
DEXTERITY THROUGH ROLLING: TOWARDSMANIPULATION OF UNKNOWN OBJECTSANTONIO BICCHI, YACINE CHITOUR,ALESSIA MARIGO, DOMENICO PRATTICHIZZOCentro \E. Piaggio", Universit�a di Pisa, via Diotisalvi, 2 { 56100 Pisa { ItaliaFax:+39{50{565333, Tel.:+39{50{565328e{mail: fbicchi, chitour, alessia, domenicog@piaggio.ccii.unipi.itAbstract. The nonholonomy exhibited by kinematic systems consisting of bodiesrolling on top of each other can be used to the purpose of building dexterous mecha-nisms with a minimumhardware complication. Such desirable an engineering featurecan be fully exploited, however, only if the capability of planning and controllingrolling motions of arbitrary objects is achieved. In this paper we present some resultson the description of the set of reachable positions and orientations of manipulatedobjects of di�erent shapes, along with some advances in realizing a robot hand systemfor manipulation of objects whose shape is not known a priori, but is reconstructedas manipulation proceeds.Key Words. Dextrous robot hands, Nonholonomic systems, di�erential geometriccontrol.1 IntroductionFew recent works in mechanism design androbotics reported on the possibility of exploitingnonholonomic mechanical phenomena in order todesign devices that achieve complex tasks witha reduced number of actuators (Brockett [1989],Ostrowski et al. [1994], Sordalen and Nakamura[1994], Bicchi and Sorrentino [1995], [De Luca etal., 1996]). Although this seems to be a promisingnew approach to reducing the complexity, cost,weight, and unreliability of the hardware used insuch devices, it is true in general that planning andcontrolling nonholonomic systems is more di�cultthan holonomic ones. Indeed, notwithstandingthe large e�orts spent by applied mathematicians,control engineers, and roboticists on the subject,many open problems remain unsolved at the theo-retical level, and even more at the computationaland implementation level.In this paper we report on some results that havebeen obtained in the study of the operation ofrolling objects, in view of the realization of a robotWork done with the partial support of ESPRITW.G. LEGRO, contr. no. 032/94/TS.
gripper that exploits rolling to achieve dexterity,i.e., the ability to arbitrarily change the locationand orientation of the manipulated objects. A �rstprototype of such device was presented in [Bicchiand Sorrentino, 1995], along with some prelimi-nary experiments in planning and controlling mo-tions of a sphere manipulated by rolling. In orderfor the proposed gripper to be a viable solution inpractice, it is necessary that more general objectsare dealt with e�ectively. Furthermore, the casethat the object shape is not known a priori shouldalso be faced in real{world applications. This pa-per discusses a method for building an approxima-tion of the surface of an unknown object from datagathered by exploring the object by rolling. Fur-ther, we report on the implementation of a plan-ning method of Sussmann and Chitour [1993] thatcan be applied to the case of rolling of a general(regular) convex surface.2 BackgroundFor the reader's convenience, we report here somepreliminaries that help in �xing the notation andresume the background. For more details, see



e.g. [Murray, Li and Sastry, 1994] [Bicchi andSorrentino, 1995] [Bicchi, Prattichizzo, and Sas-try 1995], and [Chitour et al., 1996].2.1 Regular surfacesThe kinematic equations of motion of the contactpoints between two bodies with regular surface(i.e., with no edges or cusps) rolling on top of eachother describe the evolution of the (local) coordi-nates of the contact point on the �nger surface,�f 2 IR2, and on the object surface, �o 2 IR2,along with the holonomy angle  between the x{axes of two gauss frames �xed on the surfaces atthe contact points, as they change according to therigid relative motion of the �nger and the objectdescribed by the relative velocity v and angularvelocity !. According to the derivation of Mon-tana [1988], in the presence of friction one has_�f = M�1f K�1r � �!y!x � ;_�o = M�1o R K�1r � �!y!x � ; (1)_ = TfMf _�f + ToMo _�o;where Kr =Kf +R KoR is the relative curva-ture form, andR = � cos � sin sin � cos � :The rolling kinematics (1) can readily be written,upon specialization of the object surfaces, in thestandard control form_� = g1(�)v1 + g2(�)v2; (2)where the state vector � 2 IR5 represents a lo-cal parametrization of the con�guration manifold,and the system inputs are taken as the relativeangular velocities v1 = !x and v2 = !y. Apply-ing known results from nonlinear system theory,some interesting properties of rolling pairs havebeen shown. The �rst two concern controllabilityof the system:Theorem 1 [Li and Canny, 1990] A kinematicsystem comprised of a sphere rolling on a planeis completely controllable. The same holds for asphere rolling on another sphere, provided that theradii are di�erent and neither is zero.Theorem 2 [Bicchi, Prattichizzo, and Sas-try 1995] A kinematic system comprised of anysmooth convex surface of revolution rolling on aplane is completely controllable.Remark 1. Motivated by the above results, itseems reasonable to conjecture that a kinematicsystem comprised of almost any pair of surfaces iscontrollable. Such fact is indeed important in or-der to guarantee the possibility of building a dex-trous hand manipulating arbitrary (up to practi-cal constraints) objects. The following proposi-tions concern the possibility of �nding coordinate

transforms and static state feedback laws whichput the plate{ball system in special forms, whichare of interest for designing planning and controlalgorithms:Proposition 1 The plate{ball system can not beput in chained form [Murray, 1994]; it is not dif-ferentially at [Rouchon et al., 1993]; it is notnilpotent [Guyot and Petitot, 1995].The above results prevent the few powerful plan-ning and control algorithms known in the litera-ture to be applied to kinematic rolling systems (ofwhich the plate{ball system is a prototype). Thefollowing positive result is of some use in planning:Theorem 3 [Bicchi, Prattichizzo, and Sas-try, 1994]. Assuming that either surface in con-tact is (locally) a plane, there exist a state di�eo-morphism and a regular static state feedback lawsuch that the kinematic equations of contact (1)assume a strictly triangular structure.2.2 Polyhedral ObjectsThe simple experiment of rolling a die onto aplane without slipping, and bringing it back afterany su�ciently rich path, shows that its orienta-tion has changed in general, and hints to the factthat manipulation of parts with non{smooth (e.g.,polyhedral) surface can be advantageously per-formed by rolling. However, while for analysingrolling of regular surfaces the powerful tools ofdi�erential geometry and nonlinear control the-ory are readily available, the surface regularity as-sumption is rarely veri�ed with industrial parts,which often have edges and vertices.Although some aspects of graspless manipulationof polyhedral objects by rolling have been alreadyconsidered in the robotics literature, a completestudy on the analysis, planning, and control ofrolling manipulation for polyhedral parts is farfrom being available, and indeed it comprehendsmany aspects, some of which appear to be non{trivial. In particular, the lack of a di�erentiablestructure on the con�guration space of a rollingpolyhedron deprives us of most techniques usedwith regular surfaces. Moreover, peculiar phe-nomena may happen with polyhedra, which haveno direct counterpart with regular objects. For in-stance, in the examples reported in �gures 2.2 and2.2, it is shown that two apparently similar objectscan reach con�gurations belonging to a very �neand to a coarse grid, respectively. In the �rst case,the mesh of the grid can actually be made arbitar-ily small by manipulating the object long enough;in such case, the reachable set is called \dense".The question whether a sequence of rolling opera-tions exists that can bring a given polyhedron ar-bitrarily close to any arbitrary con�guration, canbe answered completely in terms of the curvatureof the vertices of the polyhedron:Theorem 4 [Chitour, Marigo, Prattichizzo,and Bicchi, 1996] The set of reachable con�g-urations of a polyhedron is globally dense in itscon�guration manifold if and only if there exists avertex on the polyhedron whose curvature is irra-tional with respect to �.



Figure 1: A polyhedron whose reachable set iseverywhere dense
Figure 2: A polyhedron whose reachable set isnowhere denseFor the case of polyhedra with vertices whose cur-vature is rational w.r.t. � (and for the practicallymost relevant case of parts whose physical dimen-sions are measured within a tolerance), it is impor-tant to have a description of the lattice structureand mesh size of the reachable set. While resultsconcerning cubic objects are reported by Chitouret al., [1996], general solutions are not available atpresent in the literature.3 Exploration of Un-known ObjectsAs already mentioned, parts to be manipulatedare sometimes not known a priori to the robot, andinformation on their shape need to be gathered be-fore manipulation can be planned and executed.In this section we describe the means by which itis possible to elicit shape information from rolling,with particular reference to the case of regular sur-faces.The dextrous gripper used in our experiments con-sists of two parallel plates, whose motions are ac-tuated by three electrical motors (see �gure 3) Theprocedure used to reconstruct the surface of un-known objects is as follows:i) The hand (with �ngers open) is put aroundthe object to be explored, and then closed inguarded mode with a contact force threshold;ii) While the actuator commanding the distancebetween the �ngers regulates a suitablegrasping force to avoid slippage of the objecton the �ngers, the actuators that commandtranslations of one �nger in its plane followpseudo{random trajectories causing the ob-ject to roll between the �ngers;

Figure 3: A schematic of the \dextrous gripper"of the University of Pisa
Figure 4: Contact points and contact forces in themanipulation process.iii) the position of the contact point on the sur-face of the upper and lower �ngers, as well asthe position of the hand actuators, are mea-sured during exploration; this information isused to calculate the position of the contactpoint on the object surface.In order to control the grasping force and to detectthe location of contact points on the �ngers, a six{axis force/torque sensor is used on the upper �n-ger. The calculation of the location c1 of the con-tact point on the surface of the upper �nger fromthe measured resultant force F1 and torque M1(see �gure 4) is obtained by simply intersecting the�nger plane with the wrench axis of the contactforce. This tactile sensing technique is very fastand accurate with respect to other possibilities,such as employing arrays of pressure sensitive sen-sors on the �ngers. The method can be used alsofor �ngers with a general convex surface, by usingthe \intrinsic" tactile sensing algorithms describedin [Bicchi, Salisbury, and Brock, 1993]). Anotheradvantage of using such force/torque based tac-tile sensing method is that it allows to detect alsothe contact point c2 on the lower �nger, providedthat any other force acting on the object (includ-



Figure 5: Spherical coordinates on the manipu-lated object.ing weight) are negligible or known. In this case infact, for balance reasons, c2 is at the intersectionof the wrench axis of the �rst contact force withthe lower �nger plane (see �gure 4).To reconstruct an approximation of the surface ofthe object, it is necessary to evaluate the instanta-neous position of the contact points with respectto a frame �xed with the object. Let the originof this frame be denoted by o, and let three unitvectors parallel to the x, y, and z axes of the bodyframe be denoted by i, j, and k, respectively (see�gure 5). We choose to describe the object sur-face in spherical coordinates, i.e., the position of ageneric point (except the north and south poles)of the surface in the body{�xed frame is givenin terms of azimuth u 2 [��; �) and elevationv 2 (��=2; �=2) angles as( x = �(u; v) cos v cos uy = �(u; v) cos v sinuz = �(u; v) sin v (3)where �(u; v) is a continuous function of the az-imuth and elevation u; v. Notice that spheri-cal coordinates are convenient for several reasons,among which is the fact that they provide an or-thogonal parametrization of all surfaces of revo-lution (i.e., surfaces with an axis of symmetry),except at their poles. Notice that for surfaces ofrevolution, @�(u;v)@u = 0. The velocity of the pointsof the upper and lower �nger in base frame areeasily expressed in terms of joint velocities asc1 =  _q100 ! c2 =  0_q2_q3 !Let ! denote the angular velocity of the objectw.r.t. the base frame. Under the assumption thatthe object is rigid and that there is no slippage atthe contacts, it holds_c1 = _c2 + ! � (c1 � c2):

Furthermore, notice from �gure 4 that, in the ab-sence of forces on the object other than contactforces, there are no torques acting about the axisjoining the contact points. Since manipulation isassumed to proceed slowly, and dynamics are neg-ligible, the angular velocity of the object can besafely assumed to have no component along theaxis through contacts, i.e.!T (c1 � c2) = 0:Hence, the angular velocity of the body is evalu-ated as ! = (c1 � c2)� ( _c1 � _c2)kc1 � c2k :Letting R = [ijk] denote the orientation matrix ofthe frame �xed to the body, the evolution of R isdescribed by the following di�erential equations:_o = _c1 + ! � (o � c1)_R = ! �RIntegrating these equations during the explorationtime, the instantaneous position and orientation ofthe body can be obtained. From geometric consid-erations (see �gure 5) we obtain the desired infor-mation on the spherical coordinates of the contactpoints from sensor measurements as� = kc1 � ok;v = arcsin (c1 � o)Tk�u = atan2 � (c01 � o)T j; (c01 � o)T i � ;where c01 = c1 � � sin vk:Similar relations hold for the coordinates of thecontact point on the lower �nger.4 ReconstructingsurfacesThe problem of reconstructing a surface fromknowledge of a number of points laying on it is animportant issue common to several �elds of sci-ence and engineering. In robotics, the problemhas been studied extensively in relation with pro-cessing data from cameras, range �nders, and/ortactile sensors. Part of the literature is concernedwith the \object recognition", or model match-ing problem (see e.g. [Faugeras et al., 1984], [Luoet al., 1984], [Grimson and Lozano{P�erez, 1984],[Ellis, 1992]). Works concerned with shape re-construction deal with �tting experimental datawith general models of surfaces (see e.g. [Brady,Ponce, and Yuille, 1984], [Grimson, 1987]). Vari-ous methods are distinguished by the informationused and the surface model adopted to �t data.Allen [1986] used bicubic (Coons') patches to �tdata from vision and touch sensors, while Allen



and Roberts [1989] used superquadrics. Berke-meyer and Fearing [1989] approximated objects bysurfaces of revolution, and were able to determinetheir axis of symmetry by using tactile measure-ment of contact points, contact normals, and cur-vatures at the contact points. Caselli, Magnanini,and Zanichelli [1995] considered haptic recognitionof objects based on polyhedral shape approxima-tions.With respect to the existing literature, where sur-face reconstruction is mostly intended for objectrecognition, the problem we consider is to gatherthe surface information necessary to obtain suf-�ciently accurate formulae for the control vector�elds appearing in the rolling equation (2). Asthese vector �elds are computed through di�er-ential operations from the surface description, itis necessary not only that the reconstruction isgiven in terms of analytic functions which are de-�ned on as large a domain as possible, but alsoare su�ciently smooth to avoid noise ampli�ca-tion through di�erentiation.In order to master completely the accu-racy/smoothness tradeo� in reconstruction, wefound tools made available from regularizationtheory to be most e�ctive (see e.g. Tikhonov andArsenin [1977], and Wahba [1990]).In that framework, the problem of �nding the\best" function approximating a multivariatefunction y(x), whose values yi at k points xi areknown (albeit with errors), is formulated as theminimization of the variational expressionH(f) = kXi=0(yi � f(xi))2 + �kPfk2 (4)where P is a di�erential operator used to weighthe \bumpiness" of the approximating function,and � is a regularization parameter, that controlsthe compromise between the degree of smoothnessof the solution, and its closeness to data ([Poggioand Girosi, 1990]). Such standard regularizationtechnique provides solutions that are equivalent togeneralized splines: for example, for single vari-able functions, it can be shown that with the dif-ferential operatorkPfk2 = ZR h @2f(x)@x2 i2 @xthe solution of the regularization problem is givenby cubic splines. In general, solution of (4) leadsto the associated Euler-Lagrange equationP̂Pf(x) = 1� kXi=0(yi � f(x))�(x � xi) (5)where P̂ is the adjoint operator of P and � is theDirac delta function. The solution of (5) can bewritten asf(x) = 1� kXi=0(yi � f(xi))G(x;xi) (6)

where G(x;xi) are the Green functions of the dif-ferential operator P̂P . Green functions are actu-ally radial functions of their arguments G(x;y) =G(kx� yk) when P is rotationally and transla-tionally invariant. In such case, the solution ofthe regularization problem is a sum of radial basisfunctions: f(x) = kXi=0 ciG(kx� xik); (7)where the weights ci can be evaluated by simplelinear algebraic operations. Some commonly en-countered radial basis functions used in regulariza-tion theory and in the closely allied �eld of neuralnetworks are (see [Poggio and Girosi, 1990])G(r) = 8>>>><>>>>: r (linear interploation)r3 (cubic interpolation)pr2 + c2 (multiquadric)1pr2+c2 (invers multiquadric)e� r2�2 (gaussian)where ri = kx� xik.The problem of reconstructing a surface describedin spherical coordinates (3) amounts to approxi-mating a smooth function � : S2 ! IR, � = �(u; v)of the azimuth and elevation angles u; v, for whicha set of points �(ui; vi) = �i are given from explo-ration data. With respect to the theory aboveresumed, the fact that the domain manifold S2 isnot globally equivalent to IR2 imposes some modi-�cations in the choice of basis functions. FollowingWahba [1990], we choose� = nXl=0 lXs=�l flsYls (8)where fls are coe�cients, and Yls are the eigen-functions of the (surface) Laplacian on the sphere,i.e. the spherical harmonics, whose expression incoordinates isYls(u; v) = Uls cos(us)P sl (sin v) 0 < s � l= Uls sin(us)P jsjl (sin v) �l � s < 0= Ul0Pl(sin v) s = 0for l = 0; 1; . . .. Here,Uls = p2q2l+14� (l�jsj)!(l+jsj)! s 6= 0=q2l+14� s = 0Pl, l = 0; 1; . . ., are the Legendre polynomials, andP sl are the Legendre functionsP sl (z) = (1� z2) s2 @s@zsPl(z)The unknown coe�cients are obtained by mini-mizing1n kXi=1 � �i �Pnl=0Pls=�l flsYls(ui; vi) �2(9)
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zFigure 6: Exact description of the manipulatedobject.+� nXl=0 lXs=�l[l(l + 1)]mf2lsArranging the index set f(l; s)g in a convenientorder, and letting f be the vector of fls and Xbe the matrix with (i; ls)th entry Yls(ui; vi), (10)becomes 1nky �Xfk2 + �fTDfwhere D is the diagonal matrix with (ls; ls)th en-try [l(l + 1)]m. The minimizing vector f� is thengiven by f� = (XTX+ �D)�1XTy4.1 ExperimentalThe experimental results obtained by exploringan unknown object and reconstructing it by theabove described techniques, are reported in �gures6, 7, 8, and 9. Figures show apparently how usingfew spherical harmonics (low N ) and/or low regu-larization weights � provides \bumpy" reconstruc-tions, while heavy regularization tends to roundup the object shape excessively.5 Planning for generalsurfacesAlthough methods for planning rolling motions ofobjects that possess a known axis of revolution areavailable ([Bicchi, Prattichizzo, and Sastry 1995]),for the general case of a regular surface withoutsuch symmetry, no specialized technique is avail-able. A very general method for planning motionsof nonholonomic systems was presented by Suss-mann and Chitour [1993], which is suitable for ap-plication to our case.
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Consider a general driftless nonholonomic systemin the form _x = mXi=1 gi(x)vi; (10)with the state evolving on some manifold x 2M ,and controls de�ned as functions of time in a �-nite interval, e.g. vi : [0; 1] ! IR, and belong-ing to a su�ciently rich class of functions V (saye.g. piecewise constant, or integrable functionsover [0; 1]). Under some well known conditionson the vector�elds gi, to any initial con�gurationx(0) = xo 2 M and any control v(t) 2 V m, thedi�erential equation (10) associates an unique endpoint x̂ = x(1), thus de�ning a so{called \end-point map" Ep :M � V m !M.The basic idea of continuation methods consists inguessing �rst an input vo(t), and compute x̂o =Ep(xo;vo). Such generally incorrect guess is joinedto the desired �nal con�guration xd through anypath  with curvilinear abscissa s, such that (s =0) = x̂o, and (s = 1) = xd. The path  isthen \lifted" to a path �(s) in the space of controlfunctions by solving the \path lifting equation"(PLE), given by_�(s) = dÊp(dEpdÊp)�1 _(s)where dEp is the di�erential of the endpoint map,and dÊp its adjoint operator. In order for the PLEequation to make sense, it is assumed that theendpoint map di�erential is onto. This conditionis always veri�ed except at most within a subsetof the state manifold of zero measure (the sub-set is composed of so{called abnormal extremalsfor the system). Solving the PLE, along trajecto-ries that avoid abnormal extremals, allows one tocontinuously \deform" the initial guess into a newcontrol, satisfying the speci�ed �nal position.In our practical implementation of the continua-tion method for the case of rolling surfaces, thespace of control functions was restricted to thelinear combinations of a �nite number of elementsof a Fourier basis, so that a �nite{dimensionalPLE was obtained, suitable for numerical solu-tion. Similar techniques have been reported byother authors (see e.g. Divelbiss and Wen [1993],and Fernandes, Gurvitz, and Li, [1994]).Abnormal extremals can occur in rolling problems.Although a study of the abnormal extremals forthe case of a sphere rolling on a plane was per-formed, not much could be said for a general sur-face. However, a simple modi�cation of the algo-rithm consisting in applying the pseudo{inverseof the endpoint map di�erential to a randomlyperturbed tangent vector to the path to be lifted,e�ectively solved any abnormal extremal{relatedproblem in practice. An intuition why such simplemodi�cation works can be gained by consideringthat, since the system is controllable, there can-not exist any closed submanifold in M encirclingxd and whose tangent space everywhere containsthe range of the endpoint map di�erential.In our experimental implementation, the contin-uation method proved considerably slower thanother methods available for particular surfaces.However, besides being, as already mentioned, one
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