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Linear Systems Subject to Input Saturation and
Time Delay: Global Asymptotic Stabilization

Karim Yakoubi Yacine Chitour

Abstract— This paper deals with the problem of global asymp-
totic stabilization of linear systems by bounded static feedbacks
subject to time delay. Under standard necessary conditions, we
provide two constructions of controllers of nested saturation type
which extends to the general case partial results of [2], [3], for
arbitrary small bound on the control and large (constant) delay.
To validate the approach, a third-order integrator and oscillator
with multiplicity two example is presented.

Index Terms— saturation, bounded controls, Lyapunov func-
tions, time-delay systems, uncertainty, stabilization.

I. INTRODUCTION

In this paper, we address the global asymptotic stabilization
issue for linear systems subject to input saturation, i.e. of the
type,

(S) : ẋ(t) = Ax(t) + Bu(t − h), (1)

where (i) A ∈ R
n×n and B ∈ R

n×m, with n the dimension
of the system and m the number of inputs; (ii) the control u
verifies ‖u‖ ≤ r, where r ∈ (0, 1] only depends on (S); (iii)
there is an arbitrary constant delay h ≥ 0 in the input.

We use (S)r
h, r ∈ (0, 1], h > 0, to denote the control system

(S) with input bound r and input time delay h. We omit the
index r if it is equal to one and, similarly for the index h if
it is equal to zero.

Our problem is that of globally asymptotically stabilizing
(S)r

h to the origin by mean of a static feedback. We then seek
u as

u(t − h) = −rσ (F r
h (x(t − h))) , (2)

where the non-linearity σ is of “saturation” type (definitions
are given in section (2)) and the function F r

h : R
n −→ R

m is
at least locally Lipschitz (to obtain at least locally solutions).

In the zero-delay case, the stabilization of linear systems
with saturating actuators has been widely investigated in the
last years: see for example, [10], [11] and [4] and references
herein where the authors globally asymptotically stabilized the
system (S) by static feedback with nested saturation ([10],
[11]) and by maximal ellipsoid saturation ([4]). It is well-
known that such a global asymptotic stabilization is possible
if and only if (S) satisfies (C) : all eigenvalues of A are in
the closed left-half plane and (A, B) is stabilizable.

It is trivial to see that condition (C) is also necessary in the
case of non zero delay and it seems natural to expect condition
(C) to be also sufficient. In that regard, partial results have
been recently obtained by Mazenc, Mondié and Niculescu.
More precisely, they extended in [2] the nested saturation
construction when A is nilpotent and proved global asymptotic
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stabilization (GAS) of (S)r
h, for any input rate r ∈ (0, 1] and

arbitrary delay h > 0. We refer to such a property as delay-
independent GAS. In the case of a two-dimensional oscillator,
they showed a similar result in [3]. Our main results is to
complete that line of work, namely to show that condition
(C) is sufficient for delay-independent GAS.

We will actually provide a solution for the delay-
independent GAS problem, which directly uses the nested
saturated feedbacks of [10] and can be seen as a generalization
of [2], [3]. However, the argument is an extension to the
non-zero delay case of that of [10]. Recall that, at the heart
of the argument of [10], lies a result on finite-gain L∞-
stability for one and two dimensional neutrally stable linear
systems subject to input saturation. Such an argument was first
introduced in [1], where was addressed the issue of finite-gain
Lp-stability of neutrally stable linear systems subject to input
saturation. In a related work ([13]), we extend to the non zero
delay case the results of [1]. The goal consists of determining
a suitable ”storage function” V and establishing for V an
appropriate dissipation inequality of the form dV (xu(t))

dt ≤
−‖xu(t)‖2 + λp‖u(t)‖2, for some constant λp > 0 possibly
depending on the input bound r and the delay h. Recall that
the “storage function” in ([1]), denoted here by V0, is non-
smooth. In the present situation, the “storage function” V is
the sum of a term similar to V0 and a Lyapunov-Krasovskii
functional (as used in [2], [3], in order to take care of the
delay). One has then to pay attention to the several constants
involved in the computations in order to get delay-independent
GAS.

Organization of the paper. In Section 2, we provide the main
notations used in the paper and state the delay-independent
stabilization results. In Section 3, the solution based on
feedbacks of saturation type is described together. A third-
order integrator and oscillator with multiplicity two example
is proposed in section 4.

II. NOTATIONS

For x ∈ R
n, ‖x‖ and xT denote respectively the Euclidean

norm of x and the transpose of x. Similarly, for any n ×
m matrix K, KT and ‖K‖ denote respectively the transpose
of K and the induced 2−norm of K. Moreover, λ−(K) and
λ+(K) denote the minimal and the maximal singular values
of the matrix K. If f(.) and g(.) are two real-valued functions,
we mean by f(τ) �0 g(τ), that there are positive constants
ξ1 and ξ2, independent of τ, with ξ1 ≤ ξ2 such that for τ is
in some neighborhood of 0,

ξ1g(τ) ≤ f(τ) ≤ ξ2g(τ).
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For h > 0, let xt(θ) := x(t + θ), −h ≤ θ ≤
0. Initial conditions for time-delay systems are elements
of Ch := C([−h, 0], Rn), the Banach space of con-
tinuous R

n-valued functions defined on [−h, 0], equipped
with the supremum norm, ‖xt‖h = sup−h≤θ≤0 ‖x(t +
θ)‖. Then, for xt ∈ L∞([−h,∞), Rn), we have
‖xt‖L∞ = ess sup−h≤s<∞ ‖x(t + s)‖.

Definition 1:. (Saturation function) We call σ : R −→ R a
saturation function (“S-function” for short) if there exist two
real numbers 0 < a ≤ Kσ such that for all t, t′ ∈ R,

(i) |σ(t) − σ(t′)| ≤ Kσ inf(1, |t − t′|),
(ii) |σ(t) − at| ≤ Kσtσ(t),

Hypothesis (ii) implies that σ is differentiable at t = 0 and
σ′(0) = a. A constant Kσ defined as above is called an
S-bound for σ. When the context is clear, we simply use
K to denote an S-bound. Note that (i) is equivalent to the
fact that σ is bounded and globally Lipschitz, while (ii) is
equivalent to tσ(t) > 0 for t 6= 0, lim inf |t|→∞ |σ(t)| > 0 and
lim supt→0(σ(t) − t)/t2 is finite.

For an m−tuple k = (k1, . . . , km) of nonnegative
integers, define |k| = k1 + . . . + km. We say
that σ is an R

|k|− valued S-function if σ =
(σ1, . . . , σ|k|) = (σ1

1 , . . . , σ1
k1

, . . . , σm
1 , . . . , σm

km
)

=
(

(σ1
i )1≤i≤k1

, (σ2
i )1≤i≤k2

, . . . , (σm
i )1≤i≤km

)

, where,
for 1 ≤ j ≤ m, (σj

i )1≤i≤kj
is an R

kj -valued S-
function (i.e : (σj

i )1≤i≤kj
= (σj

1, . . . , σ
j
kj

) where

each component σj
i , 1 ≤ i ≤ kj is an S-function

and (σj
i )1≤i≤kj

(x) =
(

σj
1(x1), . . . , σ

j
kj

(xkj
)
)

, for

x = (x1, . . . , xkj
)T ∈ R

kj .)
Definition 2:. Consider the functional differential equation

of retarded type

(Σ)h :







ẋ(t) = f(xt), t ≥ t0;

xt0(θ) = Ψ(θ), ∀ θ ∈ [−h, 0].

It is assumed that Ψ ∈ Ch and the map f is continuous and
Lipschitz in Ψ and f(0) = 0. We say that the trivial solution
x(t) ≡ 0 of (Σ)h is globally asymptotically stable (GAS for
short) if the following conditions holds: (i) for every ε > 0,
there exists a δ > 0 such that, for any Ψ ∈ Ch, with ||Ψ||h ≤
δ, there exists t0 ≥ 0, such that the solution xΨ of (Σ)h

satisfies ||(xΨ)t||h ≤ ε, for all t ≥ t0; (ii) for all Ψ ∈ Ch, the
trajectory of (Σ)h with initial condition Ψ converges to zero
as t → ∞.

III. FEEDBACKS OF NESTED SATURATION TYPE

A. Statements of the results

We next determine two explicit expressions of globally
asymptotically stabilizing feedbacks for general time-delay
linear systems, both of nested saturation type, according to
the results of the stabilization of delay free-system. The
above problem was first studied for delay-free continuous-
time systems. It was shown in [10] that, under condition
(C), there exists explicit expressions of globally asymptotically
stabilizing feedbacks. Then, it is natural to investigate whether
this technique can be extended to the case where there is a

delay in the input. In this section, we will take for simplicity
the initial state to be zero. We start by giving some definitions,
first introduced in [10] and adapted here to the delay case.

Definition 3:. (cf. [10]) Given an n−dimensional system
(Σ)h : ẋ(t) = f(x(t − h)), we say that (Σ)h has the CICS
(converging-input converging-state) property if, whenever e :
[0.∞) → R

n is any bounded measurable function which
converges to zero as t → ∞, every solution t → x(t) of
ẋ(t) = f(x(t− h)) + e(t) converges to zero as t → ∞.(Such
a concept is needed in order to state Theorem 1 and an
intermediary result (Lemma 2 given below), which is useful
for the induction step in the proof of Theorem 1).

For a system ẋ(t) = f(x(t), u(t − h)), x ∈ R
n, u ∈ R

m,
we say that a feedback u(t− h) := ū(x(t − h)) is stabilizing
if 0 is a GAS equilibrium of the closed-loop system ẋ(t) =
f (x(t), ū(x(t − h))) . If, in addition, this closed-loop system
has the CICS property then we will say that ū is CICS-
stabilizing.

Definition 4:. (cf. [10]) For a square matrix A, let N(A)
be the sum s(A) + z(A), where s(A) is the number of
conjugate pairs of nonzero purely imaginary eigenvalues of
A (counting multiplicity) and z(A) is the multiplicity of zero
as an eigenvalue of A.
In the next theorem, we summarize our results.

Theorem 1:. Let (S)r
h be a linear system ẋ(t) =

Ax(t) + Bu(t − h) with state space R
n and input space

R
m. Assume that (S)r

h is stabilizable and A has no unstable
eigenvalues. Let N = N(A). Let σ = (σ1, . . . , σN ) be an
arbitrary sequence of S-functions. Then, for all h ≥ 0, there
exist a number r∗(h) ∈ (0, 1], an m−tuple k = (k1, . . . , km)
of non negative integers such that |k| = N and for each
1 ≤ j ≤ m, linear functions f j

h,i, g
j
h,i : R

n −→ R, 1 ≤ i ≤ kj ,
such that for all r ∈ (0, r∗(h)], there are CICS-stabilizing
feedbacks (∗) uj(t − h) = −rσj

kj
{f j

h,kj
(x(t − h))

+αj
kj−1σ

j
kj−1[f

j
h,kj−1(x(t − h))+ . . . + αj

1σ
j
1(f

j
h,1(x(t −

h))) . . .]} where αj
i ≥ 0, for all i ∈ [1, kj − 1],

and (∗∗) uj(t − h) = −r[βj
kj

σj
kj

(

gj
h,kj

(x(t − h))
)

+

βj
kj−1σ

j
kj−1

(

gj
h,kj−1(x(t − h))

)

+ . . . +

βj
1σ

j
1

(

gj
h,1(x(t − h))

)

], where βj
1, . . . , β

j
kj

are nonnegative

constants such that βj
1 + . . . + βj

kj
≤ 1.

B. Proof of Theorem 1

The proof of Theorem 1 is based on two lemmas, exactly
as in the argument of [10]. More precisely, Lemma 1 below is
Lemma 3.1 of [10] and Lemma 2 below, which is actually
the main technical point, is the nonzero delay version of
Lemma 3.2 of [10]. In order to facilitate the analysis of the
stabilizability properties by bounded feedback of (S)r

h, a linear
transformation is carried out.

Lemma 1:. ( cf. [10]) Let (S1)
r
h : ẋ(t) = Ax(t)+ bu(t−h)

be an n-dimensional linear single-input system. Suppose that
(A, b) is a controllable pair and all eigenvalues of A are
critical. Then, (i) if 0 is an eigenvalue of A, then there exists
a linear coordinate transformation y = Tx which transforms
(S1)

r
h into ˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1, ẏn(t) =
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u(t−h), where (A1, b1) is controllable, yn is a scalar variable,
and ȳ = (y1, . . . , yn−1)

T ; (ii) if A has an eigenvalue of the
form iω, with ω > 0, then there is a linear change of coordi-
nates Tx = (y1, . . . , yn)T = (ȳT , yn−1, yn)T of R

n that puts
(S1)

r
h in the form: ˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1,

ẏn−1(t) = ωyn(t), ẏn(t) = −ωyn−1(t) + u(t − h), with
(A1, b1) being controllable and yn−1, yn scalar variables.

Lemma 2:. Let ρ > 0. Then, there exist a constant v0 >
0 and, for every h ≥ 0 there is an r∗(h) ∈ (0, 1] and an
2 × 1 matrix Fh such that, for any two bounded measurable
functions α(t), β(t) converging both to zero as t −→ ∞ and
for all r ∈ (0, r∗(h)], if x = (x1, x2)

T : R≥0 → R
2 is any

solution of the control system (S2)
r
h given by























ẋ1(t) = ρx2(t) + rα(t),

ẋ2(t) = −ρx1(t) − rσ
(

F T
h x(t − h) + u(t − h)

)

+rv(t − h) + rβ(t),

(3)

x0 = ((x1)0, (x2)0)
T

= 0̄ on [−h, 0], with 0̄ the zero
function in Ch, and u, v ∈ L∞([−h,∞), R) with ‖v‖L∞ ≤
v0, it holds (i) ∃ M∞ > 0 independent of r, such that
lim supt−→∞ ‖x(t)‖ ≤ M∞(‖u‖L∞ + ‖v‖L∞ + ‖f‖L∞).
where f = (α, β)T ; (ii) For u = v = f = 0, (0, 0) is GAS.

Remark 1:. We will in fact actually obtain the following
stronger ISS-like property (see [8] and references there):

lim sup
t−→∞

‖x(t)‖ ≤ θ∞(‖Ψ‖h)+M∞(‖u‖L∞+‖v‖L∞+‖f‖L∞),

where Ψh is the initial condition for x and θ∞ is a class-K
function (i.e. θ∞ : R+ → R+ is continuous, strictly increasing
and satisfies θ∞(0) = 0.)

Proof of lemma 2. Let h > 0. Consider the feedback law

Fh = e−ρA0hb, where A0 =

(

0 1
−1 0

)

and b =

(

0
1

)

,

then ‖Fh‖ = 1 and the systems (S2)
r
h becomes ẋ(t) =

ρA0x(t) −rb
(

σ(bT eρA0hx(t − h) + u(t − h)) + v(t − h)
)

+
rf(t). Set Aρ,r := ρA0 − rbbT . Let y be the solution of

ẏ(t) = Aρ,ry(t) − rv(t − h)b + rf(t), (4)

y(0) = 0̄ on [−h, 0], with v ∈ L∞, and ‖v‖L∞ ≤ v0, where v0

is a positive constant to be determined later. (By an obvious
abuse of notation, L∞ denotes here L∞([−h,∞), Rn).)
Since Aρ,r is Hurwitz, system (4 ) is L∞ stable. If γ∞

denotes its L∞−gain, then ‖y‖∞ ≤ γ∞(‖v‖L∞ + ‖f‖L∞).
Let x be the solution of (S2)

r
h corresponding to u, v

and let z = x − y. Then z satisfies ż(t) = ρA0z(t)
−rb

[

σ
(

F T
h z(t − h) + F T

h y(t − h) + u(t − h)
)

− bT y(t)
]

,
z(0) = 0̄ on [−h, 0]. Let ũ(t − h) = F T

h y(t − h) + u(t − h)
and ṽ(t) = bT y(t). Let v0 verify γ∞(v0 + ‖f‖L∞) ≤ Γ,
with Γ = lim|ξ|→∞ inf σ(ξ) > 0, we get ‖ṽ‖L∞ ≤ ‖y‖L∞ ≤
γ∞(‖v‖L∞ + ‖f‖L∞) ≤ Γ. The dynamics of z becomes
ż(t) = ρA0z(t)− rb

[

σ
(

F T
h z(t − h) + ũ(t − h)

)

− ṽ(t)
]

,
z(0) = 0̄ on [−h, 0]. Then, z(t) = eρA0hz(t − h)−

r

∫ t

t−h

eρA0(t−ξ)b
[

σ
(

F T
h z(ξ − h) + ũ(ξ − h)

)

− ṽ(ξ)
]

dξ.

Then, F T
h z(t − h) +ũ(t − h) = bT z(t) + d̃(t), where

g(v) = bT eρA0vb and d̃(t) = ũ(t − h)+ r
∫ t

t−h g(t −

ξ)
[

σ
(

F T
h z(ξ − h) + ũ(ξ − h)

)

− ṽ(ξ)
]

dξ. It follows that

ż(t) = ρA0z(t)− rb
[

σ
(

bT z(t) + d̃(t)
)

− ṽ(t)
]

, z(0) = 0̄

on [−h, 0].
Let z̃(t) = bT z(t) + d̃(t). We consider the Lyapunov

function V2 used in [1] for p = 2 (or in [10]) and given
by

V2(z) := λρ,rV0(z) + V1(z), (5)

where λρ,r > 0 will be chosen later and V0(z) := ‖z‖3

3 ,
V1(z) := zT Pρ,rz, with Pρ,r , the positive definite symmetric
matrix, satisfying Pρ,rAρ,r + AT

ρ,rPρ,r = −2I , where the
Hurwitz matrix Aρ,r defined by ρA0 − rbbT . Computations
yield λ±(Pρ,r) = (1 −±

√

1 − 4/(4/r + r/ρ2))−1, with

Pρ,r =

(

2/r + r/ρ2 1/ρ
1/ρ 2/r

)

. (6)

Moreover, one has λ±(Pρ,r) �0 1/r. From [1],

V̇0(z(t)) = −r‖z‖zT b
(

σ(bT z + d̃) − ṽ
)

= −r‖z‖z̃T

(σ(z̃) − ṽ) +r‖z‖d̃T (σ(z̃) − ṽ) ≤ −r‖z‖z̃T (σ(z̃) − ṽ)
+r‖z‖‖d̃‖ (K + Γ). As in [1], Eq.(18) p.1199, we separate
each of the cases ‖z̃‖ ≤ M1 and ‖z̃‖ > M1 where, by defi-
nition of Γ, there is some M1 ≥ 1 so that inf |ξ|≥M1

|σ(ξ)| ≥
1
2Γ. We get V̇0(z(t)) ≤ −r‖z(t)‖z̃T (t)σ(z̃(t))+

r‖z(t)‖
(

(K + Γ)‖d̃(t)‖ + M1‖ṽ(t)‖
)

. Moreover V̇1(z(t)) =

2zT (t)Pρ,r ż(t) = zT (t)
(

Pρ,rAρ,r + AT
ρ,rPρ,r

)

z(t)+

2rzT (t)Pρ,rb[z̃(t)σ(z̃(t)) − z̃(t) + d̃(t) + ṽ(t)] ≤ −‖z(t)‖2

+2rK‖Pρ,rb‖‖z(t)‖(z̃T (t)σ(z̃(t))+ 1
K (‖d̃(t)‖+‖ṽ(t)‖)). We

choose λρ,r as λρ,r2K‖Pρ,rb‖ = 2K/r
√

4 + r/ρ2 �0 1/r.
We deduce

V̇2 ≤ −‖z(t)‖2 + κρ,r‖z(t)‖
(

‖d̃(t)‖ + ‖ṽ(t)‖
)

, (7)

where κρ,r = rλρ,r max {1 + K + Γ, 1 + M1} �0 1. Let

Hµ(t) = µ

∫ t

t−2h

ds

∫ t

s

‖z(l)‖2dl = µ

∫ 2h

0

ds

∫ t

t−s

‖z(l)‖2dl,

with µ > 0 chosen later. Its derivative satisfies
Ḣµ(t) = 2hµ‖z(t)‖2 −µ

∫ t

t−2h
‖z(s)‖2ds. Finally, consider

the following function V (z(t), t) := V2(z(t)) + Hµ(t). Then
V̇ (z(t)) ≤ −(1− 2hµ)‖z(t)‖2 + κρ,r‖z(t)‖(‖d̃(t)‖+ ‖ṽ(t)‖)
µ

∫ t

t−2h ‖z(s)‖2ds. From the definition of d̃(t) and Cauchy-
Schwartz inequality, ‖d̃(t)‖ + ‖ṽ(t)‖ ≤ ‖ũ(t − h)‖ +
‖ṽ(t)‖ + r max{1, K}

∫ t

t−h
(‖ũ(ξ − h)‖ + ‖ṽ(ξ)‖) dξ

+(2h)
1

2

(

∫ t

t−2h
‖z(s)‖2ds

)1/2

. In addition, V̇ (z(t)) ≤
−(1 − 2hµ)‖z(t)‖2+ κρ,r‖z(t)‖ (‖ũ(t − h)‖ + ‖ṽ(t)‖)
+r max{1, K}κρ,r‖z(t)‖

∫ t

t−h (‖ũ(ξ − h)‖ + ‖ṽ(ξ)‖) dξ +

κρ,r(2h)1/2‖z(t)‖
(

∫ t

t−2h
‖z(s)‖2ds

)
1

2 − µ
∫ t

t−2h
‖z(s)‖2ds

≤ − (1 − 3hµ) ‖z(t)‖2 + κρ,r‖z(t)‖ (‖ũ(t − h)‖ + ‖ṽ(t)‖) +

r max{1, K}κρ,r‖z(t)‖
(

∫ t

t−h (‖ũ(ξ − h)‖ + ‖ṽ(ξ)‖) dξ
)

−
(

µ − 1/2µ−1r2κ2
ρ,r

) ∫ t

t−2h ‖z(s)‖2ds. Choosing mu∗(h)

and r∗(h) ∈ (0, 1] as µ∗(h) = min
{

1/6h, κρ,r/
√

2
}

r∗(h) = min
{

(3
√

2hκρ,r)
−1, 1

}

, we get for
µ ≤ µ∗(h) and r ≤ r∗(h), V̇ (z(t)) ≤
− 1

2‖z(t)‖2+ κρ,r‖z(t)‖ (‖ũ(t − h)‖ + ‖ṽ(t)‖)
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+r max{1, K}κρ,r‖z(t)‖
(

∫ t

t−h
(‖ũ(ξ − h)‖ + ‖ṽ(ξ)‖) dξ

)

=

−1/2‖z(t)‖2 +κρ,r‖z(t)‖
{

‖ũ(t − h)‖ + ‖ṽ(t)‖ +

r max{1, K}
(

‖m̃(t)‖ + ‖ñ(t)‖
)}

, where m̃(t) =
∫ t

t−h
‖ũ(ξ − h)‖dξ and ñ(t) =

∫ t

t−h
‖ṽ(ξ)‖dξ. We have

V̇ (z(t)) ≤ −1

2
‖z(t)‖2 + δρ,r‖z(t)‖

(

‖ũ‖L∞ + ‖ṽ‖L∞

)

, (8)

where δρ,r := κρ,r(1 + rh max{1, K}) �0 1, since
‖m̃‖L∞ ≤ h‖ũ‖L∞ and ‖ñ‖L∞ ≤ h‖ṽ‖L∞ .
Thus, V̇ is negative outside the ball centered at the
origin, of radius 2δρ,r(‖ũ‖L∞ + ‖ṽ‖L∞) = δρ,rR,
where R = 2(‖ũ‖L∞ + ‖ṽ‖L∞). It follows that
V (z(t)) ≤ sup|ξ|≤δρ,rR V (ξ) ≤ λρ,r

3 (δρ,r)
3R3 +

λ+(Pρ,r)(δρ,r)
2R2 + 2µ(δρ,r)

2R2h2. First assume that
R ≤ 1. Then, we have λmin(Pρ,r)‖z(t)‖2 ≤ V (z(t)) ≤
(

λρ,r

3 (δρ,r)
3 + λ+(Pρ,r)(δρ,r)

2 + 2µ(δρ,r)
2h2

)

R2. This

implies that lim supt→∞ ‖z(t)‖ ≤ K1
ρ,rR, where

K1
ρ,r :=

(

λρ,r(δρ,r)
3 + 3λ+(Pρ,r)(δρ,r)

2 + 6µ(δρ,r)
2h2

3λ−(Pρ,r)

)
1

2

.

If R ≥ 1,
(

λρ,r

3 (δρ,r)
3 + λ+(Pρ,r)(δρ,r)

2 + 2µ(δρ,r)
2h2

)

R3,

and we get lim supt→∞ ‖z(t)‖ ≤ K2
ρ,rR, where

K2
ρ,r :=

(

λρ,r(δρ,r)
3 + 3λ+(Pρ,r)(δρ,r)

2 + 6µ(δρ,r)
2h2

λρ,r

)
1

3

.

Let Kρ,r = max(K1
ρ,r, K

2
ρ,r). Then, we get Kρ,r �0 1.

So, by choosing rh ≤ 1, the finite-gain Kρ,r is
delay-independent. More precisely, there exists a
positive constant C0 independent of r and h such that
lim supt→∞ ‖z(t)‖ ≤ C0 (‖ũ‖L∞ + ‖ṽ‖L∞) . It implies
that lim supt→∞ ‖z(t)‖ ≥ lim supt→∞ ‖x(t)‖ − ‖y‖L∞ ≥
lim supt→∞ ‖x(t)‖ − γ∞ (‖v‖L∞ + ‖f‖L∞) . We conclude
that lim supt→∞ ‖x(t)‖ ≤ C0 (‖ũ‖L∞ + ‖ṽ‖L∞) +

γ∞ (‖v‖L∞ + ‖f‖L∞) ≤ C0

{

2γ∞(‖v‖L∞ + ‖f‖L∞) +

‖u‖∞
}

+ γ∞ (‖v‖L∞ + ‖f‖L∞) ≤ M∞

(

‖u‖L∞ + ‖v‖L∞ +

‖f‖L∞

)

, where M∞ = max
{

C0, γ∞(1 + 2C0)
}

�0

1. 2

Corollary 1:. For n = 1, 2, let J be equal to 0 if n = 1 and
equal to ρA0, ρ > 0 if n = 2. Let b = 1 if n = 1 and b =
(0, 1)T if n = 2. Then, there exist a constant v0 > 0 and for
every ε > 0 and h > 0 there is an r∗(h) ∈ (0, 1], and an n×1
matrix F̃h, such that for any functions v ∈ L∞([−h,∞), R),
with ‖v‖L∞ ≤ v0, and ẽ : R≥0 −→ R

n, converges to zero as
t −→ ∞, if χ : R≥0 −→ R

n, is any solution of the system ˙̃y =

Jỹ− rb
(

σ
(

F̃ T
h ỹ(t − h) − ξv(t − h)

)

− ηv(t − h)
)

+rẽ(t),

where ξ+η = 1 and ξη = 0, it follows that for, 0 < r ≤ r∗(h),
lim supt−→∞ ‖χ(t)‖ < ε.

Proof of Corollary 1. For n = 1, the contents of the above
result essentially result from Lemma 6 of [2] (F̃ T

h is simply
equal to one) and, for n = 2, the conclusion follows from
Lemma 2.

Proof of Theorem 1. Without loss of generality, making a
change of coordinates if necessary, we may assume that the

system (S)r
h has the following partitioned form:

(S)r
h :







ẋ1(t) = A1x1(t) + B1u(t − h), x1 ∈ R
n1 ,

ẋ2(t) = A2x2(t) + B2u(t − h), x2 ∈ R
n2 ,

where n1 + n2 = n, all the eigenvalues of A1 are critical and
A2 is an Hurwitz matrix. Here, we take

A =

(

A1 0
0 A2

)

, B =

(

B1

B2

)

The controllability assumption on (A, B) implies that the
pair (A1, B1) is also controllable. Since A2 is Hurwitz, it
will be sufficient to show that if we find an CICS-stabilizing
feedback of type (*) or type (**) for the system ẋ1(t) =
A1x1(t) + B1u(t − h) then the same feedback will stabilize
(S)r

h as well because the second equation, ẋ2(t) = A2x2(t)+
B2u(t − h), can be seen as an asymptotically stable linear
system forced by a function that converges to zero. Thus, in
order to stabilize (S)r

h, it is enough to stabilize the subsystem
ẋ1(t) = A1x1(t) + B1u(t − h).

Without loss of generality, in our proof of Theorem we will
suppose that (S)r

h is already in this form, that is, we assume
that all the eigenvalues of A have zero real part and the pair
(A, B) is controllable.

i) The single-input case: We prove the theorem by
induction on the dimension of the system. For dimension
zero, the conclusion holds true. Consider now a single-input
n−dimensional system, n ≥ 1, and suppose that Theorem
1 has been established for all single-input systems of
dimensions less than or equal to n − 1. Write N = N(A),
and pick any ε > 0. If 0 is an eigenvalue of A, we apply
the first part of Lemma 1 and rewrite our system in the form
˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1, ẏn(t) = u(t − h),
where ȳ = (y1, . . . , yn−1)

T . In the case when zero is not
an eigenvalue of A, we apply the second part of Lemma
1. Then we take ˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1,
ẏn−1(t) = −ωyn(t), ẏn(t) = ωyn−1(t) + u(t − h), where
ȳ = (y1, y2, . . . , yn−2)

T . So, in either case, we can rewrite
our system in the form ˙̄y(t) = A1ȳ(t)+(yn(t) + u(t − h)) b1,
˙̃y(t) = Jỹ(t) + u(t − h)b, where J is a skew-symmetric
matrix, (J, b) is a controllable pair, with ỹ = yn, b = 1 in the
first case and ỹ = (yn−1, yn)T , b = (0, 1)T in the second case.
To consider the problem of converging-input converging-state
(CICS) property, we must study solutions of the following
system: ˙̄y(t) = A1ȳ(t) + (yn(t) + u(t − h)) b1 + ē(t),
˙̃y(t) = Jỹ(t)+u(t−h)b+ ẽ(t), where ẽ, ē are any measurable
functions on [0,∞), bounded by ẽ0 and ē0, which converge
to zero as t −→ ∞ and have the same dimensions as
ỹ, ȳ respectively. We will design a feedback of the form
u(t − h) = −r

[

σN

(

F̃ T
h ỹ(t − h) − ξv(t − h)

)

− ηv(t − h)
]

,

F̃h = e−Jhb, where ξ and η are constants such that
ξη = 0, ξ + η = 1 and v is to be chosen later. To
simplify the exposition, we assume that σ′

N (0) = 1
(achieved by a time rescaling). From Corollary 1, there
exists r∗1(h) ∈ (0, 1] and 0 < v0 < ε

2 such that, if
‖v‖L∞ ≤ v0, then trajectories of the system satisfy
‖ỹ‖L∞ < ε

2 for r ∈ (0, r∗1(h)]. Along such trajectory,
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one has σN

(

F̃ T
h ỹ(t − h) − ξv(t − h)

)

= F̃ T
h ỹ(t − h)

−ξv(t − h) + O
(

‖F̃ T
h ỹ(t − h) − ξv(t − h)‖2

)

.

So, we have ˙̄y(t) = A1ȳ(t) + rv(t − h)b1+
(

yn(t)−rF̃ T
h ỹ(t−h)+rO(‖F̃ T

h ỹ(t−h)−ξv(t−h)‖2)
)

b1

+̄e(t) = A1ȳ(t) + rv(t − h)b1 + ¯̄e(t), where ¯̄e(t) := ē(t)+
(yn(t) − rF̃ T

h ỹ(t− h) + rO(‖F̃ T
h ỹ(t − h)− ξv(t − h)‖2))b1.

Then for every ε > 0 there exists r∗2(h) ∈ (0, r∗1(h)],
such that lim supt→∞

¯̄e(t) < ε, ∀r ∈ (0, r∗2(h)]. Note that
(A1, b1) is controllable and all eigenvalues of A1 have
non-positive real part. Applying the inductive hypothesis to
the single-input system of dimension less than or equal to
n−1, ˙̄y(t) = A1ȳ(t)+rv(t−h)b1 +¯̄e(t), we know that there
is a feedback v(t−h) = ū(ȳ(t−h)) having (∗) or (∗∗) form
(cases ξ = 1, η = 0, and ξ = 0, η = 1, respectively), such
that all the trajectories of ˙̄y(t) = A1ȳ(t) + rb1ū(ȳ(t− h)) go
to zero as t → ∞, for every vector function ¯̄e that converges
to zero (see [10]). The proof for the single-input case is
completed. 2

ii) The general case: Next, we deal with the general case
of m ≥ 1 inputs and prove Theorem 1 by induction on m.
First, we know from the proof above that the theorem is true
if m = 1. Assume that Theorem 1 has been established for all
k−input systems, for all k ≤ m − 1, m ≥ 2, and consider an
m−input system (S)r

h : ẋ(t) = Ax(t)+Bu(t−h)+e(t) where
e(t) is any decaying vector function. Assume without loss of
generality that the first column b1 of B is nonzero and con-
sider the Kalman controllability decomposition of the system
(S1)r

h : ẋ(t) = Ax(t)+b1u(t−h) (see [7], Lemma 3.3.3). We
conclude that, after a change of coordinates y = T−1

yx x, (S1)r
h

has the form ẏ1(t) = A1y1(t) + A2y2(t) + b̄1u1(t − h),
ẏ2(t) = A3y2(t), Where (A1, b̄1) is a controllable pair. In
these coordinates, (S)r

h has the form ẏ1(t) = A1y1(t) +
A2y2(t)+ b̄1u1(t−h)+B̄1ū(t−h)+e1(t), ẏ2(t) = A3y2(t)+
B̄2ū(t − h) + e2(t), where ū = (u2, . . . , um)T and B̄1, B̄2

are matrices of appropriate dimensions. So it suffices to show
the conclusion for the previous system. Let n1, n2 denote the
dimensions of y1, y2 respectively. Recall that N = N(A).
Let σ = (σ1, · · · , σN ) be any finite sequence of satura-
tion functions. Then, for the single-input controllable system
ẏ1(t) = A1y1(t)+ b̄1u1(t−h), there is a feedback u1(t−h) =
v1(y1(t − h)), such that (i) v1 is N1 = N(A1)(∗)−form
(or N1 = N(A1)(∗∗)−form); (ii) the resulting closed-loop
system has the CICS property. By controllability, we conclude
that the (m − 1)−input subsystem ẏ2 = A3y2 + B̄2ū(t − h)
is controllable as well. By the inductive hypothesis, this
subsystem can be stabilized by a feedback ū(t − h) =
v̄2(y2(t − h)) = [v2(y2(t − h)), . . . , vm(y2(t − h))]

T , such
that (i) there exists an (m − 1)−tuple k̄ = (N2, . . . , Nm)
of nonnegative integers and |k̄| = N − N1, such that
v̄2 is |k̄|(∗)−form (or |k̄|(∗∗)−form); (ii) the resulting
closed-loop system has the CICS property. Since A2y2(t) +
B̄1 [v2(y2(t − h)), . . . , vm(y2(t − h))]

T
+e1(t) still converges

to zero, we conclude that y1, with u1, ū as above, converges to
zero. Therefore, the above feedback renders ẋ(t) = Ax(t) +
Bu(t− h) GAS and the resulting closed-loop system has the
CICS property. 2

IV. EXAMPLE

Let the following system where triple integrator and oscil-
lator with multiplicity two are considered:

ẋ(t) = Ax(t) + bu(t − h), x ∈ R
7, u ∈ R, (9)

where b = (0 0 1 0 0 0 1)T and

A =





















0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0





















, (10)

and u is required to satisfy the constraint |u| ≤ r, r ∈ (0, 1].

To get a feedback of the form u(.) = −rσ5

{

fh,5(x) +

σ4

[

fh,4(x) + σ3

(

fh,3(x) + σ2

(

fh,2(x) +σ1

(

fh,1(x)
)))]}

,
we need to find a linear transformation that puts (9) in the
adapted form. In our case, it reduces to, ẏ(t) = Ãy(t)+ b̃u(t−
h), with b̃ = (0 1 0 1 1 1 1)T and

Ã =





















0 1 0 0 0 0 0
−1 0 0 1 1 1 1
0 0 0 1 0 0 0
0 0 −1 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0





















. (11)

A simple computation then shows that

R(A, b) =





















0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 −2 0
0 0 1 0 −2 0 3
0 1 0 −1 0 1 0
1 0 −1 0 1 0 −1





















(12)

R(Ã, b̃) =





















0 1 4 5 −1 −7 −1
1 4 5 −1 −7 −1 9
0 1 3 2 −2 −2 2
1 3 2 −2 −2 2 2
1 2 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0





















. (13)

If we let T = R(A, b)R(Ã, b̃)−1, then the coordinate change
y = T−1x transforms (9) into (11) (see [10]). The matrix T−1

is easily computed, and the transformation y = T−1x turns
out to be y1 = x1 + 4x2 + 5x3 + 2x4 − 2x5 − 3x6 − 5x7,
y2 = x2+4x3+2x4+2x5+3x6−3x7, y3 = x1+3x2+2x3−
2x6 − 2x7, y4 = x2 + 3x3 + 2x6 − 2x7, y5 = x1 + 2x2 + x3,
y6 = x2 + x3, y7 = x3. We now need to find r and h so that
u(t − h) = −rsat

{

y7(t − h) + sat
[

y6(t − h) + sat
(

y5(t −
h) + sat

(

− sin(h)y3(t − h)+ + cos(h)y4(t − h) + sat
(

−
sin(h)y1(t − h) + cos(h)y2(t − h)

)))]}

.
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Fig. 1. Closed-loop states (h = 0.1 and r = 2.5).
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Fig. 2. Closed-loop states (h = 0.3 and r = 2.5).
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Fig. 3. Closed-loop states (h = 0.3 and r = 0.55).
In fig. 1, one can observe the behavior of the triple integrator

and oscillator with multiplicity two when the delay is 0.1

and when the control law is u = −2.5sat
{

y7 + sat
[

y6 +

sat
(

y5+sat
(

−sin(0.1)y3+cos(0.1)y4+sat
(

−sin(0.1)y1+

cos(0.1)y2

)))]}

. Figs. 2 shows that the same system is
closed loop with the same feedback is not asymptotically
stable when the delay is not 0.1 but the larger delay 0.3. We
observe on fig. 3 that in this case (when h = 0.3) the control
law given above globally uniformly asymptotically stabilizes
the system with the amplitude r = 0.55.
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