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Abstract

In this paper, we present Lyapunov-based adaptive controllers for the practical (or real) stabilization

of a perturbed chain of integrators with bounded uncertainties. We refer to such controllers as Adaptive

Higher Order Sliding Mode (AHOSM) controllers since they are designed for nonlinear SISO systems

with bounded uncertainties such that the uncertainty bounds are unknown. Our main result states that,

given any neighborhood N of the origin, we determine a controller insuring, for every uncertainty

bounds, that every trajectory of the corresponding closed loop system enters N and eventually remains

there. The effectiveness of these controllers is illustrated through simulations.

Index Terms
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I. INTRODUCTION

Parametric uncertainty in nonlinear dynamic physical systems arises from varying operating

conditions and external perturbations that affect the physical characteristics of such systems. The

variation limits or the bounds of this uncertainty might be known or unknown. This needs to be

considered during control design so that the controller counteracts the effect of variations and

guarantees performance under different operating conditions. Sliding mode control (SMC) [1],

[2] is a well-known method for control of nonlinear systems, renowned for its insensitivity to
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parametric uncertainty and external disturbance. This technique is based on applying discontin-

uous control on a system which ensures convergence of the output function (sliding variable) in

finite time to a manifold of the state-space, called the sliding manifold [3]. In practice, SMC

suffers from chattering; the phenomenon of finite-frequency, finite-amplitude oscillations in the

output which appear because the high-frequency switching excites unmodeled dynamics of the

closed loop system [4]. Higher Order Sliding Mode Control (HOSMC) is an effective method

for chattering attenuation [5]. In this method the discontinuous control is applied on a higher

time derivative of the sliding variable, such that not only the sliding variable converges to the

origin, but also its higher time derivatives. As the discontinuous control does not act upon the

system input directly, chattering is automatically reduced.

Many HOSMC algorithms exist in contemporary literature for control of uncertain nonlinear

systems, where the bounds on uncertainty are known. These are robust because they preserve the

insensitivity of classical sliding mode, and maintain the performance characteristics of the closed

loop system as long as it remains inside the defined uncertainty bounds. Levant for example, has

presented a method of designing arbitrary order sliding mode controllers for Single Input Single

Output (SISO) systems in [6]. In his recent works [7], [8], homogeneity approach has been used to

demonstrate finite time stabilization of the proposed method. Laghrouche et al. [9] have proposed

a two part integral sliding mode based control to deal with the finite time stabilization problem

and uncertainty rejection problem separately. Dinuzzo et al. have proposed another method in

[10], where the problem of HOSM has been treated as Robust Fuller’s problem. Defoort et

al. [11] have developed a robust Multi Input Multi Output (MIMO) HOSM controller, using a

constructive algorithm with geometric homogeneity based finite time stabilization of a chain of

integrators. Harmouche et al. have also presented their homogeneous controller in [12] based on

the work of Hong [13]. In [38] a generalization of the super-twisting algorithm for perturbed

chains of integrators of arbitrary order has been proposed. The controller ensure exactly finite

time convergence of the sliding variable and its r first derivatives to zero, by using a continuous

control signal and only information about the sliding variables and its r−1 derivatives. In this

work as in works mentioned above, the controller depends on the bounds of uncertainty which

hase been supposed to be known.

The case where the bounds on uncertainty exist, but are unknown, is an interesting problem in

the field of arbitrary HOSMC. In this problem, a good control strategy is expected to have two



essential properties: (a) no use of the uncertainty bounds in the stabilizing controller design; (b)

avoidance of gain overestimation [14]. In recent years, adaptive sliding mode controllers have

attracted the interest of many researchers for this case[15], [16], [17], [18]. Adaptive gains have

been used with success in the past for chattering suppression. For example, Bartolini et al. [19]

have extended Utkin’s concept of equivalent control for second order sliding mode control gain

adaptation, to suppress residual oscillations due to digital controllers with time delay. Similarly,

an equivalent control based adaptive controller is described in [20], in which the equivalent

control estimation is improved, using double low pass filters. A concise survey of these methods

can be found in [21]. Huang et al. [22] were the first to use dynamic gain adaptation in SMC

for the problem of unknown uncertainty bounds. They presented an adaptation law for first order

SMC, which depends directly upon the sliding variable; the control gains increase until sliding

mode is achieved, and afterwards the gains become constant. This method works without a-priori

knowledge of uncertainty bounds, however it does not solve the gain overestimation problem as

the gains stabilize at unnecessarily large values. Plestan et al. [14], [23] have overcome this

problem by slowly decreasing the gains once sliding mode is achieved. This method establishes

real sliding mode (convergence to a neighborhood of the sliding surface). However it does not

guarantee that the states would remain inside the neighborhood after convergence; the state

actually overshoots in a region around the neighborhood depending on the uncertainties bounds,

which is therefore not known. In the field of HOSMC, Shtessel et al. [24] have presented a Second

Order adaptive gain SMC for non-overestimation of the control gains, based on a supertwisting

algorithm. An adaptive version of the twisting algorithm is proposed in [25], and applied for

pneumatic actuator control. The state overshoots in the cases of [24] and [25] as well. However,

unlike [14], the magnitude is unknown. A Lyapunov-based variable gains super twisting algorithm

has also been presented in [26]. Glumineau et al. [27] have presented a different approach,

based on impulsive sliding mode adaptive control of a double integrator system. The gain of

the impulsive control is adapted to minimize the convergence time of the double integrator

dynamics. In [28] and [29] continuous AHOSM control algorithms are studied. They are based on

reconstruction of equivalent control. All these works insure sliding set convergence to a bounded

zone whose size and convergence time depend upon the upper bounds of the perturbations or

their derivatives. In particular, if these upper bounds are not a priori known, one cannot prescribe

in advance the size of the convergence zone.



It can be noted that all research works avoiding gain overestimation, discussed so far, have

yielded real sliding mode. In fact, real sliding mode is the only possibility when the uncertainty

bounds are unknown, as the gain dynamics cannot respond immediately to sudden changes in

system parameters.

In this paper, we present Lyapunov-based adaptive controllers for the finite time stabilization

of a perturbed chain of integrators with bounded uncertainties. Through a minor extension of the

definition (as explained in the next section), we refer to such controllers as Adaptive Higher

Order Sliding Mode controllers (AHOSM controllers or AHOSMC). The proposed adaptive

controller guarantees finite time convergence to an adjustable arbitrary neighborhood of origin

whose size does not depends upon the upper bounds of the perturbations or their derivatives, i.e.,

it establishes real HOSM. The advantage of this adaptive controller design, compared to other

controllers mentioned before, particularly, is that this controller can be extended to arbitrary order

and the adaptation rates are fast in both directions. In addition, the state is confined inside the

neighborhood after convergence and cannot escape. As a result, there is no state overshoot and

no gain overestimation in this controller; and the neighborhood of convergence can be chosen

as small as possible independently of the upper bounds of the perturbations or their derivatives.

The paper is organized as follows: problem formulation and adaptive controllers are presented

in Section 2, simulation results are shown in Section 3. Some concluding remarks are given in

Section 4.

II. HIGHER ORDER SLIDING MODE CONTROLLERS

If r is a positive integer, the perturbed chain of integrators of length r corresponds to the

(uncertain) control system given by

żr = ϕ(t)+ γ(t)u, (1)

where z = [z1 z2 ...zr]
T ∈ Rr, u ∈ R and the functions ϕ and γ are any measurable functions

defined almost everywhere (a.e. for short) on R+ and bounded by positive constants ϕ̄ , γm and

γM, such that, for a.e. t ≥ 0,

|ϕ(t)| ≤ ϕ̄, 0 < γm ≤ γ(t)≤ γM. (2)

One can equivalently define a perturbed chain of integrators of length r as the differential inclusion

żr ∈ Iϕ̄ +uIγ where Iϕ̄ = [−ϕ̄, ϕ̄] and Iγ = [γm,γM].



The usual objective regarding System (1) consists of stabilizing it with respect to the origin in

finite time, i.e., determining feedback laws u =U(z) so that the trajectories of the corresponding

closed-loop system converge to the origin in finite time. Note that, in general, the controllers U(·)

are discontinuous and then, solutions of (1) need to be understood here in Filippov’s sense [30],

i.e., the right-hand vector set is enlarged at the discontinuity points of the differential inclusion

to the convex hull of the set of velocity vectors obtained by approaching z from all directions

in Rr, while avoiding zero-measure sets. Several solutions for this problem exist [31], [32], [8],

[9], [33] under the hypothesis that the bounds γm,γM and ϕ̄ are known.

In case the bounds γm,γM and ϕ̄ are unknown (one only assumes their existence) then it is

obvious to see that finite time stabilization is not possible by a mere state feedback and therefore,

one possible alternate objective consists in achieving practical stabilization. This is the goal of

this paper to establish such a result for System (1) and we provide next a precise definition of

practical stabilization.

Definition 1. We say that ż = f (z,u) is practically stabilizable, if for every ε > 0, there exists a

controller u =Uε(·, t) such that every trajectory of the closed-loop system ż = f (z,Uε(·, t)) enters

the open ball of radius ε centered at the origin and eventually remains there.

The main result of that paper consists of designing controllers which practically stabilize

System (1) independently of the positive bounds ϕ̄ , γm and γM, i.e., for every ε > 0, the controllers

u =Uε(·, t) which practically stabilize System (1) does not depend on the bounds ϕ̄ , γm and γM.

We next recall the following definition needed in the sequel.

Definition 2. (Homogeneity. cf. [32].) If r,m are positive integers, a function f : Rr→Rm (or a

differential inclusion F : Rr ⇒Rm respectively) is said to be homogeneous of degree q ∈R with

respect to the family of dilations δε(z), ε > 0, defined by

δε(z) = (z1, · · · ,zr) 7→ (ε p1z1, · · · ,ε przr),

where p1 · · · , pr are positive real numbers (the weights), if for every positive ε and z ∈ Rr, one

has f (δε(z)) = ε
q f (z)

(
F(δε(z)) = ε

q
δε(F(z)) respectively

)
.

The following notations will be used throughout the paper. We define the function sgn as the

multivalued function defined on R by sgn(x) =
x
|x|

for x 6= 0 and sgn(0) = [−1,1]. Similarly, for

every a≥ 0 and x ∈R, we use bxea to denote |x|a sgn(x). Note that b·ea is a continuous function



for a > 0 and of class C1 with derivative equal to a |·|a−1 for a≥ 1. Moreover, for every positive

integer r, we use Jr to denote the r-th Jordan block, i.e., the r× r matrix whose (i, j)-coefficient

is equal to 1 if i = j−1 and zero otherwise.

A. Adaptive Higher Order Sliding Mode Controller

We first define the system under study and provide parameters used later on.

Definition 3. Let r be a positive integer. The r-th order chain of integrator (CI)r is the single-input

control system given by

(CI)r ż = Jrz+uer, (3)

with z = (z1, · · · ,zr)
T ∈ Rr and u ∈ R. For κ < 0 and p > 0 with p + (r + 1)κ ∈ [0,1), set

pi := p+(i−1)κ, 1≤ i≤ r+2. For ε > 0, let δε : Rr→Rr be the family of dilations associated

with (p1, · · · , pr).

In the spirit of [33], [34], we put forwards geometric conditions on certain stabilizing feedbacks

u0(·) for (CI)r and corresponding Lyapunov functions V1. These conditions will be instrumental

for the latter developments.

Our construction of the feedback for practical stabilization relies on the following result.

Proposition 1. [13], [35], [33], [38]

Let r be a positive integer. There exists a feedback law u0 : Rr→R homogeneous with respect

to (δε)ε>0 such that the closed-loop system ż = Jrz+u0(z)er is finite time globally asymptotically

stable with respect to the origin and the following conditions hold true:

(i) the function z 7→ Jrz+u0(z)er is homogeneous of degree κ with respect to (δε)ε>0 and

there exists a continuous positive definite function V1 :Rr→R+, C1 except at the origin,

homogeneous with respect to (δε)ε>0 such that there exists c > 0 and α ∈ (0,1) for

which the time derivative of V1 along non trivial trajectories of ż = Jrz+u0(z)er verifies

V̇1 ≤−cV α
1 ; (4)

(ii) the function z 7→ u0(z)∂rV1(z) is non positive over Rr and, for every non zero z∈Rr ver-

ifying u0(z) = 0, one has ∂rV1(z) = 0. As a consequence function z 7→ sgn(u0(z))∂rV1(z)

is well-defined over Rr and non positive.



Remark 1. Item (i) of the above theorem is classical, see for instance [13], [35], [36], [37].

Item (ii) considers a geometric condition on controllers verifying Item (i), which was introduced

in [34] and used in [33], [38]. This geometric condition is indeed satisfied, for instance by

Hong’s controller, see [38] for other examples.

Regarding our problem, we consider, for every ε > 0 the following controller:

uε(z, t) = g(|u0(z)|)u0(z)+ k sgn
(
u0(z))ϕ̂ε(t,V1(z)

)
, (5)

where u0 and V1 are provided by Theorem 1, g : R+→R∗+ is an arbitrary increasing C1 function

with lim
x→+∞

g(x) = +∞ and the adaptive function ϕ̂ε is defined as

ϕ̂ε(t,x) =

 min
(
t,Fε(x)

)
, if 0≤ x < ε,

t, if x≥ ε,
(6)

with Fε(x) =
ε

ε− x
for x ∈ [0,ε). Here the positive function g and the positive constant k are

gain parameters whereas ε > 0 will be used to define the arbitrarily small neighborhood where

trajectories of (1) with feedback control law (5) will eventually end up.

The following theorem provides the main result for the adaptive controller uε .

Theorem 1. Let r be a positive integer and System (1) be the perturbed r-chain of integrators

with unknown bounds γm,γM and ϕ̄ . Let ε > 0 and u0,V1 : Rr→R+ be the feedback law and the

continuous positive definite function defined respectively in Theorem 1. Then, for every trajectory

z(·) of the closed-loop system (1) under the feedback control law (5), one has

limsup
t→∞

V1(z(t))≤max
(
0,V 1

)
, (7)

where V 1 := ε(1− 1
Φ̄
), with Φ̄ :=

1
kγm

(ϕ̄−hm), where hm = min
(
0,min

x≥0
(γmg(x)−1)x

)
.

Remark 2. It should noticed that in the case where the bounds of the

B. Proof of Theorem 1

We refer to (S) as the closed-loop system defined by (1) and (5). The first issue we address

is the existence of trajectories of (S) starting at any initial condition z0 ∈ Rr. Such an existence

follows from the fact that the application R+×Rr→ R, (t,z) 7→ ϕ̂ε(t,V1(z)) is continuous.

We next show that every trajectory of (S) is defined for all positive times. For that purpose,

consider a non trivial trajectory z(·) and let Iz(·) be its (non trivial) domain of definition. We



obtain the following inequality for the time derivative of V1(z(·)) on Iz(·) by using Items (i) and

(ii) of Theorem 1. For a.e. t ∈ Iz(·), one gets

V̇1 =
∂V1

∂ z1
z2 + ...+

∂V1

∂ zr
(γ [g(|u0|)u0 + k sgn(u0)ϕ̂ε ]+ϕ) ,

≤ −cV α
1 −
∣∣∣∣∂V1

∂ zr

∣∣∣∣((γmg(|u0|)−1)|u0|+kγmϕ̂ε−ϕ̄

)
,

≤ −cV α
1 − kγm

∣∣∣∣∂V1

∂ zr

∣∣∣∣(ϕ̂ε − Φ̄
)
.

(8)

We thus have the differential inequality a.e. for t ∈ Iz(·)

V̇1 ≤−cV α
1 +C1V pr+2

1 , (9)

where C1 is a positive constant independent of the trajectory z(·). Since pr+2 ∈ [0,1), it is therefore

immediate to deduce that there is no blow-up in finite time and thus Iz(·) = R+.

We now prove that Eq. (7) holds true for any trajectory z(·) of (S). Assume first that 1≥ Φ̄.

Then, for t > Φ̄, one has that ϕ̂ε(t) ≥ Φ̄ since Fε takes values larger than 1. It implies that

V̇1 ≤ −cV α
1 and thus one gets convergence to zero in finite time. Assume next that 1 < Φ̄. Set

V 1 := ε(1− 1
Φ̄
) and notice that Fε(V 1) = Φ̄. In that case, for t > Φ̄, Eq. (8) can be written

V̇1 ≤−cV α
1 − kγm

∣∣∣∣∂V1

∂ zr

∣∣∣∣min(0,Fε(V1(z))−Fε(V 1)). (10)

Taking into account the fact that Fε is an increasing function on [0,ε), one deduces that there exists

at most one time t̄ > 1 such that V1(z(t̄)) = V 1 (since V̇1(t̄)≤−cV1
α
< 0) and if it exists, then

V1(z(t))<V1 for t > t̄. If such a time t̄ does not exists, then one has necessarily V1(z(t))<V1 for

t > Φ̄ since the other alternative would yield convergence in finite time and thus a contradiction.

Remark 3. It should noticed that in the case where the bounds of the incertainties are known,

then one can choose the gain parameter k in such a way that 1 ≥ Φ̄ and one gets finite time

convergence to zero. In that way, our controller provides yet another finite time stabilizer of the

perturbed integrator with known bounds on the perturbations.

Remark 4. In case the controller u0 is bounded, one can remove the assumption that lim
x→+∞

g(x) =

+∞.

C. Asymptotic bounds for the controller u and the convergence time to the neighborhood Vε

One deduces from Theorem 1 the following two results. The first one is immediate and provides

an asymptotic upper bound for the controller u.



Lemma 1. For ε > 0, the controller uε defined in (5) verifies the following asymptotic upper

bound, which is uniform with respect to trajectories of the closed-loop system (S): if 1≥ Φ̄, then

lim
t→∞
|uε |= 1 and if 1 < Φ̄, then

limsup
t→∞

|uε | ≤U0(V 1)g(U0(V 1))+ kΦ̄, (11)

where U0(ξ ) := max
{z |V1(z)≤ξ}

|u0(z)| for ξ ≥ 0.

For ε > 0, define the open neighborhood Vε of the origin as the set of points z ∈Rr such that

V1(z) < ε . Our second result provides an asymptotic upper bound for the time needed by any

trajectory of the closed-loop system (S) to eventually enter Vε and remain inside.

Proposition 2. For z0 ∈ Rr, the convergence time Tz0 needed to reach the open neighborhood

Vε of the origin and stay inside verifies the following bound:

Tz0 ≤ Φ̄+

(
V 1−pr+2

1 (z0)+(1− pr+2)C1Φ̄

) 1−α

1−pr+2

c(1−α)
,

(12)

where the constants c,α are provided by Theorem 1 and the constants β ,C1 are defined in Eq. (9).

Proof. For t ≤ Φ̄, one deduces from Eq. (9) the upper bound

V1(z(Φ))≤
(

V 1−pr+2
1 (z0)+(1− pr+2)C1Φ̄

) 1
1−pr+2 .

For t ≥ Φ̄, V1 verifies either Eq. (4) or Eq. (10), which reduces to Eq. (4) if z(t) /∈ Vε . It is then

clear that the right-hand side of Eq. (12) is an upper bound for Tz0 .

III. SIMULATION RESULTS

The performances of the proposed control law are studied next through simulation. In this

section we will perform simulations for uncertain systems of order one and three.

A. Simulation for first order system

Consider the first order system

ż1 = ϕ + γu,

where γ and ϕ are discontinuous bounded uncertainties defined as

ϕ = 5sgn(cos(t))−10sin(2t),γ = 3+2sgn(sin(3t)). (13)



One can see that

0 < 1≤ γ ≤ 5, |ϕ| ≤ 15.

The candidate u0 and its related Lyapunov function are given next as:

u0 =−sgn(z1), V1 = |z1|.

The control objective consists to force z1 to the neighborhood of zero defined by V1 := |z1| ≤

ε := 0.1. Based on the given u0 with simple computation, the controller u can be defined as

u =−(1+ϕε(t))sgn(z1). (14)

The performance of the proposed controller with respect to the uncertainties is presented in Figure

1. On can see in Figure 1(b), the convergence of the state z1 the predefined neighborhood of

zero. The control objective is satisfied without overestimation of the controller as seen in Figure

1(a).
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Fig. 1. Simulation for order 1

B. Simulation for third order system

For arbitrary order, we can refer to Hong’s controller [39] as candidate for the controller u0

defined as follows. Let κ < 0 and l1, · · · , lr positive real numbers. For z = (z1, · · · ,zr), we define

for i = 0, ...,r−1:
pi = 1+(i−1)κ,

v0 = 0, vi+1 =−li+1bbzi+1eβi−bvieβie(αi+1/(βi),

u0 = vr,

(15)



where αi =
pi+1

pi
.

The Lyapunov Function candidate V1 is defined in the following form:

V1 =
r

∑
j=1

z j∫
v j−1

bseβ j−1−
⌊
v j−1

⌉β j−1ds. (16)

In this section, we consider the following third order system

ż1 = z2,

ż2 = z3,

ż3 = ϕ + γu,

with the same uncertainty as given in previous simulations. In this simulation, the control

parameters of u0 have been tuned to the following values

l1 = 1, l2 = 2, l3 = 5, κ =−1/4. (17)

The function g(u0) has been taken as

g(u0) = 1+ log(1+ |u0|). (18)

The control objective consists to force the states z1, z2, z3 to a neighborhood of zero defined by

{z = (z1,z2,z3) : V1(z1,z2,z3)≤ 0.01}. In Figure 2(b), one can see the practical convergence of

z1, z2 and z3. The control objective is achieved as seen in Figure 2(d), where LLV 1 := log(1+V1).

The controller and the adaptive gain are presented in Figure 2(a) and Figure 2(c) respectively.

IV. CONCLUSIONS

This paper has proposed a new Lyapunov-based adaptive scheme for higher-order sliding mode

controller with bounded unknown uncertainties. The proposed adaptive controller guarantees

finite time convergence to an adjustable arbitrary neighborhood of origin. The advantage of this

adaptive controller, compared to others, is that this controller can be extended to any arbitrary

order. In addition, the state is confined inside the neighborhood after convergence and cannot

escape. As a result, there is no state overshoot and no gain overestimation in this controller; and

the neighborhood of convergence can be chosen as small as possible.
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