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On the convergence of Maronna’sM -estimators
of scatter

Yacine Chitour, Romain CouilletMember, IEEE,and Frédéric PascalSenior Member, IEEE

Abstract—In this paper, we propose an alternative proof
for the uniqueness of Maronna’s M -estimator of scatter
[1] for N vector observationsy1, . . . ,yN ∈ Rm under a
mild constraint of linear independence of any subset of
m of these vectors. This entails in particular almost sure
uniqueness for random vectorsyi with a density as long as
N > m. This approach allows to establish further relations
that demonstrate that a properly normalized Tyler’s M -
estimator of scatter [2] can be considered as a limit of
Maronna’s M -estimator. More precisely, the contribution
is to show that eachM -estimator, verifying some mild con-
ditions, converges towards a particular Tyler’sM -estimator.
These results find important implications in recent works
on the large dimensional (random matrix) regime of robust
M -estimation.

I. I NTRODUCTION

Subsequent to Huber’s introduction of robust statistics
in [3], Maronna proposed in [1] a class of robust estimates
for scatter matrices defined as the solution of an implicit
equation. In [1], the existence and uniqueness of such
a solution are proved, under conditions involving both
the ratio cN := m/N of the population dimensionm
and the sample sizeN , and the parametrization of the
estimate. This constraint was largely relaxed in [4], [5].
With the recent renewed interest in robustM -estimation
under the random matrix regimeN,m → ∞ with cN →
c∞ ∈ (0, 1) [6]–[9], alternative proofs of existence and
uniqueness have appeared motivated by this assumption
of largem. While Maronna’s original results are valid for
any (well-behaved) set of samples satisfying the condition
on cN , the results in e.g. [6] are expressed in probabilistic
terms and are only valid for all largem,N .

Based on the ideas from [10]–[12], the present article
proposes an alternative proof to [4] to show existence
and uniqueness for all well-behaved set of samples with a
known location parameter and for anycN ∈ (0, 1). More
importantly, by a proper parametrization of the weight
function appearing in Maronna’s estimator, we prove that
some sequences of Maronna’sM -estimators converge to
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a unique Tyler’s distribution-freeM -estimator of scatter
[2]. This result is a novel property of the Tyler’sM -
estimators, rigorously proved in this work. This completes
the recent result (Theorem 1 of [13]) stating that the
Tyler’s M -estimator is the Maximum Likelihood estima-
tor (MLE) of the scatter for various complex elliptically
symmetric (CES) distributions as well as for the angular
central Gaussian (ACG) distributions [14].

The paper is organized as follows: Section II presents
our main results as well as Monte-Carlo simulations that
corroborate our theoretical claims, the proofs of which
are provided in Section III. Section IV draws some
conclusions and perspectives of this work.

II. N OTATIONS AND STATEMENT OF THE RESULTS

Let R+ (resp.R∗
+) be the (resp. strictly) positive real

line. We useMm(R) and Symm to denote the vector
space ofm×m matrices with real entries and the linear
subspace ofMm(R) made of the symmetric matrices,
respectively. We also useSym+

m and PSDm to denote
the non trivial cones inMm(R) of the non negative
symmetric matrices and of the symmetric positive definite
matrices, respectively. Also,(·)T stands for the transpose,
Tr(·) and det(·) for the trace and the determinant. On
Mm(R), we use the inner product defined by the Frobe-
nius norm‖A‖ =

√

Tr(AAT ). We also use≤ to denote
the partial order onSymm and Im the m × m identity
matrix. Functions of two non negative real variables(t, x)
will be considered. Iff is such a function, we useft, fx,
ftx, . . . to denote (when defined) the partial derivatives
of f with respect tot and/orx.

Definition II.1 A family (yi)1≤i≤N of vectors inRm is
admissible if

(C1) for 1 ≤ i ≤ N , ‖yi‖ = 1;
(C2) the vectors in any subset of sizem of

{y1, · · · ,yN} are linearly independent

This definition straightforwardly implies that if
(yi)1≤i≤N is an admissible family of vectors inRm and
if m vectors (say)y1, · · · ,ym which are then linearly
independent by(C2) are fixed, form+ 1 ≤ l ≤ N , we
can write yl =

∑n
j=1 γljyj . Then, γlj 6= 0 for every

1 ≤ j ≤ m andm+ 1 ≤ l ≤ N .

http://arxiv.org/abs/1403.5977v4
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Let us now consider mapsu : (R∗
+)

2 → R+ of class
C1 satisfying:

(U1) u(t, ·) is strictly decreasing;
(U2) for every t > 0, v(t, x) := x 7→ xu(t, x) is

increasing onR+ and lt := supx≥0 v(t, x) >
m;

We furthermore define, for everyx > 0, u(0, x) = m
x .

Note that, by continuity ofu, ∀x > 0, limt→0+ v(t, x) =
m. Also, according to(U1) and(U2), for eacht, x > 0,

v(t, x) = m+ tv1(x) + tw(t, x), (1)

with v1(·) := vt(0, ·) and∀x > 0, limt→0 w(t, x) = 0. By
a simple computation, one has thatv1 is a nondecreasing
function onR∗

+.
For further use, we introduce the following additional

notation. Letxt > 0 be the unique positive number such
that,∀t > 0, v(t, xt) = xtu(t, xt) = m.

We further consider the following assumption

(U3)







vx := dv/dx > 0
v1 is increasing
0 < lim inft→0 xt ≤ lim supt→0 xt < ∞.

If the latter occurs andu is of classC2, thenw(t, x) =
tw1(x) + o(t), with w1(·) := wt(0, ·) continuous on
(R∗

+)
2, the convergence in(U2) is uniform in x on any

compact ofR∗
+ andxt converges to the unique solution

x0 of v1(x) = 0.
We useū(t, x) to denote the particular function

ū(t, x) =
m(1 + t)

x+ t
(2)

which is analytic on every compact of(R+)
2 \ {(0, 0)}.

Moreover,̄lt = m(1+t), v̄1(x) = m(1− 1
x ) andw̄(t, x) =

−mt
t+x .

The objective of the work is to study the solutions of
the equation given, for allt > 0, by

(Eq)t M =
1

N

N
∑

i=1

u(t,yT
i M

−1yi)yiy
T
i .

and to characterize them in the limit wheret → 0. Taking
into account our definitions, if a solution to(Eq)t exists,
it must belong toPSDm.

Remark that the condition M of [4] also imposes a
“strictly” increasingv which excludes e.g. the HuberM -
estimator.

To state our results, we need to consider the set of
solutions of the equation(Eq)0 (that defines the Tyler’s
M -estimator) given by

(Eq)0 M =
m

N

N
∑

i=1

1

yT
i M

−1yi
yiy

T
i .

Recall from [10] that the set of solutions of(Eq)0 is
the half-line R∗

+ P in PSDm, whereP is the unique

solution of (Eq)0 with Tr(P) = m.

Our main result is the following theorem.

Theorem II.2 Let (yi)1≤i≤N be an admissible family of
vectors inRm andu : (R+)

2 \ {(0, 0)} → R+ be aC1

function verifying(U1)–(U2). Then,
(A) ∀t > 0, (Eq)t admits a unique solution,M(t).
(B) If, furthermore, u is C2 and satisfies(U3),

then the mappingt 7→ M(t) is continuous and
limt→0 M(t) = M0 the solution of(Eq)0 given
by M0 = ξuP with ξu > 0 unique solution to

N
∑

i=1

v1

(

yT
i P

−1yi

ξ

)

= 0. (3)

In particular, for u = ū, M0 = P, i.e., ξū = 1.

Theorem II.2: The proof is postponed in the next
section.

Remark II.3
1) The interest of Theorem II.2, in addition to

providing an alternative proof for the existence
and uniqueness, lies in the convergence of all
M -estimators to a Tyler’sM -estimator. This limit
can be different (by a scale factor) from one
M -estimator to another. While this result was
expected, this paper rigorously proves it.

2) Moreover, the theorem provides a way of
understanding why the Tyler’s estimator is the
outmost robust1 M -estimator. Indeed, considering
a ML approach, the weight functionu(t, x) is
derived from the observations probability density
function (PDF) and in such a case,t → 0 means
that the underlying distribution becomes more
and more heavy-tailed. For instance, considering
t as the exponent parameter of a Generalized
Gaussian distribution or of a W-distribution, the
smaller the value oft > 0 is, the heavier-tailed
is the distribution. This is also the case for the
degree of freedom of a Student-t distribution or
the shape parameters of a K-distribution or of a
Compound-Gaussian with inverse Gaussian texture
(see [14] for more details). In all these cases, the
MLEs satisfy the assumptions of Theorem II.2 (at
least for small values oft) and should be more
robust when the distribution is heavier-tailed. To
summarize, this result theoretically motivates the
use of the Tyler’s estimator, since it will perform
similarly as MLEs in heavy-tailed distribution
contexts.

1Here the robustness has to be understood as the classical property
considered in the robust estimation theory literature, seee.g. [15]
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Fig. 1. Convergence ofM(t) towardsM0 whent → 0 for N = m+
1 = 51. The criterion used is the MSE:C(t) = E

[

‖M(t) −M0‖2F
]

.

To illustrate Theorem II.2, Figure 1 presents the mean
square errorC(t) , E[‖M(t)−M0‖2F ] between Tyler’s
M -estimator and the Student-t MLE versus the param-
eter t, called the degree of freedom of the multivariate
Student-t distribution [14], defined through the weight
functionu(t, x) = m+t

t+x . We take hereN = m+ 1 = 51.
The data are zero-mean Gaussian distributed with Toeplitz
covariance matrix, the(i, j) entry of which is equal to
ρ|i−j|, for someρ ∈ (0, 1). As proved in Theorem II.2,
Item (A) is illustrated in the case whereN = m+1 while
Item (B) is illustrated for the Student-t MLE for different
population covariance matrices.

III. PROOF OFTHEOREM II.2

The strategy of the proof is as follows: for everyt > 0,
we first build a positive functionalH(t, ·) over PSDm

whose critical points (if any) are exactly the solutions of
(Eq)t. To establish the existence of such critical points,
we show thatH(t, ·) is uniformly bounded and tends to
zero at the boundary ofPSDm. To obtain uniqueness, we
show that solutions of(Eq)t are all local strict maxima
of H(t, ·) and conclude by applying the mountain pass
theorem (cf. [16]). This gives Item(A). Item (B) is then
obtained using the implicit function theorem and some
limiting arguments.

For t > 0, we define the function

h : R∗
+ ×R+ → R∗

+

(t, x) 7→ e
− 1

m

∫
x

xt
u(t,y)dy

. (4)

Then−hx

h = u
m and h(t, xt) = 1. Seth(0, x) = 1

x for
x > 0 andg : R∗

+ ×R+ → R∗
+ with g(t, x) = xh(t, x).

In the case whereu = ū, ∀(t, x) ∈ (R+)
2 \ {(0, 0)},

xt ≡ 1, h̄(t, x) =
(1 + t

x+ t

)1+t

, ḡ(t, x) = x
( 1 + t

x+ t

)1+t

.

Then, define the functionalH(t, ·) as

H : R∗
+ × PSDn → R∗

+

(t,M) 7→
∏N

i=1 h(t,y
T
i M

−1yi)
m

(detM)N
(5)

as well as the functional considered in [10]

B : PSDn → R∗
+

M 7→
∏N

i=1 h(0,y
T
i M

−1yi)
m

(detM)N
. (6)

Lemma III.1 For t > 0 and M ∈ PSDm,
one has −MHx(t,M)M/NH(t,M) = M −
1
N

∑N
i=1 u(t,y

T
i M

−1yi), with Hx(t,M) the gradient of
H(t, ·). In particular, M is a solution of(Eq)t if and
only if M is a critical point ofH(t, ·).

Lemma III.2 ∀t > 0,M ∈ PSDm, H(t,M) ≤ B(M).
As a consequence,limM→∂PSDm

H(t,M) = 0, so that
H(t, ·) admits critical points.

Lemma III.2: An immediate calculus yields that
x 7→ g(t, x) reaches its maximum1 at x = xt. As a
consequence, fort > 0,M ∈ PSDm, H(t,M) ≤ B(M).
Moreover, limx→0,∞ g(t, x) = limx→0,∞ xh(t, x) = 0.
For the limit at x = 0, this is obvious. Forx → ∞,
note that ln(g(t, x)) = 1

m

∫ x

xt

m−yu(t,y)
y dy and, since

m − lt < 0, it is equivalent to (m − lt) ln(x) as
x → ∞. Consider now a sequence(Mk)k≥0 in PSDm

converging to∂PSDm. For k ≥ 0, set Mk = ρkNk

with ρk = ‖Mk‖ and Nk = Mk

ρk

. Note that∂PSDm

is made of matrices either non invertible or with norm
going to infinity. Therefore, up to subsequences, either(i)
(Nk)k≥0 converges itself to∂PSDm or (b) the sequence
(ρk)k≥0 converges to zero or infinity and there exists
∃α > 0, ∀k ≥ 0,Nk ≥ αIm. If Case (i) occurs, then
∀k ≥ 0, H(t,Mk) ≤ B(Nk), which tends to zero as
k → ∞ (cf. [10]). In Case(ii),

H(t,Mk) =

∏N
i=1 h (t, xi,k)

m

ρNk det(Nk)N
= B(Nk)

N
∏

i=1

g(t, xi,k)
m

wherexi,k = yT
i N

−1
k yi/ρk. As k → ∞, xi,k tends either

to zero or infinity and we conclude. Fort > 0, H(t, ·) is
uniformly bounded overPSDm sinceB(·) is. SoH(t, ·)
has a global maximum which must belong toPSDm since
H(t,M) → 0 asM tends to the boundary ofPSDm. So
H(t, ·) admits critical points.

Lemma III.3 Let t > 0. Then all critical points of
H(t, ·) are local strict maxima.

Lemma III.3: We show that, ifM is a critical point
then the Hessian ofH(t, ·) at M is a negative definite
quadratic form implying thatM is a local strict maximum
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of H(t, ·). Let M ∈ PSDm be a critical point ofH(t, ·).
Then, one gets that for everyQ ∈ Symm,

〈Q,HessM(Q)〉 = −NH(t,M)
[

〈Q,M−1QM−1〉

+
1

N

N
∑

i=1

ux(t,y
T
i M

−1yi)(y
T
i M

−1QM−1yi)
2
]

.

Let R := M−1/2QM−1/2 anddi := M−1/2yi, one has

− 〈Q,HessM(Q)〉
NH(t,M)

=

‖R‖2 + 1

N

N
∑

i=1

ux(t, ‖di‖2)(dT
i Rdi)

2. (7)

Recall thatM is a critical point ofH(t, ·) and thus a
solution of (Eq)t, i.e.,

Im =
1

N

N
∑

i=1

u(t, ‖di‖2)did
T
i . (8)

Multiplying (8) by R on both left and right, taking the
trace and plugging the result into (7) gives

(7) =
1

N

N
∑

i=1

u(t, ‖di‖2)‖Rdi‖2 + ux(t, ‖di‖2)(dT
i Rdi)

2.

Let IQ = {i ∈ {1, · · · , N},Rdi 6= 0}. Then

(7) =
1

N

∑

i∈IQ

‖Rdi‖2
[

u(t, ‖di‖2) + ‖di‖2ux(t, ‖di‖2)ri
]

whereri := (dT
i Rdi/[‖di‖‖Rdi‖])2. Using 0 ≤ ri ≤ 1

(by Cauchy-Schwarz’s inequality) andux ≤ 0 (sinceu
is of classC1 and verifies(U1)), we haveriux(·, ·) ≥
ux(·, ·). Then, recalling thatv(t, x) = xu(t, x),

(7) ≥ 1

N

∑

i∈IQ

‖Rdi‖2vx(t, ‖di‖2) ≥ 0.

Moreover, ifQ 6= 0, IQ 6= ∅ and there exists̄i such that
vx(t, ‖dī‖2) > 0. Therefore〈Q,HessM(Q) < 0, i.e.,
HessM is negative definite, concluding the proof.

Lemma III.4 Let t > 0. Then (Eq)t admits a unique
solution,M(t), the unique strict maximum ofH(t, ·).

Lemma III.4: We reason by contradiction assuming
H(t, ·) admits at least two local strict maxima. Applying
the mountain-pass theorem [16] to the functional
1/H(t, ·) which tends to infinity in the vicinity of
∂PSDm, we obtain the existence of a saddle point ofF

in PSDm which is contradictory to Lemma III.3.

We next prove thatM(t) is uniformly bounded in
PSDm as t → 0, i.e.

Lemma III.5 There exists0 < a ≤ b and t0 > 0 such
that, for everyt ∈ (0, t0), aIm ≤ M(t) ≤ bIm.

Lemma III.5: Let P be the unique matrix
of PSDm satisfying B(P) = maxM∈PSDm

B(M)
and Tr(M) = m. Then, for every t > 0,
H(t,P) ≤ H(t,M(t)) and B(M(t)) ≤ B(P). Mul-
tiplying both inequalities, after simplifications, we get
∏N

i=1 g(t,y
T
i P

−1yi) ≤ ∏N
i=1 g(t,y

T
i M(t)−1yi) ≤ 1,

with
∏N

i=1 g(t,y
T
i P

−1yi) → 1 ast → 0. So there exists
t0 > 0 such that, for everyt ∈ (0, t0) and 1 ≤ i ≤ N ,
1/2 ≤ g(t,yT

i M(t)−1yi), and, since(U3) holds true,
there exists0 < a ≤ b s.t. for everyt ∈ (0, t0) and
1 ≤ i ≤ N , a ≤ yT

i M(t)−1yi ≤ b. This implies
that, for everyt ∈ (0, t0) and 1 ≤ i ≤ N , u(t, b) ≤
u(t,yT

i M(t)−1yi)) ≤ u(t, a), henceu(t, b)C ≤ M(t) ≤
u(t, a)C with C := m

N

∑N
i=1 yiy

T
i . One concludes easily.

Lemma III.6 Under the conditions of Theorem II.2,
limt→0 M(t) = M0 solution of (Eq)0 given byM0 =
ξuP, whereξu > 0 is the unique solution of(3).

Lemma III.6: SinceM(·) is uniformly bounded in
PSDm as t → 0, its accumulation points still belong to
PSDm and are necessarily of the formµP whereµ > 0
andP is the solution of(Eq)0 with tracem. Taking the
trace in (8), one getsm = 1

N

∑N
i=1 v(t, ‖di(t)‖2), where

di(t) = M(t)−1/2yi for 1 ≤ i ≤ N . Using (1) and(U3),
one deduces that, for everyt > 0,

∑N
i=1 v1(‖di(t)‖2) +

t
∑N

i=1 w1(‖di(t)‖2) + o(t) = 0. Consider an accumu-
lation point µP of M(·) as t → 0. Then, up to a
subsequence,limt→0 M(t) = µP and, for1 ≤ i ≤ N ,
limt→0 di(t) = P−1/2yi/

√
µ. According to (U3), the

second sum in the previous equation tends to zero as
t → 0 and we are left with

∑N
i=1 v1(y

T
i P

−1yi/µ) = 0.
Since the left-hand side of the latter defines a decreasing
function of µ, it has a unique solution denotedξu > 0,
which concludes the proof sinceM(·) admits a unique
accumulation point ast → 0.

IV. CONCLUSIONS

In this paper, an alternative proof for existence and
uniqueness for the Maronna’sM -estimators is provided.
More importantly, using this particular approach leads to
draw some connections between Maronna’s and Tyler’s
estimators by expressing (properly scaled) Tyler’s estima-
tor in terms of a limit of a class of Maronna’s estimators.
This result may also find interest in studies of Tyler’s
M -estimator in the large random matrix regime.
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