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DUBINS’ PROBLEM ON SURFACES II: NONPOSITIVE
CURVATURE∗

MARIO SIGALOTTI† AND YACINE CHITOUR‡

Abstract. Let M be a complete, connected, two-dimensional Riemannian manifold with non-
positive Gaussian curvature K. We say that M satisfies the unrestricted complete controllability
(UCC) property for the Dubins problem if the following holds: given any (p1, v1) and (p2, v2) in
TM , there exists, for every ε > 0, a curve γ in M , with geodesic curvature smaller than ε, such
that γ connects p1 to p2 and, for i = 1, 2, γ̇ is equal to vi at pi. Property UCC is equivalent to
the complete controllability of a family of control systems of Dubins’ type, parameterized by ε. It
is well known that the Poincaré half-plane does not verify property UCC. In this paper, we provide
a complete characterization of the two-dimensional nonpositively curved manifolds M , with either
uniformly negative or bounded curvature, that satisfy property UCC. More precisely, if supM K < 0
or infM K > −∞, we show that UCC holds if and only if (i) M is of the first kind or (ii) the curvature
satisfies a suitable integral decay condition at infinity.
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1. Introduction. Let (M,m) be a connected, oriented, complete Riemannian
manifold and let N = UM be its unit tangent bundle. Points of N are pairs (p, v),
where p ∈ M , v ∈ TpM , and m(v, v) = 1. Given ε > 0, Dubins’ problem consists
of finding, for every (p1, v1), (p2, v2) ∈ N , a curve γ : [0, T ] → M , parameterized
by arc-length and whose geodesic curvature is bounded by ε, such that γ(0) = p1,
γ̇(0) = v1, γ(T ) = p2, γ̇(T ) = v2, and which minimizes T . Although Dubins’ problem
makes sense in any dimension, the present paper deals only with the two-dimensional
case, which can be seen as the time-optimal control problem for the following control
system:

(Dε): q̇ = f(q) + ug(q), q ∈ N, u ∈ [−ε, ε],

where f is the geodesic spray on N (i.e., the infinitesimal generator of the geodesic
flow on M), g is the smooth vector field generating the fiberwise rotation with angular
velocity equal to one, and the admissible controls are measurable functions u : [0, T ] →
[−ε, ε].

In the robotics literature (cf. [20]), the dynamics defined by (Dε) when M is
the Euclidean plane represent the motion of a unicycle (or a rolling penny) and the
projections of the trajectories of (Dε) on the plane are planar curves parameterized by
arc-length with curvature bounded by ε. In 1957, Dubins [9] determined the global
structure of the corresponding time-optimal trajectories: he showed that they are
concatenations of at most three pieces made of circles of radius 1/ε or straight lines.
Further restrictions on the length of the arcs of an optimal concatenation have been
obtained by Sussmann and Tang [30].
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Dubins’-like problems have been proposed by considering more general manifolds
M . For instance, the case where M is a two-dimensional manifold of constant Gaus-
sian curvature was investigated in [5, 6, 12, 17], and the case where M = Rn, Sn,
n ≥ 3, was studied in [18, 19, 29]. The controllability issue is not difficult to solve,
because Dubins’ problem can be reformulated as a control system (left-)invariant un-
der the action of a Lie group. Let us mention another line of generalization, which
consists of considering the distributional version of (Dε), whose best-known example
is the so-called Reeds–Shepp car [22]. In dimension two, the distributional dynam-
ics can be represented by the two-input control system (DDε) : q̇ = uf(q) + vg(q)
with |u|, |v| ≤ ε. The controllability of (DDε) simply results from the fact that
the distribution (f, g) is strong bracket generating, i.e., for every q ∈ N , the triple
(f(q), g(q), [f, g](q)) spans TqN .

A motivation for the present work is the remark that when generalizing Dubins’
problem from the Euclidean plane to a general Riemannian surface M , the complete
controllability of (Dε) stops to be a trivial issue. Indeed, when M has no particular
symmetry, it is not clear how to design a trajectory starting from and ending at the
fiber of a given point p ∈ M , with “small” geodesic curvature. We are naturally faced
with an intrinsic property of M , independent of global rescaling of its metric m, that
is, whether (Dε) is completely controllable for every ε > 0. We refer to such property
as the unrestricted complete controllability (UCC) of Dubins’ problem on M . The
present paper primarily focuses on the controllability of Dubins’ problem, and our
main scope is to find geometric or topological conditions on M characterizing UCC.

The Lie algebraic structure of (Dε) reveals quickly that the Gaussian curvature K
plays a crucial role in the characterization of controllable Dubins’ problems. Indeed,
as it follows from the structural equations satisfied by Cartan’s connections (cf. Spivak
[28, Volume II]),

[f, [f, g]](q) = −K(π(q))g(q)(1)

for every q ∈ N , where π : N → M denotes the bundle projection. Notice that the
bracket relation (1) identifies K uniquely. A generalized version of it was proposed by
Agrachev and Sachkov ([1]; see also [26]) in order to introduce a notion of curvature
for two-dimensional optimal control systems.

The role of K in the study of UCC of Dubins’ problem is further suggested by the
following standard example of noncontrollability: if M is the Poincaré half-plane H2,
then (Dε) is completely controllable if and only if ε > 1 (cf. [6, 17]). Roughly speaking,
the negativeness of K is an obstacle for the controlled turning action (modeled by g)
to overcome the spreading of the geodesics. When |u| ≤ ε ≤ 1, the effect of ug is not
strong enough and complete controllability fails to hold.

In a previous paper [7], we proposed some geometric and topological conditions
on M , which ensure that the UCC property holds true. In particular, it was proved
that any compact M satisfies the UCC property. In the unbounded case, the same
conclusion was obtained when M is asymptotically flat, i.e., K tends to zero at infinity.
The control strategy goes as follows. It is first shown that the controllability of (Dε)
is equivalent to the fact that every q = (p, v) ∈ N can be steered to q− = (p,−v) by
an admissible trajectory of (Dε). The latter property, called weak controllability of
(Dε), is proved by tracking a teardrop loop (see Figure 1) in a covering domain over
a piece of M at infinity. A suitable covering manifold can be globally described by a
single appropriate geodesic chart.

If one keeps in mind the noncontrollability of Dubins’ problem on H2, it is reason-
able to consider the situation where K ≥ 0. Indeed, in that case, no local spreading
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effect due to the drift term has to be compensated. Moreover, if M is an open man-
ifold with nonnegative curvature, then the theorems of Cohn-Vossen [8] and Huber
[11] imply that ∫

M

KdA < ∞,(2)

where dA is the surface element in M (see [7] for details). The integral decay of K
to zero at infinity can be interpreted as a sort of asymptotic flatness condition and it
suggests that (Dε) should be completely controllable for every ε > 0. In [7], we were
able to confirm that intuition under the additional assumption that K is bounded
over M , i.e., supM K is finite, and also to extend that result to the case where K ≥ 0
outside a compact set. The strategy of the proof still consists in tracking a teardrop
loop in a covering domain D but the construction of D becomes much more delicate
than that of the asymptotic flat case.

Recently, Pansu pointed out how the existence of a closed geodesic on a surface
M with constant negative curvature implies that for every point p ∈ M and every
ε > 0, there exists a noncontractible admissible trajectory of (Dε) which steers some
point q ∈ UpM to the point q−. Such a feature is particularly interesting, taking into
account that UCC does not hold for the Poincaré half-plane H2. An immediate ques-
tion is whether UCC can be recovered for a quotient manifold M = H2/Γ, provided
that we add enough topology to H2 (i.e., provided that the group Γ is large enough),
or if, on the contrary, Dubins’ problem on any quotient of H2 is not UCC. It turns out
that the answer can be easily stated: M = H2/Γ has the UCC property if and only
if it is of the first kind, i.e., its limit set (see Definition 3.1) is the entire boundary at
infinity of H2.

In the present work, we investigate the more general case of Riemannian surfaces
with nonpositive curvature. It is well known that a surface M of such kind can be
identified with the quotient space X/Γ, where X is a Hadamard surface (i.e., a simply
connected, complete Riemannian manifold of nonpositive curvature) and Γ is a group
of orientation-preserving isometries which acts freely and discontinuously on X. (For
all the definitions, see section 3.) We provide conditions on M , sufficient for UCC to
hold. The first one generalizes the hyperbolic case. It says that (i) M = X/Γ is of the
first kind, i.e., its limit set L(Γ) is equal to the ideal boundary X(∞) of X. The second
condition is reminiscent of the nonnegative curvature case, namely, it states that (ii)
for every r > 0 and every sector S in X, supp∈S

∫
BX(p,r)

KdA = 0, where BX(p, r)

denotes the ball of center p and radius r. Then, we present necessary conditions
on M for property UCC to hold. A quite surprising result is the following. Under
the assumption that either K is bounded or supM K < 0, if M verifies property
UCC, then either condition (i) or condition (ii) must hold true. In that way, we
exactly characterize the surfaces M , with nonpositive curvature K either bounded
or such that supM K < 0, verifying property UCC. In addition, some controllability
and noncontrollability results in the case where K is nonpositive outside a compact
subset of M are given. We also provide sufficient conditions ensuring that M has the
UCC property, with no sign assumption on K, namely, (a) M has finite area, (b) the
geodesic flow on M is topologically transitive. We conclude with some remarks on the
structure of time-optimal trajectories for (Dε). If supM K ≤ −ε, we show that they
follow Dubins’ pattern, namely, that they are concatenation of a bang, a singular,
and a bang arc (where some arc can possibly have zero length), with the (possible)
singular arc being a geodesic of the surface.
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The paper is organized as follows. In section 2, we formulate the control problem
at hand and describe its basic features. In section 3, general facts on Riemannian
surfaces of nonpositive curvature are recalled. The main results of the paper are
stated in section 4 and their proofs are provided in section 5. Finally, section 6
contains some remarks on time-optimal trajectories.

2. Formulation of the problem. Let (M,m) be a two-dimensional Rieman-
nian manifold, or, as we will equivalently call it, a Riemannian surface. Notice that
M is not required to be embedded nor immersed in R3. Assume that M is ori-
ented and that its metric m is complete. Denote by N the unit tangent bundle
UM = {q ∈ TM | m(q, q) = 1} and by π :N → M the canonical bundle projection of
N onto M . Let K be the Gaussian curvature on M . We will use the symbol K also
for the trivial extension (constant on fibers) of K on N . The distance on M induced
by m is denoted by dM (·, ·) (or d(·, ·) when no confusion is possible), and, for every
p ∈ M and r > 0, BM (p, r) stands for the ball of center p and radius r.

Let f be the geodesic spray on TM , whose restriction to N (still denoted by f)
is a well-defined vector field on N . Recall that f is characterized by the following
property: p(·) is a geodesic on M if and only if (p(·), ṗ(·)) is an integral curve of f .
In particular, f satisfies the relation

π�(f(q)) = q(3)

for every q ∈ N . The exponential map on M is defined by

exp(t, q) = π(etf (q)),(4)

where etf :N → N denotes the flow of the vector field f at time t.
Let g be the smooth vector field on N , whose corresponding flow at time t is the

fiberwise rotation of angle t. For every q ∈ N , we set q− = eπg(q) and Rq = e−
π
2 g(q).

For ε > 0, let (DM
ε ) be the control system

(DM
ε ): q̇ = f(q) + ug(q), q ∈ N, u ∈ [−ε, ε].

An admissible control is a measurable function u(·), defined on some interval of
R, with values in [−ε, ε]. The solutions of (DM

ε ) corresponding to admissible controls
are called admissible trajectories. (Sometimes, to prevent any confusion, we will speak
also of ε-admissible controls and ε-admissible trajectories).

For every q ∈ N and T > 0, the attainable set from q up to time T is the set
AT

q = AT
q (M, ε) consisting of the endpoints of all admissible trajectories for (DM

ε ),
starting from q, of length smaller than or equal to T . We also write

Aq = Aq(M, ε) = ∪T>0A
T
q (M, ε).

The control system (DM
ε ) is called completely controllable if Aq = N for every q ∈ N .

Definition 2.1. We say that the Dubins problem on M has the unrestricted
complete controllability (UCC) property (or, equivalently, that it is UCC) if, for
every ε > 0, (DM

ε ) is completely controllable.
We stress that the UCC notion corresponds to the property of existence of solu-

tions to the original, control-free Dubins problem on M : UCC holds if and only if,
for every ε > 0 and every (p1, v1), (p2, v2) in TM , there exists a curve γ : [0, T ] → M
with geodesic curvature smaller than ε such that γ(0) = p1, γ(T ) = p2 and γ̇(0) = v1,
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(
0, 1

ε

)

(
0,− 1

ε

)

Fig. 1. The teardrop trajectory of size 1/ε.

γ̇(T ) = v2. Up to a reparameterization by arc-length, (γ, γ̇) is an ε-admissible tra-
jectory in N , whose corresponding control u(t) is equal, at almost every t ∈ [0, T ], to
the geodesic curvature of γ at the point γ(t).

It is easy to check that the distribution {f, g} is bracket generating, i.e., that,
for every q ∈ N , TqM = span{X(q)| X ∈ Lie(f, g)}, where Lie(f, g) denotes the Lie
algebra of vector fields on N generated by f and g. Indeed, for every q ∈ N , we
have that π∗([f, g](q)) = π∗(f(Rq)). Therefore, f , g, and [f, g] span TqM at every
q ∈ N , proving not only that {f, g} is bracket generating but also that it is a contact
distribution on N . As a consequence, for every 0 < t < T and every q ∈ N ,

etf (q) ∈ Int(AT
q ),(5)

where Int(AT
q ) denotes the interior of AT

q . This follows, for instance, from the descrip-
tion of small-time attainable sets for single-input nondegenerate three-dimensional
control systems given by Lobry in [15].

Since f , g, and [f, g] are linearly independent at every point, they can be used to
introduce a metric on N , requiring (f(q), g(q), [f, g](q)) to be an orthonormal basis of
TqN , for every q ∈ N . Such metric endows N with a complete Riemannian structure
(see, for instance, [23]). In accordance with the notations introduced above, we will
denote by dN (·, ·) the induced distance on N and, for every q ∈ N and ρ > 0, by
BN (q, ρ) the ball of center q and radius ρ.

Remark 2.2. In [7] we noticed that, since (DM
ε ) has the property of being bracket

generating, Dubins’ problem on M is UCC if and only if for every ε > 0 and every
q ∈ N , there exists q̂ ∈ Aq(M, ε) such that q̂− ∈ Aq̂(M, ε). In order to prove this
last property, we will often mimic on M the behavior of a teardrop trajectory on the
Euclidean plane. We call teardrop trajectory of size 1/ε (see Figure 1) the bang-bang

trajectory of (DR2

ε ) whose control u, defined by

u(t) =

⎧⎪⎨⎪⎩
ε if 0 ≤ t ≤ π

3ε ,

−ε if π
3ε < t ≤ 2π

ε ,

ε if 2π
ε < t ≤ 7π

3ε ,

steers (1, 0) ∈ U(0,0)R
2 to (−1, 0) ∈ U(0,0)R

2.
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Remark 2.3. If M1,M2 are two Riemannian manifolds and P : M1 → M2 is
a local isometry at every point of M1, then every admissible trajectory for (DM1

ε )
is transformed by P∗ : UM1 → UM2 in an admissible trajectory for (DM2

ε ). In
particular, if P is onto and the Dubins problem on M1 is UCC, then the same is true
for the Dubins problem on M2.

3. General facts on Riemannian surfaces of nonpositive curvature. Of
special interest for the present study are Riemannian surfaces of nonpositive curvature.
We collect in this section some definitions and known results about them, which will
be used in what follows. When no explicit source is given, see [4].

A simply connected, complete Riemannian manifold of nonpositive sectional cur-
vature is called a Hadamard manifold. If M is a complete, connected, oriented Rie-
mannian manifold of nonpositive sectional curvature, then M can be described as
X/Γ, where X is a Hadamard manifold and Γ is a group of orientation-preserving
isometries which acts freely and discontinuously on X. We will denote by Π :X → M
the canonical projection of X onto M . When the sectional curvature is constant on
M , then M is said a hyperbolic manifold and X a hyperbolic space.

3.1. Hadamard surfaces. From now on, X will denote a Hadamard surface,
that is, a Hadamard two-dimensional manifold. If M = X/Γ is a complete Riemannian
surface, then we will denote by the same letters f , g, K, m, and π the corresponding
objects on X and M . This is motivated by the fact that Π : X → M , being a local
isometry, identifies such objects, at least at a local level.

It is well known that X is diffemorphic to R2. Any geodesic segment in X is the
unique length-minimizing trajectory between its extremes. In particular, all complete
geodesics are simple.

A ray is a half-geodesic on X. A sector is a region of X bounded by two distinct
rays starting at the same point, which is called the vertex of S.

The ideal boundary of X, denoted by X(∞), is defined as the quotient of the set
of all rays parameterized by arc-length by the equivalence relation

c1 ∼ c2 ⇐⇒ lim sup
t→∞

dX(c1(t), c2(t)) < ∞.

The equivalence class of a parameterized ray c is denoted by c(+∞) and it is called
the endpoint of c. If c : R → X is a parameterized complete geodesic, then c(−∞)
denotes the equivalence class of [0,∞) � t �→ c(−t).

For a given point p ∈ X there is a one-to-one correspondence ψp between UpX
and X(∞), which assigns to v ∈ UpX the equivalence class of [0,∞) � t �→ exp(t, v).
The correspondence defines a topology on X(∞), which is called the sphere topology.
The sphere topology extends to the so-called cone topology on X = X ∪X(∞). The
cone topology is generated by the open sets of X and the sets

ψp(U) ∪ (∪t>0 exp(t, U)) ,

where p ∈ X and U is an open set of UpX. Notice that the action on X of an element
of Γ has a natural continuous extension on X.

Given a set Ω in X, we write ∂Ω for the boundary of Ω in X, while Ω(∞) will
denote the intersection between X(∞) and the closure of Ω in X.

The isometric transformations of X can be classified in terms of the so-called
displacement function X � p �→ dX(p, γ(p)). An isometry γ :X → X is called elliptic
if it has at least one fixed point in X; hyperbolic if the displacement function attains
its minimum in X, and such minimum is strictly positive; parabolic otherwise.
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3.2. Closed geodesics and limit sets. If M = X/Γ is a complete Riemannian
surface, then the only elliptic element of Γ is the identity. Let G be a closed geodesic
in M . Fix one of its lifts G̃ in X and let c : R → X be a parameterization of G̃
by arc-length. There is one isometry γ ∈ Γ such that γ(c(0)) = c(T ), where T is
the length of G. Then c(t + T ) = c(t) for every t ∈ R. (The proof goes as in the
hyperbolic case; see [21, Theorem 9.6.2].) The isometry γ is hyperbolic (see [4, section

6]) and G̃ is called an axis of γ. Actually, every hyperbolic isometry γ has at least
one axis. (Given any point p at which the displacement function attains its minimum,
the geodesic line between p and γ(p) is indeed an axis.) If none of the half-planes

bounded by G̃ is flat, then, given a neighborhood U of c(−∞) and a neighborhood V
of c(+∞) in X, there exists n̄ ∈ N such that

γn
(
X \ U

)
⊂ V, γ−n

(
X \ V

)
⊂ U,(6)

for every n ≥ n̄, as proved by Ballmann in [3].

The existence of a closed geodesic on Riemannian surfaces is established by some
classical results under very general assumptions. Lyusternik and Fet [16] proved that
all complete compact Riemannian surfaces contain at least one closed geodesic. After
that, Thorbergsson [31] extended the result to all complete, connected Riemannian
surfaces neither homeomorphic to the plane nor to the cylinder. As a consequence, if
Γ is not cyclic, then M = X/Γ contains a closed geodesic.

Definition 3.1. Let Γ be a group of isometries of X. Fix p ∈ X and consider
Γ(p), the closure in X of the Γ-orbit of p. The set L(Γ) = Γ(p) ∩X(∞) is called the
limit set of Γ.

The definition of L(Γ) is actually independent of the choice of the point p. Fix,
indeed, p, p′ in X, and let γn(p) → z ∈ X(∞) as n → ∞, with {γn}n∈N ⊂ Γ. Notice
that for every n ∈ N, d(γn(p), γn(p′)) = d(p, p′). Moreover, every sector S of X
such that z ∈ S(∞) contains a subsector S′ such that z ∈ S′(∞) and whose distance
from the boundary of S is larger than d(p, p′). Therefore, in the cone topology of X,
γn(p′) → z as n → ∞.

Definition 3.2. Let X be a Hadamard surface and M = X/Γ be a complete
Riemannian surface. We say that M is of the first kind if L(Γ) = X(∞); otherwise
we say that M is of the second kind.

Remark 3.3. If Γ is cyclic, then M is of the second kind. Indeed, if Γ = {Id}, then
L(Γ) is empty. If Γ is nontrivial, then it is generated by a hyperbolic or a parabolic
isometry, denoted by γ. If γ is hyperbolic, then it translates at least one geodesic,
hence L(Γ) is made of the two endpoints of such geodesic (just consider the orbit of a
point on the geodesic). If γ, instead, is parabolic, then there exists a point z ∈ X(∞)
which is invariant under the action of γ, together with the horospheres centered at z
(see [4, Lemma 6.6]). Fix any point x ∈ X and consider a horosphere U centered at
z which contains x. Then L(Γ) is contained in U(∞). In both cases, M is not of the
first kind. Therefore, if M is of the first kind, then it contains a closed geodesic.

Definition 3.4. Let M be a Riemannian surface. We say that its Gaussian
curvature K is uniformly negative if supM K < 0.

If K is uniformly negative on X, then, for every two elements x, y of X(∞), there
exists a parameterized geodesic c : R → X such that c(+∞) = x and c(−∞) = y.
That is, using the terminology introduced by Eberlein and O’Neill in [10], X is a
visibility manifold.
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3.3. Geodesic coordinates. Geodesic coordinates can be globally defined on
X. They depend on the choice of an element q of UX and are defined through the
map

φq : R2 −→ X,

(x, y) �−→ π(eyf ◦ eπ
2 g ◦ exf (q)).

(7)

Let B : R2 → R be the solution of the system⎧⎪⎨⎪⎩
Byy + KB = 0,

B(x, 0) ≡ 1,

By(x, 0) ≡ 0,

(8)

in which the index y appearing in By, Byy stands for the partial differentiation with
respect to y. Notice that since K ≤ 0, B is globally defined and

B(x, y) ≥ 1,(9)

yBy(x, y) ≥ 0(10)

for every (x, y) ∈ R2. The coordinate expression for the metric m on X is given by

m(x, y) = B2(x, y)dx2 + dy2.

(See, for instance, [13].) The unit bundle UX can be identified with{(
x, y,

cos θ

B(x, y)
, sin θ

)
∈ R4

∣∣∣∣ (x, y) ∈ R2, θ ∈ S1

}
.

In the coordinates (x, y, θ), f and g are given by

f(x, y, θ) =

(
cos θ

B(x, y)
, sin θ, F (x, y) cos θ

)T

, g(x, y, θ) = (0, 0, 1)T ,(11)

where

F (x, y) =
By(x, y)

B(x, y)
.(12)

Equivalently, (DX
ε ) can be written as follows:

ẋ =
cos θ

B
,(13)

ẏ = sin θ,(14)

θ̇ = u + F cos θ.(15)

Notice that, as it can be easily deduced from (8), F satisfies the Cauchy problem

Fy = −K − F 2, F (x, 0) ≡ 0.(16)

If M = X/Γ is a complete Riemannian surface, then, for any fixed q ∈ N , the map
φq, defined as in (7), is a local diffeomorphism at every point of R2. The pullback of
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the metric m through φq endows R2 with a Riemannian structure, which renders R2

isomorphic to X.
Remark 3.5. The previous formulation of Dubins’ problem in coordinates still

makes sense when only local, instead of global, geodesic coordinates are defined.
Consider the case of a Riemannian surface M with possibly sign-varying curvature.
Recall that a half-plane of M is a simply connected open subset of M bounded by a
simple open complete geodesic. If M contains a half-plane H and if K is nonpositive
on H, then H admits a system of geodesic coordinates. Indeed, for any q ∈ N such
that φq(R×[0,∞)) = H, R×[0,∞) can be endowed with the metric φ∗

qm, and Dubins’
problem on H can be described by equations (13)–(15). Similarly, if q = (p, v) ∈ N
and a, b, r > 0 are such that K ≤ 0 on BM (p, r) and a + b < r, then the rectangle
[−a, a]× [−b, b] ⊂ R2, endowed with φ∗

qm, is a nonpositively curved covering domain
of a neighborhood of p. Again, system (13)–(15) describes Dubins’ problem on such
nonflat rectangle.

4. Statement of the results. We collect here the statements of the main results
proved in the next section, in order to stress the interrelations between the proposed
necessary and sufficient conditions for the UCC property to hold.

Proposition 4.1. Let M be a complete, connected Riemannian surface. The
Dubins problem on M has the UCC property if at least one of the following conditions
is satisfied: (a) M has finite area or (b) the geodesic flow on M is topologically
transitive.

Theorem 4.2. Let M be a complete, connected Riemannian surface with nonpos-
itive Gaussian curvature K. Denote by X the universal covering of M . The Dubins
problem on M has the UCC property if at least one of the following conditions is
satisfied: (i) M is of the first kind or (ii) for every r > 0 and every sector S in X,
supp∈S

∫
BX(p,r)

KdA = 0.

Conditions which are both sufficient and necessary for UCC can be formulated
under more restrictive hypotheses on K.

Theorem 4.3. Let M be a complete, connected Riemannian surface and assume
that its Gaussian curvature K is uniformly negative. Then the Dubins problem on M
has the UCC property if and only if M is of the first kind.

Theorem 4.4. Let M be a complete, connected Riemannian surface and assume
that its Gaussian curvature K is nonpositive and bounded. Assume, moreover, that
M is of the second kind and denote by X its universal covering. The Dubins problem
on M has the UCC property if and only if, for every r > 0, for every sector S in X,
supp∈S

∫
BX(p,r)

KdA = 0.

The results stated in Theorem 4.2 are proved in Propositions 5.9 and 5.10. For
what concerns Theorem 4.3, it is a combination of Proposition 5.9 and Corollary 5.15.
Finally, the proof of Theorem 4.4 is split into the ones of Proposition 5.10 and Corol-
lary 5.18. For results concerning manifolds with possibly sign-varying curvature, we
refer to the detail of sections 5.2, 5.3, and 5.4.

5. Proofs of the results.

5.1. Additional properties of Riemannian surfaces of nonpositive cur-
vature. In this paragraph, we prove some geometric properties of Riemannian sur-
faces of nonpositive curvature, which are at the heart of the arguments of the theorems
stated above. In particular, we show how certain properties of limit sets which hold in
the hyperbolic case can be recovered in the nonconstant curvature case, under suitable
nonflatness assumptions. To this extent we propose the following definition.
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Definition 5.1. A sector S of a Hadamard surface X is said to be heavy if, for
every sector S′ contained in S,

∫
S′ KdA = −∞.

For example, as we will often use, if r, δ > 0 exist such that
∫
BX(p,r)

KdA ≤ −δ

for every p ∈ S, then S is heavy. Heavy sectors enjoy the following visibility-type
property.

Lemma 5.2. Let S be a heavy sector of a Hadamard surface X. Then, for every
z1 in the interior of S(∞) and every z2 ∈ X(∞) different from z1, there exists a
geodesic c : R → X such that c(−∞) = z1 and c(+∞) = z2.

The lemma is basically a reformulation of [4, Exercise (i), p. 57]. For sake of
completeness, let us provide its proof. Consider a convex sector S′ bounded by two
rays having z1 and z2 as endpoints. Since z1 belongs to the interior of S(∞), then
S′ contains a subsector which is a included in S. Therefore, by definition of heavy
sector,

∫
S′ KdA = −∞. Denote by x the vertex of S′ and let pn, qn be two sequences

of points in ∂S′, tending, respectively, to z1, z2, as n tends to infinity. Denote by Tn

the geodesic triangle with vertices x, pn, and qn. The Gauss–Bonnet theorem implies
that

∫
Tn

KdA > −π for every n. Therefore, there exists a compact subset C of S′

such that, possibly passing to a subsequence, the geodesic segment between pn and
qn intersects C for every n. By compactness of UC = {q ∈ UX| π(q) ∈ C}, there
exists q ∈ UC such that the geodesic s �→ exp(s, q) connects, as required, z1 and z2.

Given a Hadamard surface X and a group Γ of isometries of X, let us denote
by A(Γ) the closure in X(∞) of the set of endpoints of axis of hyperbolic isometries
contained in Γ.

Lemma 5.3. Let X be a Hadamard surface and Γ a group of isometries of X. If
A(Γ) is nonempty, then, for every heavy sector S of X, L(Γ)∩S(∞) = A(Γ)∩S(∞).

Proof. Clearly A(Γ) ⊂ L(Γ). Fix an axis G of a hyperbolic transformation of
Γ, a point z in S(∞), and assume that there exists a neighborhood J of z which
does not contain any endpoint of complete geodesics of the type γ(G), γ ∈ Γ. Let
H be a half-plane of X such that z ∈ H(∞) ⊂ J , whose existence is guaranteed by
Lemma 5.2. Then, the entire Γ-orbit of G is contained in X \H. Therefore, z is not
a density point of the Γ-orbit of any point of G, i.e., z �∈ L(Γ).

The following lemma concerns the existence of half-planes in nonpositively curved
Riemannian surfaces. Its role will be crucial while proving the noncontrollability
results contained in section 5.3.

Lemma 5.4. Let M be a complete, connected Riemannian surface with nonpos-
itive curvature and let X be its universal covering. Assume that M is of the second
kind and that X contains a heavy sector S. Then the canonical projection Π :X → M
embeds in M a half-plane of X, contained in S.

Proof. We start the proof by noticing that if there exists an open, nonempty,
connected subset U of S(∞)\L(Γ) such that γ(U)∩U = ∅ for every γ ∈ Γ\{Id}, then
every half-plane H bounded by U and a geodesic with endpoints in U is embedded by
Π in M . Indeed, H∩γ(H) �= ∅ implies that H(∞)∩(γ(H))(∞) = H(∞)∩γ(H(∞)) �= ∅
and γ must therefore be the identity. The existence of a geodesic with endpoints in
U follows from Lemma 5.2.

We distinguish two cases, depending on whether Γ contains a hyperbolic isometry.

Assume first that Γ\{Id} is made of parabolic isometries only. In particular, Γ is
cyclic, since M contains no closed geodesic. Denote by γ a generator of Γ. The set of
fixed points of γ on X(∞) is closed and nonempty. If it does not contain S(∞), then
there exists an open, nonempty, connected subset U of S(∞) such that γj(U)∩U = ∅
for every j ∈ Z \ {0}. Then the lemma follows from the above remark. We are
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left to deal with the case in which every point of S(∞) is fixed by γ. Consider a
parameterized geodesic c : R → X such that c(+∞) and c(−∞) are both in S(∞).
Since γ fixes the endpoints of c, then Pc, the set spanned by all the geodesics parallel
to c, is invariant under the action of γ. The set Pc is isometric to R × Σ, where Σ
is a closed geodesic line in X (see [4, Lemma 2.4]). By hypothesis, c bounds no flat
half-plane; therefore Σ is bounded. Since γ induces a continuous transformation of
Σ, there must exist at least one complete geodesic of X fixed by γ. Thus γ, which
is a nonhyperbolic isometry of Pc, is the identity transformation, and the statement
of the lemma is trivially true. (Notice that the argument, which follows the proof of
Lemma 6.8 in [4], shows that γ has at most one fixed point in the interior of S(∞),
unless Γ = {Id}.)

Assume now that Γ contains at least one hyperbolic isometry. According to
Lemma 5.3, then, L(Γ) ∩ S(∞) = A(Γ) ∩ S(∞). Notice that by definition of heavy
sector, for every complete geodesic G with at least one endpoint in the interior of
S(∞), the half-planes bounded by G are not flat. Therefore, L(Γ) ∩ S(∞) has a
nonempty interior, since otherwise (6) would imply that M is of the first kind. In
particular, S(∞) is not contained in L(Γ). Fix z ∈ S(∞) \ L(Γ). According to the
remark at the beginning of the proof, it is enough to prove that z is an isolated point
of the Γ-orbit of z in X(∞). To this extent, let us show that the Γ-orbit of z in X(∞)
has no density point in the interior of S(∞) \ L(Γ). Assume, by contradiction, that
there exist z1 in the interior of S(∞) \ L(Γ) and a sequence γn of isometries in Γ
such that γn(z) tends to z1 as n goes to infinity. Let c : [0,∞) → X be a ray with
c(+∞) = z. Passing possibly to a subsequence, γn(c(0)) converges to a point z2 of
L(Γ). According to Lemma 5.2, there exist two geodesics G1 and G2, each of them
having one endpoint in z1, such that the region of X bounded by G1 and G2 contains
γn(c(0)) for every n. Thus, there exists a compact subset C of X which intersects
each ray cn(·) = γn(c(·)), n ∈ N (see Figure 2). Therefore, we can fix a sequence tn of
positive real numbers such that for every x ∈ X, cn(tn) has distance from x uniformly
bounded with respect to n. Fix x ∈ X and notice that

tn = d(cn(0), cn(tn)) ≥ d(cn(0), x) − d(x, cn(tn)),
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which implies that tn tends to infinity with n. Thus, c(tn) tends to z as n goes
to infinity. On the other hand, γ−1

n (x) has distance from c(tn) uniformly bounded
with respect to n. It follows that as n goes to infinity, γ−1

n (x) converges to z, which
contradicts the fact that z does not belong to L(Γ).

5.2. Controllability results. Let us begin the section with the following ele-
mentary remark. Consider a complete Riemannian surface M , with no restriction on
the sign of its curvature K. Setting t = 1 and T = 2 in (5), we have that for every
q ∈ N and ε > 0, ef (q) ∈ Int(A2

q(M, ε)). Fix q and let q′ vary in BN (q, 2), which is a
relatively compact neighborhood of q. The continuous dependence of A2

q′(M, ε) on q′

implies that there exists ρ(ε, q) ∈ (0, 1) such that for every q′ ∈ BN (q, 2),

BN (ef (q′), ρ(ε, q)) ⊂ Aq′(M, ε).

Therefore,

q ∈ Int(Aq′(M, ε)) if ef (q′) ∈ B(q, ρ(ε, q)).(17)

Indeed, for every q′ ∈ N such that ef (q′) ∈ B(q, ρ(ε, q)), we have

dN (q, q′) ≤ dN (q, ef (q′)) + dN (q′, ef (q′)) < 2.

Lemma 5.5. Let M be a complete, connected Riemannian surface. If q ∈ N
and ε > 0 exist such that Aq(M, ε) has finite volume, then M has finite area and
Aq(M, ε) = N .

Proof. Fix q ∈ N and ε > 0 such that Aq = Aq(M, ε) has finite volume.
We want to prove that ∂Aq is empty. Let, by contradiction, q̄ ∈ ∂Aq, and define
ρ̄ = ρ(ε, q̄) > 0, where the function ρ satisfies (17). A well-known theorem by Krener
[14] states that any attainable set of a bracket-generating system is contained in the
closure of its interior. Therefore, V = Aq ∩ BN (q̄, ρ̄) has a nonempty interior and,
in particular, positive volume. Since ef is a volume-preserving diffeomorphism of N
(see, for instance, [23]) and Aq has finite volume, then the sets enf (V ), for n ∈ N,
cannot be pairwise disjoint, being enf (V ) ⊂ Aq for every n ∈ N. Therefore, there
exist n1 < n2 such that en1f (V ) ∩ en2f (V ) is nonempty. Equivalently, there exists a
point q′ in e(n2−n1−1)f (V ) whose image by ef lies in V . Due to (17), the contradiction
is reached.

Corollary 5.6. Let M be a complete, connected Riemannian surface with finite
area. Then the Dubins problem on M has the UCC property.

Notice that in the nonpositive curvature case, if M has finite area, then it is of
the first kind (see, for instance, [3]). The converse, clearly, is not true in general.
It is, however, when M is a finitely connected hyperbolic surface (see, for instance,
[21]). In particular, we proved that the Dubins problem on a finitely connected hy-
perbolic surface of the first kind is UCC. Actually, first kind implies UCC in complete
generality, as will be shown in Proposition 5.9.

Let us now prove the second part of Proposition 4.1. Recall that the geodesic flow
on M is said to be topologically transitive if there exists q ∈ N such that the orbit of
q for the geodesic flow is dense in N .

Proposition 5.7. Let M be a complete, connected Riemannian surface such that
the geodesic flow on M is topologically transitive. Then the Dubins problem on M has
the UCC property.

Proof. Fix q0 ∈ N such that

Oq0 = {etf (q0) | t ∈ R}
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Fig. 3. Construction of a teardrop trajectory from etf (q0).

is dense in N . The property formulated in (17) implies that for every ε > 0,

N = Aq0(M, ε) ∪
(
Aq−0

(M, ε)
)−

,

where (Aq−0
(M, ε))− denotes the image of Aq−0

(M, ε) through the involutive diffeo-

morphism q �→ q−. Hence, there exists a decreasing sequence εn, converging to zero
as n tends to infinity, such that

q−0 ∈ Aq0(M, εn) for every n ≥ 1(18)

or

q0 ∈ Aq−0
(M, εn) for every n ≥ 1.(19)

Without loss of generality, we can assume that (18) holds, since

Oq−0
= (Oq0)

−

is dense in N , which means that the roles of q0 and q−0 are symmetric.
Since ε �→ Aq0(M, ε) is monotone with respect to the inclusion, then q0 belongs

to the set

W = {q ∈ N | q− ∈ Aq(M, ε) for every ε > 0}.

The UCC property for Dubins’ problem on M is equivalent to the equality N = W
(see Remark 2.2). It is enough to show that Oq0 ⊂ W , due to (5) and to the density
of Oq0 in N .

This is trivial for what concerns the negative orbit of q0. Fix now ε, t > 0. We have
to show that there exists an ε-admissible trajectory connecting etf (q0) and (etf (q0))

−.
Notice that Aetf (q0)(M, ε) contains a neighborhood V of q′ = e(t+1)f (q0). For every
ε′ > 0, let q(·, ε′) : [0, Tε′ ] → N be an ε′-admissible trajectory such that q(0, ε′) = q0
and q(Tε′ , ε

′) = q−0 . Then, as ε′ goes to zero, we have that Tε′ goes to infinity, while,
for every L > 0, the restriction of q(·, ε′) on [0, L] (respectively, [Tε′−L, Tε′ ]) converges
uniformly to [0, L] � s �→ esf (q0) (respectively, [Tε′ − L, Tε′ ] � s �→ e(s−Tε′ )f (q−0 )).
In particular, for ε′ small enough, q(t + 1, ε′) and q(Tε′ − t − 1, ε′)− belong to V
(see Figure 3). Provided that ε′ ≤ ε, an ε-admissible trajectory steering etf (q0)
to (etf (q0))

− can be obtained by gluing three ε-admissible subtrajectories, the first
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going from etf (q0) to q(t + 1, ε′), the second coinciding with the restriction of q(·, ε′)
on [t + 1, Tε′ − t− 1], and the last connecting q(Tε′ − t− 1, ε′) and (etf (q0))

−.
Recall that the injectivity radius at a point p of a Riemannian manifold M is

defined as the least upper bound ip(M) of all r > 0 such that the map (t, q) �→
exp(t, q), restricted to the punctured disk (0, r) × UpM , is injective. Before stating
sufficient conditions for UCC on nonpositively curved Riemannian surfaces, we prove
the following technical result.

Lemma 5.8. Let M be a Riemannian surface, q = (p, v) ∈ N , and ε,R, δ > 0.
Assume that R < ip(M), that K ≤ 0 on BM (p,R), and that

∫
BM (p,R)

(−K)dA ≤ δ.

There exist R(ε), δ(ε) > 0, depending only on ε, such that if R ≥ R(ε) and δ ≤
δ(ε), then there exists an ε-admissible trajectory going from q to q− and contained in
UBM (p,R).

Proof. Notice that it is enough to prove the existence of δ(ε) and R(ε) in the
case ε = 1. Indeed, given ε > 0, denote by Mε the Riemannian surface (M, εm). Let,
moreover, Kε and dAε be, respectively, the curvature and the surface form on Mε.
Then Kε = εK, dA = εdAε, and, for every p ∈ M and r > 0, BM (p, εr) = BMε(p, r).
Thus, ∫

BM (p,εr)

(−K)dA =

∫
BMε (p,r)

(−Kε)dAε.

The reduction to the case ε = 1 is proved (with εR(ε) = R(1) and δ(ε) = εδ(1)),
since an ε-admissible trajectory in M is a 1-admissible trajectory in Mε and ip(M) =
εip(M

ε).
Let q = (p, v) and R be, respectively, a point of N and a positive constant such

that R < ip(M) and K ≤ 0 on BM (p,R). Denote by Q the square [−R/2, R/2] ×
[−R/2, R/2] ⊂ R2, endowed with the metric φ∗

qm. Recall that Dubins’ problem on Q
is described by (13)–(15).

Let u : [0, T ] → [−1, 1] be a 1-admissible control, and denote by (x(·), y(·), θ(·)) the
coordinates of the corresponding trajectory starting from a given (x0, y0, θ0) ∈ UQ.

Assume that (x(t), y(t), θ(t)) ∈ UQ and ẋ(t) > 0 for every t ∈ (0, T ). We can
define a map τ : [x0, x(T )] → [0, T ] by means of the relation x(τ(ξ)) = ξ. Notice
that τ is continuous, as well as the function η : [x0, x(T )] → R which maps ξ to
η(ξ) = y(τ(ξ)). Let Ω be the open region of Q defined by

Ω = ∪ξ∈(x0,x(T ))I(η(ξ)),

where, for every l ∈ R, I(l) denotes the open interval with 0 and l as boundary points.
Let (X,Y,Θ) be the solution of⎧⎪⎨⎪⎩

Ẋ = cos Θ,

Ẏ = sin Θ,

Θ̇ = u

with initial condition (X(0), Y (0),Θ(0)) = (x0, y0, θ0). For every t ∈ [0, T ],

|θ(t) − Θ(t)| =

∣∣∣∣∫ t

0

cos(θ(s))
By(x(s), y(s))

B(x(s), y(s))
ds

∣∣∣∣ =

∣∣∣∣∣
∫ x(t)

x0

By(ξ, η(ξ))dξ

∣∣∣∣∣
≤

∫ x(t)

x0

dξ

(∫
I(η(ξ))

Byy(ξ, v)dv

)
=

∫ x(t)

x0

∫
I(η(ξ))

−K(ξ, v)B(ξ, v)dv dξ,
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where the last equality follows from (8). Since the surface element dA of Q is equal
to B(ξ, v)dv dξ, we have

|θ(t) − Θ(t)| ≤
∫
Q

(−K)dA.(20)

Integrating the equations satisfied by y(·) and Y (·), we get, for every t ∈ [0, T ],

|y(t) − Y (t)| ≤
∫ t

0

|θ(s) − Θ(s)|ds ≤ t

∫
Q

(−K)dA.(21)

Similarly, we obtain

|x(t) −X(t)| =

∣∣∣∣∫ t

0

(
cos(θ(t))

B(x(t), y(t))
− cos(Θ(t))

)
dt

∣∣∣∣
≤

∣∣∣∣∫ t

0

(cos(θ(t)) − cos(Θ(t))) dt

∣∣∣∣ +

∣∣∣∣∣
∫ x(t)

x0

(1 −B(ξ, η(ξ))) dξ

∣∣∣∣∣
≤ t

∫
Q

(−K)dA +

∫ x(t)

x0

(∫
I(η(ξ))

By(ξ, v)dv

)
dξ

= t

∫
Q

(−K)dA +

∫ x(t)

x0

(∫
I(η(ξ))

(∫
I(v)

(−K(ξ, l)B(ξ, l))dl

)
dv

)
dξ

= t

∫
Q

(−K)dA +

∫ x(t)

x0

(∫
I(η(ξ))

|η(ξ) − l|(−K(ξ, l)B(ξ, l))dl

)
dξ

≤
(
t + (x(t) − x0)

R

2

)∫
Q

(−K)dA

≤ t

(
1 +

R

2

)∫
Q

(−K)dA.(22)

Let

δ =

∫
Q

(−K)dA.(23)

Our aim is to show that under suitable assumptions on R and δ, there exists
a 1-admissible trajectory contained in UQ which steers (0, 0, 0) to (0, 0,−π). As a
model we consider the teardrop in the plane of size 1, whose projection is contained
in a square of center (0, 0) and side length 6.

Let α ∈ (0, π/2) and consider the trajectory (x+(·, α), y+(·, α), θ+(·, α)) in UQ
with initial condition (x+(0, α), y+(0, α), θ+(0, α)) = (0, 0, 0) corresponding to the
control

u+(s, α) =

{
1 if 0 ≤ s ≤ α,

−1 if s > α.

Let t+(α) be the first time t at which θ+(t, α) = −π/2. The fact that a finite
t+(α) with such property exists, for δ and 1/R small enough, depends on the following
considerations. First, notice that the trajectory is defined as long as its projection on
the plane (x, y) stays in Q; thus, for a time Tmax larger than R/2. If ẋ+(s, α) > 0 for
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Fig. 4. The graph of θ+(·, α).

every s ∈ [0, t], then |θ+(t, α) −
∫ t

0
u+(s, α)ds| ≤ δ, as it follows from (20). Assume

that

δ < π/2 − α.(24)

In particular, ẋ+(t, α) > 0 until θ+(·, α) assumes the value −π/2 or up to time Tmax.
If, moreover,

R ≥ 2π + 2α,(25)

then Tmax ≥ R/2 > π/2+2α+ δ and, since
∫ π/2+2α

0
u+(s, α)ds = −π/2, t+(α) is well

defined and satisfies ∣∣∣t+(α) − π

2
− 2α

∣∣∣ ≤ δ.(26)

(See Figure 4.) Let u−(·, α) = −u+(·, α), define (x−(·, α), y−(·, α), θ−(·, α)) as the
trajectory in UQ corresponding to the control u−(·, α) with initial condition

(x−(0, α), y−(0, α), θ−(0, α)) = (0, 0, 0).

As above, if δ and R satisfy (24) and (25), then t−(α), the first time t for which
θ−(t, α) = π/2, is well defined and the estimate∣∣∣t−(α) − π

2
− 2α

∣∣∣ ≤ δ(27)

holds true.
Fix R = 3π and notice that, as a consequence, (25) is always satisfied. Let U be

a neighborhood of (π/3, π/3) compactly contained in (0, π/2) × (0, π/2). Thus there
exists δ0 > 0 such that if δ ≤ δ0, then

F(α0, α1) = (x+(t+(α0), α0), y
+(t+(α0), α0)) − (x−(t−(α1), α1), y

−(t−(α1), α1))

is well defined for every (α0, α1) in U , and

t+(α0), t
−(α1) ≤

3

2
π.

Notice that δ0 depends only on the choice of U . The quantity |F(α0, α1)| measures
how far the two trajectories corresponding to the controls u+(·, α0) and u−(·, α1) are
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from matching their ends (see Figure 5). The lemma is proved if we show that the
minimum of |F| on U is equal to zero.

For every α ∈ (0, π/2), let (X±(·, α), Y ±(·, α),Θ±(·, α)) be the trajectories in
UR2 ∼= R2 × S1 corresponding to the controls u±(·, α) and to the initial conditions
(X±(0, α), Y ±(0, α),Θ±(0, α)) = (0, 0, 0). For every (α0, α1) in U , let

G(α0, α1) =
(
X+

(π
2

+ 2α0, α0

)
, Y +

(π
2

+ 2α0, α0

))
−
(
X−

(π
2

+ 2α1, α1

)
, Y −

(π
2

+ 2α1, α1

))
= 2(sinα0 − sinα1,− cosα0 − cosα1),

which is the flat counterpart of F . Note that, by construction, G(π/3, π/3) = (0, 0).
Moreover,

detDG(π/3, π/3) = det

⎛⎜⎝ cos
π

3
− cos

π

3

sin
π

3
sin

π

3

⎞⎟⎠ =

√
3

2
,

and so if S1 � s �→ (α0(s), α1(s)) ∈ U is a simple closed loop encircling (π/3, π/3)
and being close enough to (π/3, π/3), then s �→ G(α0(s), α1(s)) encircles (0, 0). Fix a
loop (α0(·), α1(·)) of such kind and let

r = min
s∈S1

dR2((0, 0),G(α0(s), α1(s))) > 0.

We stress that r, by construction, is independent of the specific point p and of the
manifold M . In fact, it depends only on the dynamics of the flat Dubins problem.

According to (21) and (22), we get, for every (α0, α1) ∈ U and for j = 0, 1,

|x±(t±(αj), αj) −X±(t±(αj), αj)| ≤ t±(αj)

(
1 +

R

2

)
δ ≤ 3

2
π

(
1 +

3

2
π

)
δ,

|y±(t±(αj), αj) − Y ±(t±(αj), αj)| ≤ t±(αj)δ ≤ 3

2
πδ.

On the other hand, for for every (α0, α1) ∈ U and j = 0, 1,

|X±(t±(αj), αj) −X±(π/2 + 2αj , αj)| ≤ δ,

|Y ±(t±(αj), αj) − Y ±(π/2 + 2αj , αj)| ≤ δ,
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as it follows from (26) and (27). Therefore, by triangle inequality,

|F(α0, α1) − G(α0, α1)| ≤ c0δ

for every (α0, α1) ∈ U , where c0 is a universal positive constant. If

δ ≤ min

{
δ0,

r

c0

}
,(28)

then it follows from standard degree theory considerations that there exists (α0, α1)
in U such that F(α0, α1) = (0, 0). The lemma is proved, with R(1) = 3π and δ(1)
equal to the right-hand side of (28).

From now on, let, for every complete Riemannian surface M , for every p ∈ M
and r > 0,

Φ(p, r) =

∫
BM (p,r)

KdA.

Proposition 5.9. Let M be of the first kind. Then the Dubins problem on M is
UCC.

Proof. Fix q ∈ N and ε > 0. Motivated by Remark 2.2, we are going to prove
the so-called weak controllability from q, i.e., that there exists q̂ ∈ A(q, ε) such that
q̂− ∈ A(q̂, ε).

Let q̃ ∈ UX be such that Π∗(q̃) = q and define q̃1 = ef (q̃). Recall that, due to
(5), q̃1 belongs to the interior of Aq̃(X, ε). Therefore, there exists ρ > 0 such that for
every θ ∈ [−ρ, ρ], the ray [0,∞) � s �→ exp(s, eθg(q̃1)) is projected by Π in the interior
of π(Aq). Denote by S the sector of X spanned by all rays exp(·, eθg(q̃1)), θ ∈ [−ρ, ρ].

Consider the case in which there exists p ∈ S such that Φ(p,R(ε)) ≥ −δ(ε), where
R(·) and δ(·) are the functions whose existence was established by Lemma 5.8. Notice
that ip(X) = ∞. Then, for every q̂ ∈ UpX, we would have q̂− ∈ Aq̂(X, ε). Since
UpX ∩Aq̃(X, ε) �= ∅, then the weak controllability from q would follow. Thus, we can
assume that S is heavy.

Recall that M contains at least one closed geodesic G (see Remark 3.3). The set

Π−1(G) is the union of infinitely many complete geodesics. Let G̃ be one of these lifts

of G. Fix one endpoint of G̃ and denote it by z.
Lemma 5.3 implies that, without loss of generality, z ∈ S(∞) and G̃ is not the

boundary of a flat half-plane. Since G̃ is the axis of a hyperbolic isometry contained
in Γ, it follows from (6) that there exist components of Π−1(G) which are entirely

contained in S. Thus, we can assume that G̃ ⊂ S (see Figure 6).

Choose a parameterization c : R → X of G̃. A standard application of Topogonov
theorem to the triangle (π(q̃1), c(t), c(0)) shows that the angle between G̃ and the
segment from π(q̃1) to c(t) goes to zero as t goes to plus or minus infinity (see [4,
p. 34]).

Fix p ∈ G and let σ > 0 be such that for every q′ ∈ UpM , BN (q′, σ) ⊂
A2

e−f (q′)(M, ε). There exists a ray from π(q̃), contained in S, which intersects G̃

at a point which projects to p, with an angle smaller than σ, and at a distance from
π(q̃) larger than one.

Therefore, there exists an admissible curve for (DM
ε ) which starts from the point-

with-direction q and arrives tangentially on G. Moreover, the same procedure can
be applied in order to arrive tangentially on G with the opposite orientation. Gluing
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q̃

G̃

q̃1

X

ρ

Fig. 6.

pieces of admissible trajectories, one obtains an admissible strategy which connects q
with q−.

In the above proof we additionally gave an argument for the following proposition.
Proposition 5.10. Let M be a connected complete nonpositively curved Rie-

mannian surface and denote by X its universal covering. If for every r > 0 and every
sector S of X, supp∈S Φ(p, r) = 0, then the Dubins problem on M is UCC.

Remark 5.11. If limp→∞, p∈M K(p) = 0, then limp→∞, p∈X Φ(p, r) = 0 for ev-
ery r > 0, and therefore the Dubins problem on M is UCC. This does not come
unexpected. Indeed, it is a special case of [6, Theorem 5.14], where unrestricted
complete controllability was proved for all complete, connected Riemannian surfaces
whose curvature tends to zero at infinity.

Corollary 5.12. If K ≤ 0 and
∫
M

KdA is finite, then the Dubins problem on
M is UCC.

Proof. Assume that the UCC property does not hold. In particular, M is of the
second kind and, according to Proposition 5.10, there exist r > 0 and a sector S in
X such that

sup
p∈S

Φ(p, r) < 0,(29)

where X denotes the universal covering of M . Then S is heavy and Lemma 5.4
guarantees the existence of a half-plane H ⊂ S embedded by Π in M . Finally,∫
M

KdA =
∫
H
KdA = −∞.

Remark 5.13. Let M be a complete, connected unbounded Riemannian surface
and assume that K ≤ 0 outside a compact subset C of M . Then, for every p ∈ M \C,
for every q ∈ UpM , the square [−d(p, C)/2, d(p, C)/2] × [−d(p, C)/2, d(p, C)/2] can
be endowed with the metric φ∗

qm. Therefore, for every r > 0, on a complement of a
compact subset of M , which depends on r, it is possible to define

Φ̃(p, r) =

∫
B̃(p,r)

KdA,

where B̃(p, r) is the ball of center (0, 0) and radius r contained in a sufficiently large
square of the type [−ρ, ρ] × [−ρ, ρ] endowed with φ∗

qm, for some q ∈ UpM . The
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definition makes sense, since the value of
∫
B̃(p,r)

KdA does not depend on the choice

of q. Clearly, if ip(M) ≥ r, then Φ̃(p, r) = Φ(p, r).

If limp→∞ Φ̃(p, r) = 0, then the Dubins problem on M is UCC. Indeed, it is a
general fact that on an unbounded surface M every attainable set is unbounded (see
Lemma 5.5). Then, for every ε > 0 and every q ∈ N , there exists q̂ ∈ Aq(M, ε) such

that Φ̃(π(q̂), R(ε)) is well defined and it is larger than −δ(ε). Applying Lemma 5.8
to (−R(ε), R(ε)) × (−R(ε), R(ε)), endowed with φ∗

q̂m, we obtain the desired weak
controllability from q.

5.3. Noncontrollability results.
Lemma 5.14. Let M be a complete Riemannian surface. If a half-plane H in M

exists, such that supH K < 0, then the Dubins problem on M is not UCC.
Proof. Let a = | supH K| > 0. Fix a system of geodesic coordinates (x, y) on

H such that H is parameterized by {(x, y)| x ∈ R, y ≥ 0}. Let us compare F (x, y),
defined as in (12), with

G(y) =
√
a tanh

(√
ay

)
,

the solution of (16) corresponding to K ≡ −a. If (x, y) ∈ H and F (x, y) = G(y), then
Fy(x, y) −Gy(y) = −K(x, y) − a ≥ 0. Therefore

F (x, y) ≥
√
a tanh

(√
ay

)
.(30)

Let q = (0, 1, π/2) ∈ UH. We claim that for ε small enough, the attainable set
Aq(M, ε) is contained in the interior of UH. Indeed, let ε ∈ (0,

√
a tanh(

√
a)) and

consider any admissible control u : [0,∞) → [−ε, ε]. Denote by (x(·), y(·), θ(·)) its
corresponding trajectory such that (x(0), y(0), θ(0)) = q. Define θ0 ∈ (0, π/2) through
the relation

√
a tanh

(√
a
)
cos θ0 = ε(31)

and let

T = sup{τ > 0 | π − θ0 ≤ θ(τ) ≤ θ0}.

Notice that y(t) ≥ 1 for every t ∈ [0, T ). It follows from (30) that F (x(t), y(t)) ≥√
a tanh(

√
a) for every t ∈ [0, T ). Therefore, if T were finite, then

F (x(T ), y(T )) cos θ0 > ε,

F (x(T ), y(T )) cos(π − θ0) < −ε.

This would not be compatible with (15), the equation satisfied by θ(·), and the defi-
nition of T .

Corollary 5.15. If K is uniformly negative and M is of the second kind, then
the Dubins problem is not UCC. More precisely, if 0 < ε < | supM K|, then (DM

ε ) is
not completely controllable.

Proof. The first part of the statement follows from Lemma 5.4, which ensures
that Π embeds a half-plane of X in M . The quantitative assertion is easily derived
from the proof proposed for Lemma 5.14, where the point q1 = (0, 1, π/2) can be
replaced by (0, y, π/2), with y arbitrarily large.

Lemma 5.16. Let M be a complete Riemannian surface. Let H ⊂ M be a half-
plane such that K is nonpositive and bounded on H. Assume that there exists r > 0
such that supp∈H Φ(p, r) < 0. Then the Dubins problem on M is not UCC.
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Proof. Parameterize H over {(x, y)| x ∈ R, y ≥ 0} with a system of geodesic
coordinates. By contradiction, let us assume that the Dubins problem on M is UCC.
Therefore, for every ε > 0, there exists a curve leaving from (0, 0) in the direction
(0, 0, π/2) and coming back to ∂H in finite time, having geodesic curvature bounded
by ε. In particular, there exists an ε-admissible trajectory q = (x, y, θ) : [0, T ] → N
such that q(0) = (0, 0, π/2) and q(T ) = (x(T ), y(T ), kπ), with x(T ) ∈ R, y(T ) > 0,
and k ∈ {0, 1}.

Without loss of generality, θ(t) ∈ (0, π) for every t ∈ [0, T ). Hence, t �→ y(t) is
nonnegative and strictly increasing on [0, T ]. Notice that T tends to infinity as ε goes
to zero, since otherwise the Ascoli theorem would immediately lead to a contradiction.

The following claim will be repeatedly applied.
Claim 5.17. For every ρ, τ > 0, there exists ε(ρ, τ) > 0 with the following

property: let γ : [0, τ ] → H be a curve with geodesic curvature bounded by ε(ρ, τ),
parameterized by arc-length and such that φγ̇(0)([0, τ ] × [−ρ, ρ]) is contained in H;
then, for every t ∈ [0, τ ], dist(γ(t), exp(t, γ̇(0))) < ρ.

The claim can be obtained by a standard perturbation argument, as ε approaches
zero, applied to the system (13)–(15). The use of geodesic coordinates is justified
by the hypothesis that φγ̇(0)([0, τ ] × [−ρ, ρ]) ⊂ H. Notice that ε can be chosen only
depending on τ and ρ, because K is uniformly bounded from below.

Up to a global rescaling of M , as performed in the proof of Lemma 5.8, we can
assume that r = 1/4. Assume from now on that ε < ε(1/4, 1) and T > 2.

Let T1 be the largest number between T −2 and the maximal time t ∈ [0, T ) such
that θ(t) = π/2. Let, moreover,

Ω = ∪t∈(T1,T ){x(t)} × (0, y(t)),

and D be the disk of center p = exp(1/2,Rq(T − 1)) and radius 1/4. Assume that
θ(T ) = 0 (symmetric arguments hold when θ(T ) = π). The Gauss–Bonnet theorem,
applied to Ω, implies that

θ(T1) +

∫
Ω

(−K)dA = −
∫ T

T1

u(t)dt.

Since both θ(T1) and
∫
Ω
(−K)dA are nonnegative, then

max

{
θ(T1),

∫
Ω

(−K)dA

}
≤

∣∣∣∣∣
∫ T

T1

u(t)dt

∣∣∣∣∣ ≤ 2ε.(32)

A contradiction is reached if we show that for ε small enough, D is contained in Ω.
It follows from (32) and the definition of T1 that for ε < π/4, T1 = T − 2. Claim 5.17
implies that y(1) ≥ 3/4. Thus, the y-component of p is larger than y(T − 1) − 1/2 >
y(1) − 1/2 ≥ 1/4. Therefore, D does not intersect the line {(x, 0)| x ∈ R}. If D
contained a point of the type π(q(τ)), for τ ∈ [T − 2, T ], then the distance from p to
the geodesic s �→ exp(s, q(T − 1)) would be smaller than

d(p, π(q(τ))) + d(π(q(τ)), exp(τ − T + 1, q(T − 1))) <
1

2
.

(See Figure 7.) Therefore, drawing the minimizing segment from p to the considered
geodesic, we would construct a triangle (having p and π(q(T−1)) as two of its vertices)
with two orthogonal angles. This is impossible, due to the Gauss–Bonnet theorem.
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π(q(τ))

D

exp(τ−T +1, q(T −1))

p

q(T−1)

Fig. 7.

Assume now that y ∈ [0, y(T )] exists such that (x(T ), y) belongs to D. Then the
distance from exp(−1, q(T )) to the geodesic s �→ (x(T ), s) is strictly smaller than one.
Again, this leads to a contradiction.

The same argument shows that D does not intersect Σ = {exp(s,Rq(T − 2))| s ∈
J}, where J is the maximal interval containing zero such that exp(s,Rq(T − 2)) ∈ H
for every s ∈ J . Since θ(T − 2) is contained in (0, π/2), and Σ cannot intersect
{(x(T − 2, y)| y ≥ 0} twice, then the stated inclusion of D in Ω follows.

From Lemma 5.4, one easily obtains the next corollary.
Corollary 5.18. Let M be a complete, connected Riemannian surface. Assume

that K is nonpositive and bounded on M and that M is of the second kind. Let X be
the universal covering of M . Assume that supp∈S Φ(p, r) < 0 for some sector S of X
and some r > 0. Then the Dubins problem on M is not UCC.

5.4. Riemannian surfaces with nonpositive curvature outside a com-
pact set. In this section, let us focus on Riemannian surfaces with sign-varying
curvature, allowing K to be positive on a bounded set. Recall that a subset U of
a finitely connected complete Riemannian surface M is called a Riemannian half-
cylinder if it is diffeomorphic to S1 × [0,∞). With a Riemannian half-cylinder U , we
can associate its curvature at infinity K∞(U) = −

∫
U
KdA− k(∂U), where k(∂U) de-

notes the integral of the geodesic curvature of ∂U . The Cohn-Vossen theorem [8, 27]
guarantees that K∞(U) ≥ 0. When K∞(U) is strictly positive, U is called a strict
Riemannian half-cylinder. Notice that if U ′ is a Riemannian half-cylinder homotopic
to U , then K∞(U) = K∞(U ′). In particular, U ′ is strict if and only if U is.

We can prove the following.
Proposition 5.19. Let M be a finitely connected complete Riemannian surface

such that K is bounded and nonpositive outside a compact set. Assume, moreover,
that every Riemannian half-cylinder in M is strict. Then the Dubins problem on
M is UCC if and only if, for every half-plane H contained in M and every r > 0,
supp∈H Φ(p, r) = 0. In particular, the Dubins problem on M is (i) UCC if

∫
M

KdA >
−∞; (ii) not UCC if there exists a strict Riemannian half-cylinder U ⊂ M such that
supp∈U Φ(p, r) < 0 for some r > 0.

We do not provide a complete argument, since Proposition 5.19 basically follows
from what precedes and from the results of Shioya [27]. Let us just sketch the main
points of the proof.

Shioya proved that if U is a strict Riemannian half-cylinder, then, through every
point of U far enough from ∂U , passes a complete geodesic c : R → M , contained in
U and which has a finite number n(U) of self-intersections (only depending on U).
In addition, n(U) = 0 if

∫
U
KdA = −∞, which means that U contains a half-plane

of M . When n(U) ≥ 1, the self-intersections of c are regular in the sense defined in
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Chapter 1 of [27]. Such notion of regularity guarantees that up to reorientation of c,
the restriction of φċ(0) to R × [0,+∞) takes values in U and each of its preimages is
finite, with cardinality bounded by n(U) + 1. Therefore, φċ(0)(R× [0,+∞)) lifts to a
nonpositively curved half-plane.

If there exist r > 0 and a half-plane H contained in M such that supp∈H Φ(p, r) <
0, then the Dubins problem on M is not UCC (Proposition 5.16).

Fix q ∈ N and ε > 0 and assume that, for every half-plane H contained in M and
every r > 0, supp∈H Φ(p, r) = 0. Recall that Aq(M, ε) is unbounded. If

∫
U
KdA >

−∞ for some Riemannian half-cylinder U , then, for every r > 0, limp∈U,p→∞ Φ̃(p, r) =

0. (For the definition of Φ̃, see Remark 5.13.) If Aq(M, ε) contains a point q̂ such that

Φ̃(π(q̂), R(ε)) = 0, then the weak controllability from q is proved. Otherwise, there
must exist a Riemannian half-cylinder U such that

∫
U
KdA = −∞ and π(Aq(M, ε))∩

U is unbounded. Thus, there exist a parameterized complete geodesic c(·) of the type
described above and q̂ ∈ π−1(c(0)) ∩ A(q, ε) pointing inside the half-plane φċ(0)(R ×
[0,+∞)). From the usual reasoning based on (5), φċ(0)(R × [0,+∞)) ∩ π(Aq(M, ε))
contains a sector S. If limp∈S, p→∞ Φ(p,R(ε)) = 0, then the weak controllability
from q follows. Otherwise,

∫
S
KdA = −∞. From a visibility property analogous to

Lemma 5.2, it follows that S contains a half-plane of M . The weak controllability
from q follows.

Remark 5.20. The argument above shows that when supp∈H Φ(p, r) = 0 for every
half-plane H contained in M and every r > 0, UCC holds even in the case in which
K is unbounded. Analogously, Lemma 5.14 implies that, if K is uniformly negative
(possibly unbounded) on a strict Riemannian half-cylinder, then the Dubins problem
on M is not UCC.

6. Remarks on optimal control. Let M be any complete oriented Riemannian
surface, with no assumption on the sign of K. Denote by 〈λ, ·〉 the action of a covector
λ ∈ T ∗

q N on TqN .
Fix q1 = (p1, v1), q2 = (p2, v2) ∈ N and assume that q2 ∈ Aq1(M, ε). Then,

there exists an ε-admissible curve q : [0, T ] → N such that q(0) = q1, q(T ) = q2, and
for which T is minimal. According to the Pontryagin maximum principle, the time-
optimality of q(·) implies that there exist an absolutely continuous curve λ : [0, T ] →
T ∗N and a constant c ≥ 0 such that for almost every t ∈ [0, T ], λ(t) ∈ T ∗

q(t)N \ {0}
and the function

Hw(λ) = 〈λ, f(q)〉 + w 〈λ, g(q)〉 , λ ∈ T �
q N, q ∈ N, w ∈ [−ε, ε],

verifies

Hu(t)(λ(t)) = max
w∈[−ε,ε]

Hw(λ(t)) = 〈λ, f(q)〉 + ε|〈λ(t), g(q(t))〉| ≡ c,(33)

λ̇(t) =
−−−→
Hu(t)(λ(t)),(34)

where, for every w ∈ [−ε, ε],
−→
Hw denotes the Hamiltonian vector field associated with

Hw : T ∗N → R.
A simple computation shows that

[f ± g, [f, g]] = −K g ± f.

In particular, (f, g, [f, g]), (g, [f, g], [f + g, [f, g]]), and (g, [f, g], [f − g, [f, g]]) are
three moving frames in N . Therefore, the results by Schättler [24, 25] (see also [2])
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imply that q(·) is piecewise smooth. A subinterval I of [0, T ] is called a bang arc if, up
to a modification on a set of measure zero, u is constant and equal to ε or −ε along
I, while it is called a singular arc if u|I is smooth (again, up to a modification on a
set of measure zero) but |u| is not constantly equal to ε on I. Schättler’s results give
restrictions on the structure of time-optimal controls, stating that for every q ∈ N ,
there exists a neighborhood U of q such that every time-optimal trajectory of (Dε)
contained in U is the concatenation of three bang arcs or of a bang, a singular, and
a bang arc (where some arc possibly has zero length).

In order to show that every time-optimal trajectory follows locally Dubins’ pat-
tern, let us prove that every singular arc corresponds to a geodesic of M , i.e., that
u = 0 almost everywhere along singular arcs.

The covector lift λ(·) of a time-optimal trajectory q : [0, t] → N can be represented
through the three real-valued functions:

ϕ1(t) = 〈λ(t), f(q(t))〉 ,
ϕ2(t) = 〈λ(t), g(q(t))〉 ,
ϕ3(t) = 〈λ(t), [f, g](q(t))〉 .

Note that, according to (33),

u(t) = sign(ϕ2(t)) ε(35)

for almost every t such that ϕ2(t) �= 0 and that

|ϕ1(t)| + |ϕ2(t)| + |ϕ3(t)| �= 0(36)

for every t, since λ(t) �= 0 and f, g, and [f, g] are everywhere linearly independent.
Equation (34) implies that ϕ1, ϕ2, ϕ3 satisfy the system of differential equations

ϕ̇1(t) = −u(t)ϕ3(t),(37)

ϕ̇2(t) = ϕ3(t),(38)

ϕ̇3(t) = u(t)ϕ1(t) −K(q(t))ϕ2(t).(39)

Let I ⊂ [0, T ] be a singular arc. Modify, if necessary, u on a set of measure zero
in order to render it smooth on I. By definition of singular arc, ϕ2|I′ ≡ 0 on some
subinterval I ′ of I. From (38), we have that ϕ3 = 0 on I ′. Plugging the information
in (37) and (39), we get that ϕ1 is constant and that ϕ1(t)u(t) = 0 for every t ∈ I ′.
Due to (36), ϕ1 �= 0, and thus u = 0 along I ′. Since u is smooth on I, it follows that
ϕ2 = u = 0 on I.

We proved that every singular arc of a time-optimal trajectory of (Dε) (indepen-
dently of the sign of K) corresponds to a geodesic segment and that time-optimal
trajectories follow locally Dubins’ pattern. The following proposition provides further
restrictions on the structure of time-optimal trajectories under the hypothesis that K
is uniformly negative.

Proposition 6.1. If K is uniformly negative and ε is small enough, then every
time-optimal trajectory q : [0, T ] → N of (Dε) is the concatenation of a bang, a
singular, and a bang arc (some of which possibly having zero length). In particular,
q(·) follows Dubins’ pattern.

Proof. Assume that

K ≤ −ε2.(40)
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From (33) and (35), we get that uϕ1 = sign(ϕ2) ε c − ε2ϕ2 and so, for almost every
t ∈ [0, T ],

ϕ̈2(t) = −(K(q(t)) + ε2)ϕ2(t) + sign(ϕ2(t)) ε c.(41)

Therefore, ϕ̈2ϕ2 ≥ 0 almost everywhere. If τ is such that ϕ2(τ) = 0 and ϕ2 > 0
on a left neighborhood of τ , then ϕ2 > 0 on (τ, T ]. Symmetric arguments show that
the set {t ∈ [0, T ] | ϕ2(t) �= 0} has at most two connected components and that q(·)
is the concatenation of a bang, a singular, and a bang arc.
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