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ABSTRACT 

A natural conditional function (NCF) is a function from possible states of  the 
world to natural numbers, representing the degrees of  implausibility of  the differ- 
ent states. This paper shows that the relation of  conditional independence, when 
defined in terms of  NCFs, has a natural representation in terms of influence 
diagrams. First it is shown that the relation of  conditional independence relative to 
an NCF satisfies certain axioms for conditional independence (the graphoid ax- 
ioms). Then it is proved that the conditional independencies deducible .from the 
graphoid axioms together with a set of  conditional independence statements 
structured in a certain way (those forming a causal input lisO are exactly the 
conditional independencies semantically implied by that input list and are also 
identical with the set of  conditional independencies that can be read off the 
corresponding influence diagram using the graphical criterion of  d-separation. The 
computational implications of  these results are discussed. 

KEYWORDS: belief revision, influence diagrams, nonmonotonic reason- 
ing, belief networks, graphoids 

INTRODUCTION 

Geiger and Pearl [1] and Verma and Pearl [2] prove important results 
concerning the logic of influence diagrams. They give an axiomatic characteri- 
zation of the relation of conditional independence and show that the entailments 
of a certain class of conditional independence statements, those expressible in a 
causal input list, are captured by those independencies that can be read off the 
corresponding influence diagram using the criterion of d-separation. 

This paper proves corresponding results for the relation of conditional 
independence as defined by natural conditional functions (NCFs). NCFs were 
introduced by Wolfgang Spohn [3] as a means of analyzing deterministic or 
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categorical belief. It is shown that conditional independence so defined satisfies 
the axioms of graphoids and that the graphical criterion of d-separation 
captures implications about NCF conditional independence for causal input 
lists. 

First some notational matters. I use letters from the front of the alphabet--A, 
B, C, etc., with or without numerical subscripts--for multivalued variables; 
the letters W, X ,  Y, and Z are used to denote sets of multivalued variables; 
and a lowercase letter is used to denote a value of the corresponding capital 
letter. I use Y/(O) denote the set of values of th, where ~b is either a variable or 
a set of variables. A value for a set of variables is a set of values of the 
variables in the set. It is assumed that each variable has more than one value 
and that, unless otherwise indicated, distinct variables have disjoint sets of 
values. This latter condition can be made to hold by identifying a value a of a 
variable A with the ordered pair ( A ,  a). " i f f "  is used as an abbreviation for 
" i f  and only i f ."  

SPOHN'S THEORY OF BELIEF REVISION 

This section describes the motivation for, and the essential details of, 
Spohn's theory of belief revision. There are many interesting aspects of 
Spohn's theory that cannot be covered here. The reader is urged to consult 
Ref. 3 for a fuller presentation of the theory. 

Probability theory provides a widely accepted framework for understanding 
the revision of degrees of belief. The use of Bayesian networks (Pearl [4]) as a 
tool for probabilistic updating is a burgeoning research area. Moreover, 
probability theory has been found useful in analyzing philosophical issues 
related to causation and explanation (Harper and Skyrms [5]). 

It is striking that before Spohn's work on belief revision, no formalism of 
comparable power was available for the case of deterministic, or categorical, 
belief. Categorical belief is an all-or-nothing affair; one either believes, 
disbelieves, or does neither, concerning some proposition. Categorical belief 
seems to be the normal kind of belief that people have. People generally do not 
represent their beliefs numerically except in the context of a game of chance. 
Nonetheless, if pressed, most people will admit that their beliefs come in 
varying strengths--that, for example, they believe more strongly that the sun 
will rise tomorrow than that their car will be working tomorrow. This might 
lead some to think that ordinary belief could be represented in terms of perhaps 
somewhat vague probabilities, with definite belief in a proposition amounting 
to that proposition's having a (subjective) probability greater than some 
threshold. This suggestion fails for the following reason. Categorical belief is 
closed under implication: If  a person believes each one of the propositions 
A i . . . . .  A n and is led to see (e.g., via a proof) that A 1 . . . . .  A n logically 
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imply a proposition B, then that person should believe B. So a logically 
omniscient believer's beliefs would be closed under logical implication. How- 
ever, probabilistic belief, as defined above, is not closed under logical implica- 
tions. For any e > 0, we may have the probability of  each of  A~ . . . . .  A n 
being greater than 1 - e while some implication of  the A i has probability less 
than 1 - e. A much discussed example of  this sort is the lottery paradox 
(Kyburg [6]): Let 0 < ~ < 1. Consider a fair lottery with N participants, 
where N > 1/e. I f  there is only one possible winner, the probability of  any 
one participant's not winning is greater than 1 - e. However,  the conjunction 
of  the statements " x  does not win ,"  for each participant x,  has probability 
zero, since (we may suppose) it is known that someone will win. 

The conclusion from the above is that plain belief cannot be analyzed in 
probabilistic terms. If  we accept this conclusion, the challenge is to produce a 
theory as well suited to analyzing plain belief and the revision of  plain belief as 
is probability theory to probabilistic belief and probabilistic belief change. 
Spohn has done just that. 

N A T U R A L  C O N D I T I O N A L  F U N C T I O N S  

The first step in analyzing plain belief and plain belief change (hereafter just 
"be l ie f"  and "be l ie f  change")  is to formally represent the total content of  
someone's  belief. Then belief in a particular proposition can be defined as 
entailment by the total content of  one 's  belief (under the idealization of  logical 
omniscience). 

Spohn chose to work within the possible worlds framework in his analysis. 
We may think of  a possible world as a complete and consistent description of  
the state of  the world relative to some set of  atomic propositions. The idea is 
that we represent a person's belief state as an assignment of  a degree of  
implausibility to the possible worlds. Let O = { s 1, s 2 . . . . .  sn} be a set of  
pairwise mutually exclusive and jointly exhaustive states of  the world. In 
Spohn's theory, a state of  belief is captured by a natural conditional function 
(NCF), which is a function from O into the natural numbers (0, 1, 2 . . . .  ) that 
assigns zero to at least one member of  O.1 Intuitively, an NCF is a grading of  
states of  the world in terms of  their degree of  implausibility. That is, the 
greater the value of  the NCF for a given state, the more implausible that state 
is. 

In fact, Spohn considered a more general function known as an ordinal condition function 
(OCF). An OCF is like an NCF except that its range is the set of ordinal numbers, including 
transfinite ordinals. To avoid technical trivialities having to do with the arithmetic of transfinite 
ordinals, we restrict the range to natural numbers. 
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A proposition is a statement whose truth value depends upon which 
member of O is the true state of the world. Propositions are true or false in 
states. We follow the convention of identifying a proposition with the set of 
states in which it is true. Formally, then, a proposition is simply a subset of O. 
An NCF x can be extended to consistent (i.e., nonempty) propositions by 
defining for each nonempty subset A of (9 

K(A) = min{r(si) l s i ~ A  } 

In this paper we will think of the possible states as complete specifications of 
the values of some finite set of multivalued variables. In this framework a 
proposition is an assertion about the values of some subset of the variables. Let 
us assume in what follows that each value of a variable is unique to that 
variable, so that we can write x(a) for the degree of implausibility that 
variable A has value a, and similarly x (x)  for the degree of implausibility 
that the values in x belong to the variables in X. 

A notion of conditional independence for the Spohn system can be defined. 
Let X,  Y, Z be sets of variables and ~ an NCF. K(X I y) is defined to be 
r(x ,  y) - K(y). Then we may define " X  is independent of Y given Z with 
respect to K" by 

For all values x o f X ,  y o f  Y, and z o f Z ,  K ( X I y ,  z) = K ( X I Z ) .  

It is easy to show that this definition is equivalent to 

K(x ,  Yl z) = K(x l  z) + ~(Yl  z ) .  

An NCF K induces a strength o f  belief function /~ over proper subsets A 
of O as follows: 

- K ( A )  if r ( A )  > 0  

~3(A) =of K(_~A ) otherwise 

Now we can say how beliefs are revised when new information is obtained. 
Suppose that proposition P is learned with strength o~. Let x be the NCF 
before P is learned. Then we define K', the NCF that results from learning P ,  
by its value for each state s as follows: 

I K(S) -- K(P) if s e P  KI(S) 
I K(S) -- K(-~P) + ~ otherwise 

A N  EXAMPLE OF BELIEF REVISION 

In order to make the foregoing belief representation framework more 
intuitive and to introduce the issues of concern, let us consider an example of a 
belief system in which the relation of conditional independence plays an 
important role in organizing the beliefs. Suppose we consider the effects of a 
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fire breaking out in a certain building. We may believe fairly strongly that 
given that there is a fire in the building, there will be smoke in the building, 
and that given smoke in the building, a smoke alarm will go off. We may also 
believe, perhaps somewhat less strongly, that there will be an explosion if a 
fire breaks out, due, say, to a suspected gas leak. Suppose we also believe very 
strongly that in the absence of a fire, none of the other mentioned events would 
occur. Finally, suppose we have no belief one way or the other about whether 
a fire will occur. 

The causal relations between the foregoing events are indicated in the 
influence diagram shown in Figure 1. (We consider the nodes in this network 
to be binary variables taking the values true and false, or 1 and 0.) 
Intuitively, the indicated causal relations between events will imply certain 
conditional independencies. For example, once we know the value of the 
variable SMOKE, the value of the variable ALARM becomes independent of 
the variable FIRE. Similarly, if we were to learn the true value of the variable 
FIRE, then the variables SMOKE and EXPLOSION would become indepen- 
dent. In general, knowledge of the direct cause or causes of a given variable 
makes belief about the variable independent of beliefs about any other variables 
that are connected to the given variable only through the direct causes. 

To formalize the above belief system in the Spohnian framework, first note 
that the strength of belief in a proposition A conditional on a proposition B is 
equal to a positive integer x [in symbols: /~( A [ B) = x] if and only if 

A I s )  = x ,  

where K is the corresponding NCF. Also note that K(~ A] B) > 0 implies 
K(A I B)  = 0. 

Figure 1. Causal relations between events. 



494 Daniel Hunter 

Abbreviating the name of each event by the first letter in the name, the 
beliefs about the causal relations between events can be captured by conditions 
on the NCF K such as the following: 

K(-~ E l F  ) = 1, 

K(-~ SIF)= 2, 

K(~ AIS ) = 2 ,  

K(EI-~ F)=4 
~(SI-~ F)  : 4  

K ( A [ ~  S ) : 4  

The other cases follow from the fact that K (-7 A I B) > 0 implies ~ ( A I B) = 
0. The absence of any belief regarding FIRE can be captured by 

~ ( F )  -- ~(~  F )  -- 0. 

Call the set of above conditions I ~. By itself r does not determine a joint NCF 
over the set of all variables. However, if we add the conditional independen- 
cies implied by the influence diagram, we do uniquely determine an NCF. In 
fact, the following statements of conditional independency suffice to determine 
the joint (a lowercase letter ranges over values of the corresponding capital 
letter): 

K(slf, e) = K(sl f )  

K(als, f ,e) = K(a l s )  

These two conditions imply that a joint r ( f ,  s, e, a) may be written 

K(f) + K(slf) + r (e l f )  + K ( a l s ) .  

All the terms in the above expression are determined by r ,  so this proves the 
assertion just made, that the stated conditions on the NCF, together with the 
conditional independencies, uniquely determine the NCF. 

To revise beliefs in the light of new information, we use the decomposition 
of the joint NCF together with the revision rule to update each proposition. For 
example, if ALARM comes to be believed with strength, say, 3, we may 
compute the new NCF K' for other propositions as follows. First we have 

x'(S) = min{~'(S&A),K'(S&-~ A)} 

= m i n { K ( S & A ) -  r ( A ) , ~ ( S & - ~  A ) -  K(-~ A)+ 3} 

= min{0,2} = 0 

while 

K'(~ S ) =  min{K(-~ S & A ) -  ~( A),K(-~ S&~ A ) -  K(-~ A)+ 3} 

= min{4,3} = 3. 
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Hence in the new NCF, SMOKE is believed with strength 3. The new strength 
of belief in FIRE can be computed in a similar manner from the new strength 
of belief in SMOKE, and from there the strength of belief in EXPLOSION can 
be computed. 

The above example suggests a method for constructing and revising NCFs 
over a set of variables. Construct an influence diagram capturing the dependen- 
cies between the variables. Then for each variable V specify a marginal NCF 
for V conditional on each combination of values of V 's  parents (if V has no 
parents, this amounts to specifying an unconditional marginal NCF for V). 
The conditional independencies implied by the influence diagram will then 
uniquely determine the NCF. The influence diagram is updated by applying the 
revision rule locally to directly connected components. 

This procedure makes a number of assumptions that need to be made 
explicit. First, we are assuming that our intuitive notion of conditional inde- 
pendency can be captured by the graphical technique of an influence diagram. 
Second, we are assuming that the notion of conditional independence as 
defined in terms of NCFs corresponds in an appropriate way to both our 
intuitive notion and the conditional independencies indicated by the influence 
diagram. Neither of these assumptions can be taken for granted. The first 
assumption has been proved true in Refs. 1 and 2 for an important class of 
conditional independence statements. The burden of the rest of this paper is to 
prove the second assumption for the same class of statements. 

GRAPHOIDS AND SEMIGRAPHOIDS 

What axioms should a relation of conditional independence, whether defined 
in terms of NCF's ,  probabilities, or some other way, satisfy? Let I (X,  Z, Y) 
mean that the set of variables X is independent of the set of variables Y given 
the set of variables Z. In their work on probabilistic conditional independence, 
Geiger and Pearl [1] list the following axioms, taken from Dawid [7]: 

(la) I( X, Z, Y) ¢* I( Y, Z, X) 
( lb) I ( X , Z ,  Y U  W ) ~  I ( X , Z , Y )  
(le) I( X,  Z, Y U W) ~ I( X,  Z U Y, W) 
(ld) I(X, Z U  Y ,W)  A I ( X , Z , Y ) ~  I (X ,Z ,  YU W) 
We denote the set consisting of axioms ( l a ) - ( ld )  by SG. A relation I that 

satisfies all the members of SG is a semigraphoid. If the relation additionally 
satisfies the following axiom, then it is a graphoid: 

( l e )  I ( X ,  Z U  Y , W ) & I ( X ,  Z U  W , Y ) ~ I ( X , Z ,  Y U  W) 

where W is disjoint from X,  Y, and Z. 
We have the following theorem. 
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THEOREM I The relation o f  conditional independence relative to an 
NCF is a graphoid. 

Proof First we need to note that since the sets W, X, Y, and Z are 
pairwise disjoint, any combination of values of these variables is consistent, so 
that the NCF value for any such combination will be defined. 

(la) Immediate. 
(lb) Assume K(X, Y U  W I Z  ) = K ( X I Z  ) + r ( Y O  W I Z ) .  Then 

r ( x ,  Yl z) = min{K(x, y ,  w I z ) :  we  # ( W ) }  

= min{x(xl  z) + K(y,  wl z ) :  w e  ¢/ (W)} 

= K(x,  Yl z) + min{ r (y ,  w] z ) : w e  ~/(W)} 

= x(x l  z) + x(Yl z). 

(lc) Assume K(X, YU W IZ)  = K ( X I Z ) +  K(YU W IZ ). It easily 
follows that r(x ,  w I z, y) = K(xl z) + r (w l  Z, y). From (lb) we have 
~(xl z) = K(x, Y l z) - x(Yl z) = K(xl y, z). Hence K(x, w I z, y) = 
~(xl z, y) + ~(wl z, y). 

(ld) Assume r ( X ,  W I Z ,  Y) = r ( X t Z ,  Y) + K ( W I Z ,  Y) and 
r ( X ,  Y I Z) = r ( X [  Z) + x(Y I Z). Then 

~(x,  y, wl z) = K(YlZ) + K(xl z ,Y) + K(wl x, z , y )  

= ~(xl  z) + K(Yl z) + ~(wl z, Y) 

= K(xl z) + K(w, Yl z) .  

(le) Assume r ( x l z ,  y, w) = K ( x l z ,  Y) and r ( x l z ,  y ,  w) = 
K(x I z, w) for all x e  ~/(X),  y e  ~ ( Y ) ,  z e  ~ ( Z ) ,  and w e  ~/(W). Con- 
sider an arbitrary value z of Z. We have K(xlz, y)=~(xlz ,  w)= 
K (x I z, y,  w) for every value y of Y and every value w of W. This implies 
that for a particular choice of z, K (x  I z, y,  w) (with y and w varying) is a 
constant, call it ct z. Thus 

~ (x [  Z) = min{K(y,  w[ z) + K(x[ y ,  w, z ) :  y e  ~ ( Y ) ,  w e  ~ ( W ) }  

= o~ z + min{K(x [ y ,  w, z ) :  y e  ~ / (Y) ,  w e  ~/(W)} 

= K ( x l z ,  y , w ) .  • 

Note that a probabilistic version of the proof of (le) would require an 
assumption of strict positivity (no combination of values has zero probability) 
to ensure that the needed conditional probabilities are defined. 

Let 0 be a total ordering of the variables. A causal list (relative to O) is a 
set of statements such that for each variable A there occurs in the list exactly 
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Figure 2. An influence diagram. 
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one statement of the form 

I ( A , X , Y -  X)  

where Y is the set of ancestors of A and X is a subset of Y. The statement 
I ( A ,  X,  Y - X)  therefore says that given values for the X ' s ,  A is indepen- 
dent of all other predecessors in the ordering 0. A causal list can be used to 
produce an influence diagram by drawing arrows, for each statement 
I ( A ,  X,  Y - X )  in the list, from the variables in X to the variable A. 

A causal list L entails independence statements other than those in L. For 
example, L will entail that, given its parents, a variable A is independent, not 
just of all other ancestors, but of all nondescendant variables. We say that a 
causal list L entails an independence statement I, written L = I, if and only if 
every NCF that satisfies every statement in L also satisfies I. 

Given an influence diagram D, there is a graphical criterion for conditional 
independence (Pearl [4, p. 117]). To state this criterion we need some 
definitions. We say that a path from variable a to variable /3 is viable if it 
contains no node with two incoming arrows. Thus the path ABD from A to 
D in Figure 2 is viable because it contains no nodes with arrows meeting head 
to head. However, the path BDC from B to C is not viable because at node 
D two arrows meet head to head. A viable path is blocked by a set of 
variables if some member of the set occurs in the path. For example, the set 
{B} blocks the path ABD. A nonviable path is unbiocked by a set of 
variables if every node at which arrows meet head to head either is in the set or 
has a descendant in the set. Hence the path BDC is unblocked by the set { D} 
(and by any superset of that set). The d-separation criterion then says that X 
and Y are independent given Z in influence diagram ID, written lID(X, Y, Z), 
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if every viable path in ID from a variable in X to a variable in Y is blocked 
by Z and no nonviable path in ID from a variable in X to a variable in Y is 
unblocked by Z. 

So far we have seen three approaches to conditional independence: the 
definition in terms of NCFs, the axiomatic approach, and the graphical 
d-separation criterion. What, if any, is the connection among these three? 

The following theorem answers this question. 

THEOREM 2 Let  L be a causal list and D the corresponding influence 
diagram. Then the fol lowing statements are equivalent: 

(i) L ~ I ( X , Z , Y )  
(ii) L U S G ~ - I ( X , Z , Y )  

(iii) Io( X ,  Z, Y) 

The proof of Theorem 2 requires the following lemmas. 

LEMMA 1 Let  L be a causal list with respect to the ordering o f  
variables (A l, A 2 . . . . .  An), and let D be an influence diagram f o r  L. 
Then an N C F  ~ satisfies L i f f  f o r  all values a 1,a 2 . . . . .  a n o f  
A l, A 2 . . . . .  A n, respectively, 

K ( a l ,  a 2 . . . . .  an) = ~ r ( a i l b i l  . . . . .  bili) 
i=1  

where b i !  . . . . .  bit ̀  are the values o f  A i's parents in D that are in 

{ al . . . . .  an}. 

Proof r ( a  1, a 2 . . . . .  an) can be written as K(al) + x ( a 2 [ a  0 + 
r(an I al, • • •, an-1). By the choice of the parents of a variable, we see that in 
the ith term of this sum, values of variables that are not parents of A i may be 
removed without affecting the sum. • 

For the next lemma, we need to define two notions. First, where L is a 
causal list for a set of variables V and X is a subset of V, we define L ( X ) ,  
the restriction o f  L to X ,  to be the causal list gotten from L by deleting, for 
each variable A not in X,  the entry I ( A ,  Z, Y )  and by replacing, for each 
variable B in X,  the entry I (B ,  Z, Y )  by I (B ,  Z f3 X ,  Y f) X ) .  Second, if 
NCF r is defined over a set X of variables, we define the vacuous extension 
of K to a set V D X to be the NCF K + such that for any set of values x of 
members of X and values v of members of V -  X,  r~( x, v) = x(x). 

LEraMA 2 Let  L be a causal list f o r  a set o f  variables V, and let X be a 
subset o f  V. I f  an N C F  ~ satisfies L( X ) ,  then the vacuous extension o f  
r to V satisfies L. 

Proof Suppose NCF K, over X,  satisfies L ( X ) ,  and suppose I ( A ,  Z, Y )  
L. If A ¢ X,  then for any value a of A and sets of values z and y of Z and 
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Y, respectively, x ~,(al z) = ~ ~,(a I z, y)  = 0, and so K ~, satisfies 
I( A, Z, Y). Assume, then, that A ~ X .  Then I( A, Z N X,  Y N X ) e L ( X ) .  
Let Z~ = Z C I X  and Z 2 = Z - X ,  and similarly let Y1 = Y N X  and 
I"2 = Y - X.  Then any set z of  values of  the members of  Z can be written as 
the union of  a set z~ of  values of  members of  Z~ and a disjoint set z2 of  
members of  Z 2, and a set y of  values of  members of  Y can be likewise be 
decomposed into the union of  disjoint sets y~ of  values of  members of  Y~ and 
Y2 of  values of  members of  Y2. Then 

z ,  y)  = z , ,  z2, y , ,  y2) 

= ~ ( a l  z l ,  Y]) 

: x ("l z , .  z2) 

= z ) .  

Now we can return to the proof of  Theorem 2. 

Proof We show (iii) ~ (ii) ~ (i) = (iii). 
( i i i )~  (ii). Let M =  { I ( X , Z , Y ) : L  U S G ~ - I ( X , Y , Z ) } .  It is clear 

that M is a dependency model as defined in Ref. 2 and that L is a causal input 
list for M.  Furthermore, M of  necessity is a semigraphoid. By Theorem 2 of  
Ref. 2, it follows that every independency revealed by D via the d-separation 
criterion is a member of  M,  that is, if Io(X, Z, Y), then L U SG ~- 
I( X,  Z, r) .  

(ii) = (i). By Theorem 1 of  the present paper, every NCF x satisfies SG 
when I ( X ,  Z, Y) is taken to mean that X and Y are conditionally indepen- 
dent given Z relative to K. Hence if an NCF ~ satisfies L and L U SG I- 
I ( X ,  Z, Y), then K also satisfies I (X ,  Z, Y). 

(i) ~ (iii). Assume that -~ I o ( X ,  Z, Y). Since X and Y are not d-sep- 
arated by Z, there must exist a path from a node A in X to a node B in Y 
such that every node with converging arrows is either in Z or has a descendant 
in Z and no node with an outgoing arrow is in Z. Let P be such a path having 
the least number of  converging arrows. The result will be proved if we can 
construct an NCF r with respect to which A and B are not independent given 
Z. Let W be the set of  variables in path P together with all variables along a 
path from a variable in P to a variable in Z (if there is more than one such 
path, we pick the shortest one). Let U be Z N W. By choosing P to be a path 
from A to B with the smallest number of  converging arrows, we ensure that 
each member of  U has exactly one ancestor in P ;  otherwise, as Geiger and 
Pearl point out [1], there would be a path from A to B with fewer converging 
arrows than in P ,  contrary to the definition of  P .  
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By Lemma 2, if we can find an NCF ~ over W such that K satisfies L ( W )  
and such that A and B are not independent given U, then the vacuous 
extension of K to V, the set of all variables, will satisfy L and will not make 
A and B independent given Z. 

In defining the required NCF K, we wish to treat nonbinary variables as if 
they were binary. This may be done as follows. First, pick a designated value 
of each variable and call it 1. Next, label the set of nondesignated values of a 
variable by 0. Taking the domain of values of each variable to be {0, 1 }, we 
will then define an NCF ~ over the cross-product space of the variables. K 
could be extended to the actual domain of each variable, but nothing in the 
proof depends upon how the extension is done. 

I f  C is a root variable, we define 

K ( C =  1) = 0 ,  ~ ( C = 0 )  = 1 

I f  C has exactly one parent D,  we define 

K ( C = c l O = d )  = {0 i f c = d  
1 otherwise 

If  C has parents D 1 . . . . .  D k, k > 1, we define 

K ( C  = c l D  1 = d 1 . . . . .  D k = d~) 

{ i  i f  c =  l a n d d , =  "." = d k  
= if c = 0 and the d i a r e  not all equal 

otherwise 

By defining r over all variables in accordance with the equation in Lemma 
1, the independencies of L ( W )  will be satisfied. 

We state without proof the following lemmas. 

LEMMA 3 For  all variables C 1 . . . . .  C n, r ( C  l = C 2 . . . . .  C,  = 1) 
-----0. 

LEMMA 4 For  every  variable C, ~ (C  = O) = 1. 
We now show by induction on the length of the path from A to B that 

r ( B  = 0 1 A  = 0, U -  1) = 0. The result will follow since by the above 
lemmas, K ( B = 0 [ U - - -  1 ) > 0 .  

For the basis case, suppose that the length of the path from A to B is 1. 
Then either A is the sole parent of B or B is the sole parent of A. In either 
case, it is trivial to show K (B = 01 A = 0) = 0. 

Suppose, then, that the path from A to B is of length greater than 1. 
Then B ' s  immediate neighbor on path P is a node C distinct from A. 
There are two cases to consider. Either C is a head-to-head node or it is not. 
First assume it is not. Then C d-separates A and U from B, and we may 
w r i t e x ( B = 0 l A  = 0 ,  U--- 1) as 

m i n { r ( C =  c l A  = 0 ,  U - -  1) + K ( B = 0 ] C =  c)}.  
c 
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By induction, K(C= 0 IA  = 0 ,  U - -  1) = K ( B = 0 1 C = 0 )  = 0. Hence 
K(B=OIA = 0 ,  U = 1) = 0 .  

Now suppose C is a head-to-head node. B is one parent of C. Let D be 
the other parent (by the choice of W, no variable has more than two parents 
in W). Let E stand for the first descendent of C (possibly C itself) in U. 
Let U 1 stand for U -  { E}. Since E ' s  only ancestor in P is C, the set 
{D, E} d-separates C from {A} U U 1 and the set {C, D} d-separates B 
from { A} O {E} U U 1. Since we have already established that conditional 
independence under the d-separation criterion implies conditional indepen- 
dence with respect to any NCF satisfying the causal list, we may write 
K ( B = 0  I A  = 0 ,  U -  1) as 

min {K(D = d l  A = 0, U, - 1) + K ( C =  clO = d , E =  1) 
d , c  

+ r ( S =  0 I o =  d ,C= c)}.  

By induction, K ( D = O  IA = O , U  1 -  l) =O.  Wehave 

K ( C =  I l D = O , E =  1) 

= x ( D = 0 )  + ~ ( C =  l i D = 0 )  + K ( E =  l l C =  1) 

- m i n { K ( D = 0 )  + ~ ( C = c  I D = 0 )  + K ( E =  1 1 C = c ) }  
c 

= 1 -  m i n { K ( C = c I D = 0 )  + K ( E =  l l C = c ) }  
c 

: 0 .  

And a similar argument shows that K(B = 0 I D = 0, C = 1) = 0. Hence 
K(B= OIA = O,U-  1) = 0 .  

That completes the proof of Theorem 2. • 

COMPARISONS 

Spohn's theory of belief revision lends itself to a computationally efficient 
implementation of iterative nonmonotonic reasoning. It is of interest to com- 
pare Spohn's theory with other theories of nonmonotonic reasoning. A detailed 
comparison is out of place here, but certain recent developments in the field of 
nonmonotonic reasoning are worth examining in the light of Spohn's work on 
belief revision. 

Kraus et al. [8] and Makinson [9] give axioms for a relation of nonmono- 
tonic inference and show that the best-known systems for nonmonotonic 
reasoning-default logic, circumscription, McDermott and Doyle's modal sys- 
tems, and autoepistemic logic--fail to satisfy one or more of these axioms. 
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Hanks and McDermottt [10] describe anomalies in the application of default 
rules and circumscription to an intuitive case of nonmonotonic reasoning. In 
general, there is a growing awareness of the inadequacy of traditional ap- 
proaches to nonmonotonic reasoning. 

Recent work on preferential and ranked preferential models (Kraus et al. 
[8], Makinson [9], Shoham [11]) has seemed to some to promise relief from 
some of these difficulties. In a preferential model, the worlds or states are 
related by a binary preference relation < . An inference relation I -  is 
defined by saying that A I - B if and only if B is true in all the most preferred 
worlds in which A is true. Depending on the properties of < , various 
nonmonotonic logics result from this definition. In a ranked preferential model, 
the preference relation may be thought of as stemming from a total ordering of 
some partition of the worlds (so that where w and v are worlds, w < v if and 
only if w occurs in a partition element preceding the partition element of 
which v is a member). 

It is clear that an NCF is a ranked preferential model. But it is more than 
that. There is also a notion of distance between worlds, not just of rank. For 
reasons explained by Spohn [3], this additional expressive power turns out to 
be important in iterated belief change. In particular, it allows us to say what 
the new ranking is when a belief change is made. It also allows the recovery of 
the old ranking when a belief change is "taken back" (e.g., when it is learned 
that information previously received is incorrect). 

Another important difference between Spohn's theory of belief revision and 
other systems for nonmonotonic reasoning is that the former comes equipped 
with a powerful notion of conditional independence. In the present paper I have 
attempted to demonstrate that this notion of conditional independence is 
sufficiently rich to form the basis for efficient network-structured inference 
techniques. No comparable inference mechanism has, to my knowledge, been 
worked out for other systems of nonmonotonic reasoning. 

CONCLUSIONS 

The equivalence of the graphical d-separation criterion for conditional 
independence and the criterion in terms of NCFs has important computational 
implications. With the theorems proved in this paper, it can be shown that an 
influence diagram can serve as a computational structure for Spohnian belief 
updating when each node in the influence diagram stores a marginal NCF over 
the node and its parents. Updating is done locally: Each node need only query 
its immediate neighbors in order to update its NCF values. This allows 
updating to be done in parallel. Thus the computational advantages possessed 
by Bayesian networks (Pearl [4]) are also available for Spohnian updating of 
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deterministic beliefs. I describe an algorithm for performing Spohnian belief 
revision using influence diagrams in Ref. 12. 

In closely related work, Shenoy [13] has shown that the Spohn system for 
belief revision satisfies the axiomatic framework for local computation devel- 
oped by Shenoy and Shafer in Ref. 14, and Geiger [15] has proved for the case 
of probabilistic belief results corresponding to Theorem 2 of the present paper. 
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