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A motion planning algorithm for the rolling-body

problem

François Alouges ∗†, Yacine Chitour ‡ and Ruixing Long §¶

Abstract

In this paper, we consider the control system Σ defined by the rolling of a strictly
convex surface S on a plane without slipping or spinning. It is well known that Σ is
completely controllable. The purpose of this paper is to present the numerical imple-
mentation of a constructive planning algorithm for Σ, which is based on a continuation
method. The performances of that algorithm, both in robustness and convergence speed,
are illustrated through several examples.

1 INTRODUCTION

In recent years, non-holonomic systems have attracted much attention due to the theoretical
questions raised for their motion planning and to their importance in numerous applications
(cf. [12, 13] and references therein). In particular, the planning of robotic manipulators for
achieving high operational capability with low constructive complexity is a major issue for
the control community in the last decade. Non-holonomy is exploited for the design of such
manipulators but to ensure both hardware reduction and controllability performances yield
serious difficulties, requiring more elaborate analysis and efficient algorithm. The rolling-body
problem illustrates well all the aforementioned aspects.

Recall that the rolling-body problem (without slipping or spinning) is a control system Σ
modelling the rolling of a connected surface S1 of the Euclidean space IR3 on another one S2

so that the relative speed of the contact point is zero and the relative angular velocity has
zero component along the common normal direction at the contact point. Five parameters
are needed to describe the state of Σ: two for parameterizing the contact point as element
of S1, two others for parameterizing the contact point as element of S2 and finally one more
parameter for the relative orientation of S1 with respect to S2. Once an absolutely continuous
curve c1 is chosen on S1, it is possible to define the rolling of S2 on S1 along c1 without slipping
or spinning. Therefore, the controls correspond to the choice of c1 and can be represented by
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ċ1. It follows that, in local coordinates, Σ can be written as a drifless control system of the
type ẋ = u1F1(x) + u2F2(x), where (u1, u2) ∈ IR2 is the control and F1, F2 vector fields (cf.
[13, 12] and references therein).

Several works (cf. [12] and references therein) studied the controllability issue. Agrachev
and Sachkov ([1]) proved that Σ is completely controllable if and only if S1 and S2 are not
isometric. Regarding the motion planning problem (MPP for short) associated to the rolling-
body problem, most of the attention focused on the rolling of a convex surface S on a flat one,
due to the fact that the latter models dexterous robotic manipulation of a convex object by
means of a robotic hand with as few as three motors and flat finger, see [12, 13] and references
therein. Moreover, in [12], several prototype dexterous grippers are exhibited. Recall that
the MPP is the problem of finding a procedure that, for every pair (p, q) of the state space of
a control system S, effectively produces a control up,q giving rise to an admissible trajectory
steering p to q. Until now, the most significant result is the ingenious algorithm proposed by
Li and Canny ([11]), only treating the case where S is a ball. However, it is not possible to
generalize that algorithm to more general convex surfaces S.

In [4], two different approaches to address the motion planning for convex surfaces M
rolling on a plane were proposed. The first one is based on the Liouvillian character of Σ. One
can show that, if S admits a symmetry of revolution, the MPP can be reduced to a purely
inverse algebraic problem. However, such an approach presents a serious numerical drawback:
the resulting inverse problem requires that implicit functions must be determined through
transcendental equations involving local charts for S.

The second approach proposed in [4] to tackle the MPP for convex surfaces M rolling
on a plane is based on the well-known continuation method (also called homotopy method
or continuous Newton’s algorithm-[2]-) which goes back to Poincaré. The MPP is therefore
addressed as a pure inverse problem. Let us briefly recall how the continuation method (CM
for short) works. It is used for solving nonlinear equations of the form F (x) = y, where x is
the unknown and F : X → Y is surjective. Consider some x0 ∈ X and y0 = F (x0). Pick a
differentiable path π : [0, 1] → X joining y0 to the given y. Then, as explained next, the CM is
an iterative procedure which lifts π to a path Π so that F ◦Π = π and the “iteration” occurs by
the use of an ordinary differential equation in X. It starts by differentiating F (Π(s)) = π(s)
to get DF (Π(s))Π̇(s) = π̇(s). The latter is satisfied by setting Π̇(s) := P (Π(s))π̇(s) where
P (x) is a right inverse of DF (x). Therefore, solving F (x) = y amounts to first show that
P (Π(s)) exists (for instance if DF (Π(s)) is surjective) and second to prove that the ODE in
X, Π̇(s) = P (Π(s))π̇(s), which is a “highly” non-linear equation (also called the Wazewski
equation -[19]-), admits a global solution. In the context of the MPP, the CM was introduced
in [9] and [15, 16], and further developed in [6, 7, 8, 17, 18]. The map F is now an end-point
map from the space of admissible inputs to the state space. Its singularities are exactly the
abnormal extremals of the sub-Riemannian metric induced by the dynamics of the system,
which are usually a major obstacle for the CM to apply efficiently to the MPP (cf. [5]). In
the case of Σ, non trivial abnormal extremals and their trajectories were determined in [4]
and they exactly correspond to the horizontal geodesics of Σ. Despite that obstacle, assuming
that the surface S is strictly convex and possesses a stable periodic geodesic, it was shown
in [4] that the CM provides complete answers to the MPP. More precisely, it was shown that
there exist enough paths π in the state space of Σ that can be lifted to paths Π in the control
space by showing global existence of solutions to the Wazewski equation.

In this paper, we explain how we can implement numerically the continuation method
presented above for resolving a very large class of rolling-body problems.
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The paper is organized as follows: in Section 2, we present the kinematic equations of
motion of a convex body S1 rolling without slipping or spinning on top of another one S2. We
describe in Section 3 how we apply the continuation method to the motion planning problem
and give sufficient conditions guaranteeing the existence of P (Π) and the existence of a global
solution of the Path Lifting Equation in the case of the rolling-body problem. Section 4 serves
to detail some key points for numerical resolution of Path Lifting Equation. In Section 5,
several numerical simulations are presented.

2 Description of the rolling-body problem

In this section, we briefly recall how to derive the equations of motion for the rolling-body
problem with no slipping or spinning of a connected surface S1 of the Euclidean space IR3

on top of another one S2. This section does not bring new results but we provide it for sake
of completeness and also to exhibit the numerical challenges raised by trying to implement
ordinary differential equations on a manifold. These results were already obtained in [1, 12, 13].

We start by the intrinsic formulation of the problem, we first assume that S1 and S2 are
two-dimensional, connected, oriented, smooth, complete Riemannian manifolds.

2.1 Differential geometric notions and definitions

If P is a matrix, we use P T and tr(P ) to denote respectively the transpose of P , and its the
trace.

Let (S, 〈·, ·〉) be a two-dimensional, connected, oriented smooth complete Riemannian man-
ifold for the Riemannian metric 〈·, ·〉. We use TS to denote the tangent bundle over S and US
the unit tangent bundle, i.e. the subset of TS of points (x, v) such that x ∈ S and v ∈ TxS,
〈v, v〉 = 1.

Let {Uα, α}α∈A be an atlas on S. For α, β ∈ A such that Uα ∩Uβ is not empty, we denote
by Jβα the jacobian matrix of ϕβ ◦ (ϕα)−1 the coordinate transformation on ϕα(Uα ∩Uβ). For
α ∈ A, the Riemannian metric is represented by the symmetric definite positive matrix Iα

and set Mα :=
√
Iα.

For x ∈ S, a frame f at x is an ordered basis for TxS and, for α, β ∈ A, we have fβ = Jβαf
α.

The frame f is orthonormal if, in addition Mαfα is an orthogonal matrix. An Orthonormal
Moving Frame (briefly OMF) defined on an open subset U of S is a smooth map assigning to
each x ∈ U a positively oriented orthonormal frame f(x) of TxS.

Let ∇ be the Riemannain connection on S (cf. [14]). For a given OMF f defined on U ⊂ S,
the Christoffel symbols associated to f = (f1, f2) are defined by

∇fi
fj =

∑

k

Γk
ijfk,

where 1 ≤ i, j, k ≤ 2. The connection form ω is the mapping defined on U such that, for every
x ∈ U , ωx is the linear application from TxS to the set of 2×2 skew-symmetric matrices given
as follows. For i, j, k = 1, 2, the (i, j)–th coefficient of ωx(fk) is equal to Γk

ij .
Let c : J → S be an absolutely continuous curve in S with J compact interval of IR. Set

X(t) := ċ(t) in J which defines a vector field along c. Let Y : J → TS be an absolutely
continuous assignment such that, for every t ∈ J , Y (t) ∈ Tc(t)S. We say that Y is parallel
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along c if ∇XY = 0 for almost all t ∈ J . In the domain of an OMF f , that equation can be
written as follows

Ẏ k = −
∑

1≤i,j≤2

Γk
ijX

iY j,

or equivalently,
Ẏ = −ω(X)Y.

Recall that a curve c is a geodesic if the velocity ċ(t) is parallel along c, that is

∇ċċ = 0. (1)

2.2 Rolling body problem

2.2.1 Definition of the state space

Consider now the rolling-body problem with no slipping or spinning of S1 on top of S2. We
adopt here the viewpoint presented in [1].

At the contact points of the bodies x1 ∈ S1 and x2 ∈ S2, their tangent spaces are identified
by an orientation-preserving isometry

q : Tx1
S1 −→ Tx2

S2,

Such an isometry q is a state of the system, and the state space is

Q(S1, S2) = {q : Tx1
S1 −→ Tx2

S2 |x1 ∈ S1, x2 ∈ S2, q an isometry}.
As the set of all orientation-preserving isometries in IR2 is SO(2) which can be identified

with the unit circle S1 in IR2, Q(S1, S2) is a 5-dimensional connected manifold. A point
q ∈ Q(S1, S2) is locally parametrized by (x1, x2, R) with x1 ∈ S1, x2 ∈ S2 and R ∈ SO(2).

2.2.2 Rolling dynamics

We next describe the motion of one body rolling on top of another one so that the contact
point of the first follows a prescribed absolutely continuous curve on the second body.

Let f1 and f2 be two OMFs defined on the chart domains of α1, α2. Let bi(t) = fi(ci(t))Ri(t)
parallel along cαi

i , i = 1, 2, and R := R2(t)R1(t)
−1 ∈ SO(2) which, by definition, measures the

relative position of f2 with respect to f1 along (cα1

1 , c
α2

2 ). The variation of Ri along cαi

i , for
i = 1, 2, is given by Ṙi = −ωi(ċ

αi

i )Ri.
Given an a.c. curve c1 : [0, T ] → S1, the rolling of S2 on S1 without slipping or spinning

along c1 is characterized by a curve Γ = (c1, c2, R) : [0, T ] → Q(S1, S2) defined the two
following conditions.

Up to initial conditions, the no slipping condition amounts to

Mα2 ċα2

2 (t) = RMα1 ċα1

1 (t), (2)

and the no spinning one to

ṘR−1 = Rω1(ċ
α1

1 )R−1 − ω2(ċ
α2

2 ). (3)

Since SO(2) is commutative, equation (3) reduces to

ṘR−1 = ω1(ċ
α1

1 ) − ω2(ċ
α2

2 ). (4)

If we fix a point x = (x1, x2, R0) ∈ Q(S1, S2), a curve c1 on S1 starting at x1 defines entirely
the curve Γ by equations (2) and (4). Therefore, we can give the following definition:
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Definition 1 The surface S2 rolls on the surface S1 without slipping nor spinning if, for every
x = (x1, x2, R0) ∈ Q(S1, S2) and a.c. curve c1 : [0, T ] → S1 starting at x1, there exists an a.c.
curve Γ : [0, T ] → Q(S1, S2) with Γ(t) = (c1(t), c2(t), R(t)), Γ(0) = x and for every t ∈ [0, T ],
such that, on appropriate charts, equations (2) and (4) are satisfied. We call the curve Γ(t)
an admissible trajectory.

If we consider f1 and f2 two OMFs and if the state x is represented (in coordinates) by
the triple x = (c1, c2, R), then for almost all t such that x(t) remains in the domain of an
appropriate chart, there exists a measurable function u(·) (called control) with values in IR2

such that

ċ1(t) = u1(t)f
1
1 (c1(t)) + u2(t)f

1
2 (c1(t)), (5)

ċ2(t) = u1(t)(f
2(c2(t))R(t))1 + u2(t)(f

2(c2(t))R(t))2, (6)

Ṙ(t)R−1(t) =
2
∑

i=1

ui(t)[ω1(f
1
i (c1(t))) − ω2(f

2(c2(t))R(t))i]. (7)

Let us consider the vector fields F1 and F2 defined by

Fi = (f 1
i , (f 2R)i, [ω1(f

1
i ) − ω2(f

2R)i])
T , i = 1, 2.

Then, Eqs. (5), (6) and (7) have the following compact form in local coordinates,

ẋ = u1F1(x) + u2F2(x). (8)

We recognize the classical form of a driftless control-affine system.

Remark 1 In general, it is not possible to get a global basis for the distribution ∆ and thus
to define globally the dynamics of the control system using vector fields. One notable exception
occurs when one of the manifolds is a plane, cf. [4]. Therefore, addressing the motion planning
efficiently (i.e. as far as producing a numerical scheme) becomes a delicate issue since most
of the standard techniques are based on global vector field expressions of the dynamics of a
control system.

The following proposition describes a fundamental property of the rolling problem. For
more detail, see [4] for instance.

Proposition 1 Let u ∈ H be an admissible control that gives rise to the admissible trajectory

Γ = (c1, c2, R) : [0, 1] →M.

Then the following statements are equivalent:

(a) the curve c1 : [0, 1] → S1 is a geodesic;

(b) the curve c2 : [0, 1] → S2 is a geodesic;

(c) the curve Γ : [0, 1] →M is a horizontal geodesic.
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2.2.3 Rolling body problem in IR3

From now on, we will assume that the manifolds S1 and S2 are oriented surfaces of IR3 with
metrics induced by the Euclidean metric of IR3.

We first note that there are two possible ways to define the rolling problem, depending on
the respective (global) choice of normal vectors for S1 and S2. Indeed, the orientation of the
tangents planes of an oriented surface S is determined by the choice of a Gauss map i.e. a
continuous normal vector n : S → S2. There are two such normal vectors, n and −n. If S is
(strictly) convex, these two normal vectors are called inward and outward.

Recall that the rolling-body problem assumes that the tangent spaces at the contact points
are identified. In IR3, this is equivalent to identify the normal vectors. Let ni be the normal
vector of Si, then at contact points, we can either assign n1 to n2 or −n2, i.e. we have
n1 = εn2 with ε = ±1. The physical meaning of this parameter ε is the following: if ε = 1,
the two surfaces roll so that one is “inside” the other one, in other words, they are on the same
side of their common tangent space at the contact point; if ε = −1, the two surfaces roll so
that one is “outside” the other one, in other words, they are on opposite sides with respect
to their common tangent space at the contact point. It is clear that the second situation is
more physically feasible in general since, it holds true globally as soon as the two surfaces are
convex. We will only deal with this second situation.

For computational ease, we will rewrite Eq. (8) in geodesic coordinates. Recall that the
geodesic coordinates on a Riemannian manifold S are charts (v, w) defined such that the
matrix Iα is diagonal and equal to diag(1, B2(v, w)). The function B is defined in an open
neighborhood of (0, 0) (the domain of the chart) and satisfies B(0, w) = 1, Bv(0, w) = 0
and Bvv + K B = 0, where K denotes the Gaussian curvature of S at (v, w) and Bv (Bvv,
respectively) is the (double, respectively) partial derivative of B with respect to v.

Using the fact that Q(S1, S2) is a circle bundle when S1 and S2 are two-dimensional man-
ifolds, and taking geodesic coordinates B1, B2 for S1 and S2 at contact points x1 and x2

respectively, consider coordinates x = (v1, w1, v2, w2, ψ) in some neighborhood of (0, ψ0) in
IR4 × S1. Then the control system (8) can be written locally as

ẋ = u1F1(x) + u2F2(x), (9)

with

F1(x) = (1, 0, cosψ, − sinψ

B2
, − B2v2

B2
sinψ)T , (10)

F2(x) = (0,
1

B1
, − sinψ, − cosψ

B2
,−B1v1

B1
− B2v2

B2
cosψ)T , (11)

see [4] for instance.

3 Continuation method applied to the rolling-body prob-

lem

3.1 General description of the continuation method

We start with a general description of the CM, see [6] for more details and complete justifica-
tions.
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The state space Q(S1, S2) is simply denoted by M . The admissible inputs u are elements
of H = L2([0, 1], IR2). We use ‖u(t)‖ and ‖u‖H respectively to denote (

∑2
i=1 u

2
i (t))

1/2 and

(
∫ 1

0
‖u(t)‖2dt)1/2. If u, v ∈ H , then (u, v)H =

∫ 1

0
uT (t)v(t)dt.

From the brief description of the CM given in the introduction, the map F is equal to
the end-point φp : H → M associated to some fixed p ∈ M . (For more details and complete
justifications regarding the CM cf. [5].) For u ∈ H and p ∈M , let γp,u be the trajectory of Σ
starting at p for t = 0 and corresponding to u. Then, for v ∈ H , φp(v) is given by

φp(v) := γp,v(1).

Recall that φp(v) is defined for every v ∈ H . The MPP can be reformulated as follows: for
every p, q ∈M , exhibit a control up,q ∈ H such that

φp(up,q) = q. (12)

In other words, for fixed p, we must find a map ip : M → H such that φp ◦ ip = identity, i.e.,
we are looking for a right inverse of φp. It can be shown that such a right inverse exists in a
neighborhood of any point u ∈ H such that Dφp(u) is surjective. Therefore, it is reasonable
to expect difficulties with the singular points of φp, i.e., the controls v ∈ H where rank
Dφp(v) < 5. Let Sp and φp(Sp) be the set of singular points of φp and the set of singular
values respectively.

The application of the CM to the MPP is thus decomposed in two steps. In the first one,
we have to characterize (when possible) Sp and φp(Sp). The second step consists of lifting
paths π : [0, 1] →M avoiding φp(Sp) to paths Π : [0, 1] → H such that, for every s ∈ [0, 1],

φp(Π(s)) = π(s). (13)

Differentiating Eq. (13) yields to

Dφp(Π(s)) · dΠ
ds

(s) =
dπ

ds
(s). (14)

If Dφp(Π(s)) has full rank, then Eq. (14) can be solved for Π(s) by taking Π such that

dΠ

ds
(s) = P

(

Π(s)
)

· dπ
ds

(s), (15)

where P (v) is a right inverse of Dφp(v) for v ∈ H/Sp. (For instance, we can choose P (v) to
be the Moore-Penrose pseudo-inverse of Dφp(v).)

We are then led to study the Wazewski equation (15) called the Path Lifting Equation
(PLE) as an ODE in H . To successfully apply the CM to the MPP, we have to resolve two
issues:

(a) Non degeneracy: the path π has to be chosen so that, for every s ∈ [0, 1], π(s) /∈ φp(Sp)
and then Dφp

(

Π(s)) has always full rank;

(b) Non explosion: to solve Eq. (12), the PLE defined in Eq. (15) must have a global solution
on [0, 1].

We first note that local existence and uniqueness of the solution of the PLE hold as soon
as φp is of class C2.

A sufficient condition resolving (a) and (b) is given by

7



Condition 1 We say that a closed subset K of M verifies Condition 1 if

(i) K is disjoint from φp(Sp), where φp(Sp) is the closure of φp(Sp);

(ii) there exists cK > 0 such that, for every u ∈ H with φp(u) ∈ K, we have

‖P (u)‖ ≤ cK‖u‖, (16)

where
‖P (u)‖ = ( inf

‖z‖=1
zTDφp(u)Dφp(u)

Tz)−1/2,

with z ∈ T ∗
φp(u)M .

Once the existence of a closed set K verifying Condition 1 is guaranteed, a simple appli-
cation of Gronwall Lemma yields that, for every path π : [0, 1] → K of class C1 and every
control ū ∈ H such that φp(ū) = π(0), the solution of the PLE defined in Eq. (15) with initial
condition ū exists globally on the interval [0, 1].

3.2 Existence of a “large" compact K verifying Condition 1

We now consider the MPP for the rolling-body problem of a strictly convex surface S1 on a
plane. If S1 verifies a simple geometric property (see Condition 2 below), then it is shown
in [4] that there exists a compact K of M verifying Condition 1, large enough to completely
resolve the MPP.

We first describe, in the following proposition (for a proof, see [4] for instance), the structure
of Sp and φp(Sp) for the rolling problem.

Proposition 2 Let p ∈ M . Then, Sp = {(v cos θ, v sin θ)|v ∈ L2([0, 1], IR), θ ∈ S1} and
φp(Sp) is equal to the union of the end-points of all horizontal geodesics starting at p, i.e. all
trajectories starting at p and corresponding to one control u ∈ Sp.

The existence of a compact K verifying Condition 1 requires a small singular set φp(Sp).
This condition is guaranteed by the existence of a periodic geodesic on S1, stable by the
geodesic flow of S1. More precisely, let d1 be the distance function associated to the Rieman-
nian metric of S1 induced by the usual metric of IR3.

Condition 2 We say that a surface S1 verifies Condition 2 if the following holds true.
There exists a geodesic curve γ : IR+ → T1S1, L > 0 and ρ0 > 0 such that

(s) γ(t+ L) = γ(t) for all t ≥ 0 (cf. [10]);

(p) ∀ρ < ρ0, ∃η(ρ) > 0, ∀y0 ∈ Nρ(G), ∀t ≥ 0, we have

φ(y0, t) ∈ Nη(G),

and
limρ→0η(ρ) = 0,

where G := γ([0, L]), Nρ(G) is the open set of points y ∈ T1S1 such d1(y,G) < ρ and
φ(y, t) is the geodesic flow of T1S1.
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It is shown in [10] that Condition 2 holds true for any convex compact surface having
a symmetry of revolution and it is generic within the convex compact surfaces verifying
Kmin/Kmax >

1
4
, where Kmin and Kmax denote the minimum and the maximum respectively

of the Gaussian curvature over the surface.
Assume now that S1 verifies Condition 2 and let G be the support of the periodic geodesic.

Then, ρ ∈ (0, ρ0), define Kρ̄ as the set complement in T1S1 of Nρ(G) × L, where L is a fixed
line in IR2. The next proposition, proved in [4], tackles issue (b).

Proposition 3 There exists a line L ∈ IR2 and ρ̄ > 0 such that the corresponding Kρ̄ verifying
Condition 1.

Then, we have the following proposition guaranteeing that the continuation method can
be successfully applied for solving the rolling-body motion planning problem.

Proposition 4 With above notations, for every path π : [0, 1] → Kρ̄ of class C1 and every
control ū ∈ H such that π(0) = φp(ū), the solution of path lifting equation (15) with initial
condition equal to ū exists globally over [0, 1].

We now describe how Proposition 4 can be applied to the rolling-body motion planning
problem. Assume that one wants to roll the body from an initial position p ∈ M to a final
one q ∈M .

Let us first assume that both p and q belong to Kρ̄. We note that since γ is periodic,
Nρ(G) is diffeomorphic to the product of a small two-dimensional ball and a closed path on
S1, Kρ̄ is closed and arc-connected. We begin by taking an arbitrary control ū which does not
belong to Sp, then we choose a C1-curve π : [0, 1] → Kρ̄ such that π(0) := φp(ū) and π(1) := q.
Proposition 4 guarantees that by integrating Eq. (15) over [0, 1] with initial condition equal to
ū, we obtain a curve Π : [0, 1] → H such that φp(Π(s)) = π(s) for s ∈ [0, 1]. In particular, we
have φp(Π(1)) = π(1) = q, which means that the control u := Π(1) solves the motion planning
problem. If for instance p does not belong to Kρ̄, it suffices first to roll the body along one
geodesic which brings it to a point p̃ belonging to Kρ̄, then we consider p̃ as the new initial
condition, and Continuation method applies. We recall that geodesic curves are admissible
trajectories for rolling body problem by Proposition 1.

Therefore, Continuation method can be successfully applied for solving rolling-body mo-
tion planning problem. In the following section, we explain how this method is numerically
implemented.

4 Numerical implementation

In this section, we detail how we implement numerically the continuation method in order to
solve the MPP for rolling-bodies in the case where S1 is a strictly convex surface of IR3. For
simplicity, we assume that S1 is defined as one bounded connected component of the zero-level
set of a smooth real-valued function f : IR3 → IR, and S2 = R

2.
The normal vector field to S1 is denoted by n : S1 → S2 and is given by

(∇f)T

‖∇f‖ ,

where ∇f = (f1, f2, f3) denotes the gradient vector of f . The Gaussian curvature of S1 is
denoted by K and Kmin = minS1

K > 0. In addition, set Kmax = maxS1
K.
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With the above hypotheses, Eq. (9) simply becomes

v̇1 = cosψu1 − sinψu2,
ẇ1 = − 1

B
sin(ψ)u1 − 1

B
cos(ψ)u2,

v̇2 = u1,
ẇ2 = u2,

ψ̇ = −Bv1

B
sin(ψ)u1 − Bv1

B
cos(ψ)u2,

(17)

where B is used to define geodesic coordinates on S1.
We first note that controls in this case are just plane curves c2 : [0, 1] → IR2 such that

ċ2 = (u1, u2) for all t ∈ [0, 1]. We divide the interval [0, 1] into N parts, and we approximate the
control space H by the 2N -dimensional subspace Ĥ of piecewise linear functions. Then, c2 can
be approximated by ĉ2, the linear interpolation of (c12, . . . , c

N
2 ) where ci2 = c2(

i
N−1

) = (xi, yi)
T

and on each segment [ti, ti+1] = [ i
N−1

, i+1
N−1

], the approximate control (ûi
1, û

i
2)

T is proportional

to the vector (xi+1 − xi, yi+1 − yi)
T .

The Path Lifting Equation (15) tells us how we have to modify this piecewise constant
control (û1, û2) in order to obtain an appropriate control steering our system from an initial
state to a preassigned final state. Under some general geometric assumptions for S1, theoretical
results presented in Section 3 guarantee that, whatever the starting control we choose, Eq.
(15) is complete and provides the correct control law at the end of the integration. We use the
classical Euler scheme to integrate Eq. (15). Note that Theorem 1 in [6] ensures that, once
there exists a global solution to Eq. (15), then for any “reasonable" Galerkin approximation of
the control space and “reasonable” numerical scheme for the derivatives, there exists a global
solution for the corresponding numerical approximation of Eq. (15).

In the following two paragraphs, we give details about the two key points for the numerical
implementation which are the evaluation of a right inverse of Dφp(u) and the integration of
Eq. (17).

4.1 Computing Dφp(u)

We first need to define a field of covectors along γp,u. For z ∈ T ∗
φp(u)M , let λz,u : [0, 1] → T ∗M

be the field of covectors along γp,u satisfying (in coordinates) the adjoint equation along γp,u

with terminal condition z, i.e., λz,u is a.c., λz,u(1) = z and for a.e. t ∈ [0, 1],

λ̇z,u(t) = −λz,u(t) ·
(

2
∑

i=1

ui(t)DFi(λz,u(t))

)

. (18)

If X is a smoothvector field over M , the switching function ϕX,z,u(t) associated to X is the
evaluation of λ ·X(x), the Hamiltonian function of X along (γp,u, λz,u), i.e., for t ∈ [0, 1],

ϕX,z,u(t) := λz,u(t) ·X(γp,u(t)),

(see for instance [6] for more details). Then Dφp(u) can be computed as follows: for z ∈
T ∗

φp(u)M and u, v ∈ H ,

z ·Dφp(u)(v) = (v, ϕz,u)H , (19)
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where the switching function vector ϕz,u(t) is the solution of the following Cauchy problem,
defined (in coordinates) below, by (see [4])

ϕ̇1 = −u2Kϕ3,
ϕ̇2 = u1Kϕ3,
ϕ̇3 = −u2ϕ4 + u1ϕ5,
ϕ̇4 = −u2Kϕ3,
ϕ̇5 = u1Kϕ3.

(20)

with terminal condition ϕz,u(1) = z.
In practice, since the discrete Dφp(u) is a 5× 5 matrix and its image is given by Eq. (19),

it suffices to take five independents vectors in IR5 as final conditions z, for instance the five
elements in the canonical basis of IR5 and integrate Eq. (20) in reverse time.

In our simulations, a fourth-order Runge-Kutta numerical scheme is used for integration,
the scalar product (·, ·)H in control space H is evaluated by Gaussian quadrature and the
Gaussian curvature K is computed by using the following proposition, cf. [3].

Proposition 5 Let S be (a bounded connected component of) the zero-set of f : IR3 → IR,
and define a, b, c by

det

(

∇2f − λI ∇f
(∇f)T 0

)

= a+ bλ + cλ2, (21)

where ∇2f is the matrix of the second derivatives of f and I3 the identity 3 × 3 matrix.
With this notation, one has

K =
a/c

‖∇f‖2
. (22)

Explicit computations show that c = −‖∇f‖2 and

a = det

(

∇2f ∇f
(∇f)T 0

)

.

Hence, we have

K = −
det

(

∇2f ∇f
(∇f)T 0

)

‖∇f‖4
. (23)

The gradient vector ∇f is then evaluated by a classical right-shifting finite difference
scheme, and ∇2f by a centered one. For example, if X = (x, y, z), then fx(X) is given by

f(x+ ε, y, z) − f(x, y, z)

ε
, (24)

and fxx(X) by
f(x+ ε, y, z) − 2f(x, y, z) + f(x− ε, y, z)

ε2
, (25)

with ε > 0 small enough.
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4.2 Lifting the plane curve ĉ2 on S1

Note that the curvature K appearing in Eq. (20) is taken at the final contact point on the
surface S1 after it has rolled along the piecewise constant curve ĉ2. Thus, in order to locate
the final point, we need to “lift" the plane curve ĉ2 on S1, and the lifting dynamics are given by
Eq. (17). However, since the geodesic coordinates involved in Eq. (17) are not given explicitly
in practice, our numerical lifting method is based on Proposition 1.

On each interval [ti, ti+1], the approximate control curve ĉ2 is a straight line (i.e. a geodesic
in IR2), and then, by Proposition 1, the lifting curve ĉ1 on S1 is also a geodesic on each inerval
[ti, ti+1] for all i = 0, . . . , N−1. Then, from the initial contact point X0 on S1, we can integrate
successively the geodesic equation on each [ti, ti+1] with initial conditions equal to ĉ1(ti) and
(ûi

1, û
i
2), for i = 0, . . . , N − 1.

Let us write explicitly the geodesic equation to be integrated (see for instance [3] for more
details). Recall that a curve c : [0, 1] → S1 is a geodesic curve if it verifies Eq. (1). In the case
where S1 is an immersed surface in IR3, Eq. (1) is equivalent to

c̈(t) ⊥ Tc(t)S1, (26)

for almost all t in [0, 1].
When S1 is defined as (a bounded connected component of) the zero-level set of a real-

valued function f : IR3 → IR, we have ∇f(x) ⊥ TxS1 at every x ∈ S1. Thus, Eq. (26)
becomes

c̈ = 〈c̈, ∇f(c)

‖∇f(c)‖〉
∇f(c)

‖∇f(c)‖ , (27)

where 〈, 〉 is the scalar product in IR3.
Furthermore, since c is a curve traced on S1, we also have

〈ċ(t),∇f(c(t))〉 = 0, (28)

for almost all t in [0, 1]. Then, by deriving Eq. (28) with respect to t, we get

〈c̈,∇f(c)〉 + 〈ċ,∇2f(c)ċ〉 = 0 (29)

Finally, summing up Eq. (27) and Eq. (29) together, we get

c̈ = − ċ
T∇2f(c)ċ

‖∇f(c)‖2
∇f(c). (30)

We use again a fourth-order Runge-Kutta scheme for numerical integration of Eq. (30).
An additional difficulty is that the numerical integration is not performed in an Euclidean

space, but on a manifold S1. Assume that we are at point x ∈ S1 at time t. Then at time
t + δt, we move to Xnew = X + (δt)d with d ∈ TxS1, but Xnew does not belong to S1 if d is
nonzero. Therefore, at each integration step, we have to “project" Xnew on S1.

More precisely, assume that the point (0, 0, 0) is inside the convex body S1. Since S1 is
defined as (a bounded connected component of) the zero-level set of a smooth function f ,
we assume that |f(Xnew)| ≤ ε for some ε << 1, i.e Xnew is close to S1. Then, there exists
a unique real number µ close to 1 such that f(µXnew) = 0, as a simple consequence of the
convexity of S1. The “projection” issue to be addressed is clearly a local one and therefore,
Newton’s method is efficient for finding µ. The derivative with respect to µ is also needed, it
is evaluated by a finite difference scheme similar to Eq. (24).
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5 Simulations

We have applied the numerical continuation method presented above for motion planning
problem of several bodies rolling on the Euclidean plane. We first present the rolling of a
flattened ball and an egg. We then give simulation in a case where the rolling body does not
have a symmetry of revolution. Still, the CM works quite efficiently.

The first figure of each subsection shows the initial and final positions of the contact point
on S1 as well as the initial and final orientations of the body. An arbitrary non singular control
is also given. Two phases of motion planning, adjusting the contact point and re-orienting the
body, are shown in the second and the third figures of each simulation. We note that control
curves are modified in a smooth way. In the fourth figure, a “right" control curve has been
found and the body is rolling along this curve. Finally, the last figure shows that the body
arrives at the end of the curve with desired contact point and orientation.

We note that all these simulations were performed with Matlab. The computation time
is on average 30 seconds (2.2 GHz Intel Core 2 Duo, 1.6 G memory) with N = 70 for the
discretization of control space H , which already gives satisfying control laws.

5.1 Flattened ball rolling on the plane

This flattened ball is defined by the zero-level set of the function

f(x, y, z) = x2 + y2 + 5z2 − 1. (31)

The gradient ∇f(x, y, z) is equal to (2x, 2y, 10z)T and it is never equal to zero on the zero-level
set of Eq. (31). Then Eq. (23) and Eq. (30) are always well defined.
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Figure 1: Initial and final positions of contact point and orientations of the flattened ball.

13



−1

0

1

−0.5
0

0.5

−0.4
−0.2

0
0.2
0.4

−1

0

1

−0.5
0

0.5

−0.4
−0.2

0
0.2
0.4

0 5 10
0

2

4

6

8

10

 2

Final position of the contact point

 1

Figure 2: Computation for adjusting the final position of contact point by continuation
method.
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Figure 3: Computation for adjusting the final orientation of the flattened ball by continuation
method.
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Figure 4: Flattened ball rolling along the curve before reaching the final position.
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Figure 5: End of rolling.

5.2 Egg rolling on the plane

This “egg" is defined by one bounded connected component of the zero-level set of the function

f(x, y, z) =
x2 + y2

1 − 0.4z
+
z2

4
− 1. (32)

We note that ∇f(x, y, z) = (
2x

1 − 0.4z
,

2y

1 − 0.4z
,
0.4(x2 + y2)

(1 − 0.4z)2
+
z

2
)T , it is never equal to zero

on the zero-level set of Eq. (32), then Eq. (23) and Eq. (30) are always well defined.
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Figure 6: Initial and final positions of contact point and orientations of the egg.
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Figure 7: Computation for adjusting the final position of contact point by continuation
method.
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Figure 8: Computation for adjusting the final orientation of the egg by continuation method.
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Figure 9: Egg rolling along the “right" curve before reaching the final position.
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Figure 10: End of rolling.

5.3 More general case

In Section 3, the global convergence of continuation method has been proven for rolling of
convex body with symmetric axis. However, we show in following simulations that continuation
method still works numerically in more general cases, even though a theoretical convergence
result is difficult to be obtained. This illustrates the robustness of the method.

For example, we take the convex body without symmetric axis, defined by one bounded
connected component of the zero-level set of the function

f(x, y, z) =
x2

1 − 0.5y
+

2y2

1 − 0.1z
+

0.5z2

1 − 0.3x− 0.1y
− 1. (33)

We note that

∇f(x, y, z)

= (
2x

1 − 0.5y
+

0.3

(1 − 0.3x− 0.1y)2
,

4y

1 − 0.1z
+

0.1

(1 − 0.3x− 0.1y)2
,

0.2y2

(1 − 0.1z)2
+

z

1 − 0.3x− 0.1y
)T ,

it is never equal to zero on the zero-level set of Eq. (33), then Eq. (23) and Eq. (30) are
always well defined.
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Figure 11: Initial and final positions of contact point and orientations of the convex body.
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Figure 12: Computation for adjusting the final position of contact point by continuation
method.
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Figure 13: Computation for adjusting the final orientation of the convex body by continuation
method.
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Figure 14: Convex body rolling along the “right" curve before reaching the final position.
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Figure 15: End of rolling.

6 Conclusion

In this paper, we have applied the continuation method to the motion planning problem of
rolling bodies. Numerical simulations have been performed in the case where convex smooth
body is rolling on the plane. We have shown through several examples the robustness and
the convergence speed of this method. A possible direction of future work is the numerical
implementation of this method for the motion planning problem of one convex smooth body
rolling on the top of another one. It can be shown that the invertibility of Dφp involved in the
Path Lifting Equation (15) requires K2−K1 6= 0 at the contact point. However, this condition
may not be globally verified for two general smooth convex bodies.
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