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Abstract

If x is a vertex of a digraph D, then we denote by d*(x) and d~ (x) the outdegree and the indegree of x, respectively.
The global irregularity of a digraph D is defined by iy(D) = max{d " (x),d (x)} — min{d"(y),d " (»)} over all vertices
x and y of D (including x = y). If iy(D) =0, then D is regular and if i,(D) < 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph. In 1998, Guo and Kwak showed that, if D
is a regular c-partite tournament with ¢ > 4, then every arc of D is in a directed cycle, which contains vertices from
exactly m partite sets for all me {4,5,...,c}. In this paper we shall extend this theorem to almost regular c-partite
tournaments, which have at least two vertices in each partite set. An example will show that there are almost regular
c-partite tournaments with arbitrary large ¢ such that not all arcs are in directed cycles through exactly 3 partite sets.
Another example will show that the result is not valid for the case that ¢ =4 and there is only one vertex in a partite set.
(© 2004 Elsevier B.V. All rights reserved.
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1. Terminology and introduction

In this paper, all digraphs are finite without loops and multiple arcs. The vertex set and arc set of a digraph D are
denoted by V(D) and E(D), respectively. If xy is an arc of a digraph D, then we write x — y and say x dominates
y, and if X and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X dominates every vertex
of Y, then we say that X dominates Y, denoted by X — Y. Furthermore, X ~» Y denotes the fact that there is no
arc leading from Y to X. We also say that the set Y is weakly dominated by X. For the number of arcs from X to
Y we write d(X,Y). If D is a digraph, then the out-neighborhood Ny (x) = N*(x) of a vertex x is the set of vertices
dominated by x and the in-neighborhood Ny, (x)=N"(x) is the set of vertices dominating x. Therefore, if there is the arc
xy € E(D), then y is an outer neighbor of x and x is an inner neighbor of y. The numbers d};(x)=d " (x) = |N+(x)| and
dy(x)=d (x)= |N _(x)] are called the outdegree and indegree of x, respectively. For a vertex set X of D, we define
D[X] as the subdigraph induced by X. If we speak of a cycle, then we mean a directed cycle, and a cycle of length n
is called an n-cycle. If we replace in a digraph D every arc xy by yx, then we call the resulting digraph the converse of
D, denoted by D',

There are several measures of how much a digraph differs from being regular. Yeo [11] defines the global irregularity
of a digraph D by

io(D) = max {d"(x).d”(x)} — min {d"(»).d"(1)}.

If iy(D) =0, then D is regular and if izy(D) < 1, then D is called almost regular.
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A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite
tournament with exactly ¢ vertices. If 1, Va,..., V. are the partite sets of a c-partite tournament D and the vertex x of D
belongs to the partite set V;, then we define V(x) = V. If D is a c-partite tournament with the partite sets V1, V3,..., V.
such that [Vi| < [V2| < --- < |V|, then |V.|=a(D) is the independence number of D, and we define y(D)=|Vi|. If |V;|=n;
for i=1,2,...,c, then we speak of the partition-sequence (n;) = ni,na,...,n..

This article deals with cycles containing a given arc. One result about this theme was worked out by the authors in
[7-10].

Theorem 1.1. If D is an almost regular c-partite tournament and e € E(D) is an arbitrary arc of D, then the following
holds:

(a) If ¢ = 8, then e is contained in an n-cycle for each n€ {4,5,...,c}.
(b) If ¢ =7 and there are at least two vertices in every partite set, then e is contained in an n-cycle for each
ne{4,5,...,c}.

In this article, the length of the cycles are not important, but the number of partite sets, which are contained in the
cycle. In 1991, Goddard and Oellermann [2] proved the following generalization of Moon’s [5] theorem that every strong
tournament is vertex pancyclic.

Theorem 1.2 (Goddard and Oellermann [2]). Every vertex of a strongly connected c-partite tournament D belongs to a
cycle that contains vertices from exactly m partite sets for each m € {3,4,...,c}.

Inspired by this theorem, in 1998 Guo and Kwak [4] (see also Guo [3]) studied cycles containing a given arc and
vertices from exactly m < ¢ partite sets in regular c-partite tournaments. In a first step they proved the following theorem:

Theorem 1.3 (Guo and Kwak [4]). Let D be a regular c-partite tournament with ¢ > 3. Then the following holds:

(i) Every arc of D is in a cycle, which contains vertices from exactly 3 or exactly 4 partite sets.
(ii) If ¢ < 5 or the cardinality common to the partite sets of D is odd, then every arc of D is in a cycle, which contains
vertices from exactly 3 partite sets.

Using this theorem as basis of induction, they showed that the following three theorems are valid.

Theorem 1.4 (Guo and Kwak [4]). Let D be a regular c-partite tournament with 3 < ¢ < 5. Then every arc of D is in
a cycle that contains vertices from exactly m partite sets for all m with 3 < m < c.

Theorem 1.5 (Guo and Kwak [4]). Let D be a regular c-partite tournament with ¢ = 4. Then every arc of D is in a
cycle that contains vertices from exactly m partite sets for all m with 4 < m < c.

Theorem 1.6 (Guo and Kwak [4]). Let D be a regular c-partite tournament with ¢ = 3. If the cardinality common to
all partite sets of D is odd, then every arc of D is in a cycle that contains vertices from exactly m partite sets for all
m with 3 <m <ec.

Note that Theorem 1.6 implies Alspach’s [1] theorem that every regular tournament is arc pancyclic, since every partite
set of a tournament has the cardinality exactly 1.

The aim is now to carry these results of Guo and Kwak over to almost regular multipartite tournaments. In a first step,
we will extend Theorem 1.3 by showing that every arc of an almost regular c-partite tournament is in a cycle containing
vertices from exactly 3 or exactly 4 partite sets, if ¢ >4 or if ¢ > 3 and there are at least two vertices in each partite
set. Examples will show that there are multipartite tournaments with an arbitrary large number of partite sets that have
arcs which are not in cycles through exactly 3 partite sets. A further example will demonstrate that the condition ¢ > 4 is
important, if there is only one vertex in at least one partite set. Using these results as basis of induction, we will derive
the main result of this paper.

Theorem 1.7. Let D be an almost regular c-partite tournament with ¢ = 4. If there are at least two vertices in each
partite set, then every arc of D is in a cycle that contains vertices from exactly m partite sets for all m with 4 <m < c.
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An example will show that the condition that there are at least two vertices in each partite set is necessary, at least for
c=4.

2. Preliminary results
The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann and Yeo [6]). If 1, V5,..., V. are the partite sets of an almost regular c-partite tourna-
ment D such that || < |W| < -+ < |V, then |V| < |Vi| + 2.

Lemma 2.2 (Tewes, Volkmann and Yeo [6]). If D is an almost regular multipartite tournament, then for every vertex
x of D we have
[V(D)| — (D) — 1

V(D) = (D) + 1
5 .

<dT(x),d (x) < 5

The following observations can be found in [9] by Volkmann and Winzen.

Lemma 2.3. Let D be an almost regular multipartite tournament and x a vertex of D with |V(x)|= p. Then we observe
that
V(D) —p—1

VD) —p+1
5 PAEN—PT

<d (x),d"(x) < 5

In this article, we treat the case of an almost regular multipartite tournament D with o(D)=r, o(D)=r+1 or a(D)=r+2
and y(D) =r. This leads to the following two remarks:

Remark 2.4. Let (D) =r. In this case, Lemma 2.2 yields for all x € V(D) that
(c—1r—1 <d'(d(x) < (c—1yr+ 1.

2 2

Hence, if 7 is even or if ¢ is odd, then we see that d"(x) =d~ (x) = ((¢ — 1)r)/2 and that D is regular.

Remark 2.5. If (D) =r+ 2, (D) =r and iy(D) < 1, then |V (D)| — r is even. So the bounds in Lemma 2.3 can be
improved by

d*(x),d"(x)= MD”%_Z it V)| =r+2

or
d*(x),d™(x) = % if |V (x)| =r.

Consequently, for the case that a(D) =r + 2, instead of Lemma 2.2, we can use the following result:
|V(D)|27r72 <d*(rnd(x) < |V(D2)| -r

Now let us summarize some results of Lemma 2.3 and Remark 2.5.

Corollary 2.6. If D is an almost regular c-partite tournament with the partite sets Vi, Vs,..., Ve such that r=|Vi| < |V3|
< - < |Ve| < r+2, then for every vertex x of D we have
V) —r—

5 2 <d (x),d” (x).

3. Main results

Let D be an almost regular c-partite tournament with the partite sets V1, V5,..., V. such that r=|| < |Wa]| < --- < |Vel.
If ab is an arbitrary arc of D such that a € V; and b€ V; with 1 <1, < ¢, then the following partition of V(D) is useful
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in the proofs of the next theorems:
A =N"(O)NV, A=N"(b)nV,

Bi=N"(a)NV;, By=N(a)NV,

X=N"(@n (UV,—(V,-UV,-)>,

=1

Y=N"(a)NN~(b)N (UV, —(Viu V,)) ,

I=1

Z=N"(a)NN"(b)n (U Vi — (ViU V/)) :
=1
Note that some of the defined sets (clearly except 4; and B;) might be empty.
Suppose that X =(). Then it follows that N~ (a)=B, and hence N (a)=V(D)—(B.UV;). If we set d*(a)=d (a)+ 4,
with 4, € {—1,0,1} and }7, - [Vi|=(c —2)r+h with 0 < & < 2(c—2), then we observe that 4, = [V(D)— (B U V)| —
|B2| = |Vi| + (¢ — 2)r + h — 2|Ba|. As |Bz2| = |V;| — |Bi| we obtain

|Vj|+Aa:2|B1|+(C—2)r+h, (1)
Theorem 3.1. Let D be an almost regular multipartite tournament with the partite sets Vi, Va,..., V.. If >4, then
every arc of D is in a cycle containing vertices from exactly 3 or exactly 4 partite sets. If |Vi|=|Wa|=---=|V.|=r,

then this result also holds for ¢ = 3.

Proof. According to Lemma 2.1 we can distinguish the three cases that 1 <r = |W| < |W| < - <|V| =r + m with
m=0,1,2. Thus, we see that |V(D)|=cr+k with k=0, if m=0, 1 <k <c—1,if m=1,and 2 <k <2¢—2,if m=2.
If m =0 and ¢ = 3, then, according to Remark 2.4, D is regular, and Theorem 1.3 of Guo and Kwak yields the desired
result. So, if m =0, we can investigate the case that ¢ > 4.

Let ab be an arbitrary arc of D such that a€V; and b€ V; with 1 <i,j <c, and let 41,42,B1,B2,X,Y,Z, A, and h be
defined as in the beginning of this section.

Suppose that ab is not in a cycle, which contains vertices from exactly 3 partite sets. In particular, ab is not in a 3-cycle.
Under this assumption, we firstly study the domination relationships among the partition sets of V(D) listed above.

Firstly, we observe that

X = b, ie, N (a)NN"(b)N (Um(mun)) =0, (2)
=1
since otherwise, if there is a vertex x € X' such that 5 — x, then abxa is a 3-cycle, a contradiction.

Now, we suppose that X = ). Since ¢ =4, (1) yields that » + 3 = |Vj| + 4, = 2 + 2r, from which we obtain r = 1,
|Bi|=1, h=0, 4,=1 and |V;| =3. By Remark 2.5, the fact that 4, # 0 implies that |V'(a)|=|V;| =r+ 1 =2. Furthermore,
we observe that d~ (a) = |B2| = |Vj| — |Bi| = 2. Since & =0, it remains to consider the partition-sequence 1,1,2,3. If
Z =, then we conclude that |Y| = |V(D) — (V; U V;)| =2, and thus, it follows that d~(b) > 3, because of Remark 2.5
and |V;| =3 =r + 2 a contradiction. Hence, we observe that there is a vertex z € Z and |V (z)| = 1. Remark 2.5 yields
that d*(z) =d~(z) = 3. Since {a,b} — z, there is a vertex b, € B, such that z — b, and abzb,a is a cycle with vertices
from exactly 3 partite sets, a contradiction.

These considerations lead to X # (). Analogously, we see that the case Z = () is impossible.

If there is an arc a, — x (respectively, z — by) from A4, to X (respectively, Z to B,), then abarxa (respectively,
abzb,a) is a cycle containing vertices from exactly 3 partite sets, a contradiction. Hence,

X — A2 and Bz — Z. (3)
If there is an arc z — a, (respectively, b, — x) from Z to A» (respectively, B, to X), then we also have B, — a»

(respectively, by — A), because otherwise, if there is a vertex b, € By (respectively, a, € A2) such that a; — by, then
abzaxbya (respectively, ababrxa) is a cycle through exactly 3 partite sets, a contradiction. But this yields

d™(az2) = |X| + [Bo| + [{b,2}[ =d " (a) +2
(respectively, d¥(by) > |Z| + |A2| + {a,x}| = d*(b) + 2),
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a contradiction to (D) < 1. Hence,
A, —Z and X — B. (4)

Suppose now that the arc ab also does not belong to any cycle with vertices of exactly 4 partite sets. A first consequence,
we observe, is that X ~» Z, since otherwise, if there are vertices z € Z and x € X such that z — x, then abzxa is a cycle
with vertices from exactly 4 partite sets, a contradiction.

Assume that there exist vertices b; € By — {b} and x € X such that by — x. If there is a vertex a; € 4> such that
a; — by, then abarbixa is a cycle through exactly 3 partite sets, a contradiction. If there is a vertex z € Z such that
z — b1, then abzbixa is a cycle containing vertices from exactly 3 or 4 partite sets, a contradiction. Altogether, we see
that by — Z U 4> U {x} which implies d(b1) = d*(b) + 1. Because of i,(D) < 1, we conclude that d¥ (b)) =d*(b) + 1
and A — {a} — b. If there are vertices z € Z and a; € A1 — {a} such that z — a1, then abzaibixa is a cycle with vertices
from exactly 3 or exactly 4 partite sets, a contradiction. Together with (3) and (4), for every vertex z € Z, this yields

d=(2) = |X| + V| + |B2| + [{b1, b} — [V (2) — {z}]
{d_(a)+2 if V()| <r+1,
>
d (@) +1 if V()| =r+2,

in both cases a contradiction either to 7;(D) < 1 or to Remark 2.5. Hence, we see that X — B;.

Now, assume that there are vertices a; €41 — {a} and z € Z such that z — ay. If there is a vertex x €X such that
a1 — x, then abzaixa is a cycle containing vertices from exactly 3 or exactly 4 partite sets, a contradiction. Together with
(3) and (4), for every vertex x € X, this yields

d"(x) = V| + 4] + |Z] + {a,ar} — [V (x) = {x}|
dfpy+2 if V)| <r+1,
g {d+(b)+l if |[V(x)|=r+2,
in both cases a contradiction either to 7;(D) < 1 or to Remark 2.5. Summarizing our results, we see that
X-»ZUV;UA,U{a} and V;UXUB,U{b}Z (5)
This leads to the following lower bounds for all x € X (respectively, all z € Z):
d*(x) = V| +|Z| + |4a] + {a}| = [V (x) — {x}]
dafp)y+2 if V()| =r
=>d7b)+1 if V()| =r+1,
d*(b) if [V(x)|=r+2,
d=(z) = Vil + |Bo| + [ X[ + {b} = [V (2) — {=}]
d (a)+2 if |[V(z)|=r,
=< d (a)+1 if [V(2)|=r+1,
d” (a) if |[V(z)|=r+2.

To get no contradiction, it has to be |V (x)|,|V(z)| =r + 1 for all x€ X and z € Z. Furthermore, we conclude that the
lower bounds of d*(x) and d~ (z) must not increase by one, that means |V;|=|V;| =r, V(x) — {x} C Z for all x € X and
V(z) —{z} C X for all zeZ. If r > 2, then, because of |V (x)| = r+ 1 and V(x) — {x} C Z for all x € X, there are at
least two vertices z1,z; € Z with V(z1) = V(z2), a contradiction to V(z) — {z} C X for all z€ Z. Hence, we examine the
case that » = 1. This implies V; ={a}, V; ={b} and B, =4, =B — {b} = A1 — {a} = 0. Furthermore, we conclude that
d*(b)=|Z| and d*(a) = |Z| + |Y| + |{b}| which yields |Y| =0, d"(a) =d"(b) + 1 and, since |V;| = |Vi| = r, Remark
2.5 yields |V.| =r + 1. Because of V(D) — (V;UV;) C X UZ and ¢ > 4, there are at least two partite sets ¥, and 7,
in V(D) — (V;UV;) such that Vi, = {xi,z1} and V;, = {x2,2:}. Furthermore, the fact that V'(x) — {x} C Z for all x€X
and V(z) — {z} C X for all z€ Z implies that one vertex of V;, (respectively, J;,) is in X and the other one in Z. So,
without loss of generality, let x1,x; € X and zj,z; € Z and x; — x,. But now we observe that

d*(x) = V| + 12| = [V (x1) = {xi}] + 2| + Hax} =d 7 (b) + 2,

a contradiction to ig(D) < 1. This completes the proof of the theorem. [
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D

a b

Fig. 1. An almost regular 6-partite tournament with the property that the arc ab is in no cycle through exactly 3 partite sets.

The following example shows that the supplement that every arc is in a cycle which consists of vertices of exactly
3 or 4 partite sets is essential, since not every arc of an almost regular multipartite tournament is in a cycle containing
vertices from exactly 3 partite sets.

Example 3.2. Let Vi ={a,x2,x3} and Va={b, y2, y3} be the two partite sets of a digraph D such that a — b — x — y» —
X3 — y3 — a, b — x3, y» — a and y3; — x». Furthermore, let D’ and D" be copies of D such that D — D’ — D" — D.
The resulting 6-partite tournament H (see also Fig. 1) is almost regular, but the arc ab is not in any cycle containing
vertices from exactly three partite sets.

Let G, G', G” be three copies of H such that G — G’ — G” — G. The resulting 18-partite tournament is almost
regular, but no copy of the arc ab is in a cycle containing vertices from exactly three partite sets.

If we continue this process, we arrive at almost regular c-partite tournaments with arbitrary large ¢ which contain arcs
that do not belong to any cycle through exactly three partite sets.

In the case that the maximal difference of the cardinality of the partite sets is exactly 2, Theorem 3.1 also holds, if the
multipartite tournament consists of only three partite sets.

Theorem 3.3. Let D be an almost regular 3-partite tournament with the partite sets Vi, Va2, V3 such that 1 <r =
[Vi| < |Va| < |Vs| =7+ 2. Then every arc of D is in a cycle containing vertices of all partite sets.

Proof. Let ab be an arbitrary arc of D. Suppose that ab is not in any cycle, containing vertices of all partite sets. Obviously,
we have |V(D)| =3r+k with 2 <k <4. Let a€V; and b€ V; with 1 <i,j <3. If we define 41,42,B1,B,,X,Y,Z,h and
A, as in the beginning of this section, then, following the same lines as in Theorem 3.1, we observe that

X%AQUBQU{LZ,Z)}—)Z. (6)

Suppose that X =0. Let V,=V(D)— (V;UV;). Since, ¢=3, from (1) we get |V;|+ 4. =2|B1|+r+ h. This equality implies
Bi={b}, B=V;—{b} and 0 < h < 1. If h=1, then it follows that 4,=1, |V;|=r+2 and |V;| =7+ 1. By Remark 2.5
we have |V(a)| = |V;| =r + 1. This is a contradiction since there is no partite set with » vertices. Hence, let # =0 and
thus |V;] =r and 0 < 4, < 1. First, we assume that 4, =0 and thus, according to (1), |V;| =r + 2. If there is a vertex
z€Z, then (6) implies that d~(z) > |V;| + 1 =r+3 and d*(z) < |Vi| — 1 < r+ 1, a contradiction. Consequently, we can
consider the case that Y =V,. If |V;|=r, then we arrive at the contradiction r+1=|Y|+1 < d~(b) <dT(b)+1 < |V|=r.
Since the partition-sequence r,r + 1,7 + 2 is impossible, it remains to treat the case that |V;| =r + 2. To get no contra-
diction to ig(D) < 1, it follows that 4> = V; — {a}. If there are vertices a» € 4> and y € ¥ such that a; — y, then we
conclude that B, — y, since otherwise, if there is a vertex b, € B, such that y — b,, then aba,ybra is a cycle through
all 3 partite sets. But now we arrive at the contradiction d~(y) = r + 3 and d"(y) < r + 1. Hence, let ¥ — A4,, which
implies that 42 — By — Y. If az,a5 € A2, by, by €B, and y € Y, then abaybyyaybia is a cycle through all partite sets, a
contradiction. Second, let 4,=1. Since |V.|=r+2, Remark 2.5 yields |V;|=r+1, and thus |V;|=r+2, a contradiction to
(D) < L.
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a b
-0

Y

Y2 X,

Fig. 2. An almost regular 3-partite tournament with the property that the arc ab is in no cycle through exactly 3 partite sets.

Analogously, we see that the case Z = () is impossible. Consequently, it remains to consider the case that X,Z # (.
Now, analogously to Theorem 3.1, we get relationships (5) and the conditions |V;|=|V;|=r=1 and |[V;|=r+1, a
contradiction. [

Nevertheless Theorem 3.1 cannot be improved in the sense that in all almost regular c-partite tournaments with ¢ > 3,
every arc is in a cycle containing vertices from exactly 3 or 4 partite sets. This can be seen in the following simple
example, which shows a 3-partite tournament with an arc ab that is not contained in any cycle through all partite sets.

Example 3.4. Let V; = {a,x2}, V2 ={b, .} and V5 = {z} be the three partite sets of the multipartite tournament D such
that a - b —x — y» -z = x; and y» — a — z — b (see Fig. 2). Then the arc ab is not contained in any cycle with
vertices of exactly 3 (and clearly also not four) partite sets.

In the last example, there is one partite set containing only one vertex. If we add the condition that there are at least
two vertices in every partite set, then we can improve Theorem 3.1.

Theorem 3.5. Let D be an almost regular multipartite tournament with the partite sets Vi,Va,...,Ve. If ¢ = 3 and there
are at least two vertices in each partite set, then every arc of D is in a cycle containing vertices from exactly 3 or
exactly 4 partite sets.

Proof. If ¢ >4 or |Vi| = V2| = |V4|, then the assertion holds with Theorem 3.1. If » = |Vi| < |V5| < |V3| =7 + 2, then the
assertion follows from Theorem 3.3. Therefore, it remains to consider the case that ¢=3 and 2 < r=|V| < V3| < |Vs|=r+1.

Let ab be an arbitrary arc of D. Suppose that ab is not in any cycle, containing vertices of all partite sets. Obviously,
we have |V(D)|=3r+k with 1 <k <2. Let a€V; and b€ V; with 1 <i,j < 3. If we define 41,42, B1,B2,X,Y,Z,h and
A, as in the beginning of this section, then, following the same lines as in Theorem 3.1, we observe that

X%AzUBzU{a,b}%Z. (7)

Suppose that X = (. Let V; = V(D) — (V; U V;). With ¢ =3 and the fact that |V;| <r+ 1, (1) implies B; = {b}, h =0,
Aa=1, Vil =r, |Vl =r+ 1 and |B| = r. If there is a vertex z € Z, then (7) yields that d=(z) > |Vj|+ 1 =r + 2 and
d*(z) <|Vi| — 1 <r, a contradiction. Hence, let ¥ = V}. If |Vi| = r, then we arrive at the contradiction r + 1 = |Vj| +
1 <d (b) <d"(b) + 1< |42] + 1 <r. Hence, let us suppose that |V;| =7 + 1. To get no contradiction to iz(D) < 1,
it follows that |4,| = r. If there are vertices a» €4, and y € Y such that a — y, then we deduce that B, — y, since
otherwise, if there is a vertex b, € B, such that y — by, then aba,ybra is a cycle with vertices from all partite sets,
a contradiction. But this yields the contradiction d~(y) > + 2 and d*(y) < r. Consequently, it follows that ¥ — 4o,
and thus 4, — B, — Y. If ay,ab € Ay, by, by, € B, and y €Y, then abayb, yabbia is a cycle through all 3 partite sets, a
contradiction.

Analogously, we observe that the case Z = ) is impossible. Consequently, it remains to treat the case that X,Z # 0.
Now, analogously to Theorem 3.1, we get relationships (5) and the condition |V;| = |V;| =r =1, a contradiction to r > 2.
This completes the proof of the theorem. [
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We take Theorem 3.5 as basis of induction to show Theorem 1.7. Next, we will present the induction step.

Theorem 3.6. Let D be an almost regular c-partite tournament with ¢ > 4 and at least two vertices in each partite set.
If an arc of D is in a cycle that contains vertices from exactly m partite sets for some m with 3 < m < c, then it is
also in a cycle that contains vertices from exactly m + 1 partite sets.

Proof. Let 11, 15,..., V. be the partite sets of D such that 2 <r=|V| < || < - < |Ve|=r+o0o witho=0, o=1 or
0 =2. Obviously, we have |V(D)|=cr+k with k=0, ifo=0, 1 <k <c—1,ifo=1,and 2 <k <2¢c—2, if 0=2.
Let vjv2 be an arc that is in a cycle, say C = vjv2...v,01, which contains vertices from exactly m partite sets for some
3 < m < c. Suppose that vjv; is not part of a cycle containing vertices from exactly m + 1 partite sets. Assume without
loss of generality that v; € ¥; and v, € V; for some 1 <i,j <c. If I = {imy1,...,ic} is the maximal set of indices such
that V(C)N V; =0 for all /€1, then we define the sets X and Y by

X=N ()N (U V1> ., Y=N'(o)n (U V,) .
lel lel
It is clear that X UY ={J,, Vi and every vertex of X UY is adjacent with all vertices in C.

Firstly, let us suppose that X # (). If there is a vertex x € X such that v, — x, then vjvy...vxv; is a cycle through
exactly m + 1 partite sets, a contradiction. If such a vertex does not exist, then X — v,. Since X — {v1,v;}, we observe
that, if some v; € V(C) dominates a vertex x € X, then let n=max{/|v; — x} and viv2 ... VsXVUss1 ... 001 is @ cycle through
exactly m + 1 partite sets. Now, we assume that X — V/(C).

Now, let H=N"(v2)—V(C). If there is an arch — x with 7 € H and x € X, then let firstly be 2 € V; with [ ¢ I. In this
case vv2hxvs ... v 1s a cycle through exactly m + 1 partite sets, a contradiction. Consequently, let € V; with /€. If
m=3, then v v2hxv; is a cycle through exactly 4 partite sets, a contradiction. Otherwise, if m > 4, then let p be the index
such that {v,,vp41,...,0, 01} — V(02) consists of vertices from exactly m — 2 partite sets. In this case, viv2hxv, ... v01 is
a cycle containing vertices of exactly m + 1 partite sets, a contradiction. For all x € X, this leads to

d'(x) = |H — (V(x) = {x})| + [V(O),
whereas
d*(v2) < [H[+[V(O)| - 2.

If HNV(x)=0, then we arrive at a contradiction to iz(D) < 1. Hence, let y € HNV(x). Since HNX =), we conclude that
y €Y. Now let z€ N™(x) and assume that y — z. If z€ V; with / ¢ I, then viv2yzxvs...v0; is a cycle through exactly
m —+ 1 partite sets, a contradiction. Thus, let z € V; with / € /. If m =3, then viv,yzxv; is a cycle through exactly 4 partite
sets, and if m > 4, then we choose the index p as above and viv;yzxv, ... v,v; is a cycle through exactly m+1 partite sets,
in both cases a contradiction. Hence, let N~ (x) — y. If y — v; for some 3 < i <, then let n=min{g|2 < ¢ <i—1, v, —
v} Now, v102...04YUs11 ... 001 is a cycle through exactly m + 1 partite sets, a contradiction. Altogether, we see that
{v1,02,...,u:} UN"(x) — y, and thus it follows that

d=(y)=d (x)+1t>d (x)+3,

a contradiction to ig(D) < 1.

Consequently, there remains to consider the case that X = (). This implies that vy — ¥ and Y = U,e; Vi Now, we
distinguish different cases.

Case 1: Let there be a vertex y € Y such that v; — y. Then we have V(C) — y, since otherwise let n=min{z|y — v.}.
Then v1vs ... 04— 1YV, ... 001 is a cycle through exactly m + 1 partite sets, a contradiction. If vy ~» N*(y), then it follows
that d~ (»)=|V(C)|+|N " (»)—V(C)| and d~(v1) < |V(C)|—=2+|N"(»)—V(C)|, a contradiction to ig(D) < 1. Therefore,
there is a 3-cycle v yzv;. Obviously, the case z € YUV(C) is impossible, and thus vv; ... v, yzv; is a cycle through exactly
m + 1 partite sets, a contradiction.

Altogether we see that there remains the case ¥ — vs.

Case 2: Suppose that there exists a vertex y €Y such that v3 — y. As in Case 1 we observe that in this case
V(C)— {v2} — y. In the following, we will denote the sets F and H by F =N (y) — V(C) and H = N*(y) — V(C),
respectively. If there is a 3-cycle v yzv;, then, analogously as in Case 1, we arrive at a contradiction. Hence, let v; ~»
NT(y). It follows that d=(y) = |V (C)| — 1 + |F| and d~(v1) < |V(C)| — 2 + |F|. Because of ix(D) < 1, this leads to
N (v)=W(C)—A{vi,u)UF, d (y)=d (v1))+ 1, V(v1) —{vi} CN(y) and Y — V(y) C N"(y). Since r > 2, we
conclude that V(vi1) — {v1} # 0. Let H' = H — Y. Then we have {vs,vs,...,0,} ~ H', because otherwise, if there are
vertices /' € H' and v; such that " — v; for some 4 </ < ¢, then viv2...v,_1 yh'v;...v,01 is a cycle containing vertices
from exactly m + 1 partite sets, a contradiction. Furthermore, if there are vertices f € F and h’ € H' such that /' — f,
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then viv2... v,k fv1 is a cycle through exactly m + 1 partite sets, a contradiction. Summarizing our results, we see that
(FU{y,v1,04,05,...,0}) ~> H'.

Subcase 2.1: Assume that there are vertices /' € H' and y' € V(y) — {y} such that /' — y'. It follows that F — )/,
since otherwise, if there is a vertex f € F such that y' — f, then viva...v,yh" )y’ fo1 is a cycle through exactly m+1 partite
sets, a contradiction. If there exists a vertex v; € V(C) with 4 < I <t such that y' — v, then vivy...v;_1 YA V'v;... 01 is
a cycle containing vertices from exactly m + 1 partite sets, a contradiction. Hence, let ({v1,vs,...,v,'} UF) — y'. We
arrive at

A~ ()= |F|+|V(C)| —1=d (y)=d () + 1.

To get no contradiction to ix(D) < 1, it follows that ' — (H — {h'}) U {vs}. If there is a vertex v; (4 </ <) such
that v, — vy, then vivpv;...0,yh' y'v3...v;_1v; is a cycle through exactly m -+ 1 partite sets, a contradiction. If there is a
vertex f € F such that v, — f, then vivafyh'y'v3... 0,01 is a cycle containing vertices from exactly m + 1 partite sets,
a contradiction. If v — /', then vjv2h'y'vs ... v,01 is a cycle through exactly m + 1 sets, also a contradiction. Hence, we
have (F U {h',v1,04,...,0,} UY) ~» 15, and thus

d'(v2) < |[H| =1 =Y = V(»)| = [V(v2) NH| + {vs}] < |H],

whereas d*(y)=|H|+ 1. This implies that v, — H —{#'} and H" := H' —{h’} =H — {h'}. If there exist vertices h" € H"
and y”’ €Y — {y} such that »”” — y”, then analogously as above, we observe that »/ — v, a contradiction. Hence,
let Y =V(y) — H”. According to Corollary 2.6, we have d*(y) >3, and thus |H| > 2, which means that H" # (.
Consequently, there is a vertex h” € H" such that djy,.,(F") < (|H| — 2)/2. Summarizing our results, we arrive at

H] -2

H| < d" (") <

+2.
Since |H| > 2, this yields |H| =2 and h"” — h'. Now, vivah”"h' y'v3... 001 is a cycle through all m + 1 partite sets, a
contradiction.

Subcase 2.2: Suppose that V(y) — H'. Since V(v1) — {v1} C H’, the observations above yield that ({vs,vs,...,v;} U
F)— (V(v1) — {v1})(C H'). This implies that

d=(v) = |F|+ [V(O) =3+ V(»)| = |F|+ [V(O) -1
= d_(01)+ 1

for all vertices v} € V(v1) — {v1}. To get no contradiction to ix(D) < 1, it follows that [V(y)|=2 and (V(v1) — {v1}) =
{v2,v3}. Analogously as in Subcase 2.1, replacing the path yh'y’vs by yvivs, we see that (F U {vs,vs,...,0}) ~» v2.
Hence, we arrive at

d' () < [H| =Y =V = V() NH| = V() NH| + 1 < |H| - r+2 < |H]|,

whereas d*(y) = |H| + 1. This implies that v, — H — V(v1)=: H”, [HNV(v1)| =1 and Y — V(y) =0, which means
H’ = H. Following the same lines as in Subcase 2.1, replacing there 4’ by v}, we arrive at a contradiction.

Summarizing the investigations of Case 2, we see that ¥ — v3. Observing the converse D! of D, we conclude that
vy — Y and therefore ¢ > 4.

Case 3: Finally, let {v,,v1} — Y — {v2,v3}. Let us define the sets U and W by W=N"*(v2)—V(C) and U=N"(v1)—
V(C), respectively. It is not difficult to show that, if there is an arc leading from W to Y (respectively, from Y to U),
or if ¥ — W (respectively, U — Y) and there is an arc from W to v; (respectively, from v, to U), then the multipartite
tournament contains a cycle through viv, and exactly m + 1 partite sets, a contradiction. Hence, we may assume that
YU{Ul,vz}M W and U ~» YU{Ul,vz} and UNW =0.

If there exists a vertex v; € V(C) such that v, — v; and v;—; — v1, then obviously / > 4 and vjvav;...0,y03...01—10;
is a cycle through exactly m 4 1 partite sets for some y € ¥, a contradiction. Therefore, from now on, we investigate the
case that v; — v;—; or V(Ul) = V(U1_1), if v2 — v;.

If there are vertices u € U and v; € V(C) with [ = 4 such that v — v; and v, — u, then vivav; ...V YV3 ... 01— uv) i8S
a cycle through exactly m + 1 partite sets, a contradiction. Hence, we may assume that u — v;—; or V(u) =V (v;—1), if
vy — v;. Analogously, we see that v,y — w or V(w)=V(vi41), if we W and v; — vy with [ <t.

If there is an arc w — u from W to U, then vivowuyvs...v,0) is a cycle containing vertices from exactly m + 1 partite
sets, a contradiction. Therefore, we have U ~» W.
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If y €Y is an arbitrary vertex, then these results yield the following three lower bounds:
INT()] = Y[+ W]+ N (02) NV (O) = [V (v1) = {o1}]

> V) +INT ()] = [V (o) = {or}]

{ VTl [P <7+,
- (8)
INT(0)| =1 if V()| =r+2,
N @] = [Y]+ W]+ IV (22) N V(O] = 1+ {on, o2} = V(@) = {u)
> V)| + INT ()] + 1 = [V(w) — {u}]
{|N+(Uz)| Y1 ) <r 41,
” %)
IN* ()] if (V)| =r+2,
for every u € U and
IN“)| = Y]+ U+ [N () N V(O] = 1+ [{o1, 02} — [V (w) — {w}]|
> V()| + N ()] + 1= [V(w) — {w}|
{N(v1)|+1 it [V(w) <r+ 1,
- (10)
N (o) it ) =r 12,

for every w € W. If the right-hand side of (8) increases by at least two or the right-hand side of (9) or (10) increases by at
least one, then we arrive at a contradiction either to is(D) < 1 or to Remark 2.5. This leads to |V (u)|, |V (w)| =r+1 for
u€ U and w € W. Another consequence is that |Y|=r, if UUW # 0, and |Y| < r+1, if UUW =0. Anyway, Y consists of
exactly one partite set. Furthermore, bounds (8)—(10) yield |U|,|W| < 1, since otherwise, the right-hand side of (9) or (10)
increases by one, a contradiction. Let U # () and u € U. Because of v; — v, we conclude that v, — u, since otherwise
the right-hand side of (9) increases by one, a contradiction. If we observe the cycle C' =biby...bi1by = viv2 ... v;uv;
such that by = vy, then we see that C’ fulfills {b+1,b1} — Y — {b2,b3}. Hence, we can replace C by C’, which means
that, without of generality, we may suppose that U = ). Analogously, it remains to treat the case that W = ().

Let y € Y. If we define U'=N"(y)—V(C) and W'=N"(y)—V(C), then we conclude that V' (D)=V(y)UV(C)UU' UW’.
Let w' € W' . If w' — v, then it follows that w’ € U, and thus we have w' € N~ (3)—V(C), a contradiction to the definition
of W’. Since W = (), this yields v; ~» w’ ~» v, and the right-hand side of (8) increases by one. Analogously, we observe
that vy ~» u' ~» v, for each u’ € U’. To get no contradiction in (8), it has to be |U' U W'| < 1.

Subcase 3.1: Suppose that m =3, and thus c=4. Let V,=V(D)— (Y UV (v1)UV(v2)). We observe that N~ (v1)NV; # 0,
since otherwise, we arrive at

W <d () < |WV(w)—{n} <r if V(n)<r+1,

3r+k—2 _ .

2 <d () <|V(v2) —{vo}|=r+1 if [F(v2)|=r+2, [V(v1)| 27+ 1 and thus k >3
and

3r+k

5 =d () < V() —{v}=r+1 if [V(n)|=r+2and |[V(u) =r
in all cases a contradiction. If N (v2) N (V(C) — {v3}) = 0, then Corollary 2.6 yields (37 +k —2)/2 <d"(1n) <2, a
contradiction.

Suppose that there exists an index g > 4 as small as possible such that v, — v, and that there is an index / < g with
v; — v1. This index [ let be chosen as large as possible. Now, let us observe the cycle C'=viv20,...0:y03 ... vj01. If C” does
not contain vertices from all the 4 partite sets, then we conclude that V¥, C V(D) — V(C") C [{viz1,...,04—1 JUU U W'].
Since vy ~» U U W' U {v41,...,04-1}, we arrive at N~ (v1) NV, = (), a contradiction.

Altogether, we see that an index ¢ chosen as above does not exist. Let y; be the largest index such that v; — vy,. This
implies that vy ~»> {v2,03,...,0y,—1}. If v, — v1, then we have the 3-cycle vivav,,v1, a contradiction to ¢ > 4. Hence, we
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deduce that N7 (v1) € {vy,+1,Vy,42,...,0 }. If there is no arc leading from v3 to {v, 41,v,,12,...,v;}, then we arrive at
d™(v3) = d" (v) + Y] + {or v} = [V (v3) — {v3}]
dt(o)+2 if V()| <r+1,
g {d+(u.)+1 if |V(v3)|=r+2,

in both cases a contradiction. Therefore, let y, > y; be the largest index such that v3 — v,,. Firstly, let v; — y for some
yeY and 4 </ < y, — 1 (notice that, because of y; > 4, it has to be y, > 5). This yields v, — y for all / < a < ¢, since
otherwise, we can find a cycle through all 4 partite sets, a contradiction. Let x; be the smallest index in {4,5,..., y1} such
that v; — vy,. Now, let us observe the cycle C’ := vjvavy, ... Uy,—1 YUV, ... 0,01, If C’ does not contain vertices from all
4 partite sets, then we conclude that ¥, C {v4,vs,...,v0q—1 }UU" UW’, and thus N~ (v) N ¥, =0, a contradiction. Hence,
we arrive at ¥ — {v2, 03,04, Us,...,Uy,—1 }, and thus d¥(y) = d"(v2)+1 forall y€ Y, yp =y +1 and v2 — {v3,...,0y, },
which means {vs,...,v,, } NV (v2)=0. Let x; be the first index such that v,, — v1 (x2 = y2). If {vey41,..., 0} ~> v4, then
we conclude that

d=(va) = d (v1) = 1+ Y]+ {v1, 02,03} — [V (va) — {va}]
{d‘(v1)+2 i |V(os)| <r+ 1,
=
d (v)+1 if |[V(vs)|=r+2,

in both cases a contradiction. Therefore, let v4 — v,, with y3 > y,. If we notice that either v3s € J}, or vy €V}, then we
observe that viv2v3vy, yvav,, ... 001 is a cycle through all 4 partite sets, a contradiction.

Subcase 3.2: Let m > 4 and thus ¢ > 5. Using Corollary 2.6, we arrive at d"(v2) = ((c — I)r +k — 2)/2 > %, which
means d " (v2) > 4 and v, has at least four outer neighbors in V(C).

Suppose that there is an index ¢ > 4 as small as possible such that there is an index / < g with v; — v;. This index /
let be chosen as large as possible. If the cycle C’' =viv2v,...v,yvs...v01 does not contain vertices from all m + 1 partite
sets, then the remaining partite sets have to be in {vy1,...,v,—1} U U’ U W', Furthermore, the choice of the indices / and
q implies vy ~»> {vs41,...,04—1} ~> 2. If the partite sets, which do not appear in C’ are only part of {v/:1,...,04—1}, then
there are at least two vertices vy, and vy, such that vy ~» {0y, v, } and {vy,41,0x,41} ~> 02 which leads to a contradiction
to (8). Let w' € W’ be part of a partite set that does not appear in C’. Hence, we have U' =0, [+ 1=¢g — 1 and
v;+1 € V(w'), since otherwise, the right-hand side of (8) increases by at least two, a contradiction. Therefore, there are
vertices from exactly m partite sets in C’. Now, we see that »=2 and |V (w’)|=r=2. This and the fact that v; — v, yield
qg=5.1f w' — 03, then V10204 ...v,yw'v3 ... is a cycle with vertices from exactly m + 1 partite sets, a contradiction.
If g > 6 and w — v, with 4 < b < I, then we observe inductively that v1020, ... 0, Y03 ... 05— 1W s ... 0701 is a cycle with
vertices from m+1 partite sets, a contradiction. Hence, let {vs,...,v;} — w'. If there is a vertex )’ € V(y) — {y} such
that w' — y', then vivavy ... v yw'y'v3... 001 is a cycle with vertices from exactly m + 1 partite sets, a contradiction. If
there is a vertex v, in V(C) with 4 < b < ¢ such that v, — y and W' — vp1 (¢ +1=1), then viva...0pyW Us41...01 1S
a cycle containing vertices from exactly m + 1 partite sets, a contradiction.

Firstly, let v; — y. This implies {v;, v/41,...,0;, 01} — v, and thus N*(y) C {w',v2,...,v;—1 }, which means d*(y) < I—
1. Because of Corollary 2.6, on the other hand, we have d*(y) = ((c—1)r+k—1)/2 > %, which implies / > 5. Altogether,
it follows that

d-(W)zd (»)=2+Y|+1-2=>d (y)+3,
a contradiction to ig(D) < 1. Otherwise, if y — v;, then, it follows that
d-W)zd () -1+[Y[+1=2d (»)+2

again a contradiction to iz(D) < 1.

Altogether, we see that an index ¢ chosen as above does not exist. Let z’ be the largest index such that v; — v+ (notice
that z’ > 6). This implies that v; ~» {v2,03,...,0.,_ }, and thus N~ (v1) C {v.r,v.r41,...,0,}. If there is a vertex y €Y
such that v,y _; — y, then it follows that {v,/_;,...,v:,v1} — », and thus, we have d~(y) = d~ (v1) + 2, a contradiction
to ig(D) < 1. Therefore, we may assume that ¥ — {v5,v3,...,0,,_; }. Let z’’ be the smallest index such that v, — v;.

Firstly, let v» ~» v,s_,. Then there exists an arc from v, _, to {v,».,...,0/}, since otherwise, we observe that

d”™(v—2) = d (0) = 1+ {vo s, o0} + V] = [V (0 —2) = {vr 2}
{d(vl)+2 i V()| <r+1,
>
A=)+ 1 if V(v )| =r+2.
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Fig. 3. An almost regular 4-partite tournament with the property that the arc ab is in no cycle through exactly 4 partite sets.

Both cases yield a contradiction, either to ig(D) <1 or to Remark 2.5. Consequently, let v,,_, — v,, with y; € {z” +
1,...,t}. Let y€Y and let y, < yi be the largest index such that vy, — vi. If C’ := v1v2... 0 20y, ... VYV _1 ... V01
does not contain vertices of exactly m+ 1 partite sets, then there is a partite set Vj such that ¥, C {vy,41,0yy42,--.,0p =1}
UU " UW'. Since v1 > {051, 0py42,- -5 Uy —1 } WU U W' and {0y,42,0y,13,-.-,0y } U U U W' ~» 13, (8) implies that
|V5| < 1, a contradiction to r > 2.

Secondly, let v,_, — vs. Since v ~» v,_3, this yields that the right-hand side of (8) increases by 1. To get no
contradiction, it follows that v; ~» v»_; and {v./,v./11,...,0,} — v1, which means that z’ =z". This implies that there is
an arc from v to {v./41,0.42,...,0}, since otherwise, we observe that

4™ (v1) = d™(0) = L+ oo} + 7] = V(o) = {o 1)

{d(v1)+2 if |V(UZ/_])‘ <r+1,
=
d () +1 i V(o )| =r+2.

Both cases yield a contradiction, either to i,(D) < 1 or to Remark 2.5. Consequently, let v, | — v, with z; € {z' +
1,z 4+ 2,...,t}. If there is a vertex y€Y such that v, — y, then we conclude that {v./,v./41,...,0,01} — » and
U020, ... Uz 1 VU3 ... U Uz ... U0 1S @ cycle with vertices from exactly m + 1 partite sets, a contradiction. Hence, let
Y — v.. For an arbitrary vertex y € Y, it follows that viva... v,/ jv;, ... 0 Y0 ... 0;;—101 is a cycle through m + 1 partite
sets, a contradiction. This completes the proof of the theorem. [

Combining the results of Theorems 3.5 and 3.6, we arrive at Theorem 1.7.
The next example shows that the condition that there are at least two vertices in each partite set is necessary, at least
for c =4.

Example 3.7. Let Vi = {a}, Vo ={b,b2}, V3 ={c}, and V4 = {»} be the partite sets of a 4-partite tournament such that
a—>b—c—by—y—c—a—y—band by — a (see Fig. 3). The resulting 4-partite tournament is almost regular,
however, the arc ab is on a cycle with vertices from exactly 3 partite sets, but not from all 4 partite sets.
4. Open problems

The results in the last section lead us to the following problems:
Problem 4.1. Let D be a c-partite tournament with iy(D) < i and at least r vertices in each partite set. For all i, find

the smallest values g(i) and f(i,g(i)) with the property that every arc of D is contained in a cycle through m partite
sets for all me {4,5,...,c}, if r = g(i) and ¢ = f(i,9(i)).
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According to Theorems 1.5 and 1.7, we have g(0) =1, f(0,1)=4, g(1)=2 and f(1,2)=4.

Problem 4.2. Let D be a c-partite tournament with ig(D) < i and r vertices in each partite set. For all i, ¢ and r find
optimal values g1(i,c,r) and g»(i,c,r) such that every arc of D is contained in a cycle through exactly m partite sets
Sor all g\(i,c,r) < m < ga(i,c, 7).
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