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Time-Varying High-Gain Observers for Numerical
Differentiation

Yacine Chitour

Abstract—In this note, we propose high-gain numerical differentiators
for estimating the higher derivatives of a given signal. We consider time-
varying high-gain vectors converging exponentially to the high-gain vec-
tors introduced by Esfandiari and Khalil in an earlier paper. The dynamics
of these time-varying high-gain vectors can be chosen in order to achieve
specific objectives, such as peaking attenuation and low sensitivity with re-
spect to noise disturbance. In particular, we show that the numerical dif-
ferentiator introduced in an earlier paper avoids the peaking phenomenon
in the sense of Sussmann and Kokotovic, i.e., there is no unbounded over-
shoot of the error estimate during the initial times. We also propose another
numerical differentiator which filters the reference signal with respect to a
very simple quadratic cost.

Index Terms—Filtering, numerical differentiation, time-varying linear
systems.

I. INTRODUCTION

In the last few years, estimation of the output derivatives has rapidly
increased in importance in control and observation theory; see, for in-
stance, [1]–[5], [7]–[9], and the references therein. This note is the out-
growth of new results in estimation and filtering of the higher deriva-
tives of any given signal with some norm-bounded derivative. Our ap-
proach follows the seminal work of Esfandiari and Khalil [5]. They
introduced a high-gain continuous differentiator as the followingn-di-
mensional dynamical system:

_x = Ax +H(�; )(y � Cx) (1)

where

i) A = (�i; j�1)1�i;j�n andC = (1 0 0 � � � 0 );
ii) y: + ! is the signal to differentiate andky(n)k1 <1;

iii) H(�; ) = (�i
i )T1�i�n with  > 0 and the polynomial

P�(s)
def
= sn + n

i=1 �is
n�i is Hurwitz.

We call EK-vector a vectorH(�; ) as defined in iii). Esfandiari
and Khalil showed, among numerous important results, that for
signalsy subject to ii), the trajectoryx of (1) is an estimator of
(y; _y; . . . ; y(n�1))T , if  > 0 is large enough. That property
can be interpreted as follows: there exists a positive function
� () such thatlim!1 � () = 0 and for j = 0; . . . ; n � 1,
lim!1 supt��() jxj+1(t)� y(j)(t)j = 0. In this note, we propose
two types of differentiators, addressing the issues of peaking and
filtering by constructing dynamical systems of ordern which estimate
the higher derivatives of a measured signaly(t) up to the order
n � 1. The idea followed in this note and first considered in [8] is
rather simple: we still consider high-gain continuous differentiators
of the type _x = Ax + H(t; �; )(y � Cx) where, instead of being
an EK-vector,H(t; �; ) is now a time-dependent vector with the
constraint thatH(t; �; ) converges exponentially fast at infinity to
some EK-vectorH(�; ). The whole point consists in choosing the
dynamics ofH(t; �; ). The convergence ofH(t; �; ) to its steady
state has to be fast enough in order to preserve the properties of the
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observer (1), not only for differentiating the signaly, but also for
stabilization applications as considered, for instance, in [5], [11],
or [1]. This note is divided into four sections. Section II treats the
dynamics relative to the peaking issue and, in particular, we show
that the differentiator introduced in [8] is a no-peaking observer, in
the sense of [10]. More precisely, the estimation error associated
to the aforementioned differentiator does not exhibit an unbounded
overshoot in the first instants of the simulation. Section III is devoted
to the filtering issue in the continuous-time case and the discrete-time
case. We show that the proposed differentiator filters the assigned
signaly. SectionIV gathers concluding remarks. The main technical
proofs are collected in the Appendix .

II. PEAKING

For > 0, letA
def
= A+(=2)Idn. For� = (�1; . . . ; �n)

T 2 n

and1 � k � n,P�;(s)
def
= sn+ n

i=1 �i
isn�i = n

i=1 (s+ �i),

with �k = �i ; . . . ; �i . Set �
def
= (�1; . . . ; �n)

T 2 n and
�m = min1�i�nRe(�i). Then P�;(s) is the characteristic
polynomial ofA(�; ) and it is Hurwitz for > 0 if and only if
�m > 0. If M 2 Mn( ) andB 2 Mn�m( ), PM (s) stands
for the characteristic polynomial ofM andR(M;B) for the con-
trollability matrix B;MB; . . . ;Mn�1B of the pair (M;B). We
useM > 0 (� 0, respectively) to denote thatM is symmetric
positive–definite (symmetric semipositive, respectively). LetIdn
and(ci)1�i�n be, respectively, the identity matrix and the canonical
basis of n, respectively. IfM > B > 0, then0 < M�1 < B�1.
DefineK() = diag(1=; 1=2; . . . ; 1=n). We have the following
relations K()AK()�1 = A, K()�1ATK() = AT ,
K()�1CTCK()�1 = 2CTC.

The following matrix ordinary differential equation (ODE)
was introduced in [6] for observation purposes and in [8]
in a more general setting:_L = �AT

 L � LA + CTC,
L(0) = Idn. Note thatP�A (s) = P�A (s) = (s + =2)n.

For t � 0, we haveL(; t) = e�te�A te�At + S(; t), where

S(; t)
def
=

t

0
e��e�A �CTCe�A�d� . SetS(t)

def
= S(1; t). We have

lim
t!1

L(; t) =L1()

=
1

0

e��e�A �CTCe�A�d�

=
(�1)i+jCi�1

i+j�2

i+j�1
1�i;j�n

> 0

L(; t)� L1() =e�te�A t (Idn � L1())e�At:

Notice thatL1() = K()L1K(), whereL1
def
= L1(1). More-

over L1() > 0 since (�AT
 ; C

T ) is a controllable pair. Define

N(; t)
def
= L�1(; t). Then

_N = AN +NA
T
 �NC

T
CN; N(0) = Idn: (2)

For  large enough,L(; 0) = Idn > L1(). By standard
arguments, one hasN(; t) > 0 for t � 0, is increasing and
limt!1N(; t) = L�11 (). Passing to the limit in (2) leads
to L�11 ()(�AT

� Idn)L1() = A � L�11 ()CTC. It
implies that �AT

� Idn and A � L�11 ()CTC are similar
and, therefore,P�A �Id (s) = P

A�L ()C C
(s). We have

P�A �Id (s) = (s + )n = sn + n

i=1 C
i
n

isn�i. On the
other hand,P

A�L ()C C
(s) = sn + n

i=1 lis
n�i, where

(li)1�i�n = L�11 ()CT . Then,li = Ci
n

i for 1 � i � n.
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Let � = (�1; . . . ; �n)
T be an EK-vector. If

D�
def
= diag((�1=C

1
n); . . . ; (�n=C

n
n)), then limt!1D�N(; t)CT

= H(�; ). We are now able to define a differential system (P )
as follows:

_x =Ax +D�N(; t)CT (y � Cx) (3)
_N(; t) =N + AN(; t) +N(; t)AT �NCTCN(; t)

N(0) =Idn: (4)

ForD� = Idn, (P ) was already introduced in [8] as a numerical dif-
ferentiator. We next show that (P ) defined in (3) indeed defines a con-
tinuous differentiator which converges exponentially fast to (1). Let
Y (t) = (y; y0; . . . ; y(n�1))T defined for a signaly subject to ii). We
have the following.

Theorem 1: There existC0 > 0 and an integerq > 0 such that for
t � t := q(ln()=)

sup
t�t

kx(t)� Y (t)k �
C0


x(t)� Y (t) + y(n)

1
: (5)

The numerical differentiator considered in (3) attenuates the peaking
phenomenon occuring for small time with (1) because we can choose
the EK-gain vector at the origin small (independent of) and, therefore,
k _x(0)k is small. This intuitive remark translates rigorously as follows:
in the case whereD� = Idn, the corresponding differentiator does not
exhibit any peaking phenomenon. We indeed show the following.

Theorem 2: Let D� = Idn. There existC1; C2 > 0 independent
of  (large enough) such that fort � 0 and1 � i � n

jxi(t)� y(i�1)(t)j �
C1ky

(n)k1
n+1�i

+C2min 1; 2n�1 exp(�t) 1 + t3n�2

� kx(0)� Y (0)k+ ky(n)k1 : (6)

The proofs of both theorems are given in the Appendix . Similar re-
sults are possible on finite-time intervals by replacingky(n)k1 by
sup�2[0;t] ky

(n)(�)k.
Remark 1: From (5) and (6), it is clear that the peaking phenom-

enon is attenuatedonly in the initial times of the estimation. In prac-
tical situations, additional perturbations may occur at any time. There-
fore, peaking may as well appear after the first instants. This is the
reason why, even though (4) can be implemented offline, the scheme
for peaking prevention proposed in this note is not as suitable for con-
trol applications as those that guarantee a time-invariant cure of the
peaking phenomenon (cf. [5], [1], and [9]). Indeed, a numerical study
using our scheme was performed on the first numerical example in [1].
Our results are worse (w.r.t. the peaking phenomenon) than those given
in [1]. However, if one wants a differentiator for theoretical purposes
(for instance, [11]), then (3) and (4) can be a possible alternative since
those differentiators are more “linear” than one with a saturation and
their stability (as dynamical systems) is robust (cf. Remark 4 for the
existence of appropriate quadratic Lyapunov functions).

III. FILTERING THE REFERENCESIGNAL

A. The Continuous Case

In general, the signaly appearing in (1) is equal to�y+w, where�y is
the reference signal we want to differentiate andw is a white noise. We
still would like to differentiate�y and to limit the effect ofw. For that
purpose, we again consider the ODE (Od) _x = Ax+H(t)(�y �Cx).
Of course, we require thatH(t) tends to an EK-vector whent ! 1.

Moreover, we want (Od) to be the optimal trajectory of the following
quadratic cost minimization problem:

min vTQ�1v + (�y � Cx)2 subject to_x = Ax + v (7)

for someQ > 0 to be determined. The solution of this Kalman filtering
problem is given by(d�x=dt) = A�x + �P (t)CT (�y � C�x), �x(0) = 0,
where �P (t) is solution of the Riccati equation_P = AP + PAT �
PCTCP + Q, P (0) = 0. Since (A;C) is observable,�P (t) admits a
limit P1 > 0 ast ! 1 satisfying

AP1 + P1A
T � P1C

TCP1 +Q = 0: (8)

In order for (Od) to be a differentiator, we necessarily require that
P1C

T is an EK-vectorH(�; ). Therefore, we are left with the
choice ofQ > 0 such thatP1CT = H(�; ). Since this is an
under-determined problem, we look for a diagonal matrix solution
Q = diag(q1; . . . ; qn) (or equivalently a vectorq = (q1; . . . ; qn)

T ).
We must then solve the following algebraic problem(AP )c: for a
given EK-vectorH(�; ), find a vectorq = (q1; . . . ; qn)

T with
positive coordinates such that, ifP1 > 0 is the solution of (8), then
P1C

T = H(�; ). It is clear that there is at most one solution for
(AP )c and, as shown below, there indeed exists one if� satisfies the
condition (C) given next:Re(�2

i ) > 0 for 1 � i � n where the��i ’s
are the roots ofP�;1. We get the following.

Theorem 3: Let H(�; ) be an EK-vector. Then(AP )c has a so-
lution if and only if H(~�; 2) has positive coordinates, where~� =
(~�1; . . . ; ~�n)

T verifies ~�i = �2
k . . . �2

k for 1 � i � n. In
this case,q = H(~�; 2). If condition (C) holds, thenH(~�; 1) is an
EK-vector and(AP )c has a solution.

Remark 2: The continuous differentiator�x filters y � Cx, i.e., if
w
def
= y � �y, we have (F ) k�y �Cxk2 � K0 +K1kwk2, with K0,K1

independent of andw. The proof of (F ) is deferred to Appendix I.
Remark 3: There are examples for which: when (C) does not hold,

q still has positive coordinates and when the algebraic problem(AP )c
does not have a solution, there is still someQ > 0 (not diagonal)
such that (8) holds. Therefore, considering (C) may seem arbitrary and
restrictive but, checking it is trivial when the roots associated to� are
available. In addition, if (C) holds, the solutionQ given in Theorem 3
is characterized in a very simple way.

Remark 4: The dynamics of �x and �P define a continuous
differentiator satisfying (6). The argument is identical to the
one given in the proof of Theorem 2. Both differentiators
x [given in (3)] and �x can be written as dynamical systems
_x = Ax + R(t)CT (y � Cx), whereR(t) > 0 satisfies an estimate
of the typekR(t) � R1k � C0 min(1; 2n�1(1 + tn�1)2e�t),
valid for all t � 0, with C0 independent oft,  andR1CT equal to
some EK-vectorH(�; ). Moreover, there is a quadratic time-varying
Lyapunov function for the system_x = (A � R(t)CTC)x+ u given
by V (x; t) = xTR�1(t)x. Therefore, a high-gain observer almost
identical to the one defined in [1] can be built as follows: replace
their observer gainH (which is the EK-vector of [5]), defined in [1,
eq. (9)], byR(t)CT . Then, all their results with exactly the same
arguments provided in [1] can be recovered with this new observer.
The advantage of our approach lies in the fact that the saturation
procedure can be skipped but regarding observation applications the
high-gain observer of [1] is definitely more efficient for the reasons
already given in Remark 1.

B. Filtering in the Discrete Case

In practical situations, the observation process is monitored only at
discrete time. The system from which such observations are taken can
either be continuous-time or discrete-time, but it is usual to treat the
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estimation problem of the output derivative as being a discrete-time
problem. In this case, we think about the construction of a discrete plant
playing the role of the derivative estimator. Here we return back to the
classical theory of the discrete-time Kalman–Bucy filter and show that,
for a particular discretization scheme, we can adapt and choose prop-
erly the weight matrices appearing in the discrete Riccati equation to
force the discrete dynamics of the filter to be an asymptotic differen-
tiator.

We discretize the performance index given by (7) and use a Euler dis-
cretization for the constraint_x = Ax+v. We use� > 0 as the sampling
parameter. We are then led to consider the discrete-time Kalman–Bucy
filter given by

xk+1 =A�xk +Kk(yk � Cxk)

Kk = A�PkC
T CPkC

T + 1
�1

Pk+1 =A�PkA
T
� �Kk CPkC

T + 1 KT
k +Q�; (9)

whereA� = I + �A, Kk = A�PkC
T (CPkC

T + 1)�1. We know
that if Q�; > 0, then limk!1 Pk = P , limk!1Kk = K =
A�PC

T (CPCT + 1)�1 such thatA� �KC is discrete-Hurwitz and
P is the unique definite–positive matrix solution of

P = A�PA
T
� �K CPCT + 1 KT +Q�; : (10)

Note that

A� �KC =K()�1(A� � �H(�; 1)CT )K()

=K()�1(Idn + �A(�))K():

whereA(�) 6= A(�; 1). Then,A� � KC is discrete-Hurwitz if and
only if, for every eigenvalue�i of P�, j1 � ��ij < 1, i.e., � <
2�m=�M . As in the previous section, we are left with an algebraic
problem(AP )d namely, find a diagonal matrixQ�; > 0 such that the
solution of (10) verifiesK = A�PC

T (CPCT + 1)�1 = �H(�; ),
whereH(�; ) is some fixed EK-vector.

We use pj and plm resp. to denote thejth column
vector and the (l;m)th coefficient of P resp.. We
have (p1=1 + p11) = �A�1� (�i

i)1�i�n. Since
A�1� = m�0(��)

mAm, we get, for 1 � l � n, that

p1l = (�1)l n
i=l �i(��)

i=�l�1 1 + n
i=1 �i(��)

i . We have

1 + p11 = (1=1 + n
i=1 �i(��)

i) = (1= n
i=1(1� ��i)).

Since P > 0 implies that p11 > 0, we necessarily have
n
i=1(1� ��i) < 1. This is the case if� verifies� < �m=�M .
Remark 5: The previous equation implies that the discretization pa-

rameter� and the high-gain cannot be chosen independently for this
discrete filter to operate. In other words, the better one wantsxk to ap-
proximateyk and its derivatives (1= small), the finer one has to mesh
the interval of observation. Even though natural, this fact appears as a
drawback for our filtering scheme in the discrete case. We do not have
a general explicit formula forQ�; but we can show that

Theorem 4: Assume that� = (Ci
n)

T
1�i�n, i.e., all the roots ofP�

are equal to one and that� < 1. Then, the matrixQ�; solution of

(AP )d is given byQ�; = diag Ci
n�

22i=(1� �)i

1�i�n

.

IV. CONCLUSION

In this note, we first proved that the numerical differentiator intro-
duced in [8] does not exhibit the peaking phenomenon, i.e., there is no
unbounded overshoot in the initial times. However, there is no time-in-
variant cure of the peaking phenomenon in contrast with the use of

a saturation (used in [1], [2], and [5]) or the projection method [9].
Our approach has then to be viewed as an alternative to the aforemen-
tioned techniques to overcome the peaking phenomenon, better suited
for theoretical applications rather than practical ones. This is partic-
ularly the case for [11] where the use of our differentiator simplifies
the argument. The second part of this note addresses the issue of noise
disturbance. The differentiator we propose filters the reference signal
while estimating the higher derivatives. In particular, if we assign neg-
ative-real roots to the steady-state feedback, the associated quadratic
cost to be minimized has a very simple expression. Even though the
differentiator attenuates the peaking phenomenon [compared to (1)], it
does not eliminate it.

APPENDIX

A. Proof of Theorem 1

In this paragraph, we assume large enough (i.e., larger than a
constant only depending onn). SetA(�; )

def
= A �D�L

�1
1 ()CTC

and A(�)
def
= A(�; 1). We haveK()A(�; )K()�1 = A(�).

Let �(s)
def
=K() x(t) � Y (t) , where s = t. Note that

A � D�L
�1
1 CTC = A(�): We have(d�=ds) = A(�)� + g(s)� �

(y(n)=n+1)cn, where g(s)
def
=D�L

�1=2
1 Idn + G(s)

�1

G(s)

L
�1=2
1 with G(s) > 0 given by G(s) := L

�1=2
1 e�A s

((K()�2=) � L�11 )e�A sL
�1=2
1 . For someC0 > 0 inde-

pendent of ands � 0, kG(s)k � C0
2n�1(1 + sn�1)2e�s. Since

G(s) > 0, then Idn + G(s)
�1

G(s) > 0. Therefore, for every

x 2 n, xT Idn + G(s)
�1

G(s)x � min(xTx; xTG(s)x),

since, for everyz 2 +, (z=1 + z) � min(1; z). Then
kg(s)k � C0min(1; 2n�1(1 + sn�1)2e�s). Consider
V (�) := �TP ��, where P � is the solution of the Lyapunov
equation associated toA(�). Let _V = (d=dt)V (�(t)). Then

_V � � C0 � C1min(1; 2n�1(1 + sn�1)2e�s) V

+C2
ky(n)k1
n+1

V 1=2

where Ci > 0 are independent of. Setting g(s; u)

:=
s

u
C0 � C1min(1; 2n�1(1 + �n�1)2e��) d�, we rewrite the

previous equation as_V � �(@g=@s)V + C2(ky
(n)k1=

n+1)V 1=2.
Using Gronwall’s lemma, we deduce thatV (s)1=2 �
C2(ky

(n)k1=
n+1)

s

0
(eg(�;s)=2d�), leading to (5).

B. Proof of Theorem 2

Let z = x � Y . Then, the dynamics ofz is _z = (A �
N(; t)CTC)z � y(n)cn. Define � as the fundamental so-
lution associated toA � N(; t)CTC, i.e., (@�=@t) =
(A � N(; t)CTC)�, �(t; t) = Idn. Then, we havez(t) =
�(t; 0)z(0) +

t

0
y(n)(s)�(t; s)cnds. An explicit expression for

� is �(t; s) = N(; t)e�(t�s)e�(t�s)(Id +A )L(; s). This

simply follows from the fact that (t; s)
def
= L(; t)�(t; s) satisfies

(@ =@t) = �(Idn + AT ) . Then, for0 � s; t, we have

�(t; s) =eAt (Idn +M(; t))�1 (Idn +M(; s))e�As

with M(; t) =
t

0

e�eA �CTCeA�d�: (11)
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Then, �(t; 0) = eAt (Idn +M(; t))�1. We haveM(; t) =

K()M(t)K(), where M(t)
def
=M(1; t). Rewrite z(t) =

z1(t) + z2(t), where

z1(t) =�(t; 0) z(0) +
t

0

y(n)(s)e�Ascnds

z2(t) =�(t; 0)
t

0

y(n)(s)M(; s)e�Ascnds: (12)

For t � 0, we haveS(; t) = e�A tM(; t)e�A t. ThenS(; t) =

K()S(t)K(), whereS(t)
def
= S(1; t). For t � 0 andx 2 n, we

havexT (Idn +M(; t))�1 x � min(xTx; xTM(; t)�1x). There-
fore, there existsC0 > 0 independent of such that for everyt � 0
we have

k�(t; 0)k � C0min(1; 2n�1 exp(�t)(1 + tn�1)2): (13)

From (12) and (13)

kz1(t)k � C0min(1; 2n�1 exp(�t)(1 + t3n�2))

(kz(0)k+ ky(n)k1):

To estimate z2, remark that Idn + M(; t)=

eA s (S1(; s) + S(; s) +M(; t� s))eA s where S1(; s)
def
= e�A se�A s. Therefore, the first equation shown at the bottom of
the page holds true. Changing the integration times to (t � s) and

settingX
def
= t, yn(s) = y(n)(s=), we have (14), as shown at the

bottom of the page, withW (s)
def
= 1=e�A sK()�2e�A s. Let

R(X)
def
=

X

0

keAs= (W (X � s) + S(X � s) +M(s))�1 S(X � s)kds:

SinceW;S;M > 0 for t � 0 andS(X) < L1 for X � 0,
we getkW (s)�1k � (C0=)e

s(1 + s2n�1). For 0 � s � X,
(W (X � s) + S(X � s) +M(s))�1 � W�1(X � s). Therefore,
R(X) is bounded above independently of for X � (1=2) ln(). For
X � (1=2) ln(), the third equation shown at the bottom of the page
holds. ForX � (1=2) ln()

k (W (X � s) + S(X � s) +M(s))�1 k � kM�1(s)k � C0e
�s=2

sinceM(s) > C0e
s=2. Then,R(X) is bounded above independently

of . For 1 � i � n, k(z2)ik1 � (C0=
n+1�i)ky(n)k1 and The-

orem 2 follows.

C. Proof of Theorem 3

Proof:
We use pk and plk, respectively, to denote thekth column

vector and the (l; k)-th coefficient of P1, respectively. Note
that Aci = ci�1 and AT ci = ci+1 with the convention that
ci = 0 if i < 1 or i > n. Multiplying (8) on the right by
ci, we get pi+1 = �Api + (pT1 pi) � qici, which implies that
pk = (�A)k�1p1 +

k�1
j=1 (�A)

k�1j(pj;1p1 � qjcj). We then have
plk = (�1)k�1pl+k�1;1 + k�1

j=1 (�1)k�1�j(pj1pl+k�1�j;1 �
qj�l+k�1�j;j). Setplk = 0 for l; k > n above andp01 = �0 = 1.
SinceP1 > 0, by takingjl� kj = 1 andl+ k� 1 = 2m, we obtain,
for 1 � m � n, qm = (�1)m 2m

j=0 p2m�j;1pj1. Finally, by com-
paring the expressions listed in the fourth equation shown at the bottom
of the page, we conclude thatqm = 2m �2k . . . �2k = 2m ~�m.
Conversely, if q = H(~�; 2) = K()H(~�; 1)K() has pos-
itive coordinates, we must show thatPCT = H(�; ) where
P > 0 is the solution of the Riccati (8). Letp be the polynomial
defined by p(X) := Xn + n

i=1(PC
T )iX

n�i. This poly-
nomial is Hurwitz (sinceA � PCTC is Hurwitz) and satisfies
p(X)p(�X) = P�;(X)P�;(�X). Then,p = P�; which implies

z2(t) =
t

0

y(n)(s)eA(t�s) (S1(; s) + S(; s) +M(; t� s))�1 S(; s)cnds:

z2(t) =
K()�1

n+1

X

0

yn(X � s)eAs= (W (X � s) + S(X � s) +M(s))�1 S(X � s)cnds (14)

R(X) = R
1

2
ln() +

X

1=2 ln()

eAs= (W (X � s) + S(X � s) +M(s))�1 S(X � s) ds:

P�(X)P�(�X) =

(�1)n
n

k=0

�kX
n�k

n

k=0

(�1)k�kX
n�k ,

(�1)n n
k=1(X

2 � �2k),

(�1)n
n

k=0

(�1)k~�kX
2(n�k)
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thatPCT = H(�; ). Finally, if � satisfies condition (C), then the
qi ’s are positive and that finishes the proof.

D. Proof of (F )

We rescale the quadratic cost-minimization problem with
z = K()x and s = t. The constraint (7) becomes
min uT �Q�1u + (~y � Cz)2 subject to _z = Az + u,
where u = (1=)K()v, �Q = K()QK() with Q =
diag(H(~�; )), i.e., �Q = diag(H(~�; 1)) (independent
of ) and ~y(s) = (1=)�y(t). Then, the differentiator�x
is transformed to (dz=ds) = Az + �P (s)CT (~y � Cz),
z(0) = 0 and (d �P=ds) = A �P + �PAT � �PCTC �P + �Q,
�P (0) = 0, where �P (s) = K()P (t)K(). We also get
A �P1 + �P1A

T � �P1C
TC �P1 + �Q = 0 and �P1C

T = H(�; 1).
Set �z(s) = K()�x(t) and uy(s) = (1=)K()w(t). We have
k~y�Czk2 � k~y�C�zk2+kC(z� �z)k2, k~y�C�zk2 = k�y�C�xk2
andkz � �zk2 � K1kuyk2 with K1 independent of. In addition,
k�zk2 � K1k�yk2. Then, (F ) follows at once.

E. Proof of Theorem 4

We follow the lines of the proof of Theorem 3. SinceA�1� andA
commute, for0 � j � n � 1, pj+1 = �A�1� Apj � (qj=�)A

�1
� cj +

�k
jp1. Then

pk =

k�1

j=0

(�A�)
k�1�jAk�1�j�j

jp1 +

k�1

j=1

(�A�)
k�jAk�1�jcj

qj
�

for 1 � k � n and, for1 � l, k � n

plk =

k�1

j=0 s�k�2�j

(�1)k�1�j(��)sCk�2�j
s �j

jp1;l+k�1+s�j

+

k�1

j=1

(�1)k�j(��)2j�l�k+1Ck�1�j
2j�l�k+1

qj
�
:

For every1 � m � n, considerpm;m+1 andpm+1;m. SinceP > 0,
we have

qm
�

=

m

j=0 s�j�1

(�1)jp1;m+s+j(��)
sCj�1

s �m�j
m�j

+

m

j=1 s�j�2

(�1)jp1;m+s+j(��)
sCj�2

s �m�j
j : (15)

Assume now that� and verify the hypothesis of Theorem 4. We get
p1l = ((�1)l n

i=l
Ci
n(��)

i)=(�l�1(1� �)n), and

qm =
�22m

(1� �)n

�
0�s�k�n�m

(�)s(�1)kCm+k
n Cm+s�k

n (Cs
k + Cs

k�1) : (16)

We want to show that the expression between brackets in (16) is equal
to Cm

n (1 � �)n�m. Both quantities are polynomials in the variable

�. To show they are equal, we must establish the equality of their
coefficients, i.e., for0 � s � n �m

(�1)sCm
n Cs

n�m =
s�k�n�m

(�1)kCm+k
n Cm+s�k

n (Cs
k + Cs

k�1)

i.e., for0 � s � m � n

(CC) : (�1)sCm
n Cs

m =

0�s�k�m

(�1)kCm�k
n Cm�s+k

n (Cs
k + Cs

k�1:

LetL(n;m; s) andR(n;m; s) be the left- and right-hand side, respec-
tively, of (CC). TheL(n;m; s)’s satisfy the following recurrence re-
lation:

L(n+1;m; s) = L(n;m; s)+L(n;m�1; s)�L(n;m�1; s�1):
(17)

Therefore, using an induction argument, the proof of (CC) reduces
in showing thatR(n;m; s) satisfies the recurrence relation defined in
(17). We first considerR(n;m � 1; s � 1). SinceCs�1

k + Cs�1
k�1 =

Cs
k+1 + Cs

k � (Cs
k + Cs

k�1), and

s�1�k�m�1

(�1)k+1 Cs�1
k + Cs�1

k�1 Cm�k�1
n Cm�s+k

n =

s�k�m

(�1)k (Cs
k + Cs

k�1)C
m�k
n Cm�s+k�1

n

we rewriteR(n;m; s) +R(n;m� 1; s)�R(n;m� 1; s� 1) as the
equation shown at the bottom of the page. The term between brackets
is equal to

Cm�k
n (Cm�s+k

n + Cm�s+k�1
n )

+Cm�k�1
n (Cm�s+k�1

n + Cm�s+k
n )

then simplified to Cm�k
n Cm�s+k

n+1 + Cm�k�1
n Cm�s+k

n+1 =

Cm�k
n+1 C

m�s+k
n+1 . Therefore

R(n;m; s)+R(n;m� 1; s)�R(n;m� 1; s� 1)

=
s�k�m

(�1)k(Cs
k + Cs

k�1)C
m�k
n+1 C

m�s+k
n+1

=R(n+ 1;m; s):
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