ACADEMIC PRESS

Affine semipartial geometries and projections of quadrics

Matthew R. Brown, Frank De Clerck, and Mario Delanote
Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium

Received 14 October 2002

Abstract

Debroey and Thas introduced semipartial geometries and determined the full embeddings of semipartial geometries in $\mathrm{AG}(n, q)$ for $n=2$ and 3 . For $n>3$ there is no such classification. A model of a semipartial geometry fully embedded in $\mathrm{AG}(4, q), q$ even, due to Hirschfeld and Thas, is the $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ constructed by projecting the quadric $Q^{-}(5, q)$ from a point of $\operatorname{PG}(5, q) \backslash Q^{-}(5, q)$. In this paper this semipartial geometry is characterized amongst the $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right.$) (of which there is an infinite family of non-classical examples due to Brown) by its full embedding in $\mathrm{AG}(4, q)$. (C) 2003 Elsevier Science (USA). All rights reserved.

Keywords: Semipartial geometry; Affine embedding; Quadric; Generalized quadrangle

1. Introduction

A semipartial geometry [9] with parameters s, t, α, μ, also denoted by $\operatorname{spg}(s, t, \alpha, \mu)$, is a partial linear space $\mathscr{S}=(\mathscr{P}, \mathscr{B}, \mathrm{I})$ of order (s, t), such that for each anti-flag (x, L), the incidence number $\alpha(x, L)$, being the number of points on L collinear with x, equals 0 or a constant $\alpha(\alpha>0)$ and such that for any two points which are not collinear, there are $\mu(\mu>0)$ points collinear with both (μ-condition).

A semipartial geometry with $\alpha=1$ is called a partial quadrangle. It was introduced by Cameron [5] as a generalization of a generalized quadrangle. Semipartial geometries generalize at the same time the partial quadrangles and the partial

[^0]geometries, which are partial linear spaces of order (s, t), such that for each anti-flag (x, L), the incidence number $\alpha(x, L)=\alpha$ (the μ-condition is automatically satisfied). Partial geometries with $\alpha=1$ are the well-known generalized quadrangles. See for instance [13] for more information on generalized quadrangles and [6,7] for more information on partial and semipartial geometries. A semipartial which is not a partial geometry, nor a partial quadrangle will be called proper.

The point graph Γ of a semipartial geometry is strongly regular. For a point x of \mathscr{S} we will denote by $\Gamma(x)$ the set of points of \mathscr{S} different from x and collinear to x.

2. Semipartial geometries and generalized quadrangles

In [2] Brown gives the following general construction method for $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$. Let \mathscr{S} be a generalized quadrangle of order $\left(q, q^{2}\right)$ containing a subquadrangle \mathscr{S}^{\prime} of order q. If x is a point of $\mathscr{S} \backslash \mathscr{S}^{\prime}$, then each line of \mathscr{S} incident with x is incident with a unique point of \mathscr{S}^{\prime} and the set \mathcal{O}_{x} of such points is an ovoid of \mathscr{S}^{\prime}. (An ovoid of a generalized quadrangle is a set of points such that each line of the generalized quadrangle is incident with a unique point of the set.) The ovoid \mathcal{O}_{x} is said to be subtended by x. A rosette of ovoids of \mathscr{S}^{\prime} is a set of q ovoids meeting pairwise in an exactly one fixed point of \mathscr{S}^{\prime}. If L is a line of $\mathscr{S} \backslash \mathscr{S}^{\prime}$, then the ovoids of \mathscr{S}^{\prime} subtended by the points of $\mathscr{S} \backslash \mathscr{S}^{\prime}$ incident with L form a rosette of \mathscr{S}^{\prime}.

If for a subtended ovoid \mathcal{O}_{x} there is a point y of $\mathscr{S} \backslash \mathscr{S}^{\prime}, y \neq x$, such that $\mathcal{O}_{y}=\mathcal{O}_{x}$, then \mathcal{O}_{x} is said to be doubly subtended. If each ovoid of \mathscr{S}^{\prime} subtended by a point of $\mathscr{S} \backslash \mathscr{S}^{\prime}$ is doubly subtended, then \mathscr{S}^{\prime} is said to be doubly subtended in \mathscr{S}. If \mathscr{S}^{\prime} is doubly subtended in \mathscr{S}, then the incidence structure with point set the subtended ovoids of \mathscr{S}^{\prime}; line set the rosettes of subtended ovoids of \mathscr{S}^{\prime}; and incidence containment is an $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$.

The generalized quadrangle $Q(4, q)$ is doubly subtended in $Q^{-}(5, q)$ and hence by Brown's construction yields a semipartial geometry which is better known as the Metz model of $\mathrm{TQ}(4, q)$ (we use the notation as introduced in [6]). For q odd and $\sigma \in \operatorname{Aut}(\operatorname{GF}(q))$ the generalized quadrangle $Q(4, q)$ is also doubly subtended in the Kantor translation generalized quadrangle associated with σ [12]. Two such generalized quadrangles associated with field automorphisms σ_{1} and σ_{2}, respectively, are isomorphic if and only if $\sigma_{1}=\sigma_{2}$ or $\sigma_{1}=\sigma_{2}^{-1}$, and similarly for the $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$. In the case where σ is the identity the Kantor construction yields $Q^{-}(5, q)$ and the associated $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ is the Metz model of TQ $(4, q)$.

An embedding of a partial linear space in $\mathrm{AG}(n, q)$ is a representation of the geometry with point set a subset of the point set of $\operatorname{AG}(n, q)$; line set a subset of the line set of $\mathrm{AG}(n, q)$; and incidence inherited from $\mathrm{AG}(n, q)$. The geometry is fully embedded if the embedding has the additional property that for every line L of $\mathrm{AG}(n, q)$ that is also a line of the geometry, each point of $\mathrm{AG}(n, q)$ that is incident with L is a point of the geometry. It is also required that $\mathrm{AG}(n, q)$ is generated by the
point set of the geometry. In the same way one can define a full embedding of a partial linear space in $\operatorname{PG}(n, q)$.

Let \mathscr{S} be a generalized quadrangle fully embedded in a projective space $\operatorname{PG}(n, q)$, hence \mathscr{S} is classical and $n=3,4$ or 5 [4]. Let p be a point of $\operatorname{PG}(n, q)$ and let Π be a hyperplane of $\operatorname{PG}(n, q)$ not containing p. Let \mathscr{P}_{1} be the projection of the point set of \mathscr{S} from p onto Π and let \mathscr{P}_{2} be the set of points of Π on a tangent through p at \mathscr{S}. Consider the incidence structure $\mathscr{S}_{p}=\left(\mathscr{P}_{p}, \mathscr{L}_{p}, \mathrm{I}_{p}\right)$ with $\mathscr{P}_{p}=\mathscr{P}_{1} \backslash \mathscr{P}_{2}, \mathscr{L}_{p}$ the set of lines of Π with q points in \mathscr{P}_{p} and incidence I_{p} inherited from the projective space. If $\mathscr{S}=Q^{-}(5, q)$ (fully embedded in $\mathrm{PG}(5, q)$) or $\mathscr{S}=H\left(4, q^{2}\right)$ (fully embedded in $\left.\mathrm{PG}\left(4, q^{2}\right)\right)$ the incidence structure \mathscr{S}_{p} is a semipartial geometry.

Assume $\mathscr{S}=Q^{-}(5, q)$ is fully embedded in $\operatorname{PG}(5, q)$ and p is not on the quadric $Q^{-}(5, q)$, then Hirschfeld and Thas [11] proved that projection yields an $\operatorname{spg}(q-$ $\left.1, q^{2}, 2,2 q(q-1)\right)$ that is isomorphic to the semipartial geometry $\mathrm{TQ}(4, q)$. For the other examples we refer to [7]. If q is even, the Hirschfeld-Thas model of TQ $(4, q)$ yields a semipartial geometry which is fully embedded in $\operatorname{AG}(4, q)$.

In [8] Debroey and Thas classified the proper semipartial geometries that may be fully embedded in $\operatorname{AG}(n, q)$ for $n=2$ and 3 , as well as the possible models for the embeddings in these cases. For $n>3$ there is no such classification. There are two examples known, one being the Hirschfeld-Thas model of TQ $(4, q), q$ even.

We will prove the following main theorem.
Main Theorem. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ fully embedded in $\mathrm{AG}(4, q)$. Then $q=2^{h}$ and \mathscr{S} is the Hirschfeld-Thas model of $\mathrm{TQ}(4, q)$.

3. The $\boldsymbol{\operatorname { s p g }}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ embedded in $\mathbf{A G}(4, q)$

In this section, let \mathscr{S} be an $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ fully embedded in $\mathrm{AG}(4, q), q \neq 2$.

Let Π_{∞} denote the hyperplane at infinity of $\operatorname{AG}(4, q)$. The line set of \mathscr{S} is a subset of the line set of $\operatorname{AG}(4, q)$, which in turn is a subset of the line set of $\operatorname{PG}(4, q)$, the projective completion of $\operatorname{AG}(4, q)$. Thus a line of \mathscr{S} will be said to intersect Π_{∞} in the point of Π_{∞} incident with the line in $\operatorname{PG}(4, q)$. The same symbol will be used to refer to such a line in the three different contexts.

For a point x of \mathscr{S}, let θ_{x} denote the set of $q^{2}+1$ points in Π_{∞} determined by the intersection of Π_{∞} with the lines of \mathscr{S} through x. Since $\alpha=2$ any line N of Π_{∞} intersects θ_{x} in at most three points. A line of Π_{∞} intersecting θ_{x} in $0,1,2$ or 3 points will be referred to as an external line, tangent, secant or 3 -secant, respectively.

Let (x, L) be an antiflag of $\mathscr{S}, M=\langle x, L\rangle \cap \Pi_{\infty}$ and $p=L \cap \Pi_{\infty}$. If $\alpha(x, L)=$ 0 , then M is either a tangent of θ_{x} at p or an external line of θ_{x}, while for $\alpha(x, L)=2$, we obtain that either $p \notin \theta_{x}$ and M intersects θ_{x} in two points, or $p \in \theta_{x}$ and M intersects θ_{x} in three points.

Lemma 1. Let x be a point of the semipartial geometry \mathscr{S} and let M be a projective line of Π_{∞} intersecting θ_{x} in three points p_{1}, p_{2}, p_{3}. Then all of the points of $\langle M, x\rangle \backslash M$ are points of \mathscr{S} and the $3 q$ affine lines in $\langle M, x\rangle$ through p_{1}, p_{2} or p_{3} are exactly the lines of \mathscr{S} contained in the plane $\langle M, x\rangle$. Furthermore, q is a power of 3 .

Proof. Let y be a point of $\left\langle x, p_{1}\right\rangle \backslash\left\{x, p_{1}\right\}$. Since $\alpha\left(y,\left\langle x, p_{2}\right\rangle\right)=2$ we obtain a line $\langle y, z\rangle$ of \mathscr{S} with $z \in\left\langle x, p_{2}\right\rangle \backslash\left\{x, p_{2}\right\}$ which also intersects $\left\langle x, p_{3}\right\rangle$ in the point u. If $u \neq p_{3}$, then $\alpha(x,\langle y, z\rangle)>2$, a contradiction, and so $u=p_{3}$. Similarly since $\alpha\left(y,\left\langle x, p_{3}\right\rangle\right)=2$ it follows that the line $\left\langle y, p_{2}\right\rangle$ is a line of \mathscr{S}. Since this is true for any $y \in\left\langle x, p_{1}\right\rangle \backslash\left\{x, p_{1}\right\}$ we have that each affine line through p_{2} or p_{3} is a line of \mathscr{S}. Clearly by similar arguments we also have that each affine line through p_{1} is a line of \mathscr{S}. If N is any line of $\langle M, x\rangle$ not incident with p_{1}, p_{2} or p_{3}, then N cannot be a line of \mathscr{S} since for any point y of $\langle M, x\rangle \backslash M$ not on N we would have $\alpha(y, N)>2$.

Now let the affine lines of $\langle M, x\rangle$ through p_{1} be labelled L_{1}, \ldots, L_{q}. For any L_{i} there are $q^{3}(q-1) / 2$ antiflags $\left(y, L_{i}\right)$ of \mathscr{S} with incidence number 2 , and hence $q^{2}\left(q^{2}-1\right) / 2-q^{3}(q-1) / 2-q=\left(q^{3}-q^{2}\right) / 2-q$ antiflags $\left(z, L_{i}\right)$ with incidence number 0 . Counting the number of points z of \mathscr{S} such that $z \in\langle M, x\rangle$ or $\alpha\left(z, L_{i}\right)=$ 0 for some L_{i} we have at most $q^{3}(q-1) / 2$ points, fewer than the total number of points of \mathscr{S}. Consequently there exists a point x^{\prime} of \mathscr{S} such that $x^{\prime} \notin\langle M, x\rangle$ and $\alpha\left(x^{\prime}, L_{i}\right)=2$ for all L_{i}. Hence there are $2 q$ points of $\langle M, x\rangle$ collinear with x^{\prime} in \mathscr{S}. Let this set of points be Ω. Since $|\Omega|=2 q$ it follows that each affine line through p_{2} or p_{3} is incident with 2 points of Ω. If N is any line of $\langle M, x\rangle$ not incident with p_{1}, p_{2} or p_{3}, then $\left\langle N, x^{\prime}\right\rangle$ contains at most 3 lines of \mathscr{S} on x^{\prime} and so N contains at most 3 points of Ω. So now consider any $y \in \Omega$. Then lines $\left\langle y, p_{1}\right\rangle,\left\langle y, p_{2}\right\rangle$ and $\left\langle y, p_{3}\right\rangle$ cover 4 points of Ω while the remaining $q-2$ lines of $\langle M, x\rangle$ on y must cover the remaining $2 q-4$ points of Ω with at most 2 points of $\Omega \backslash\{y\}$ on a line. Consequently, each such line contains exactly 3 points of Ω. It follows that each line of $\langle M, x\rangle$ not incident with p_{1}, p_{2} or p_{3} is incident with 0 or 3 points of Ω. Now let p be any point of $M \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$. By considering the lines of $\langle M, x\rangle$ on p we see that Ω may be partitioned into sets of size 3 and so $3 \mid q$.

Lemma 2. Let x and y be two collinear points of \mathscr{S}, then a line M of Π_{∞} incident with $p=\langle x, y\rangle \cap \Pi_{\infty}$ is either a tangent of both θ_{x} and θ_{y}, a secant of both θ_{x} and θ_{y} with $M \cap \theta_{x} \cap \theta_{y}=\{p\}$, or a 3-secant of both θ_{x} and θ_{y} with $\left|M \cap \theta_{x} \cap \theta_{y}\right|=3$.

Proof. Let M be a line of Π_{∞} incident with $p=\langle x, y\rangle \cap \Pi_{\infty}$. Since $\alpha=2$, both $\left|M \cap \theta_{x}\right|$ and $\left|M \cap \theta_{y}\right|$ are at most 3. If $M \cap \theta_{y}=\{p\}$ and $\left|M \cap \theta_{x}\right|>1$, then this contradicts $\alpha=2$. Hence if $M \cap \theta_{y}=\{p\}$, then it is also the case that $M \cap \theta_{x}=\{p\}$, that is, M is a tangent of both θ_{x} and θ_{y}.

Assume that $\left|M \cap \theta_{x}\right|=3$, then by Lemma 1 every point of the affine plane $\langle x, M\rangle$ is incident with three lines of \mathscr{S} and belonging to that plane; more particular this holds for the point y and so $\left|M \cap \theta_{y}\right|=3$.

Hence the only possibility which is left is $\left|M \cap \theta_{x}\right|=\left|M \cap \theta_{y}\right|=2$ with $M \cap \theta_{x} \cap \theta_{y}=\{p\}$.

If $\left|M \cap \theta_{x} \backslash \theta_{y}\right|=\left|M \cap \theta_{y} \backslash \theta_{x}\right|=1$, then M is said to be of type (A) with respect to x and y. If $\left|M \cap \theta_{x} \cap \theta_{y}\right|=3$, and hence $\left|M \cap \theta_{x} \backslash \theta_{y}\right|=\left|M \cap \theta_{y} \backslash \theta_{x}\right|=0$, then M is said to be of type (B) with respect to x and y.

Lemma 3. Let x be a point of \mathscr{S}, then θ_{x} is an ovoid of Π_{∞} and q is even.
Proof. Let y be a point of \mathscr{S} collinear with x and let $p=\langle x, y\rangle \cap \Pi_{\infty}$. By the proof of Lemma 2 a line of Π_{∞} containing p is either tangent to both θ_{x} and θ_{y}, or is either of type (A) or of type (B) with respect to x and y. To prove that θ_{x} is an ovoid, we have to show that there are no lines of type (B) with respect to x and y.

Let L be the line $\langle x, y\rangle$ of \mathscr{S}. For any line N of \mathscr{S} intersecting L (in a point of \mathscr{S}) $\langle L, N\rangle \cap \Pi_{\infty}$ is a line of type (A) or (B) (with respect to x and y). Let this line be M and suppose that M is of type (A) such that $\theta_{x} \cap M=\left\{p, p_{1}\right\}$ and $\theta_{y} \cap M=\left\{p, p_{2}\right\}$. Let $z=\left\langle p_{2}, y\right\rangle \cap\left\langle p_{1}, x\right\rangle$ and suppose that z is incident with a third line of \mathscr{S} in $\langle M, L\rangle$. Since z is collinear with x and y and $\alpha=2$ this third line must be $\langle z, p\rangle$. As $\alpha(y,\langle z, p\rangle)=2$ there is a third line of \mathscr{S} on y in $\langle M, L\rangle$, contradicting the fact that M is a 2 -secant of θ_{y}. Consequently z is incident with exactly two lines of \mathscr{S} in $\langle M, L\rangle$. Similar arguments show that each point of $\left\langle x, p_{1}\right\rangle \backslash\left\{p_{1}\right\}$ is incident with exactly two lines of \mathscr{S} in $\langle M, L\rangle$. It follows that there are exactly $q+1$ lines of \mathscr{S} in $\langle M, L\rangle$. Also $\alpha=2$ implies that no two of these lines meet on M. Hence the lines of \mathscr{S} in $\langle M, L\rangle$ form a dual oval with nucleus M, from which it follows that q is even.

By Lemma 1 if M is a line of type (B), then q is a power of 3 . Thus we have two distinct cases for the lines of Π_{∞} through p that are not tangent to both x and y : either they are all of type (A) or all of type (B). In the latter case $3 \mid q$ and the lines through p partition $\theta_{x} \backslash\{p\}$ into sets of size 2 which implies that $2 \mid q$, a contradiction. So we must be in the former case and q is even.

Now suppose that x is an arbitrary point of \mathscr{S} and p a point of θ_{x}. If $y \in\langle x, p\rangle \backslash\{x, p\}$, then by applying the above argument it follows that every line of Π_{∞} on p is either a tangent or a secant of θ_{x}. Hence there are no 3 -secants of θ_{x} and θ_{x} is an ovoid.

Corollary 4. Let x and y be two collinear points of \mathscr{S}, then $\left|\theta_{x} \cap \theta_{y}\right|=1$.

Proof. Every line of Π_{∞} incident with $p=\langle x, y\rangle \cap \Pi_{\infty}$ is either a tangent to both θ_{x} and θ_{y} or is of type (A) with respect to x and y.

Lemma 5. Let x and y be two non-collinear points of \mathscr{S} and $p=\langle x, y\rangle \cap \Pi_{\infty}$. Let M be any line of Π_{∞} incident with p. Then one of the following is the case:
(i) M is secant to both θ_{x} and θ_{y} and $M \cap \theta_{x} \cap \theta_{y}=\emptyset$;
(ii) M is tangent to both θ_{x} and θ_{y} at a point of $\theta_{x} \cap \theta_{y}$; or
(iii) M is external to both θ_{x} and θ_{y}.

Furthermore $\theta_{x} \cap \theta_{y}$ is an oval with nucleus p.

Proof. Suppose that $r \in \theta_{x} \cap \theta_{y}$. We show that $\langle r, p\rangle$ is tangent to both θ_{x} and θ_{y}. Suppose that $\langle r, p\rangle$ is a secant line of at least one of the ovoids, say θ_{x}. Hence $\left(\theta_{x} \cap\langle r, p\rangle\right) \backslash\{r\}=\{u\}$ for some point u. Let $z=\langle u, x\rangle \cap\langle r, y\rangle$. Then x and z are collinear in \mathscr{S} while $\left|\theta_{x} \cap \theta_{z}\right| \geqslant 2$, contradicting Corollary 4. Hence $\langle p, r\rangle$ is a tangent line of both ovoids.

Now we show that M is secant to θ_{x} if and only if it is secant to θ_{y}. Therefore we first assume that M intersects θ_{x} in the point v and θ_{y} in the point w, with $v \neq w$. Then $\langle v, x\rangle$ intersects $\langle w, y\rangle$, and so $\alpha(y,\langle x, v\rangle)=2$. This implies that M intersects θ_{y} in the distinct points w and w^{\prime}, and moreover $w, w^{\prime} \notin \theta_{x} \cap \theta_{y}$. Similarly, since $\alpha(x,\langle y, w\rangle)=2$, it follows that M intersects θ_{x} in the distinct points v and v^{\prime}, with $v, v^{\prime} \notin \theta_{x} \cap \theta_{y}$. In other words, M intersects both ovoids in two points outside their intersection. Since $|\Gamma(x) \cap \Gamma(y) \cap\langle x, y, M\rangle|=4$ and $|\Gamma(x) \cap \Gamma(y)|=\mu=2 q(q-1)$ it follows that there are exactly $q(q-1) / 2$ lines incident with p that are secant to both θ_{x} and θ_{y}. Since this is the number of secants of an ovoid incident with a point not on the ovoid this means that the set of lines of Π_{∞} incident with p and secant to θ_{x} is also the set of lines incident with p and secant to θ_{y}.

By Lemma $3, q$ is even and consequently the $q+1$ tangents of θ_{x} incident with p are contained in a plane π_{x} on p and similarly the $q+1$ tangents of θ_{y} incident with p are contained in a plane π_{y}. There are two cases to consider: $\pi_{x}=\pi_{y}$ and $\pi_{x} \cap \pi_{y}$ is a line incident with p. First suppose that $\pi_{x}=\pi_{y}$. It follows that the tangents of θ_{x} incident with p are precisely the tangents of θ_{y} incident with p with a common point of tangency. Consequently $\theta_{x} \cap \theta_{y}$ is an oval of π_{x} with nucleus p. So in this case $\left|\theta_{x} \cap \theta_{y}\right|=q+1$. Now suppose that $\pi_{x} \cap \pi_{y}$ is a line L incident with p. The line L is a tangent of both θ_{x} and θ_{y} at a point $o \in \theta_{x} \cap \theta_{y}$. If $M \neq L$ then by arguments above M must be external to θ_{y}. From this it follows that π_{x} is the tangent plane of θ_{y} at o and similarly π_{y} is the tangent plane of θ_{x} at o. Since $\langle p, o\rangle$ is the only line of Π_{∞} incident with p that is tangent to both θ_{x} and θ_{y} it follows that $\theta_{x} \cap \theta_{y}=\{o\}$, and so $\left|\theta_{x} \cap \theta_{y}\right|=1$.

It is now shown that the case $\left|\theta_{x} \cap \theta_{y}\right|=1$ cannot occur. Suppose that $\left|\theta_{x} \cap \theta_{y}\right|=$ 1. Let M be secant of both θ_{x} and θ_{y}. It follows by arguments above that if $\theta_{x} \cap M=$ $\left\{v, v^{\prime}\right\}$ and $\theta_{y} \cap M=\left\{w, w^{\prime}\right\}$, then $\left\{v, v^{\prime}, w, w^{\prime}\right\}$ are four distinct points. Let $\left\{x=x_{1}, x_{2}, \ldots, x_{q}\right\}$ be the set of q points of \mathscr{S} incident with the line $L=\langle x, v\rangle$. By Corollary 4, $\theta_{x_{i}} \cap \theta_{x_{j}}=\{v\}$ for $i, j \in\{1, \ldots, q\}, i \neq j$, and by a consequence of Lemma 2, the ovoids $\theta_{x_{1}}, \ldots, \theta_{x_{q}}$ have a common tangent plane at v, π_{v} say. It follows that the ovoids $\theta_{x_{1}}, \ldots, \theta_{x_{q}}$ partition the points of $\Pi_{\infty} \backslash \pi_{v}$ into q sets of size q^{2}. Without loss of generality assume that y is collinear with the points x_{2} and x_{3} of L, so by Corollary $4\left|\theta_{y} \cap \theta_{x_{2}}\right|=\left|\theta_{y} \cap \theta_{x_{3}}\right|=1$. By above arguments it follows that for $i=4, \ldots, q,\left|\theta_{y} \cap \theta_{x_{i}}\right|=1$ or $q+1$.
Suppose that $\left|\pi_{v} \cap \theta_{y}\right|=1$, then since $v \notin \theta_{y}$ the ovoids $\theta_{x_{1}}, \ldots, \theta_{x_{q}}$ partition the q^{2} points of $\theta_{y} \backslash\left(\pi_{v} \cap \theta_{y}\right)$ into q sets with size either 1 or $q+1$. This requires $q-1$ sets of size $q+1$ and 1 set of size 1 . However $\left|\theta_{x_{i}} \cap \theta_{y}\right|=1$ for $i=1,2$ and 3 , a contradiction. Now suppose that $\left|\pi_{v} \cap \theta_{y}\right|=q+1$, then since $v \notin \theta_{y}$ the ovoids $\theta_{x_{1}}, \ldots, \theta_{x_{q}}$ partition the $q^{2}-q$ points of $\theta_{y} \backslash\left(\pi_{v} \cap \theta_{y}\right)$ into q sets with size either 1 or $q+1$. This requires $q-2$ sets of size $q+1$ and 2 sets of size 1 , again a contradiction.

It follows that $\left|\theta_{x} \cap \theta_{y}\right|$ cannot be 1 and so $\pi_{x}=\pi_{y}$ and $\theta_{x} \cap \theta_{y}$ is an oval of π_{x} with nucleus p.

Theorem 6. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ fully embedded in $\mathrm{AG}(4, q)$. Then $q=2^{h}, \mathscr{S}$ is isomorphic to $\mathrm{TQ}(4, q)$ and is fully embedded as the Hirschfeld-Thas model.

Proof. Let \mathscr{S} be a semipartial geometry $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ fully embedded in $\mathrm{AG}(4, q)$. If $q=2$, then \mathscr{S} coincides with its point graph which is the unique complete graph on six vertices and the result follows. Hence we may assume that $q>2$.
Let $\mathscr{K}=\Pi_{\infty} \cup \mathscr{P}$, where \mathscr{P} is the point set of \mathscr{S}. The intersections of \mathscr{K} with a plane of $\operatorname{PG}(4, q)$ are now considered which will allow the use of a result of Hirschfeld and Thas in [10] in order to prove the theorem. So let π be a plane of $\operatorname{PG}(4, q)$. If $\pi \subset \Pi_{\infty}$, then $\pi \subset \mathscr{K}$; so suppose that $\pi \not \subset \Pi_{\infty}$ and that $\pi \cap \Pi_{\infty}$ is the line M.

Suppose that π contains a point x of \mathscr{S}. Then M may either be a secant, tangent or external line of θ_{x}.

Suppose that M is a secant line of θ_{x}. This is the case if and only if there exists an antiflag (x, L) of \mathscr{S} contained in π such that $\alpha(x, L)=2$. By the proof of Lemma 3 the lines of \mathscr{S} in π form a dual oval \mathscr{D} with nucleus M and these are all the lines of \mathscr{S} in π. Let z be any point of $\mathscr{S} \cap \pi$ and not collinear in \mathscr{S} with x. Then by Lemma 5, M is a secant of θ_{z}; hence z is incident with exactly two lines of the dual oval \mathscr{D}. It follows that $\pi \cap \mathscr{K}$ is a dual hyperoval; or equivalently the complement of a maximal arc of type $(0, q / 2)$.

Next suppose that $M \cap \theta_{x}=\{p\}$. Hence M is a tangent of θ_{x} at p and all points of $\pi \cap \mathscr{S}$ are not collinear in \mathscr{S} with x. If y is such a point of \mathscr{S} on π, then by Lemma 5 M is a tangent of θ_{y} at p and so $\langle p, y\rangle$ is a line of \mathscr{S}. It follows that lines of \mathscr{S} in π are incident with p and that all points of \mathscr{S} on π are incident with such a line. Let z be a point of $M \backslash\{p\}$, and let N be a secant of θ_{x} incident with z. By the above the plane $\langle N, x\rangle$ meets \mathscr{K} in a dual hyperoval and since $z \notin \theta_{x}$ it follows that the line $\langle z, x\rangle$ is not a line of \mathscr{S}. Hence $\langle z, x\rangle$ is incident with exactly $q / 2$ points of \mathscr{S} and so π meets the line set of \mathscr{S} in exactly $q / 2$ lines each intersecting M in p. So M is a tangent of θ_{x} if and only if π meets \mathscr{K} in the point set of $q / 2+1$ concurrent lines.

Finally suppose that M is an external line of θ_{x}. Let y be any point of M and let L be a secant of θ_{x} incident with y. The line $\langle x, y\rangle$ is incident with $q / 2$ points of \mathscr{S}. Hence each line of π incident with x is incident with $q / 2$ points of \mathscr{S}. If z is any other point of \mathscr{S} in π, then since x and z are not collinear and M is an external line of θ_{x} it follows by Lemma 5 that M is also an external line of θ_{z}. Hence π meets \mathscr{K} in a maximal arc of type $(0, q / 2)$, and M is an external line to this maximal arc.

By the above discussion a plane section of \mathscr{K} is one of the following sets: (i) a single line; (ii) the entire plane; (iii) a maximal arc of type ($0, q / 2$), plus an external line; (iv) a dual hyperoval, or equivalently, the complement of a maximal arc of type $(0, q / 2)$; or (v) $q / 2+1$ concurrent lines.

From this list it follows that with respect to the intersection with lines \mathscr{K} is a set of points of type ($1, q / 2+1, q+1$).

Actually, it is possible to show that no planes of type (i) occur, but we do not need this. The set \mathscr{K} does contain plane sections of type (iv), and for $q=4, \mathscr{K}$ has no plane section that is either a unital or a subplane. Hence by [10, Theorem 6] the set \mathscr{K} is the projection of a non-singular quadric of $\operatorname{PG}(5, q)$ onto $\operatorname{PG}(4, q)$. Any plane contained in \mathscr{K} is also contained in Π_{∞} which can only be the case if \mathscr{K} is the projection of an elliptic quadric $Q^{-}(5, q)$ onto $\operatorname{PG}(4, q)$.

We can rephrase as follows our result for an $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ constructed from a doubly subtended subquadrangle of order q of a generalized quadrangle of order $\left(q, q^{2}\right)$.

Corollary 7. Let \mathscr{G} be a generalized quadrangle of $\operatorname{order}\left(q, q^{2}\right), \mathscr{G}^{\prime}$ a doubly subtended subquadrangle of \mathscr{G} of order q, and \mathscr{S} the $\operatorname{spg}\left(q-1, q^{2}, 2,2 q(q-1)\right)$ constructed from \mathscr{G} and \mathscr{G}^{\prime}. If \mathscr{S} may be fully embedded in $\mathrm{AG}(4, q)$, then $\mathscr{S}=\mathrm{TQ}(4, q), \mathscr{G}=Q^{-}(5, q)$, $\mathscr{G}^{\prime}=Q(4, q)$ and $q=2^{h}$.

Proof. By Theorem $6 \mathscr{S} \cong \mathrm{TQ}(4, q)$ and $q=2^{h}$. Since \mathscr{S} (in the model of Metz) may be constructed from the doubly subtended subquadrangle $Q(4, q)$ of $Q^{-}(5, q)$, it follows from [2, Theorem 3.3] that $\mathscr{G}^{\prime}=Q(4, q)$ and \mathscr{S} is the model of Metz in $Q(4, q)$. Since $Q(4, q)$ is doubly subtended in \mathscr{G} with all subtended ovoids being elliptic quadrics on $Q(4, q)$, it follows that $\mathscr{G}=Q^{-}(5, q)[1,3]$.

Acknowledgments

During the writing of this paper, the first author was a Postdoctoral Research Fellow supported by a research grant of Ghent University, No. GOA 12050300, while the third author was a Research Fellow supported by the Flemish Institute for the Promotion of Scientific and Technological Research in Industry (IWT), Grant No. IWT/SB/971002.

The authors thank one of the referees for his comments which shortened the first version of this paper.

References

[1] L. Brouns, J.A. Thas, H. Van Maldeghem, A characterization of $Q(5, q)$ using one subquadrangle $Q(4, q)$, European J. Combin. 23 (2) (2002) 163-177.
[2] M.R. Brown, Semipartial geometries and generalized quadrangles of order $\left(r, r^{2}\right)$, Bull. Belg. Math. Soc. Simon Stevin 5 (2-3) (1998) 187-205 Finite geometry and combinatoric, Deinze, 1997.
[3] M.R. Brown, A characterisation of the generalized quadrangle $Q(5, q)$ using cohomology, J. Algebraic Combin. 15 (2) (2002) 107-125.
[4] F. Buekenhout, C. Lefèvre, Generalized quadrangles in projective spaces, Arch. Math. (Basel) 25 (1974) 540-552.
[5] P.J. Cameron, Partial quadrangles, Quart. J. Math. Oxford Ser. 26 (2) (1975) 61-73.
[6] F. De Clerck, Partial and semipartial geometries: an update, Discrete Mathematics, to appear.
[7] F. De Clerck, H. Van Maldeghem, Some classes of rank 2 geometries, in: F. Buekenhout (Ed.), Handbook of Incidence Geometry, Buildings and Foundations, North-Holland, Amsterdam, 1995, pp. 433-475 (Chapter 10).
[8] I. Debroey, J.A. Thas, On polarities of symmetric semipartial geometries, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 62 (8) (1977) 607-612.
[9] I. Debroey, J.A. Thas, On semipartial geometries, J. Combin. Theory Ser. A 25 (1978) 242-250.
[10] J.W.P. Hirschfeld, J.A. Thas, The characterizations of projections of quadrics over finite fields of even order, J. London Math. Soc. 22 (2) (1980) 226-238.
[11] J.W.P. Hirschfeld, J.A. Thas, Sets of type $(1, n, q+1)$ in $\operatorname{PG}(d, q)$, Proc. London Math. Soc. XLI (1980) 254-278.
[12] W.M. Kantor, Ovoids and translation planes, Canad. J. Math. 34 (1982) 1195-1207.
[13] S.E. Payne, J.A. Thas, Finite Generalized Quadrangles, in: Research Notes in Mathematics, Vol. 110, Pitman, Boston, 1984.

[^0]: E-mail addresses: mbrown@maths.adelaide.edu.au (M.R. Brown), Frank.DeClerck@ugent.be (F.D. Clerck), mdelanote@yahoo.fr (M. Delanote).

