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Time-Varying High-Gain Observers for Numerical observer (1), not only for differentiating the signal but also for
Differentiation stabilization applications as considered, for instance, in [5], [11],
or [1]. This note is divided into four sections. Section |l treats the
Yacine Chitour dynamics relative to the peaking issue and, in particular, we show

that the differentiator introduced in [8] is a no-peaking observer, in
] ] ] ] ) ) the sense of [10]. More precisely, the estimation error associated
Abstract—in this note, we propose high-gain numerical differentiators 1, yha aforementioned differentiator does not exhibit an unbounded
for estimating the higher derivatives of a given signal. We consider time- . L . . . .
varying high-gain vectors converging exponentially to the high-gain vec- overshoot in the first instants of the simulation. Section Il is devoted
tors introduced by Esfandiari and Khalil in an earlier paper. The dynamics  to the filtering issue in the continuous-time case and the discrete-time
of these time-varying high-gain vectors can be chosen in order to achieve case. We show that the proposed differentiator filters the assigned

specific Obj.eCti‘(’j‘?S' SECh as peaking a}tenuatior? a”dh'owﬁensm"ity Wilﬂ(‘j_;e' signaly. SectionlV gathers concluding remarks. The main technical
spect to noise disturbance. In particular, we show that the numerical dif- i : .
ferentiator introduced in an earlier paper avoids the peaking phenomenon proofs are collected in the Appendix .

in the sense of Sussmann and Kokotovic, i.e., there is no unbounded over-

shoot of the error estimate during the initial times. We also propose another 1. PEAKING
numer_ical differentia_tor which filters the reference signal with respect to a def _ - .
very simple quadratic cost. Fory > 0,letA, = A+ (v/2)Id,.Fora = (a1,...,an)" €R
Index Terms—Filtering, numerical differentiation, time-varying linear andl <k < n, Pan/(s)dgsn +Z:l:1 st = H:l:l (s +78i),
systems. with ax = Y Bi.....0,. Set3< (3.....3,)" € R" and
fBm = mini<i<n Re(Bi). Then P, ,(s) is the characteristic

polynomial of A(«, v) and it is Hurwitz fory > 0 if and only if
B > 0.f M € M,(R)and B € M,xn(R), Pu(s) stands
Inthe last few years, estimation of the output derivatives has rapidtyr the characteristic polynomial o¥/ and R(3, B) for the con-
increased in importance in control and observation theory; see, for trollability matrix [B, M B, ..., M" "' B] of the pair (/. B). We
stance, [1]-[5], [7]-[9], and the references therein. This note isthe ouse M > 0 (> 0, respectively) to denote that/ is symmetric
growth of new results in estimation and filtering of the higher derivgpositive—definite (symmetric semipositive, respectively). Let,
tives of any given signal with some norm-bounded derivative. Our agnd(c; )1 <;<.. be, respectively, the identity matrix and the canonical
proach follows the seminal work of Esfandiari and Khalil [5]. Theyasis ofR", respectively. IfAf > B > 0, then0 < M~' < B~',

. INTRODUCTION

introduced a high-gain continuous differentiator as the followirdj-  Define K (y) = diag(1/+,1/+%,...,1/+™). We have the following
mensional dynamical system: relations K (7)AK ()™ = ~A, K(y)tATK(y) = ~AT,
K()™'CTCK(y)~" =+*C"C.

i=Ar+ H(o,v)(y — Cx) (1) The following matrix ordinary differential equation (ODE)

was introduced in [6] for observation purposes and in [8]
where in a more general settingi = -AYL — LA, + C"C,
) A= (8 ;_i)icijenandC=(1 0 0 --- 0); L(0) = Id,. Note thatP,A,((s) = P_Ag;(s) = (s + v/2)".
i) y: Rt — Ris the signal to differentiate anf)(™||o. < oo; Fort > 0, we haveL(~,t) = e~ AT = AL | S(+,t), where

i) H(o.7) = (a:7'){<;c, with ¥ > 0 and the polynomial (1) 1 .=27c=477 (T o= 747 SetS(+)"Y $(1.1). We have
P, (s)défsn + 3" a;s" s Hurwitz. ,
We call EK-vector a vector H (a, v) as defined in iii). Esfandiari LHJEQ L(7:t) =Leo(7)
and Khalil showed, among numerous important results, that for [ AT AT —ar
signalsy subject to ii), the trajectory: of (1) is an estimator of _/D e ¢ " Ce dr

(yoiy.. oy T if v > 0 is large enough. That property (—1)HiCim!
can be interpreted as follows: there exists a positive function = (%) >0
7(~) such thatlim,—.,7(y) = 0 and for; = 0,...,n — 1, r 1<i j<n

limy oo SUPy> ) [2j41(t) — 9 (#)] = 0. In this note, we propose
two types of differentiators, addressing the issues of peaking and
fllterln_g by con§trugtlng dynamical system_s of ordewhich estimate Notice thatL (v) = 7K (1) LK (+), WhereLxdéfLoo(l). More-
the higher derivatives of a measured sigpét) up to the order overL..(v) > 0 since C AT, CT) is a controllable pair. Define
n — 1. The idea followed in this note and first considered in [8] is ‘j’q? ] T pair.

rather simple: we still consider high-gain continuous differentiatol® (7>1) = L™~ (7.¢). Then

of the typei = Aw + H(t,«,v)(y — Cz) where, instead of being
an EK-vector,H (t,«, y) is now a time-dependent vector with the
constraint thatf (¢, «, v) converges exponentially fast at infinity to _ , _ N

some EK-vectorH (o, v). The whole point consists in choosing theFor y large enoughL(y,0) = Idn > Loo(y). By standard

dynamics ofH (¢, o, 7). The convergence off (¢, «, ) to its steady a}rguments, one had'(y,) > 0 fort > 0, is increasing and

L(7.t) = Loc(y) = e " (Idy — Loo(7)) e .

N=A N+ NAL - NC'CN, N(0) = Id,. 2)

) : ;0o N(7,t) = Lz}(v). Passing to the limit in (2) leads
state has to be fast enough in order to preserve the properties Oft%oheL; ((=AT — AId)Le(y) = A — LZ(4)CTC. It
implies that —A” — ~Id, and A — LZ'(7)CTC are similar
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Let « = (@1,....an)T be an EK-vector. If Moreover, we want®d) to be the optimal trajectory of the following
D" diag((a1 /CL). ..., (@ /C™M)), thenlim—.o DaN (v, t)C?  quadratic cost minimization problem:
= H(a,v). We are now able to define a differential systef) ( - .
as follows: min [ v'Q 'v+ (y— Cz)’ subjecttor = Az +v  (7)
i =Ax+ D N(v.t)CT (y — Cx) (8) forsomeR > 0 to be determined. The solution of this Kalman filtering
. ; i i 7 — A7 P T (7 _ 7 7 —
N(7.t) =7N + AN (1,1) + N(.) AT = NCTON (7. 1) problem is given b)_(dl/dt) = Ar —|—.P(t)0. (¥ — Cz),%(0) = 0,
. where ’(t) is solution of the Riccati equatioff = AP + PA" —
N(0) =Idn. @) pcTer+0, P(0) = 0. Since @, C) is observableP(t) admits a

] ) ) _limit P, > 0 ast — oo satisfying
For D, = Id,, (P) was already introduced in [8] as a numerical dif-

ferentiator. We next show thaP) defined in (3) indeed defines a con- AP + P.oAT — P.CTCP. +Q =0. (8)

tinuous differentiator which converges exponentially fast to (1). Let

Y(t) = (y.y'....,y" )7 defined for a signal subject to ii). We In order for (Od) to be a differentiator, we necessarily require that

have the following. P..C" is an EK-vectorH («, ). Therefore, we are left with the

Theorem 1: There exisC, > 0 and an integeg > 0 such that for choice of@ > 0 such thatP.. 7T = H(a,~). Since this is an

t >ty := q(ln(vy)/v) under-determined problem, we look for a diagonal matrix solution
Q = diag(qi,...,qn) (or equivalently a vectog = (¢i,....qn)").
We must then solve the following algebraic problémP).: for a

%> ©) given EK-vectorH (o, ), find a vectorq = (gqi,...,¢,)" with
positive coordinates such that, it > 0 is the solution of (8), then

The numerical differentiator considered in (3) attenuates the peakifigC' = H(«,7). Itis clear that there is at most one solution for

phenomenon occuring for small time with (1) because we can chodsel”). and, as shown below, there indeed exists oneshtisfies the

the EK-gain vector at the origin small (independent)snd, therefore, condition (') given next:Re(37) > 0 for 1 < i < n where the-73;’s

[|l:(0)]| is small. This intuitive remark translates rigorously as followsare the roots of’..;. We get the following.

in the case wher®,, = Id,,, the corresponding differentiator does not Theorem 3: Let H («, v) be an EK-vector. The(AP). has a so-

exhibit any peaking phenomenon. We indeed show the following. Iution if and only if H (. +*) has positive coordinates, wheifie =

sup [la(t) = V£)| < = (
>t Y

a(ty) — ]}(tw)” + Hy(n)

Theorem 2: Let Do, = Id,. There exisCy. C» > 0 independent (@1.....d,)" verifiesa;, = Y87, ...87, forl < i < n.In

of v (large enough) such that foer> 0 and1 < i < n this caseg = H(a,~?). If condition () holds, thenH (&, 1) is an
EK-vector and AP). has a solution.

; (ie1) Ol”y(n)”oo Remark 2: The continuous differentiatar filters y — Cz, i.e., if

i) =y O] <= 5= w™y — 5, we have F) |7 — Cz|l» < Ko + K ||w|)2, with Ko, K,

independent ofy andw. The proof of ) is deferred to Appendix .
_ Remark 3: There are examples for which: whefiYdoes not hold,
. (IIJ?(U) —Y(0)]| + Iy IIOO) . (6) ¢ still has positive coordinates and when the algebraic proflém)..
does not have a solution, there is still sogge> 0 (not diagonal)
The proofs of both theorems are given in the Appendix . Similar réuch that (8) holds. Therefore, consideriag (nay seem arbitrary and
sults are possible on finite-time intervals by replacihg™ ||. by restrictive but, checking it is trivial when the roots associated tre
SUP¢elo,4 ly™ ). available. In addition, if() holds, the solutior) given in Theorem 3

Remark 1: From (5) and (6), it is clear that the peaking phenomis characterized in a very simple way.
enon is attenuatednly in the initial times of the estimation. In prac- Remark 4: The dynamics ofz and P define a continuous
tical situations, additional perturbations may occur at any time. Thei@fferentiator satisfying (6). The argument is identical to the
fore, peaking may as well appear after the first instants. This is thee given in the proof of Theorem 2. Both differentiators
reason why, even though (4) can be implemented offline, the schemelgiven in (3)] and z can be written as dynamical systems
for peaking prevention proposed in this note is not as suitable for coh= Ax + R(t)C" (y — Cx), whereR(t) > 0 satisfies an estimate
trol applications as those that guarantee a time-invariant cure of ®fethe type||R(t) — Re|| < Co min(1, 4?71 + "7 H2e 7Y,
peaking phenomenon (cf. [5], [1], and [9]). Indeed, a numerical studkplid for all > 0, with C; independent of, v and R..C" equal to
using our scheme was performed on the first numerical example in [$pme EK-vecto# («, 7). Moreover, there is a quadratic time-varying
Our results are worse (w.r.t. the peaking phenomenon) than those gilagapunov function for the systeth = (4 — R(t)C" C)x + u given
in [1]. However, if one wants a differentiator for theoretical purpose®y V (z.t) = =’ R™'(t)x. Therefore, a high-gain observer almost
(for instance, [11]), then (3) and (4) can be a possible alternative sirigentical to the one defined in [1] can be built as follows: replace
those differentiators are more “linear” than one with a saturation atfgeir observer gair (which is the EK-vector of [5]), defined in [1,
their stability (as dynamical systems) is robust (cf. Remark 4 for ti&sl. (9)], by R(#)C". Then, all their results with exactly the same
existence of appropriate quadratic Lyapunov functions). arguments provided in [1] can be recovered with this new observer.
The advantage of our approach lies in the fact that the saturation
procedure can be skipped but regarding observation applications the
high-gain observer of [1] is definitely more efficient for the reasons
A. The Continuous Case already given in Remark 1.

In general, the signal appearing in (1) is equal ®+ w, wherey is
the reference signal we want to differentiate ani$ a white noise. We
still would like to differentiatey and to limit the effect ofw. For that In practical situations, the observation process is monitored only at
purpose, we again consider the ODBd) & = Az + H(t)(y§ — Cx). discrete time. The system from which such observations are taken can
Of course, we require thdf (¢) tends to an EK-vector when— oo. either be continuous-time or discrete-time, but it is usual to treat the

+C"2 min (1, 727171 eXp(—'yt) (1 + t?m 72))

Ill. FILTERING THE REFERENCESIGNAL

B. Filtering in the Discrete Case
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estimation problem of the output derivative as being a discrete-timesaturation (used in [1], [2], and [5]) or the projection method [9].
problem. In this case, we think about the construction of a discrete pl&@ur approach has then to be viewed as an alternative to the aforemen-
playing the role of the derivative estimator. Here we return back to ttiened techniques to overcome the peaking phenomenon, better suited
classical theory of the discrete-time Kalman—Bucy filter and show thdity theoretical applications rather than practical ones. This is partic-
for a particular discretization scheme, we can adapt and choose pralarly the case for [11] where the use of our differentiator simplifies
erly the weight matrices appearing in the discrete Riccati equationtte argument. The second part of this note addresses the issue of noise
force the discrete dynamics of the filter to be an asymptotic differedisturbance. The differentiator we propose filters the reference signal
tiator. while estimating the higher derivatives. In particular, if we assign neg-
We discretize the performance index given by (7) and use a Euler digive-real roots to the steady-state feedback, the associated quadratic
cretization for the constrairit= Ax+v. We useS > 0 asthe sampling cost to be minimized has a very simple expression. Even though the
parameter. We are then led to consider the discrete-time Kalman—Buddferentiator attenuates the peaking phenomenon [compared to (1)], it

filter given by does not eliminate it.
zpt1 =Aser + Ki(yp — Cag) APPENDIX
e o —1
Ky = (‘4511,01) (C’PkCl n 1)

A. Proof of Theorem 1

In this paragraph, we assumelarge enough (i.e., Iarger than a
constant onIy depending on). SetA(a, v) “A- D, Lt (y)cTe

Piy1 =As P AY — K, (CPkCT + 1) K{ + Qs~ 9)

whereds = I 4 6A, K, = AsP.CT(CP.CT + 1)1, We know

that if Qs > 0, thenlimp—. P, = P, limy_o. Kp = K = and —X(a) = —X(a 1). We have K (7)A(a, VK (7)™t = ~vA(«).
AsPCT(CPCT 4+ 1)~ such thatds — KC is discrete-Hurwitz and Let n(s)= K () [ z(t) — Y(z‘)), where s = ~t. Note that
P is the unique definite—positive matrix solution of A— D L CTC = A(e). We havédy/ds) = A(a)y + g(s)n —
—1
P=AsPA] - K (CPCT n 1) K™ + Qs 10) (¥ /4" e, where g(s)< D, L3> <Idn + G(s)) G(s)
LY with G(s) > 0 given by G(s) = Lx/%e "+
Note that o S 1/ <
(K(9)™%/v) — LZe "*LZ?. For someC, > 0 inde-
As — KC =K (+) " (Asy — vH(a, NCT)K(4) pendent ofy ands > 0, ||G(s)|| glCm’Z"”(l + 5" 1%, Since
=K(7) ' (Idn + 67A(0)) K (7). G(s) > 0, then <Idn + G(s)) G(s) > 0. Therefore, for every

—1
whereA(a) # A(a,1). Then,As — KC is discrete-Hurwitz if and » € R", T(Id + G(s )) G(s)z < min(zTz, 2TG(s)x)
only if, for every eigenvalues; of P, [1 — 84| < 1, 1.€.,8y < since, for everyz € R", (z/14+2) < min(l,z). Then
28, /8. As in the previous section, we are left with an algebralﬁ By < Comin(1, 42" (1 + 971_71)2(,73) Consider
problem(AP); namely, find a diagonal matrigs - > 0 such that the Vig) = w7 p 0 where}?* is the soglution 6f tHe LvanuNov
lution of (10) verifiesk’ = As PC" (CPC" +1)"" = 6H (v, 7) o= : -, yap
soi g . b 7 equation associated (). LetV = (d/dt)V(n(t)). Then
whereH («, ) is some fixed EK-vector.
We use p; and p;, resp. to denote thejth column _ ‘
vector and the I(m)th coefiicient of P resp. We V < —<Co -1 min(l,vznfl(l—i—s'l’l)ze’s))V
have  (p1/14 p11) = 8AT (iv)i<i<n.  Since (o
AL = 3 (—8)™A™, we get, forl < [ < n, that SN [ES V2

n+1
= (=1 > ai(=6v)/8 ! <1 +>0, m(—b"y’)Z). We have K
1+ pn = /1430, ai(=69)) = (/IT,d - 8v8:)). where C; > 0 are independent ofy. Setting g(s,u)
Since P > 0 implies thatp;; > 0, we necessarily have := [’ <Oo — Cymin(1, "1+ €77 1)2e™8) | de, we rewrite the
IT—, (1 = é~8:) < 1. Thisis the case if verifieséy < 3. /8.

Remark 5: The previous equation implies that the discretization pa-
rameters and the high-gain cannot be chosen independently for this
discrete filter to operate. In other words, the better one wants ap-
proximatey, and its derivativesl(/~ small), the finer one has to mesh
the interval of observation. Even though natural, this fact appears Ba

revious equation & < —(3g/ds)V + Ca(|ly™ [|o /" V2.
sing Gronwall's lemma, we deduce thai’(s)'/? <
2([ly oo /7" F") fy (172 d¢), leading to (5).

Proof of Theorem 2

drawback for our filtering scheme in the discrete case. We do not havd et » = 2 — f’./ Then, the dynamics of is 2 = (4 —
a general explicit formula fo)s ., but we can show that N(y.t)cTC)z: — y™e¢,. Define ¢ as the fundamental so-

Theorem 4: Assume thaty = (C},){<,<,,, i.e., all the roots o,  Iution associated toA — N(v,6)C*C, ie., (96/0t) =

are equal to one and that < 1. Then, the matrix()s , solution of (A4 — N(v,t CTC)é ¢(t,t) = Id,. Then, we have:(t) =
(AP), is given byQs., = diag <C:z527”2i/(1 — sy . o(t,0)z(0) + j;J y ")(s o(t,s)cnds. An epr|C|t expression for

1<i<n 6 is (t,s) = N(y.t)e 7t Yl dtA™ VL(~.s). This

simply follows from the fact that)(¢, s)dé’fL(q/,t)@(t, s) satisfies

IV. CONCLUSION (9 /0t) = —(yId, + AT)¢. Then, for0 < s,t, we have

In this note, we first proved that the numerical differentiator intro-
duced in [8] does not exhibit the peaking phenomenon, i.e., there is no o(t,s) =e™ (Id, + M(7,t)) " (Idy + M(7,5))e” "
unbounded overshoot in the initial times. However, there is no time-in- .~~~ o ATr AT 4 Ar
variant cure of the peaking phenomenon in contrast with the use ofW'th M(v.1) :/0 e’me” TCT Cedr (1)
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Then, ¢(t,0) = et (Idn+ﬂ:f(~/,_t))*1. We haveM(~,t) = SinceW,5,M > 0fort > 0andS(X) < L. for X > 0,
YE(y)M(t)K(v), where M(H)= M(1,t). Rewrite z(t) = we get||[W(s)™'[| < (Co/y)e’(1+ s™7"). For0 < s < X,
21(t) + z2(t), where (W(X —s)+S(X —s)+ M(s))™" < W™'(X — ). Therefore,

, R(X) is bounded above independentlyofor X < (1/2)1u(v). For
e " T o) N —As g X > (1/2)1In(7), the third equation shown at the bottom of the page
z1(t) = t z b ndc -~
(B =4 ’0)< (0)+/0 y e e 5) holds. ForX > (1/2)In(+)
-t
Z2(t) :@'(f,o)/ y " ()M (v, s)e M ends. (12) [|[(W(X =)+ S(X —s)+ M(s) ™" < |M ™ (s)]| < Coe™*/?
0

sinceM (s) > Coe*/?. Then,R(X) is bounded above independently

) _ ATt — At ’ _ ;
Fort > 0, we haVGS(?/',t) =€ i A[(’),t)@ . ThenS('),t) = of ~. For1 <i<mn, ”(22)1”90 < (Co/vnﬂﬂ)Ily(”)IIm and The-

def -

YE(v)S(vt) K (v), whereS(t) = S(1,t). Fort > 0 andx € R", we  orem 2 follows.
haver” (Id, + M(~.t))™" ¢ < min(z’ z, 2" M(~,t) ). There-
fore, there exist€’y > 0 independent of, such that for every > 0 C. Proof of Theorem 3

we have

Proof:
We use pr. and pi, respectively, to denote théth column

/ . 2n—1 ) n—142
162, 0)] < Co min (1, y exp(=yH)(1+#7)7). (13) vector and the I(k)-th coefficient of P.,, respectively. Note

From (12) and (13) that Ac; = ¢ and AT¢; = ¢;11 with the convention that

¢i = 0ifi < 1ori > n. Multplying (8) on the right by

|z1(8)]] € Comin(1,7v** " exp(—~t)(1 4+ > %)) c;, We getp;r1 = —Ap; + (P{PL) — gici, which implies that

To

T
6A

75 (S1(7.8) + S(7.5) + M(v,t — s))e™  where Si(v.s) SincePs > 0,bytaking|l — k| =1andl+k -1 = 2m, we obtain,
def

(HZ(O)H + ”y(“)”x) Pk = (—A)k71p1 + Zf;ll(—fl)kilj (pj.,lpl - qu]) We then haVe
P = (—1)k71pl+k—1,1 + Zf;l(—1)k717J(Pj1PI+k—1—.iJ -
estimate z, remark that Id, + M(v,t)= ¢idirk—1-4;). Setpy = 0forl, k > n above angpy; = oy = 1.

2m

e~A75c=4+2 Therefore, the first equation shown at the bottom dP' 1 < 7 < 7, gm = (=1)™ 3 5%, pam—j1p,1. Finally, by com-

the page holds true. Changing the integration time ~(¢ — ) and paring the expressions listed in the fourth equation shown at the bottom

setting X ¢, y..(s) = y™(s/7), we have (14), as shown at the
bottom of the page, with (s) =/ 1 /ve 41 * K () 2¢ 1%, Let

R(X)

of the page, we conclude that, = " > 3%, ... 3%, = 7" Gm.
Conversely, if¢ = H(&,+*) = K(v)H(a,1)K(v) has pos-
itive coordinates, we must show th&CT = H(«,~) where
def P > 0 is the solution of the Riccati (8). Let be the polynomial
- defiqelol_bpr(X?t (: )i" +P%;LT:5(Z_“C;)@/:*;. Tgis ﬁ)_o:(y-
AT (X — )4 S(X — 814+ M(s))~' S(X — 5)||ds. NOmial is Hurwitz (sinceA — PC"C' is Hurwitz) and satisfies
/U o™ (WX = 9) £ S(X = 9) + M) S(X = 9)llds. ) 5y = Py (X)Pao(—X). Thenyp = Py, which implies

-t
2(t) = / " (5)e T (S1(7,5) + S(v.5) + M(5.t = 5)) 7" S(5, 5)ends.

(-1 X
22(t) = — 35— / Y (X = 5)e™/ T (W(X = 5) + S(X — 5) + M(s)) ' S(X — s)cnds (14)
Y 0

-X
R(X)=R <% 111(’7’)) + / e (W(X = 5)+ S(X — 5) + M(s)) ' S(X — s)|| ds.
1/21n(7)

e (Ear ) (S )
k=0 k=0
Po(X)Pa(=X) = § (1) T (X* = 57),
(-=n" ﬁ:(_l)k&k){?(nfk)

k=0
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that PCT = H(w,~). Finally, if « satisfies conditiond), then the
¢;'s are positive and that finishes the proof.

D. Proof of ()

6~. To show they are equal, we must establish the equality of their
coefficients, i.e.,fob < s <n —m

>

s<k<n—m

(=1)°CyCr_ = (=nFerrhert ey + ¢y

It The constraint (7) becomesi-€., for0 < s <m <n

(CC): (~1)°Cr ey, =

We rescale the quadratic cost-minimization problem with
z = K(y)x and s =
min  [u"Q7'u + (§ — C/.) subject toz = Az + w,
where v« = (1/9)K(7)v, = K(v)QK(y) with @ =
diag(H (&, 7)), ie, @ = diag(H(a,1)) (independent

of v) and g(s) = (1/4)y(t). Then, the differentiatorz

is transformed to(dz/ds) = Az + P(s)C"(5 — C=z),
2(0) = 0 and (dP/ds) = AP + PAY — PC*CP + Q,
P(0) = 0, where P(s) = ~K(v)P(t)K(~v). We also get

AP, + Ps, AT—P CTCP +Q =0andP.C" = H(a,1).

Setz(s) = K(v)z (t) anduy(s) = (1/v)K(y)w(t). We have
lg—Czll < g — (=229 = C=ll2 = 17 = CZl
and||z — z||z < Sl iti

[|1Z]l2 < K1||g]|2- Then, ¢) follows at once.

E. Proof of Theorem 4
We follow the lines of the proof of Theorem 3. Singdg ' and 4

commute, fol) < j < n —1,pj11 = —A;  Ap; — (¢;/6)A; Tej +
ary’p1. Then
k—1 k—1 ”
pk:ZD(—A )T AR Y pl—l—zl — AT gk, ¢j ;
i= j

forl<k<nand forl <l,k<n

k—1

=Y Y (DT O g b e

j=0 s>k—2—j
= aj
k—j 25 —l—k+1 ~k—1
+ D (D (O
j=1

For everyl < m < n, considem,,, .+ andp,u+i,m,. SinceP > 0,
we have

= Z Z (_1)]'plﬂn+s+j(_5)364'3*1@7“_],}/77’1*]'
J=0s>j=1
303 (1 primper s (—8)°C Py (15)
=1 s>5—2

Assume now that and~ verlfy the hypothesis of Theorem 4. We get

pu=((=D'EL, CL(=87))/(8'"1 (1= 67)"), and
62,\,27”
— !
"= Ty
x| > epi=ntarttertTi e + Cisn | . (16)
0<s<k<n—m

2
We want to show that the expression between brackets in (16) is equa[l !
to C7*(1 — 6~)"~™. Both quantities are polynomials in the variable

Y ntarttorTti e + cio

0<s<k<m

Let L(n,m,s) andR(n,m, s) be the left- and right-hand side, respec-
tively, of (C'C). TheL(n,m, s)’s satisfy the following recurrence re-
lation:
Lin+1,m,s)=L(n,m,s)+L(n,m—1,s)— L(n,m—1,s—1).

17)
Therefore, using an induction argument, the proof@Gf’() reduces
in showing thatR(n, m, s) satisfies the recurrence relation defined in
(17). We first consideR(n,m — 1,5 — 1). SinceC; ™' + C;~| =
Ciyr +CF — (G + Cf—y), and

2

s—=1<k<m—1

(_1)k+l (CZ l+ck 1)Cm k— 1C:Ln—s+k:

> =1

s<k<m

+ CI.—1 ) Cm kC:’zfsﬁ»kfl

we rewriteR(n, m,s) + R(n,m —1,s) — R(n,m — 1,s — 1) as the
equation shown at the bottom of the page. The term between brackets
is equal to

Cun k(cm :.+k+Crn s+k— l)
+C:Ln—k—l(c:ln—s+k—l +C:Ln—s+k)

then simplified to ¢ *Cm7

+ C’7r7’17k710;n+_18+k —
crokers Tt Therefore

R(n,m,s)+R(n,m—1,s) — R(n,m — 1,5 — 1)
DI e (et e leiiwilehiman

s<k<m

=R(n+1,m,s).
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