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Robust Stabilization via Saturated Feedback
David Angeli, Yacine Chitour, and Lorenzo Marconi

Abstract—In this paper, we deal with the problem of stabilization
of uncertain systems in the presence of input constraint. First al-
gebraic conditions are derived for input-to-state stability of linear
system with saturated linear feedback of low dimension. Then a re-
cursive design procedure is derived for robust stabilization of block
upper triangular nonlinear systems with feedforward structure.

Index Terms—Feedforward nonlinear systems, input-to-state
stability (ISS), robust control, saturated feedback, small gain.

I. INTRODUCTION

STABILIZATION of linear and nonlinear (possibly uncer-
tain) systems subject to constraints is a central topic in con-

trol theory which has relevance both from a practical and theo-
retical point of view. There are several approaches that one can
take when dealing with control in presence of constraints. Model
predictive control is one possibility and has received a great
deal of attention in the past years [10]. The main idea, roughly
speaking, is to convert the control problem into an optimiza-
tion problem to be solved (either online or offline) so that con-
straints are satisfied and stability (or performance) is preserved.
Nonlinearity of the system usually affects the optimization al-
gorithm that may become nonconvex, whereas uncertainty, in
most approaches, is treated according to a worst-case approach
which usually entails an exponential growth of the computa-
tional burden as the control horizon increases.

Among all, input constraints are a relevant class for which
specific techniques have been developed in recent years. In the
linear setting stabilizability under arbitrary input saturation has
been extensively studied with constructive algebraic approaches
(see, i.e., [6], [8], and [14]) or with receding horizon techniques
(see [2]). In this respect, it is well-known that global asymp-
totic stability can be achieved only if the open loop system does
not exhibit exponential instability. In particular, for neutrally
stable systems, saturated linear feedback can be used to achieve
global asymptotic stability and robustness to persistent actuator
noise by exploiting passivity ideas as shown in [8]. More in
general, the presence of multiple poles on the imaginary axis
may prevent the existence of a single saturated linear controller
achieving global stability results [5]. Under these circumstances
saturated linear feedback can only achieve semiglobal stabiliza-
tion (see [6]) and “nested saturation” are needed for global con-
vergence ([14]). To the best knowledge of the authors, most of
the techniques in the current literature deal with exactly known
system parameters and leave open the question of robustness.
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Alternative approaches include the so-called “anti-windup”
methods which originally developed as “ad hoc” techniques for
specific applications and which have been recently developed in
a more rigorous and general perspective (see [16] and [17]).

In the nonlinear setting the use of saturation functions has
been shown to be an effective tool in order to globally stabilize
the important class of “feedforward systems” (see [12]). In par-
ticular, it has been shown in [15] (see also [7]) how recursive sta-
bilization of the linear approximation of the system by means of
saturation functions in combination with small gain ideas suc-
ceeds in achieving global asymptotic stability. This approach,
while capable of handling large uncertainties in the nonlinear
higher order terms, is affected by the same limitations encoun-
tered for design of saturated linear feedback if the linear approx-
imation of the system is uncertain. An attempt in the direction
of achieving robustness with respect to (possible time-varying)
uncertain linear approximation, has been studied in [11] for a
certain class of nonlinear feedforward systems. However the
problem of systematic robust design of feedforward nonlinear
system is in general an open research field.

Our goal is to add a contribution in the context of robust
state feedback stabilization both for linear and nonlinear sys-
tems subject to input constraints. More specifically our contri-
bution is two-fold. First algebraic conditions for single-input
linear systems up to dimension three are given which ensure
Input-to-State Stability with respect to external exogenous sig-
nals of sufficiently small amplitudes. This allows us to treat in
a simpler way constant parametric uncertainties affecting the
model of the system. Our criterion is indeed a generalization of
the so-called “Kalman conjecture” to the special case of satura-
tion nonlinearities. This criterion is then instrumental to extend
the design procedure proposed in [15]. In particular a construc-
tive design procedure yielding a nested saturation control law is
proposed able to deal with feedforward system with uncertain
linear approximation.

The paper is organized as follows. In the next section the
problem of robust stabilization of saturated linear feedback is
precisely stated and the algebraic conditions for robust input-to-
state stability (ISS) are given. Section III reviews the design
procedure for feedforward systems by saturation functions and
presents the extension of it to the case of nonlinear systems with
uncertain linear approximation. Section IV presents a simulative
example while Section V concludes with final remarks. Some
technical proofs are deferred to the Appendix.

Notations: The vector norm of is simply denoted
by . Let be the space of essentially bounded real func-
tions over equipped with the standard -norm

. Asymptotic signal amplitudes are denoted
by .

We say that a system with and
is Input-to-State Stable (in short ISS) with restrictions on the
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inputs if for all essentially bounded inputs such that
and for all initial conditions , the following holds:

with of class and .
We call a saturation function if is of class ,

increasing and if there exist two real numbers such
that for all ,

i) ;
ii) .

A constant defined as above is called an -bound for .
From now on, for simplicity, we assume that .
Finally for a given square matrix we denote by ,
and respectively its characteristic polynomial, its trace
and its determinant.

II. ALGEBRAIC CRITERIA FOR ISS OF SYSTEMS WITH

SATURATED LINEAR FEEDBACK

A. Preliminaries and Main Objective

In this section, we are interested to study the robust design
of saturated linear feedback for uncertain linear systems. More
specifically, let be an uncertain constant parameter ranging
within a known compact set and suppose we are given a pair

, and , of
continuous matrix-valued functions which is stabilizable for all

. Moreover, let and be exogenous signals with
, . Then, we address the problem of designing a

state feedback such that the saturated linear system

(1)

(with , , ) is input-to-state stable (ISS)
with respect to the exogenous inputs with suitable restric-
tions on their amplitude and linear gain, uniformly in .
Specifically, the adjective uniform regards the asymptotic gains
and the amplitude restrictions which are required to be inde-
pendent of the uncertain parameters. In a more formal way we
look for an which guarantees the existence of real numbers

, , , (all independent of ) such
that for all , and any measurable inputs and with

and , the trajectory of the system
starting from satisfies

for some class- function possibly depending on .
Motivated by the results presented in the deterministic sce-

nario (see [8], [14]), we focus on a pair which is
asymptotically null controllable with bounded inputs (ANCBI)
(using the terminology introduced in [14]) for all in the given
compact set. This means that, the linear system (1) can be con-
trolled to the origin, for each fixed value of the parameter ,
by applying (arbitrarily small) bounded controls. Algebraically,
this is equivalent to the pair being stabilizable and

having all eigenvalues with non negative real part.
The idea pursued in this paper is to reformulate the problem

of designing the state feedback achieving uniformly ISS into

a problem of robust pole placement regarding the linear approxi-
mation of system (1) at the origin in the absence of disturbances.
As a matter of fact we show that, under suitable limitations on
the dimension of the state space, the design of which ren-
ders uniformly ISS the saturated linear system is equivalent to
the design of a feedback gain so that (see Theorem 1 in the
next subsection)

is Hurwitz (2)

This allows to identify algebraic conditions for the design of
satisfying (2) and to propose a constructive design proce-

dure (see Section II-C). In this respect, it is interesting to note
how this result can be seen as a case in which a stronger ver-
sion of the Kalman conjecture holds. We recall that the latter
states that given a nonlinear differentiable function such
that for all then system is glob-
ally asymptotically stable if

is Hurwitz for all (3)

As a matter of fact, the result we are going to show does not rely
upon asymptotic stability of the state matrix within the sector
(required in Kalman conjecture as one considers (3) for )
but just asks for “at most” polynomial instability of the matrix
(as imposed by the continuity of the spectrum of as

approaches zero in (2)). Furthermore, while the Kalman con-
jecture states conditions just for global asymptotic stability of
the saturated linear system , we are interested in studying
input to state stability with respect to exogenous signals.
The motivation for dealing with exogenous inputs, besides the
fact that it represents a more general perspective, is that this will
allow to employ the result also for stabilization of nonlinear un-
certain feedforward systems as shown in Section III. Before il-
lustrating the main result it is worth stressing that, in accordance
with known results about the Kalman conjecture, we are able to
prove our result only for . In fact, the Kalman conjecture
(and our result) is in general false for as it is possible
to build a four-dimensional system which satisfies the Hurwitz
condition (3) but presents a stable limit cycle (see [9]).

B. Extended Kalman Conjecture

We focus on (1) with . The main result of this section
is the next extended Kalman conjecture which is given in terms
of the positive root locus relative to the polynomials and

.
Theorem 1: Consider the system in (1) with

with and a saturation function. Assume that the
matrix

is Hurwitz (4)

and the corresponding root locus be tranversal to the imaginary
axis for and all . Then there exist positive num-
bers , , and such that system (1) is ISS with restric-
tions on the inputs and asymptotic linear gains

, uniformly over .
We consider now the proof of Theorem 1. To this end the

following definition of ultimate boundedness will play a key
role.
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Definition 2.1: Consider the nonlinear system
with a vector of signals. Then such a system en-
joys the ultimate boundedness (UBND) property with restric-
tion on the inputs if there exists a nondecreasing function

such that for any initial condition
and any essentially bounded with , it holds

(5)

We just note that a similar property, with of class , was
introduced in [13] under the name of asymptotic gain. The no-
tion considered here is much weaker, as we allow .

It turns out that all the proof of theorem 1 reduces to show
that system (1) has the UBND property with suitable restriction
on the inputs . The reason why is clear by the following
two results whose proofs are presented in the Appendix.

Lemma 2.2: A system is ISS with restrictions on the inputs
if and only if it is1 0-GAS and enjoys the Ultimate Boundedness
property with suitable restrictions.

Proposition 2.3: Consider the -dimensional system,
,

(6)

where Hurwitz for all and is a
saturation function with for all . Then
the system is GAS provided that all positive semi-orbits of (6)
be bounded.

As a matter of fact we have that if system (1) enjoys the
UBND property with suitable restrictions on then the
system is 0-GAS by Proposition 2.3 and hence it is ISS with
suitable restrictions by Lemma 2.2. Hence, to show ISS we are
left to show the UBND property. This will be done considering
several cases depending on , the spectral properties of and,
finally, on , .

1) Case : Consider first the scalar case, viz. .
Then, system equations read as

(7)

with . In case the UBND property trivially follows
without restrictions on and by the definition of saturation
function. In case , by stabilizability and by
(4). From this the result in [8] shows that system (7) is ISS (and
thus satisfies the UBND property) without restrictions on and
nonzero restriction on .

2) Case : Consider now the bidimensional case. The
case of two uncontrollable modes (viz. ) is trivial, as is
then Hurwitz and this immediately gives UBND. Assume now
that an uncontrollable eigenvalue (necessarily real) exists. Then,
by a suitable change of coordinates, the system can be brought
in the following form

(8)

1We use the standard notation “0-GAS” to mean global asymptotic stability
in case no inputs are present.

with and , for all [by (4)]. By the
result previously proved for the scalar case, the -subsystem is
ISS without restrictions with respect to and with non
zero restrictions with respect to . Therefore, Input-to-State
stability of the system (8) without restriction on and with
nonzero restrictions on follows by a standard
cascade argument as the -subsystem is ISS without restric-
tion with respect to . Finally, we address the case of a com-
pletely controllable system. By a linear change of coordinates
the system can be brought in the canonical form

(9)

with and . For convenience, we consider sepa-
rately all the possible cases according to , , positive
or zero.

Case 2-1: and : In this case the Ultimate
Boundedness without restrictions easily follows since is Hur-
witz and is uniformly bounded.

Case 2-2: and : Let and
rewrite the system as

(10)

where and . Since and
we have that

(11)

Moreover, as , condition (4) yields . This and
the fact that imply ISS of the -subsystem without
restrictions with respect to the inputs and and with nonzero
restriction with respect to . Hence, UBND of (10) without
restriction on and nonzero restriction on follows
by standard cascade arguments.

Case 2-3: and : By a linear change of
coordinates and up to a linear time rescaling, the system can
always be brought in the following form:

(12)

with and . In particular, condition (4) yields
and . To show that system (12) enjoys the

UBND property without restriction on and non zero restric-
tion on requires a bit of computations which for
clarity are reported in Appendix B.

Case 2-4: , : This is the case of the double
integrator for which conditions (4) is equivalent to and

. In such a case the transversality condition is never
satisfied. However, ISS with respect to without restriction for
the double-integrator with saturated linear feedback was proved
in [3] (see Remark 4), where it has been also shown that zero
tolerance is accepted for external signals (i.e., the
restriction ). Specifically in [3] it has been shown how to
design an signal , with arbitrarily small amplitude, capable
of destabilizing the system.
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3) Case : Without loss of generality we assume that
the triplet is given in the canonical controllable form

(13)

We first identify all the relevant cases we have to deal with. To
this regard let be the multiplicity of a possible eigenvalue
of at the origin. If , then is zero or similar to
either or with

If or similar to , then for every the rank
of is less or equal than two, then (4) cannot be
satisfied. Similarly if is similar to , a simple application of
the Routh–Hurwitz test on , yields (4) is equivalent
to

(14)

From this, it is immediately seen that if the second
inequality of (14) yields which contradicts .
Thus, also in this case the condition (4) cannot be satisfied.

If , then can be either 1 or 2. In
case then rank and for every

we have rank . Therefore, (4) cannot
be satisfied.

By the previous considerations we are left to consider just
the case in which and ,
and finally the case in which is invertible (i.e., ).
For convenience, all these cases are enumerated and discussed
in the following.

Case 3-1: and : This case
corresponds to the presence of double poles at the origin and a
negative real pole, viz. and . In this case
the transversality condition is never satisfied, however, as in the
case of dimension 2, it is possible to ensure ISS with respect to
disturbances entering within the saturation. Up to linear changes
of variables, a time rescaling and neglecting trivial cases, it is
possible to assume that the system is described by (pick to this
end the change of variables: ,

, ,
where are meant here as the original coordinates).

(15)

where by condition (4) and
.

Now note that as and as is uniformly bounded the
variable is ultimately bounded by . More-

over the first two equations of (15) reduces to Case 2-4 above

addressed. Specifically, the subsystem turns out to be
ISS without restrictions on the inputs , and zero restric-
tions on . From this the UBND property of (15) without
restriction on and zero restriction on easily fol-
lows.

Case 3-2: , , : The first
scenario characterized by is for with three poles on
the imaginary axis (one in 0 and 2 complex conjugates). Modulo
change of coordinates and after time rescaling system (1)–(13)
can be rewritten as

(16)

with , and .
This system can be shown to enjoy the UBND property without
restriction on and non zero restriction on pro-
vided that . To this regard it is worth noting that condition
(4) yields . Hence, this case motivates the transversality as-
sumption which indeed rules out the possibility of having .
For convenience all the mathematical steps needed to prove the
result are deferred to Appendix B.

Case 3-3: , , , : The second
scenario characterized by is for having one pole at
the origin and two poles with negative real part (namely ,

, in (13)). To deal with this case, define
so that in the new coordinates the system

reads

where and . Since (4) im-
plies , it turns out that the -subsystem is ISS without
restrictions on the inputs and nonzero restrictions on

. From this, it is easy to conclude that the whole system en-
joys the UBND properties without restriction on and non zero
restrictions on since the subsystem be-
haves as an asymptotically stable linear system driven by the
uniformly bounded function and by the signal .

Case 3-4: , : The first scenario in
which is invertible is the one in which there are two poles
on the imaginary axis and one negative real pole (which corre-
sponds to consider , , , 2, 3, in (13)).
A linear change of coordinates bringing the matrix to its real
Jordan form changes system (1) to

(17)

with , . Equating the expressions giving the characteristic
polynomial of with the two sets of coordinates leads
to the relation . Without loss
of generality, can be taken nonzero. Then, after a new linear
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change of coordinates and a time rescaling, we may assume that
system (1) is described by

(18)

with . Moreover, condition (4) implies that while
the transversality condition rules out the case . Hence, we
can study system (18) with for which the UBND property
clearly holds. Indeed, as and is uniformly bounded, we
have

(19)

and hence UBND of (18) without restriction on and non
zero restriction on follows by dealing with the

-subsystem as in the case 2-4.
Case 3-5: , Hurwitz: This case is trivial as

the UBND property without restriction on and follows by
the fact the saturation function is uniformly bounded and is
Hurwitz.

All the previous analysis has shown that indeed conditions
(4) and transversality of the root-locus imply ISS without re-
strictions with respect to and . Moreover, under assumption
(4), ISS with nonzero restriction on can still be achieved
whenever the matrix has two poles at the origin. To complete
the proof of the result we have to show that the gain is indeed
linear. This is a consequence of the following general lemma.

Lemma 2.4: Consider a -system of the form
, in which are uncertain constant parameters

ranging in a compact set , and assume that this
system is ISS with respect to the input and locally exponen-
tially stable for . Then the system in question is ISS with
uniform linear asymptotic gains and restrictions on .

Proof: By local exponential stability, there exist
and small enough so that, for all initial conditions in
the ball and for all measurable with ,
we have

(20)

where , , are positive reals. Equation (20) establishes the
conclusion of the lemma for initial conditions with .
In particular note that standard linear arguments can be used to
show that is a continuous function of the parameter . This
and the fact that ranges in a compact set yield that can be
upper bounded by a function independent of , namely that the
asymptotic gain is uniform with respect to .

We now consider the case . Let be the ISS gain of
the system. We let

As for all , it holds

Fig. 1. Graphical design for two-dimensional systems.

there exists a nondecreasing function of so that
for all and all with . Therefore, for
any with we have for

(21)

Thus, the lemma follows by combining (20) and (21).

C. Algebraic Criterion for Robust Design

In the previous subsection, we have reformulated the problem
of rendering robustly ISS system (1) as that of robustly stabilize
the linear approximation. Specifically, theorem 1 states that ro-
bust ISS is automatically achieved if the Hurwitz condition (4)
and the transversality condition on the root locus of
are satisfied. The advantage of stating the problem in these terms
is that it is possible to develop synthesis tools for the design of
the state feedback which satisfy the requirements of Theorem
1. This is indeed the goal of this part which presents some con-
structive criterion for checking the condition of Theorem 1 in
the two- and three-dimensional cases.

1) Two-Dimensional Systems: In this case it is simple to
check, by means of root locus arguments, that the transversality
condition is always fulfilled unlike for the double integrator
which always violates it regardless the choice of the feed-
back . Hence, the problem reduces to investigate algebraic
conditions for having (4) fulfilled, namely to design a simple
linear feedback, with so that the matrix

is Hurwitz for all . The next
proposition presents algebraic conditions for such a design.

Proposition 2.5: Assume that the couple be
ANCBI for each . Then a robust saturated linear con-
troller for the planar system exists provided that there exists

so that for any

(22)

Moreover, in case is independent of , a
continuous function and an arcwise connected compact set,
robust controllability of the couple is equivalent to
condition (22).

Remark 2.6: It is interesting to note that, from a graphical
point of view, condition (22) is equivalent to ask that the cones
spanned by the vectors and ,
as ranges in , all lie in the same half plane (see Fig. 1).

Remark 2.7: Note that the second part of the statement
stresses the fact that in case the input vector does not depend
on uncertain parameters, then the existence of a robust stabilizer
is implied by controllability of the pair for all .



2002 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

In order to prove the proposition we use the intermediate re-
sult stated here.

Proposition 2.8: The following facts are equivalent for two-
dimensional systems:

1) the matrix is Hurwitz for all ;
2) the couple is ANCBI and is Hurwitz.

Proof: We simultaneously show the two directions of the
implication . Consider the characteristic polynomial
of the matrix which is given by

(23)

From this, the Hurwitz condition in 1 is equivalent to

(24)

(25)

for all . By linearity of the previous expressions with
respect to , these conditions are equivalent to

(26)

which is easily obtained as and

(27)

obtained evaluating the above conditions for . Finally,
note that the two conditions in (26) amount to asking all eigen-
values of in the left closed half-plane while (27) are equiva-
lent to ask for Hurwitz. Then, conditions (26), (27)
are equivalent to being ANCBI and Hurwitz.

This result allows to forget the parameter and to focus just
on the robust stabilizability of the ANCBI pair .
Hence, in the following part we prove that the state feedback

satisfying (22) robustly stabilize the pair . This
indeed implies that system is
uniformly ISS with respect to and with suitable restriction.

Proof (Proposition 2.5): The system is ANCBI for all
, therefore and . Therefore,

by virtue of (22)

(28)

which proves that is Hurwitz. Let now as-
sume independent of and full rank of for any

. Then, for any the vectors and are lin-
early independent; consequently, the same holds true for and

. We claim that, this is equivalent to (22)).
As is arcwise connected and compact, the same holds true
for the image . In particular

then, the cone generated by , , is also arcwise
connected and spanning a compact circular sector. Therefore,
linear independence of any vector of with respect to the con-
stant vector is equivalent to and being strictly contained
in some half plane.

2) Three-Dimensional Systems: In this case the transver-
sality condition can be affected by the design of the state
feedback and hence must be explicitly considered. To this
end, define the invariant as follows:

where denotes the entry of . Moreover, let the coef-
ficients , and be defined as

(29)

Then, the Hurwitz condition (4) and the transversality condition
can be translated into algebraic conditions as stated in the next
proposition (where for convenience we dropped the dependence
on the uncertain parameter ).

Proposition 2.9: The matrix is Hurwitz for all
if and only if

a) , , ;
b) , ;
c) ;

and, alternatively

d1) ;
d2) and ;
d3) and .

Moreover, the transversality condition of the root locus of
with respect to the imaginary axis is satisfied for

if and only if

and (30)

Proof: Note that the characteristic polynomial of
can be written as

(31)

from which a simple application of the Routh criterion yields
that is Hurwitz if and only if for all

(32)

and

(33)
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Since the inequalities in (32) are linear in they can equiva-
lently be stated as the first two conditions in item a) and the
ones in item b). As far as inequality (33) is concerned note that
it is quadratic in and can be rewritten, rearranging the terms,
as

(34)

where the coefficients have been defined in (29). In view of
this, the last condition in item a) and the condition in item b)
express the fulfillment of the inequality respectively for
(non strictly) and for (strictly). These conditions are
indeed sufficient for having (34) fulfilled for any
if the condition in item d1) is satisfied. On the other hand in
case the items d2) or d3) yields the extra conditions
for having (34) fulfilled. Finally, the fact that (30) implies the
transversality condition follows by simple linear arguments.

Remark 2.10: The extra condition (27) due to transversality
required to the state feedback can be interpreted as the re-
quirement that and should not simulta-
neously be equal to zero.

Moreover, note that, from its definition, the polynomial
does not depend on the choice of coordinates in which system
(1) is expressed.

Remark 2.11: Note that while the conditions expressed by
b), c), and d) in the previous proposition are affected by choice
of the state feedback , those in item only depend on the
controlled system. In particular, it is easy to check that they are
automatically fulfilled if the pair is ANCBI.

We conclude this section providing a result which aims to
translate the transversality condition (30) in the frequency do-
main. This indeed is a further tool which can be used in order
to check if the root locus of is transversal to the
imaginary axis for or not.

Proposition 2.12: Let be neutrally stable with simple
roots on the imaginary axis. Then the root locus of
is transversal to the imaginary axis for if and only if

implies

(35)

with .
Proof: Let be a continuous root function of

, i.e., for every , is a root of .
Moreover, assume that . Then can be made as a
function of class . The sufficient part of the proposition re-
duces to show that if (35) holds then

To this end note that, since is rank 1,

with

Since is a simple root, then and we may
therefore assume that is of class . Deriving the relation

leads to

we get

Now note that

from which it is clear that the claim is true if

which is equivalent to (35).

III. ROBUST STABILIZATION OF NONLINEAR FEEDFORWARD

SYSTEMS

A. A Stabilization Procedure for Nonlinear Feedforward
Systems

This part is devoted to briefly present the design procedure
proposed in [15] to globally asymptotically stabilize by state
feedback the class of feedforward nonlinear systems described
by

...

(36)

where , is an uncertain parameter taking values
in a known compact set , are critically stable matrices
and are differentiable nonlinear functions vanishing at the
origin for all . Our final goal is to show how, in the
framework proposed in [15], the result regarding robust satu-
rated feedback of linear systems illustrated in the previous sec-
tion can be successfully employed for achieving robust global
stabilization of system (36). To this end, we first briefly review
the procedure in [15] which shows how the problem reduces to
a saturated linear stabilization problem.

Consider the nonlinear system

(37)
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for which we assume the following:

A1) is a critically stable matrix for all ;
A2) the linear approximation of the system, denoted by the

pair (the symbol denotes a generic term of compat-
ible dimension without any additional structure)

(38)

is ANCBI for all ;
A3) the dynamics is uniformly ISS with respect to with

linear gain , restriction on , and it is 0-LES (i.e.,
Hurwitz).

As far as the global stabilization of (37) is concerned it
has been shown in [15] that it is equivalent to the design of a
“good saturated linear controller” for the pair (38), namely to
a saturated linear controller for the linear approximation able
to achieve ISS with suitable restrictions with respect to inputs
entering inside and outside the saturation. In the following
proposition, which is an easy extension of Theorem 4 in [15],
we show that indeed this feature is preserved when the uncertain
parameter enters into the picture. Specifically, global robust
stabilization of (37) is equivalent to the design of a “robust
good saturated linear controller” for the linear approximation.

Proposition 3.1: Let and
be a “robust good saturated linear controller” for

the observable critically stable pair , namely let

be uniformly ISS with respect to with linear gain , and
nonzero restrictions ( , ) for all . Then, there exists

such that for all positive the closed loop system
given by (37) with the state feedback controller

is uniformly ISS with respect with linear gain and nonzero
restrictions.

Proof: The proof treads upon that of theorem 4 in [15].
The only difference is to keep track of the uncertain parameter

. Specifically, the idea in [15] is to look at system (37) as an
higher dimensional system given by the interconnection of the
system

with inputs and and output , with the system

with input and output , where the function col-
lects the higher order terms of the vector field in (37), and to
show that all the small gain conditions reported in [15. Th. 1]

are indeed fulfilled by suitably decreasing . It is trivial to check
that all these reasoning can be repeated mutatis mutandis in this
context, since is a continuous function of the ar-
guments and ranges within a compact set.

Clearly, the result of the previous proposition can be iterated,
to deal with the stabilization of an arbitrary nonlinear feedfor-
ward system of the form (36) via a bottom-up procedure, as the
system with state , under the feedback defined in Sec-
tion III-A, recovers the same ISS properties of the subsystem
with replaced by . The final control law turns out to be a
nested saturated control law with the saturation level of each
stage tuned according to the previous proposition. Moreover,
note that at each step of the previous design procedure the di-
mension for the critically stable dynamics in (38) is fixed
(as it coincides with the in (36)), while the Hurwitz matrix

has an increasing dimension.
By means of this analysis we conclude that the stabilization

of nonlinear feedforward systems reduces to a problem of
designing a “robust good saturated controller” for the ANCBI
linear systems described by (38) with the dimension of the
asymptotically stable part which has an arbitrarily large
dimension (dictated by the number of subsystems in (36))
and the critically stable part whose size may vary from
step to step but never grows above 3. The problem of designing
a robust saturated controller for such a pair will be addressed in
the next subsection.

B. The Robust Good Saturated Linear Controller

Our goal is to employ the result stated in Sections II-A–II-C,
namely the design procedure for rendering robustly ISS an un-
certain ANCBI system of dimension , for the design of
a robust good saturated linear controller for a controllable pair
described by (38). To this end we shall focus on feedforward
systems (36) with , , where [the number
of subsystems in (36)] is an arbitrarily large number. In view of
this the problem is to design a robust good saturated linear con-
troller for a pair

(39)

in which is a critically stable matrix with dimension
while is an Hurwitz matrix with arbitrary dimen-

sion . With this in mind we state the next proposition which
represents the link between the results in Sections II-B and II-C
and the solution of the problem. Specifically, it shows that the
design of a robust good saturated linear controller for the pair
(39) can be reduced to an analogous problem involving just the
critically stable dynamics (for which the design proce-
dure illustrated in Sections II-B and II-C can be resumed). In the
following we partition the state as , ,

accordingly to (39).
Proposition 3.2: Assume that the spectrum of and are

disjoint and let be the -matrix solution of the
following Sylvester equation:

(40)
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and denote by the vector

Then

a) if the pair is ANCBI for all then
also the pair is such;

b) if the system

is uniformly ISS with respect to the inputs with
nonzero restrictions, then also the system

is uniformly ISS with linear gains and nonzero restric-
tions;

c) let be neutrally stable. Then if
c1) the state feedback is such that for all and for

all the system

(41)

is uniformly2 ISS with linear gain and non zero
restrictions , ;

c2) for all the root locus corresponding to
is transversal to the imaginary axis for

;
then there exists such that for all and for
all the closed-loop system

is uniformly ISS with linear gains and non zero
restrictions.

Before proving the result few remarks are in order.
Remark 3.3: The aim in the previous proposition [in partic-

ular, of the claims b) and c)] is to set conditions under which
the problem of designing a robust good saturated controller for
the pair (39) can be reduced to study a design problem of lower
dimension involving just the critically stable dynamics. The ad-
vantage of ruling out from the design the Hurwitz matrix is
that, since we are limiting the dimension of to be ,
all the constructive algebraic conditions of Section II-C can be
used for the robust design regardless the number of subsystems
considered in the feedforward structure (36).

Remark 3.4: It is worth noting that claim b) in the previous
proposition yields a constructive result for design in all the cases
in which , solution of the Sylvester equation, does not de-
pend on the uncertain parameter . This for instance happens
in case the state matrix is not affected by and just the input
vector is uncertain or in case the uncertainties enter linearly in
the state matrix . In all the other cases in which depends
on , claim c) must be used to design the stabilizing robust con-
trol law.

Remark 3.5: Note that conditions c1) and c2) in claim c)
are automatically satisfied if we adopt the result proposed in
Theorem 1 for the design of the robust state feedback for the

2Uniform with respect to � not with respect to �.

pair . As a matter of fact, while c2) corresponds
to the transversality condition already present in Theorem 1,
the fact that is Hurwitz for all as
required by theorem implies that also is such
for all and . Furthermore, if the root locus
of is transversal to the imaginary axis for
also that of is such for all . From this
and Theorem 1 we conclude that c1) holds.

Proof (Prop. 3.2): We show that there exists a change of
coordinates of the form

such that the system in the new coordinates is block diagonal.
As a matter of fact let be any nonsingular matrix and choose

as

with solution of the Sylvester equation (40). The system
in the new coordinates reads as (from now on we drop for con-
venience the parameter )

From this, the fact that the pair is ANCBI (and specif-
ically that it is controllable) easily follows from controllability
of the original pair.

Choosing now

where

is the vector with the first state components in the new co-
ordinates, it turns out that the system is described by the series
connection of the system

(42)

with the system

where . Since is Hurwitz, the claim b) easily
follows from standard cascade arguments.

Claim c) is a bit more involved and can be proved as follows.
Under the feedback and after the change
of coordinates
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the overall system reads as the feedback interconnection of the
system

(43)

with the system

(44)

The idea is to prove that for a sufficiently small this feedback
interconnection satisfies a suitable “small gain” condition. To
this end, we first need to investigate the ISS features of both the
systems.

The subsystem (44), regarded as a nonlinear system with state
and exogenous inputs , and , can be easily shown, for

sufficiently small , to be uniformly ISS with linear gain inde-
pendent of and no restrictions on the inputs. To this regard, let

such that

and consider the candidate ISS-Lyapunov function
. Notice that is a continuous function of over

. Taking derivatives and keeping in mind the definition of
saturation function we get

where and are positive numbers not dependent on . Taking
it turns out that, for all

which represents a classical ISS dissipation inequality. Hence,
by continuity of and compactness of there exists
(independent of and ) such that

Moreover, note that, since is Hurwitz and by definition of
saturation function, there exists so that for any for all

the output corresponding to any solution satisfies

with sufficiently large (possibly depending on the initial con-
ditions but independent of and ).

As far as the subsystem (43) is concerned we claim that under
assumptions c1)–c2) there exist positive , and and a
function such that for all system
(43) is uniformly ISS with respect to the inputs with
linear asymptotic gain and restrictions on the
inputs (with and not dependent on ). Specifically

In fact, let and be as in assumption c1). By
applying the change of coordinates and using
assumption ) it is easy to see that (43) is uniformly ISS with
linear asymptotic gain and restrictions with
respect to the inputs . In view of this, our claim fol-
lows if the asymptotic linear gain of (41) can be bounded
as for all , where is a sufficiently
large real independent of . This problem amounts to study the
linear approximation of system (41) given by

and, in particular, the condition under which there exists a pos-
itive definite and symmetric matrix solution of the Lya-
punov equation

(45)

such that

for all (46)

As a matter of fact in such a case, considering the quadratic
candidate ISS Lyapunov function , it is possible
to obtain

which is a dissipation inequality yielding by some standard ma-
nipulations (i.e., completion of squares) the desired asymptotic
gain by choosing sufficiently large. Hence, our problem
reduces to study the existence of a satisfying (45) and (46).
The existence of such a matrix is a consequence of the “transver-
sality condition” expressed by the Proposition 8 reported in
Appendix C.

With all this in mind we can study the feedback interconnec-
tion of the systems (43), (44) by small gain arguments. To this
end, note that taking so that

it is easy to check that all the conditions of the small gain The-
orem 1 in [15] are fulfilled for . This and the fact that
the system can not have finite escape time in the interval
(since it behaves as a linear system driven by bounded inputs)
yield the result.

IV. EXAMPLE

Consider the four-dimensional uncertain system

(47)

where
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Fig. 2. Behavior of x(t), x (t) in case  = 2 and � = 0 (eigenvalues of A in f0; j2;�j2g).

collects higher order terms and

with and uncertain parameters ranging within the compact
sets and . A simple computation shows
that the pair is ANCBI for all possible values of and

in the given compact sets. In particular, it turns out that

• for the matrix presents three eigenvalues on
the imaginary axis at , ;

• for the matrix presents one stable eigen-
values at and two eigenvalues on the imagi-
nary axis at imaginary a ;

• for the matrix is Hurwitz.
The design of a (saturated) state feedback able to globally

asymptotically stabilize the previous system for all possible
values of and in the given compact sets can be achieved
following the steps presented in Section III-A.

We start from the bottom scalar subsystem with state for
which the good saturated linear controller

(48)

with any positive number, trivially yields ISS with respect to
the inputs for any possible value of , without restric-
tions on the initial state and nonzero restrictions (proportional
to ) on the input.

Then, we study the overall (four dimensional) system with the
preliminary feedback (48) using statement c) of Proposition 3.2
which claims that the design of a robust good saturated linear

controller for the linear approximation of such a system boils
down to that of the reduced ANCBI pair where
is defined as in Proposition 3.2 (with ,

, , ). In particular, choosing it
turns out that the spectrum of and are disjoint for all
possible values of the uncertain parameters in the given compact
sets and the Sylvester equation (40) have the following simple
solution which in turn yields

. Bearing in mind the discussion in Section II-C, we
now proceed to the design of the feedback
such that the conditions of Proposition 2.9 are fulfilled. A simple
computation shows that while the conditions reported in a) in
the proposition are automatically satisfied due to the fact that
the pair is ANCBI for all possible values
of the parameters, the conditions in b) specialize as

Furthermore, it turns out that a sufficient condition for having
the c) and d1) fulfilled is to set and namely,
for the specific pair

It is easy to check that a possible solution of the above sets of
inequalities is

for any positive . By virtue of the arguments in Section II-C the
matrix is Hurwitz for any .
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Fig. 3. Behavior of x(t), x (t) in case  = 2 and � = 1 (eigenvalues of A in f�1; jp3;�j
p
3g).

Therefore, application of theorem 1 implies ISS of system (41)
without restriction on the initial state and non zero restrictions
on the inputs for any . Notice that the transversality
condition is fulfilled in the present case. Hence, by Proposition
3.2 claim c), the system

is ISS for a sufficiently small value of without restriction on the
initial state, nonzero restrictions on the inputs and linear gains.
Combining all the previous results and running the forwarding
procedure described in Section III-A, it follows that the control
law

yields ISS for the system (47) without restriction on the initial
state and non zero restriction on the input if the design param-
eter is taken sufficiently small. In particular for the
control law achieves robust global asymptotic stability for all
possible values of the uncertain parameters in the given com-
pact sets.

We have simulated the closed-loop system fixing the non-
linear higher order terms in (47) as

and tuning the previous controller by choosing

In particular, while the value of is arbitrary, the value
of has been fixed by trial and error in order to get
rid of the higher order term as described in Sec-
tion III-A. The initial conditions of the system have been set
to and the closed-loop system has been
simulated with four different settings of the uncertain param-
eters within
the allowed range. Note that the four settings have been chosen
in order to have four completely different dynamics for the
linear approximation . In the first case (the associated state
behaviors are plotted in Fig. 2) is a neutrally stable matrix
with all the eigenvalues on the imaginary axis in .
Then in the second scenario (see Fig. 3) the two oscillatory
modes are shifted in and the pole at the origin is
moved in 1. In the third scenario (see Fig. 4) all the controlled
modes are in the left half plane ( Hurwitz) while in the last
case (see Fig. 5) the matrix is characterized by two strongly
oscillatory modes and one pole at the origin. It is
seen that in spite of all these so different uncontrolled modes
the feedback is able to achieve robust asymptotic stabilization.

V. CONCLUSION

In this paper, we addressed the issue of robust feedback de-
sign for uncertain linear and nonlinear systems subject to input
saturations. Our contribution is two-fold. A sufficient algebraic
condition for ISS of low-dimensional single-input ( 3) linear
systems with saturated linear state-feedback was derived, sim-
ilarly to the well-known Kalman conjecture. Then, the tech-
nique is recursively applied for stabilization of block-triangular
systems with possible uncertain higher order nonlinearities in
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Fig. 4. Behavior of x(t), x (t) in case  = 2 and � = 0:5 (A Hurwitz).

Fig. 5. Behavior of x(t), x (t) in case  = 10 and � = 0 (eigenvalues of A in f0; j10;�j10g).

feed-forward form. The paper is intended as a first contribution
in the field of robust saturated control which needs to be im-
proved in several directions. One possible extension is to look
for tight sufficient conditions which would allow treatment of

higher dimensional uncertain blocks. More in general it is still a
theoretically relevant question the determination of the class of
uncertain (even linear) systems which can be robustly stabilized
subject to arbitrary input constraints.
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APPENDIX

PROOF OF LEMMA 2.2

One direction of the implication is obvious. The converse im-
plication (namely 0-GAS plus UBND ISS) is well-known to
hold if ultimate boundedness is replaced by the asymptotic gain
property. Therefore, the lemma follows provided that we can
show the following implication:

By [1, Lemma 4.10], 0-GAS implies the existence of a smooth
function , positive definite and radially un-
bounded such that, along trajectories of the system we have

(49)

for some , , of class . Let us consider input signals with
. Then for any initial condition ,

for all sufficiently large. In particular, for all such ’s the
following holds:

(50)

Expression (50) is an ISS dissipation inequality and, therefore,
for all trajectories with there exists a asymptotic
gain , viz.

(51)

Combining (51) with the estimate (5) we have that the asymp-
totic gain property holds with any gain such that

for and for . This
concludes the proof of the lemma.

PROOF OF PROPOSITION 2.3

The system is clearly locally asymptotically stable. There-
fore, we only need to show global attractivity. Let be ar-
bitrary. By assumption there exists such that
for any . Let . We define the func-
tion as

(52)

Notice that, by continuity of , there exists such that
for all . Define and

consider the auxiliary system

(53)

Trajectories of (53) exists as is of class . Moreover, as
for all , we have . Notice

that (53) satisfies all the assumptions of the Kalman conjecture
(the interval is in fact a stability sector), therefore (53) is
GAS and hence so is (6) as .

In this section, we prove the ultimate boundedness of a 2 2
system and a 3 3 system. Here is simply assumed to be an

increasing globally Lipschitz saturation function. Set
. Note that is positive definite and unbounded with

a linear growth at infinity.
Lemma 1.1: Consider the control system

(54)

with . If and , then
has the ultimate boundedness property with restrictions on
and and no restrictions on .

Lemma 1.2: Consider the control system

(55)

with . If , then has the ultimate
boundedness property with restrictions on and and no re-
strictions on .

In the sequel, we will provide arguments for both lemmas in
the case where there is no external disturbance, i.e.,

. Once this is done, then the general case can easily be
deduced by adapting the proofs given below according to the
argument of [8, Lemma 2]. Therefore, for the rest of the paper,
we assume that .

A. Proof of Lemma 1.1

Let be a trajectory of at time . We
consider , with chosen later. Then,

is a positive–definite function, radially unbounded, is its
evaluation along at time and its time derivative along

. The result will result as a combination of the following
lemmas.

Lemma 1.3: With the previous notations, the system

(56)

is GAS if and only if and .
(Applying Lasalle’s with the Lyapunov function

immediately provides an argument for the previous
lemma.)

Lemma 1.4: With the previous notations, there exist positive
constants , , , , such that for every

and every so that , there exists
for which

(57)

and .
Assuming Lemma 1.4, let us first prove that there exists ,

such that

(58)



ANGELI et al.: ROBUST STABILIZATION VIA SATURATED FEEDBACK 2011

Note that this equation implies, first, that Lemma 1.1 holds true
for inputs with and, secondly, that trajectories
of are ultimately bounded by an universal constant
for inputs with . Moreover, there exists only
depending on the problem parameters and such that if

then . Next, note that there
exists a time such that , otherwise we
can build a sequence of time tending to and defined
by such that the corresponding sequence

, with , goes to . On the time interval
, is clearly bounded by . If

, we get that for and
. We iterate the construction until

gets smaller than . If , we take
to be the first time greater than for which

(if it ever happens). By the new definition of , we
also have . With playing now the
role of , we easily show inductively that for every , we
have . That concludes the proof of (58).

It remains to prove that Lemma 1.1 holds true for inputs
with . In fact, it is enough to prove the result for any
positive number smaller than (with a possibly different
bound ). We intend next to show the existence of such
a .

Since is GAS, it admits a strict Lyapunov function .
By computing the time derivative of along trajectories of

and by taking into account (58), we get that is in
fact ISS for inputs with . It implies that, for small
inputs , the dynamics of is asymptotically a perturba-
tion of the linearized system at (0,0) and, therefore, Lemma 1.1
holds true for small inputs . The proof of Lemma 1.1 is now
complete.

B. Proof of Lemma 1.4

Fix such that and set
and . Thanks to the first observa-

tion given before, (57) will follow from

(59)

and . We have, for

(60)

where . By using property
(ii) of the saturation (applied to ) and taking
into account that , we can get rid of the term

with an appropriate choice of . Equation (60) yields

(61)

for some constants , (not necessarily positive). Writing the
system (12) in polar coordinates, we get

(62)

Equation (61) can be written

(63)

Note that there exists such that for

It is then clear that there exists and
for which and

. Set and . Then we also have

Reparameterizing by the angle (assuming also
that ) we can rewrite (63) as

(64)

since is of the magnitude .
Note also that and we will assume it
bounded by . After integrating (64) between and ,
it is clear that Lemma 1.4 will follow if the integral defined by

(65)

is bounded by for some positive constant . Indeed,
note that

We write with

and this last integral can be written

where , are disturbances bounded by .
We first cut the interval in the four intervals

, , then we rearrange



2012 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 12, DECEMBER 2005

the four integrals in such a way that performing the change of
variable , we get

(66)

where and are disturbances bounded by . Thanks to the
fact that is increasing, we have, for

We deduce that

For , we cut using as many intervals
contained in it plus the last one of the form . On each
of them we proceed as done previously and we deduce for a
similar estimate as the one obtained for . This ends the proof
of Lemma 1.4.

C. Proof of Lemma 1.2

We rewrite the system (55) in coordinates
, with . We have

(67)

Moreover, we have , and .
Consider the Lyapunov function

Let be the time derivative of along (67). Then

(68)
It follows immediately from (68) that the undisturbed system

associated to is GAS. Following the same lines of the
proof Lemma 1.1, we get that an argument for Lemma 1.2 re-
duces to obtain the following: there exists , such that
if, , then

(69)

The rest of the paragraph is devoted to the proof of (69).

We assume that

where .
We will prove the existence of , , , such

that for every with , there exists
with

(70)

It is easy to deduce (69) from (70): reasoning by contradiction
as in the proof of Lemma 1.1 above, we have that there exists

such that . If is the first time for
which , then by applying (70),

and

Now plays the role of . This shows (69).
Let us prove (70). Set and,

for , . It is enough to prove
the result for . We may then assume that

. Note that . Therefore, the first part of (70)
will follow if to be determined is also bounded by some
constant independent of .

Along with (67), let us consider the dynamics of
written in polar coordinates. We get

(71)

(72)

Note that . First assume that for some
positive . For an appropriate choice of (only de-
pending on ), , , we have . For ,
we have

Then . Then (70)
follows. Note that is independent of .

Next we suppose that . Set .
With no loss of generality, we assume . Define
such that . Set . It is clear that

. We reparameterize all the dynamics of
by the angle . Then, for , an
easy computation shows that

(73)
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where is a constant independent of , , . Equation
(73) implies that, for ,

(74)

The integration of (68) over amounts to consider
the two following integrals:

(75)

Let . The
Lebesgue measure is less than since

. Taking into account (75) and
the previous remark, we deduce that there exists such
that

(76)

where is the integral over of a bounded function.
Note that the function appearing in (76) actually stands for the
disturbance of (75) plus some bounded functions coming from
(74). We still assume bounded by . We are then left with the
estimation of

and

We start with since its majoration is almost identical to the
one of the integral defined in (65). The only difference lies in
the fact that for , we reach the inequality ,
where

with . Performing in each the change of variable
, we end up with , with

only dependent on the constants appearing in (67).
As for , it is easy to see that , with
only dependent on the constants appearing in (67). Note that

, for some positive constant .
Gathering all the estimates, we have

with and positive constants depending only the constants
appearing in (67). We can then adjust which is a lower bound
for to obtain (70).

Proposition 1.5: Let be neutrally stable and
Hurwitz for all . If the root locus of is
transversal to the imaginary axis for then there exists

such that for sufficiently small

(77)

and

for some not dependent on .
Proof: Consider the explicit solution of (77) given by

(78)

Our goal is to show that (78) is bounded for sufficiently small.
To this end suppose that has eigenvalues on the imaginary
axis and eigenvalues with negative real parts. Since
is neutrally stable (namely its eigenvalues with zero real part
are simple), there exists such that for all

with and . As for all
, , for and ,

, are uniformly bounded (since is Hurwitz
and is neutrally stable), it turns out that (78) is bounded for
all provided that

is bounded

Indeed this is true if

which is equivalent to the fact that the root locus of
is trasversal to the imaginary axis for . This completes the
proof of the result.
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