, we conclude that the
lower bounds of d+(x) and d−(z) must not increase by one, that means |Vi|= |Vj|= r, V (x)− {x} ⊆ Z for all x ∈X and
V (z) − {z} ⊆ X for all z ∈ Z . If r¿ 2, then, because of |V (x)|¿ r + 1 and V (x) − {x} ⊆ Z for all x ∈X , there are at
least two vertices z1; z2 ∈ Z with V (z1) = V (z2), a contradiction to V (z) − {z} ⊆ X for all z ∈ Z . Hence, we examine the
case that r = 1. This implies Vi = {a}; Vj = {b} and B2 = A2 = B1 − {b} = A1 − {a} = ∅. Furthermore, we conclude that
d+(b) = |Z | and d+(a) = |Z | + |Y | + |{b}| which yields |Y | = 0, d+(a) = d+(b) + 1 and, since |Vj| = |Vi| = r, Remark
2.5 yields |Vc| = r + 1. Because of V (D) − (Vi ∪ Vj) ⊆ X ∪ Z and c¿ 4, there are at least two partite sets Vx1 and Vx2
in V (D) − (Vi ∪ Vj) such that Vx1 = {x1; z1} and Vx2 = {x2; z2}. Furthermore, the fact that V (x) − {x} ⊆ Z for all x ∈X
and V (z) − {z} ⊆ X for all z ∈ Z implies that one vertex of Vx1 (respectively, Vx2 ) is in X and the other one in Z . So,
without loss of generality, let x1; x2 ∈X and z1; z2 ∈ Z and x1 → x2. But now we observe that

d+(x1)¿ |Vj| + |Z | − |V (x1) − {x1}| + |A2| + |{a; x2}| = d+(b) + 2;

a contradiction to ig(D)6 1. This completes the proof of the theorem.
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Fig. 1. An almost regular 6-partite tournament with the property that the arc ab is in no cycle through exactly 3 partite sets.

The following example shows that the supplement that every arc is in a cycle which consists of vertices of exactly
3 or 4 partite sets is essential, since not every arc of an almost regular multipartite tournament is in a cycle containing
vertices from exactly 3 partite sets.

Example 3.2. Let V1={a; x2; x3} and V2={b; y2; y3} be the two partite sets of a digraph D such that a → b → x2 → y2 →
x3 → y3 → a, b → x3, y2 → a and y3 → x2. Furthermore, let D′ and D′′ be copies of D such that D → D′ → D′′ → D.
The resulting 6-partite tournament H (see also Fig. 1) is almost regular, but the arc ab is not in any cycle containing
vertices from exactly three partite sets.

Let G; G′; G′′ be three copies of H such that G → G′ → G′′ → G. The resulting 18-partite tournament is almost
regular, but no copy of the arc ab is in a cycle containing vertices from exactly three partite sets.
If we continue this process, we arrive at almost regular c-partite tournaments with arbitrary large c which contain arcs

that do not belong to any cycle through exactly three partite sets.

In the case that the maximal diAerence of the cardinality of the partite sets is exactly 2, Theorem 3.1 also holds, if the
multipartite tournament consists of only three partite sets.

Theorem 3.3. Let D be an almost regular 3-partite tournament with the partite sets V1; V2; V3 such that 16 r =
|V1|6 |V2|6 |V3| = r + 2. Then every arc of D is in a cycle containing vertices of all partite sets.

Proof. Let ab be an arbitrary arc of D. Suppose that ab is not in any cycle, containing vertices of all partite sets. Obviously,
we have |V (D)|= 3r + k with 26 k6 4. Let a∈Vi and b∈Vj with 16 i; j6 3. If we de5ne A1; A2; B1; B2; X; Y; Z; h and
�a as in the beginning of this section, then, following the same lines as in Theorem 3.1, we observe that

X → A2 ∪ B2 ∪ {a; b} → Z: (6)

Suppose that X =∅. Let Vl=V (D)− (Vi ∪Vj). Since, c=3, from (1) we get |Vj|+�a=2|B1|+ r+h. This equality implies
B1 = {b}, B2 =Vj − {b} and 06 h6 1. If h=1, then it follows that �a =1, |Vj|= r +2 and |Vl|= r +1. By Remark 2.5
we have |V (a)| = |Vi| = r + 1. This is a contradiction since there is no partite set with r vertices. Hence, let h = 0 and
thus |Vl| = r and 06�a6 1. First, we assume that �a = 0 and thus, according to (1), |Vj| = r + 2. If there is a vertex
z ∈ Z , then (6) implies that d−(z)¿ |Vj|+ 1= r + 3 and d+(z)6 |Vi| − 16 r + 1, a contradiction. Consequently, we can
consider the case that Y =Vl. If |Vi|= r, then we arrive at the contradiction r+1= |Y |+16d−(b)6d+(b)+16 |Vi|= r.
Since the partition-sequence r; r + 1; r + 2 is impossible, it remains to treat the case that |Vi| = r + 2. To get no contra-
diction to ig(D)6 1, it follows that A2 = Vi − {a}. If there are vertices a2 ∈A2 and y ∈ Y such that a2 → y, then we
conclude that B2 → y, since otherwise, if there is a vertex b2 ∈B2 such that y → b2, then aba2yb2a is a cycle through
all 3 partite sets. But now we arrive at the contradiction d−(y)¿ r + 3 and d+(y)6 r + 1. Hence, let Y → A2, which
implies that A2 → B2 → Y . If a2; a′

2 ∈A2, b2; b′
2 ∈B2 and y ∈ Y , then aba2b2ya′

2b
′
2a is a cycle through all partite sets, a

contradiction. Second, let �a =1. Since |Vc|= r+2, Remark 2.5 yields |Vi|= r+1, and thus |Vj|= r+2, a contradiction to
ig(D)6 1.
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Fig. 2. An almost regular 3-partite tournament with the property that the arc ab is in no cycle through exactly 3 partite sets.

Analogously, we see that the case Z = ∅ is impossible. Consequently, it remains to consider the case that X; Z 
= ∅.
Now, analogously to Theorem 3.1, we get relationships (5) and the conditions |Vi| = |Vj| = r = 1 and |Vc| = r + 1, a
contradiction.

Nevertheless Theorem 3.1 cannot be improved in the sense that in all almost regular c-partite tournaments with c¿ 3,
every arc is in a cycle containing vertices from exactly 3 or 4 partite sets. This can be seen in the following simple
example, which shows a 3-partite tournament with an arc ab that is not contained in any cycle through all partite sets.

Example 3.4. Let V1 = {a; x2}, V2 = {b; y2} and V3 = {z} be the three partite sets of the multipartite tournament D such
that a → b → x2 → y2 → z → x2 and y2 → a → z → b (see Fig. 2). Then the arc ab is not contained in any cycle with
vertices of exactly 3 (and clearly also not four) partite sets.

In the last example, there is one partite set containing only one vertex. If we add the condition that there are at least
two vertices in every partite set, then we can improve Theorem 3.1.

Theorem 3.5. Let D be an almost regular multipartite tournament with the partite sets V1; V2; : : : ; Vc. If c¿ 3 and there
are at least two vertices in each partite set, then every arc of D is in a cycle containing vertices from exactly 3 or
exactly 4 partite sets.

Proof. If c¿ 4 or |V1|= |V2|= |V3|, then the assertion holds with Theorem 3.1. If r = |V1|6 |V2|6 |V3|= r + 2, then the
assertion follows from Theorem 3.3. Therefore, it remains to consider the case that c=3 and 26 r=|V1|6 |V2|6 |V3|=r+1.

Let ab be an arbitrary arc of D. Suppose that ab is not in any cycle, containing vertices of all partite sets. Obviously,
we have |V (D)|= 3r + k with 16 k6 2. Let a∈Vi and b∈Vj with 16 i; j6 3. If we de5ne A1; A2; B1; B2; X; Y; Z; h and
�a as in the beginning of this section, then, following the same lines as in Theorem 3.1, we observe that

X → A2 ∪ B2 ∪ {a; b} → Z: (7)

Suppose that X = ∅. Let Vl = V (D) − (Vi ∪ Vj). With c = 3 and the fact that |Vj|6 r + 1, (1) implies B1 = {b}, h = 0,
�a = 1, |Vl| = r, |Vj| = r + 1 and |B2| = r. If there is a vertex z ∈ Z , then (7) yields that d−(z)¿ |Vj| + 1 = r + 2 and
d+(z)6 |Vi| − 16 r, a contradiction. Hence, let Y = Vl. If |Vi| = r, then we arrive at the contradiction r + 1 = |Vl| +
16d−(b)6d+(b) + 16 |A2| + 16 r. Hence, let us suppose that |Vi| = r + 1. To get no contradiction to ig(D)6 1,
it follows that |A2| = r. If there are vertices a2 ∈A2 and y ∈ Y such that a2 → y, then we deduce that B2 → y, since
otherwise, if there is a vertex b2 ∈B2 such that y → b2, then aba2yb2a is a cycle with vertices from all partite sets,
a contradiction. But this yields the contradiction d−(y)¿ r + 2 and d+(y)6 r. Consequently, it follows that Y → A2,
and thus A2 → B2 → Y . If a2; a′

2 ∈A2, b2; b′
2 ∈B2 and y ∈ Y , then aba2b2ya′

2b
′
2a is a cycle through all 3 partite sets, a

contradiction.
Analogously, we observe that the case Z = ∅ is impossible. Consequently, it remains to treat the case that X; Z 
= ∅.

Now, analogously to Theorem 3.1, we get relationships (5) and the condition |Vi|= |Vj|= r =1, a contradiction to r¿ 2.
This completes the proof of the theorem.
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We take Theorem 3.5 as basis of induction to show Theorem 1.7. Next, we will present the induction step.

Theorem 3.6. Let D be an almost regular c-partite tournament with c¿ 4 and at least two vertices in each partite set.
If an arc of D is in a cycle that contains vertices from exactly m partite sets for some m with 36m¡c, then it is
also in a cycle that contains vertices from exactly m + 1 partite sets.

Proof. Let V1; V2; : : : ; Vc be the partite sets of D such that 26 r = |V1|6 |V2|6 · · ·6 |Vc| = r + o with o = 0; o = 1 or
o = 2. Obviously, we have |V (D)| = cr + k with k = 0, if o = 0, 16 k6 c − 1, if o = 1, and 26 k6 2c − 2, if o = 2.
Let v1v2 be an arc that is in a cycle, say C = v1v2 : : : vtv1, which contains vertices from exactly m partite sets for some
36m¡c. Suppose that v1v2 is not part of a cycle containing vertices from exactly m + 1 partite sets. Assume without
loss of generality that v1 ∈Vi and v2 ∈Vj for some 16 i; j6 c. If I = {im+1; : : : ; ic} is the maximal set of indices such
that V (C) ∩ Vl = ∅ for all l∈ I , then we de5ne the sets X and Y by

X = N−(v1) ∩
(⋃

l∈I

Vl

)
; Y = N+(v1) ∩

(⋃
l∈I

Vl

)
:

It is clear that X ∪ Y =
⋃

l∈I Vl and every vertex of X ∪ Y is adjacent with all vertices in C.
Firstly, let us suppose that X 
= ∅. If there is a vertex x ∈X such that vt → x, then v1v2 : : : vtxv1 is a cycle through

exactly m + 1 partite sets, a contradiction. If such a vertex does not exist, then X → vt . Since X → {v1; vt}, we observe
that, if some vi ∈V (C) dominates a vertex x ∈X , then let n=max{l|vl → x} and v1v2 : : : vnxvn+1 : : : vtv1 is a cycle through
exactly m + 1 partite sets. Now, we assume that X → V (C).
Now, let H =N+(v2)−V (C). If there is an arc h → x with h∈H and x ∈X , then let 5rstly be h∈Vl with l 
∈ I . In this

case v1v2hxv3 : : : vtv1 is a cycle through exactly m + 1 partite sets, a contradiction. Consequently, let h∈Vl with l∈ I . If
m=3, then v1v2hxv1 is a cycle through exactly 4 partite sets, a contradiction. Otherwise, if m¿ 4, then let p be the index
such that {vp; vp+1; : : : ; vt ; v1} − V (v2) consists of vertices from exactly m − 2 partite sets. In this case, v1v2hxvp : : : vtv1 is
a cycle containing vertices of exactly m + 1 partite sets, a contradiction. For all x ∈X , this leads to

d+(x)¿ |H − (V (x) − {x})| + |V (C)|;
whereas

d+(v2)6 |H | + |V (C)| − 2:

If H ∩V (x)=∅, then we arrive at a contradiction to ig(D)6 1. Hence, let y ∈H ∩V (x). Since H ∩X =∅, we conclude that
y ∈ Y . Now let z ∈N−(x) and assume that y → z. If z ∈Vl with l 
∈ I , then v1v2yzxv3 : : : vtv1 is a cycle through exactly
m+1 partite sets, a contradiction. Thus, let z ∈Vl with l∈ I . If m=3, then v1v2yzxv1 is a cycle through exactly 4 partite
sets, and if m¿ 4, then we choose the index p as above and v1v2yzxvp : : : vtv1 is a cycle through exactly m+1 partite sets,
in both cases a contradiction. Hence, let N−(x) → y. If y → vi for some 36 i6 t, then let n=min{q|26 q6 i−1; vq →
y}. Now, v1v2 : : : vnyvn+1 : : : vtv1 is a cycle through exactly m + 1 partite sets, a contradiction. Altogether, we see that
{v1; v2; : : : ; vt} ∪ N−(x) → y, and thus it follows that

d−(y)¿d−(x) + t¿d−(x) + 3;

a contradiction to ig(D)6 1.
Consequently, there remains to consider the case that X = ∅. This implies that v1 → Y and Y =

⋃
l∈I Vl. Now, we

distinguish diAerent cases.
Case 1: Let there be a vertex y ∈ Y such that v2 → y. Then we have V (C) → y, since otherwise let n=min{z|y → vz}.

Then v1v2 : : : vn−1yvn : : : vtv1 is a cycle through exactly m+ 1 partite sets, a contradiction. If v1  N+(y), then it follows
that d−(y)=|V (C)|+|N−(y)−V (C)| and d−(v1)6 |V (C)|−2+|N−(y)−V (C)|, a contradiction to ig(D)6 1. Therefore,
there is a 3-cycle v1yzv1. Obviously, the case z ∈ Y ∪V (C) is impossible, and thus v1v2 : : : vtyzv1 is a cycle through exactly
m + 1 partite sets, a contradiction.

Altogether we see that there remains the case Y → v2.
Case 2: Suppose that there exists a vertex y ∈ Y such that v3 → y. As in Case 1 we observe that in this case

V (C) − {v2} → y. In the following, we will denote the sets F and H by F = N−(y) − V (C) and H = N+(y) − V (C),
respectively. If there is a 3-cycle v1yzv1, then, analogously as in Case 1, we arrive at a contradiction. Hence, let v1  
N+(y). It follows that d−(y) = |V (C)| − 1 + |F | and d−(v1)6 |V (C)| − 2 + |F |. Because of ig(D)6 1, this leads to
N−(v1) = (V (C) − {v1; v2}) ∪ F; d−(y) = d−(v1) + 1; V (v1) − {v1} ⊆ N+(y) and Y − V (y) ⊆ N+(y). Since r¿ 2, we
conclude that V (v1) − {v1} 
= ∅. Let H ′ = H − Y . Then we have {v4; v5; : : : ; vt} ❀ H ′, because otherwise, if there are
vertices h′ ∈H ′ and vl such that h′ → vl for some 46 l6 t, then v1v2 : : : vl−1yh′vl : : : vtv1 is a cycle containing vertices
from exactly m + 1 partite sets, a contradiction. Furthermore, if there are vertices f ∈F and h′ ∈H ′ such that h′ → f,
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then v1v2 : : : vtyh′fv1 is a cycle through exactly m + 1 partite sets, a contradiction. Summarizing our results, we see that
(F ∪ {y; v1; v4; v5; : : : ; vt}) H ′.
Subcase 2.1: Assume that there are vertices h′ ∈H ′ and y′ ∈V (y) − {y} such that h′ → y′. It follows that F → y′,

since otherwise, if there is a vertex f ∈F such that y′ → f, then v1v2 : : : vtyh′y′fv1 is a cycle through exactly m+1 partite
sets, a contradiction. If there exists a vertex vl ∈V (C) with 46 l6 t such that y′ → vl, then v1v2 : : : vl−1yh′y′vl : : : v1 is
a cycle containing vertices from exactly m + 1 partite sets, a contradiction. Hence, let ({v1; v4; : : : ; vt ; h′} ∪ F) → y′. We
arrive at

d−(y′)¿ |F | + |V (C)| − 1 = d−(y) = d−(v1) + 1:

To get no contradiction to ig(D)6 1, it follows that y′ → (H − {h′}) ∪ {v3}. If there is a vertex vl (46 l6 t) such
that v2 → vl, then v1v2vl : : : vtyh′y′v3 : : : vl−1v1 is a cycle through exactly m + 1 partite sets, a contradiction. If there is a
vertex f ∈F such that v2 → f, then v1v2fyh′y′v3 : : : vtv1 is a cycle containing vertices from exactly m + 1 partite sets,
a contradiction. If v2 → h′, then v1v2h′y′v3 : : : vtv1 is a cycle through exactly m + 1 sets, also a contradiction. Hence, we
have (F ∪ {h′; v1; v4; : : : ; vt} ∪ Y ) v2, and thus

d+(v2)6 |H | − 1 − |Y − V (y)| − |V (v2) ∩ H | + |{v3}|6 |H |;

whereas d+(y)= |H |+1. This implies that v2 → H −{h′} and H ′′ := H ′ −{h′}=H −{h′}. If there exist vertices h′′ ∈H ′′

and y′′ ∈ Y − {y} such that h′′ → y′′, then analogously as above, we observe that h′′ → v2, a contradiction. Hence,
let Y = V (y) → H ′′. According to Corollary 2.6, we have d+(y)¿ 3, and thus |H |¿ 2, which means that H ′′ 
= ∅.
Consequently, there is a vertex h′′ ∈H ′′ such that d+

D[H ′′](h
′′)6 (|H | − 2)=2. Summarizing our results, we arrive at

|H |6d+(h′′)6
|H | − 2

2
+ 2:

Since |H |¿ 2, this yields |H | = 2 and h′′ → h′. Now, v1v2h′′h′y′v3 : : : vtv1 is a cycle through all m + 1 partite sets, a
contradiction.
Subcase 2.2: Suppose that V (y) → H ′. Since V (v1) − {v1} ⊆ H ′, the observations above yield that ({v4; v5; : : : ; vt} ∪

F) → (V (v1) − {v1})(⊆ H ′). This implies that

d−(v′
1)¿ |F | + |V (C)| − 3 + |V (y)|¿ |F | + |V (C)| − 1

= d−(v1) + 1

for all vertices v′
1 ∈V (v1)− {v1}. To get no contradiction to ig(D)6 1, it follows that |V (y)|= 2 and (V (v1)− {v1}) →

{v2; v3}. Analogously as in Subcase 2.1, replacing the path yh′y′v3 by yv′
1v3, we see that (F ∪ {v4; v5; : : : ; vt})  v2.

Hence, we arrive at

d+(v2)6 |H | − |Y − V (y)| − |V (v2) ∩ H | − |V (v1) ∩ H | + 16 |H | − r + 26 |H |;

whereas d+(y) = |H | + 1. This implies that v2 → H − V (v1)= : H ′′; |H ∩ V (v1)| = 1 and Y − V (y) = ∅, which means
H ′ = H . Following the same lines as in Subcase 2.1, replacing there h′ by v′

1, we arrive at a contradiction.
Summarizing the investigations of Case 2, we see that Y → v3. Observing the converse D−1 of D, we conclude that

vt → Y and therefore t¿ 4.
Case 3: Finally, let {vt ; v1} → Y → {v2; v3}. Let us de5ne the sets U and W by W =N+(v2)−V (C) and U =N−(v1)−

V (C), respectively. It is not diMcult to show that, if there is an arc leading from W to Y (respectively, from Y to U ),
or if Y → W (respectively, U → Y ) and there is an arc from W to v1 (respectively, from v2 to U ), then the multipartite
tournament contains a cycle through v1v2 and exactly m + 1 partite sets, a contradiction. Hence, we may assume that
Y ∪ {v1; v2} W and U  Y ∪ {v1; v2} and U ∩ W = ∅.

If there exists a vertex vl ∈V (C) such that v2 → vl and vl−1 → v1, then obviously l¿ 4 and v1v2vl : : : vtyv3 : : : vl−1v1
is a cycle through exactly m+ 1 partite sets for some y ∈ Y , a contradiction. Therefore, from now on, we investigate the
case that v1 → vl−1 or V (v1) = V (vl−1), if v2 → vl.

If there are vertices u∈U and vl ∈V (C) with l¿ 4 such that v2 → vl and vl−1 → u, then v1v2vl : : : vtyv3 : : : vl−1uv1 is
a cycle through exactly m + 1 partite sets, a contradiction. Hence, we may assume that u → vl−1 or V (u) = V (vl−1), if
v2 → vl. Analogously, we see that vl+1 → w or V (w) = V (vl+1), if w ∈W and vl → v1 with l¡ t.

If there is an arc w → u from W to U , then v1v2wuyv3 : : : vtv1 is a cycle containing vertices from exactly m+1 partite
sets, a contradiction. Therefore, we have U  W .
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If y ∈ Y is an arbitrary vertex, then these results yield the following three lower bounds:

|N+(v1)|¿ |Y | + |W | + |N+(v2) ∩ V (C)| − |V (v1) − {v1}|
¿ |V (y)| + |N+(v2)| − |V (v1) − {v1}|

¿

{ |N+(v2)| if |V (v1)|6 r + 1;

|N+(v2)| − 1 if |V (v1)| = r + 2;
(8)

|N+(u)|¿ |Y | + |W | + |N+(v2) ∩ V (C)| − 1 + |{v1; v2}| − |V (u) − {u}|
¿ |V (y)| + |N+(v2)| + 1 − |V (u) − {u}|

¿

{ |N+(v2)| + 1 if |V (u)|6 r + 1;

|N+(v2)| if |V (u)| = r + 2;
(9)

for every u∈U and

|N−(w)|¿ |Y | + |U | + |N−(v1) ∩ V (C)| − 1 + |{v1; v2}| − |V (w) − {w}|
¿ |V (y)| + |N−(v1)| + 1 − |V (w) − {w}|

¿

{ |N−(v1)| + 1 if |V (w)|6 r + 1;

|N−(v1)| if |V (w)| = r + 2;
(10)

for every w ∈W . If the right-hand side of (8) increases by at least two or the right-hand side of (9) or (10) increases by at
least one, then we arrive at a contradiction either to ig(D)6 1 or to Remark 2.5. This leads to |V (u)|; |V (w)|¿ r+1 for
u∈U and w ∈W . Another consequence is that |Y |=r, if U ∪W 
= ∅, and |Y |6 r+1, if U ∪W=∅. Anyway, Y consists of
exactly one partite set. Furthermore, bounds (8)–(10) yield |U |; |W |6 1, since otherwise, the right-hand side of (9) or (10)
increases by one, a contradiction. Let U 
= ∅ and u∈U . Because of v1 → v2, we conclude that vt → u, since otherwise
the right-hand side of (9) increases by one, a contradiction. If we observe the cycle C′ = b1b2 : : : bt+1b1 := v1v2 : : : vtuv1
such that b1 = v1, then we see that C′ ful5lls {bt+1; b1} → Y → {b2; b3}. Hence, we can replace C by C′, which means
that, without of generality, we may suppose that U = ∅. Analogously, it remains to treat the case that W = ∅.

Let y ∈ Y . If we de5ne U ′=N−(y)−V (C) and W ′=N+(y)−V (C), then we conclude that V (D)=V (y)∪V (C)∪U ′∪W ′.
Let w′ ∈W ′. If w′ → v1, then it follows that w′ ∈U , and thus we have w′ ∈N−(y)−V (C), a contradiction to the de5nition
of W ′. Since W = ∅, this yields v1  w′  v2 and the right-hand side of (8) increases by one. Analogously, we observe
that v1  u′  v2 for each u′ ∈U ′. To get no contradiction in (8), it has to be |U ′ ∪ W ′|6 1.
Subcase 3.1: Suppose that m=3, and thus c=4. Let Vb=V (D)−(Y ∪V (v1)∪V (v2)). We observe that N−(v1)∩Vb 
= ∅,

since otherwise, we arrive at

3r + k − 2
2

6d−(v1)6 |V (v2) − {v2}|6 r if |V (v2)|6 r + 1;

3r + k − 2
2

6d−(v1)6 |V (v2) − {v2}| = r + 1 if |V (v2)| = r + 2; |V (v1)|¿ r + 1 and thus k¿ 3

and

3r + k
2

= d−(v1)6 |V (v2) − {v2}| = r + 1 if |V (v2)| = r + 2 and |V (v1)| = r;

in all cases a contradiction. If N+(v2) ∩ (V (C) − {v3}) = ∅, then Corollary 2.6 yields (3r + k − 2)=26d+(v2)6 2, a
contradiction.

Suppose that there exists an index q¿ 4 as small as possible such that v2 → vq and that there is an index l¡q with
vl → v1. This index l let be chosen as large as possible. Now, let us observe the cycle C′=v1v2vq : : : vtyv3 : : : vlv1. If C′ does
not contain vertices from all the 4 partite sets, then we conclude that Vb ⊆ V (D)− V (C′) ⊆ [{vl+1; : : : ; vq−1} ∪ U ′ ∪ W ′].
Since v1  U ′ ∪ W ′ ∪ {vl+1; : : : ; vq−1}, we arrive at N−(v1) ∩ Vb = ∅, a contradiction.

Altogether, we see that an index q chosen as above does not exist. Let y1 be the largest index such that v2 → vy1 . This
implies that v1  {v2; v3; : : : ; vy1−1}. If vy1 → v1, then we have the 3-cycle v1v2vy1v1, a contradiction to t¿ 4. Hence, we
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deduce that N−(v1) ⊆ {vy1+1; vy1+2; : : : ; vt}. If there is no arc leading from v3 to {vy1+1; vy1+2; : : : ; vt}, then we arrive at

d−(v3)¿ d−(v1) + |Y | + |{v1; v2}| − |V (v3) − {v3}|

¿

{
d+(v1) + 2 if |V (v3)|6 r + 1;

d+(v1) + 1 if |V (v3)| = r + 2;

in both cases a contradiction. Therefore, let y2 ¿y1 be the largest index such that v3 → vy2 . Firstly, let vl → y for some
y ∈ Y and 46 l6 y2 −1 (notice that, because of y1¿ 4, it has to be y2¿ 5). This yields va → y for all l6 a6 t, since
otherwise, we can 5nd a cycle through all 4 partite sets, a contradiction. Let x1 be the smallest index in {4; 5; : : : ; y1} such
that v2 → vx1 . Now, let us observe the cycle C′ := v1v2vx1 : : : vy2−1yv3vy2 : : : vtv1. If C′ does not contain vertices from all
4 partite sets, then we conclude that Vb ⊆ {v4; v5; : : : ; vx1−1} ∪U ′ ∪W ′, and thus N−(v1)∩Vb = ∅, a contradiction. Hence,
we arrive at Y → {v2; v3; v4; v5; : : : ; vy2−1}, and thus d+(y)¿d+(v2)+ 1 for all y ∈ Y , y2 =y1 + 1 and v2 → {v3; : : : ; vy1},
which means {v3; : : : ; vy1}∩V (v2)= ∅. Let x2 be the 5rst index such that vx2 → v1 (x2¿ y2). If {vx2+1; : : : ; vt} v4, then
we conclude that

d−(v4)¿ d−(v1) − 1 + |Y | + |{v1; v2; v3}| − |V (v4) − {v4}|

¿

{
d−(v1) + 2 if |V (v4)|6 r + 1;

d−(v1) + 1 if |V (v4)| = r + 2;

in both cases a contradiction. Therefore, let v4 → vy3 with y3 ¿y2. If we notice that either v3 ∈Vb or v4 ∈Vb, then we
observe that v1v2v3vy2yv4vy3 : : : vtv1 is a cycle through all 4 partite sets, a contradiction.
Subcase 3.2: Let m¿ 4 and thus c¿ 5. Using Corollary 2.6, we arrive at d+(v2)¿ ((c − 1)r + k − 2)=2¿ 7

2 , which
means d+(v2)¿ 4 and v2 has at least four outer neighbors in V (C).

Suppose that there is an index q¿ 4 as small as possible such that there is an index l¡q with vl → v1. This index l
let be chosen as large as possible. If the cycle C′ = v1v2vq : : : vtyv3 : : : vlv1 does not contain vertices from all m+1 partite
sets, then the remaining partite sets have to be in {vl+1; : : : ; vq−1}∪U ′ ∪W ′. Furthermore, the choice of the indices l and
q implies v1  {vl+1; : : : ; vq−1} v2. If the partite sets, which do not appear in C′ are only part of {vl+1; : : : ; vq−1}, then
there are at least two vertices vx1 and vx2 such that v1  {vx1 ; vx2} and {vx1+1; vx2+1} v2 which leads to a contradiction
to (8). Let w′ ∈W ′ be part of a partite set that does not appear in C′. Hence, we have U ′ = ∅; l + 1 = q − 1 and
vl+1 ∈V (w′), since otherwise, the right-hand side of (8) increases by at least two, a contradiction. Therefore, there are
vertices from exactly m partite sets in C′. Now, we see that r=2 and |V (w′)|= r=2. This and the fact that v1 → v2 yield
q¿ 5. If w′ → v3, then v1v2vq : : : vtyw′v3 : : : vlv1 is a cycle with vertices from exactly m + 1 partite sets, a contradiction.
If q¿ 6 and w′ → vb with 46 b6 l, then we observe inductively that v1v2vq : : : vtyv3 : : : vb−1w′vb : : : vlv1 is a cycle with
vertices from m+1 partite sets, a contradiction. Hence, let {v3; : : : ; vl} → w′. If there is a vertex y′ ∈V (y) − {y} such
that w′ → y′, then v1v2vq : : : vtyw′y′v3 : : : vlv1 is a cycle with vertices from exactly m + 1 partite sets, a contradiction. If
there is a vertex vb in V (C) with 46 b6 t such that vb → y and w′ → vb+1 (t + 1 ≡ 1), then v1v2 : : : vbyw′vb+1 : : : v1 is
a cycle containing vertices from exactly m + 1 partite sets, a contradiction.

Firstly, let vl → y. This implies {vl; vl+1; : : : ; vt ; v1} → y, and thus N+(y) ⊆ {w′; v2; : : : ; vl−1}, which means d+(y)6 l−
1. Because of Corollary 2.6, on the other hand, we have d+(y)¿ ((c−1)r+k−1)=2¿ 7

2 , which implies l¿ 5. Altogether,
it follows that

d−(w′)¿d−(y) − 2 + |Y | + l − 2¿d−(y) + 3;

a contradiction to ig(D)6 1. Otherwise, if y → vl, then, it follows that

d−(w′)¿d−(y) − 1 + |Y | + 1¿d−(y) + 2;

again a contradiction to ig(D)6 1.
Altogether, we see that an index q chosen as above does not exist. Let z′ be the largest index such that v2 → vz′ (notice

that z′¿ 6). This implies that v1  {v2; v3; : : : ; vz′−1}, and thus N−(v1) ⊆ {vz′ ; vz′+1; : : : ; vt}. If there is a vertex y ∈ Y
such that vz′−1 → y, then it follows that {vz′−1; : : : ; vt ; v1} → y, and thus, we have d−(y)¿d−(v1) + 2, a contradiction
to ig(D)6 1. Therefore, we may assume that Y → {v2; v3; : : : ; vz′−1}. Let z′′ be the smallest index such that vz′′ → v1.

Firstly, let v2  vz′−2. Then there exists an arc from vz′−2 to {vz′′+1; : : : ; vt}, since otherwise, we observe that

d−(vz′−2)¿ d−(v1) − 1 + |{vz′−3; v1; v2}| + |Y | − |V (vz′−2) − {vz′−2}|

¿

{
d−(v1) + 2 if |V (vz′−2)|6 r + 1;

d−(v1) + 1 if |V (vz′−2)| = r + 2:
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Fig. 3. An almost regular 4-partite tournament with the property that the arc ab is in no cycle through exactly 4 partite sets.

Both cases yield a contradiction, either to ig(D)6 1 or to Remark 2.5. Consequently, let vz′−2 → vy1 with y1 ∈ {z′′ +
1; : : : ; t}. Let y ∈ Y and let y2 ¡y1 be the largest index such that vy2 → v1. If C′ := v1v2 : : : vz′−2vy1 : : : vtyvz′−1 : : : vy2v1
does not contain vertices of exactly m+1 partite sets, then there is a partite set Vb such that Vb ⊆ {vy2+1; vy2+2; : : : ; vy1−1}
∪ U ′ ∪ W ′. Since v1  {vy2+1; vy2+2; : : : ; vy1−1} ∪ U ′ ∪ W ′ and {vy2+2; vy2+3; : : : ; vy1} ∪ U ′ ∪ W ′  v2, (8) implies that
|Vb|6 1, a contradiction to r¿ 2.

Secondly, let vz′−2 → v2. Since v1  vz′−3, this yields that the right-hand side of (8) increases by 1. To get no
contradiction, it follows that v2  vz′−1 and {vz′ ; vz′+1; : : : ; vt} → v1, which means that z′ = z′′. This implies that there is
an arc from vz′−1 to {vz′+1; vz′+2; : : : ; vt}, since otherwise, we observe that

d−(vz′−1)¿ d−(v1) − 1 + |{vz′−2; v1; v2}| + |Y | − |V (vz′−1) − {vz′−1}|

¿

{
d−(v1) + 2 if |V (vz′−1)|6 r + 1;

d−(v1) + 1 if |V (vz′−1)| = r + 2:

Both cases yield a contradiction, either to ig(D)6 1 or to Remark 2.5. Consequently, let vz′−1 → vz1 with z1 ∈ {z′ +
1; z′ + 2; : : : ; t}. If there is a vertex y ∈ Y such that vz′ → y, then we conclude that {vz′ ; vz′+1; : : : ; vt ; v1} → y and
v1v2vz′ : : : vz1−1yv3 : : : vz′−1vz1 : : : vtv1 is a cycle with vertices from exactly m + 1 partite sets, a contradiction. Hence, let
Y → vz′ . For an arbitrary vertex y ∈ Y , it follows that v1v2 : : : vz′−1vz1 : : : vtyvz′ : : : vz1−1v1 is a cycle through m+ 1 partite
sets, a contradiction. This completes the proof of the theorem.

Combining the results of Theorems 3.5 and 3.6, we arrive at Theorem 1.7.
The next example shows that the condition that there are at least two vertices in each partite set is necessary, at least

for c = 4.

Example 3.7. Let V1 = {a}; V2 = {b; b2}; V3 = {c}, and V4 = {y} be the partite sets of a 4-partite tournament such that
a → b → c → b2 → y → c → a → y → b and b2 → a (see Fig. 3). The resulting 4-partite tournament is almost regular,
however, the arc ab is on a cycle with vertices from exactly 3 partite sets, but not from all 4 partite sets.

4. Open problems

The results in the last section lead us to the following problems:

Problem 4.1. Let D be a c-partite tournament with ig(D)6 i and at least r vertices in each partite set. For all i, =nd
the smallest values g(i) and f(i; g(i)) with the property that every arc of D is contained in a cycle through m partite
sets for all m∈ {4; 5; : : : ; c}, if r¿ g(i) and c¿f(i; g(i)).
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According to Theorems 1.5 and 1.7, we have g(0) = 1, f(0; 1) = 4, g(1) = 2 and f(1; 2) = 4.

Problem 4.2. Let D be a c-partite tournament with ig(D)6 i and r vertices in each partite set. For all i; c and r =nd
optimal values g1(i; c; r) and g2(i; c; r) such that every arc of D is contained in a cycle through exactly m partite sets
for all g1(i; c; r)6m6 g2(i; c; r).
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