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Exact Maximum Likelihood Estimates for SIRV
Covariance Matrix: Existence and Algorithm Analysis

Yacine Chitour and Frédéric Pascal

Abstract—In this paper, we investigate the existence and the al-
gorithm analysis of an adaptive scheme that has been introduced
for covariance structure matrix estimation in the context of adap-
tive radar detection under non-Gaussian noise. This latter has been
modeled by spherically invariant random vector (SIRV), which is
the product � of the square root of a positive unknown random
variable and an independent Gaussian vector �, � � �. A
similar line of work was undertaken in the context of compound
Gaussian noise, and this paper extends the previous results in the
case of SIRV modeled noise. More precisely, the fixed-point esti-
mate to be studied verifies a nonlinear algebraic equation � � �
� �. The aim of this paper is twofold. First, we prove that � � ad-

mits a unique solution �; secondly, we show that the corresponding
iterative algorithm �� � � � converges to � for every ad-
missible initial condition.

Index Terms—Adaptive detection, fixed-point estimate, iterative
algorithm convergence, maximum likelihood estimate, spherically
invariant random vector (SIRV) model.

I. INTRODUCTION

T HE basic problem of detecting a complex signal em-
bedded in an additive Gaussian noise has been extensively

studied these last decades. In these contexts, adaptive detec-
tion schemes required an estimate of the noise covariance
matrix generally obtained from signal-free data traditionally
called secondary data or reference data. The resulting adaptive
detectors, as those proposed by [4] and [5], are all based on
the Gaussian assumption for which the maximum likelihood
(ML) estimate of the covariance matrix is given by the sample
covariance matrix. However, these detectors may exhibit poor
performance when the additive noise is non-Gaussian [6].

When this additive noise is non-Gaussian, one of the most
general and elegant non-Gaussian noise model is provided
by the spherically invariant random vectors (SIRVs). These
processes encompass a large number of non-Gaussian distribu-
tions thanks to the random variable , which has an unknown
probability density function (pdf). Detectors resulting from
such a model require an estimate of the covariance matrix of
the Gaussian component. In this context, ML estimates based
on secondary data have been introduced in [7] and [8], together
with a numerical procedure supposed to obtain them. However,
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as noticed in [8, p. 1852], “existence of the ML estimate and
convergence of iteration is still an open problem.”

To the best of our knowledge, the proofs of existence, unique-
ness of the ML estimate, and convergence of the algorithm pro-
posed in [1] have not yet been established. The main purpose of
this paper is to fill these gaps.

A first work [3] began to answer this problem, but only in
the case where the texture has been assumed to be determin-
istic. This paper provides results on the exact ML estimate in
the general SIRV case, i.e., when the random variable has an
unknown pdf. Therefore, this paper is indeed a continuation of
[3], as regards the issues that are addressed. Even though this
paper uses some of the results from [3], one must stress that the
two papers are technically disjoint, in the sense that every de-
tailed argument provided here does not appear in [3]. We how-
ever postpone to Remark IV.1 the description of the differences
between the two papers because it requires several definitions
introduced later on.

The main results of this paper are to provide the existence
and the uniqueness of a ML estimate, because in the case of
SIRV data, the estimate is defined as the solution of an implicit
equation. Several estimation procedures lead to similar prob-
lems of solving implicit equations. This is the case for the ex-
pectation-maximization (EM) algorithm useful for ML estima-
tion with missing data [9], developed in [10]. This can be ex-
plained by the fact that missing data lead to likelihood function
conditioned to the parameter of interest. Moreover, elliptically
contoured distributions [11] are very closed to symmetrically
distributions, which encompass SIRV distributions. Finally, this
paper is also tightly related to the -estimates [12], [13] due to
the particular expression of SIRV distribution.

This paper is organized as follows. In Section II, we provide
the statistical framework. Section III presents the main results
of this paper in the complex case and in the (more specific) real
case. Section IV gives proofs for results in the real case, and we
gather in Section V complete arguments.

II. PROBLEM FORMULATION

A SIRV [15], [16] is defined as the product

(1)

where the positive random variable is called the texture,
having unknown pdf , and is an -dimensional
zero-mean complex Gaussian vector with covariance matrix

usually normalized according to ;
see [8]. Such a normalization is referred to as the -normaliza-
tion. The symbol denotes the conjugate transpose operator,
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stands for the expectation of a random variable, and
stands for the trace operator.

Here, in this general model, we follow the well-known SIRV
modeling where the texture is considered to be a random vari-
able with unknown pdf (see [1], [2], [17], and [18]). Generally,
the covariance matrix is not known, and an estimate is
required for the likelihood ratio (LR) computation. Classically,
such an estimate is obtained from ML theory, well known for
its good statistical properties. In this problem, estimation of
has to respect the -normalization . This estimate

will be built using independent realizations of denoted
for .

Notations: In this paragraph, we introduce the main notations
of this paper for the real case. Notations already defined in the
complex case are translated in the real one. Moreover, real results
will be valid for every positive integer . We use (respectively,

, , and ) to denote the set of complex (respectively, real,
nonnegative real, and positive real) numbers, while for any in-
teger , (respectively, ) represents the set of -vectors
withcomplex (respectively, real) elements.Forvectorsof , the
norm used is the Euclidean one. Throughout this paper, we will
use several basic results on square matrices, especially regarding
spectralpropertiesofrealsymmetricandorthogonalmatrices.We
refer to [19] and/or [20] for such standard results.

We use to denote the set of real matrices,
to denote the set of orthogonal matrices and ,

the transpose of . We denote the identity matrix of
by .

We next define and list the several sets of matrices used in the
sequel:

• : the subset of defined by the symmetric positive
definite matrices;

• : the closure of in , i.e., the subset of
defined by the symmetric nonnegative matrices.

For , we use to denote the open-half line spanned
by in the cone , i.e., the set of points , with . Let
us recall that the order associated with the cone structure of
is called the Loewner order for symmetric matrices of
and is defined as follows. Let , be two symmetric real
matrices. Then (respectively, ) means that the
quadratic form defined by is nonnegative (respectively,
positive definite), i.e., for every nonzero ,

, (respectively, ). Using that order, one has
(respectively, ) if and only if (respectively, ).

For , we define as the subset of given by

(2)

In the sequel, if , we use , , to denote the
th iterate of , i.e., , where is repeated

times. We also adopt the standard convention that .
We also need some basic notations. The integer is always

positive and the integer is always larger than . Let be
the set of Hermitian positive definite matrices. For any

matrix , its determinant is denoted by . Given a
mapping , the iterative algorithm associated to
is the procedure that associates to any the sequence

, where and . 1

denotes the set of the first integers . A -tuple
made of vectors of verifies hypothesis

(H1) if

(H1)
For any two by two distinct indexes

chosen in
the vectors are linearly independent

(3)
Given a pdf (i.e., a continuously derivable probability

density function), let us consider the function defined on
by . Then, the pdf verifies hypoth-
esis (P1) if

(P1) is a strictly decreasing function (4)

Notice that hypothesis (P1) is verified for every texture pdf
having closed-form expression.

Let us recall that the SIRV pdf expression [15], [16] is

To obtain the ML estimate of , with no proofs of existence and
uniqueness, Gini et al. derived in [8] an approximate maximum
likelihood (AML) estimate as follows.

Let us first consider the likelihood function given by

(5)

As a preliminary step, let us mention that, in the deterministic
case, Conte and Ricci (see [21]) showed that was finitely
upper bounded over . However, it was not proved if that upper
bound was reached or not. Anyhow, in order to maximize the
above function, one needs to look for critical points of , i.e.,
points , which annihilate the gradient of . After some
computations, Gini et al. obtained initially the following equa-
tion for

(6)

where the real-valued function is defined on by

(7)

and the real-valued function is defined on by

(8)

Let us define the matrix-valued function as the right-
hand side of (6), i.e., for symmetric positive definite

(9)
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Unfortunately, the fixed point of (if it exists) does not
naturally verify the -normalization in general. This is a fatal
drawback for the fixed point of to be an estimate of
since it results a biased estimate. This is why Gini et al. chose
finally as a fixed point of the following mapping:

(10)

i.e., the solution of . Numerically, that es-
timate was shown to exist as the limit of the iterative scheme.

To derive the exact ML estimate of the covariance matrix, in
the case of SIRV modeling, we assume that the pdf verifies
hypothesis (P1). We then prove that, for every -tuple ver-
ifying hypothesis , the mapping admits a unique fixed
point denoted and the iterative algorithm associated to

converges to for every initial condition. In the course
of the argument, we will need to establish first that these results
hold for the mapping .

III. STATEMENT OF THE MAIN RESULTS

A. The Complex Case

We first provide additional notations. Let and be posi-
tive integers such that . We use to denote the set
of complex matrices. For , the Frobenius
norm of is defined as and we use to
denote it. Moreover, from the statistical independence hypoth-
esis of the complex -vectors , it is natural to assume the
following hypothesis (H1 ).

Let us set ; see (11) shown at the bottom
of the page

Theorem III.1 (Existence and Algorithm Analysis): Let be
a -tuple verifying hypothesis (H1).

i) The mapping admits a unique fixed point
with .

ii) Let be the discrete dynamical system defined on
by

(12)

Then, for every initial condition , the resulting
sequence converges to .

The same problem and the same result can be formulated with
real numbers instead of complex numbers and symmetric ma-
trices instead of Hermitian matrices, while hypothesis (H1) be-
comes hypothesis (H2) stated below (just before Remark III.1).
The proof of Theorem III.1 breaks up into several steps. The
way to derive Theorem III.1 from the corresponding real results
has been shown in [3]. Then, the rest of this paper is devoted to
the study of the real case.

B. The Real Case

1) Preliminaries: A -tuple of vectors
of verifies hypothesis (H2) if

(H2)
For any two by two distinct indexes

chosen in the vectors
are linearly independent

(13)
Let us already emphasize that hypothesis (H2) is the key as-

sumption for getting all our subsequent results. Hypothesis (H2)
has the following trivial but fundamental consequence that we
state as a remark.

Remark III.1: For every vectors (respec-
tively, ) with , ,
the vector space generated by (respectively,

) has dimension .
We also need the next definition.
Definition III.1: Let us consider a continuous mapping

. Then, is said to be:
• strictly increasing if, for every in , one has

;
• eventually completely increasing of order p if there exists

a positive integer such that, for every in with
, one has ;

• subhomogeneous if, for every in and , one
has .

Given a -tuple , define the map as

(14)
Then, from (5) and (8), the two functions and are

related by the following relation, which is obtained after an easy
computation. For every , let be the gradient of

at [20], i.e., the unique symmetric matrix verifying,
for every matrix

(15)

Clearly is a fixed point of if and only if is a critical
point of the vector field defined by on .

2) Statements of the Results in the Real Case:
Theorem III.2: Assume that the pdf verifies hypothesis

(P1). Then, given a -tuple verifying hypothesis (H2), we
have the following.

a) The mapping admits a unique fixed point ;
b) Let be the discrete dynamical system defined on

by

(16)

H1

Any distinct vectors taken in

are linearly independent

(11)
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Then, for every initial condition , the resulting
sequence converges to .

In order to prove the above theorem, one has first to prove a
similar [and richer; see d) below on gradient systems] theorem
when is replaced by . More precisely, we have the fol-
lowing.

Theorem III.3: Assume that the pdf verifies hypothesis
(P1). Then, given a -tuple verifying hypothesis (H2), we
have the following.

a) The mapping admits a unique fixed point .
b) The map reaches its maximum only at and

, the Hessian of at , is negative
definite.

c) Let be the discrete dynamical system defined on
by

(17)

Then, for every initial condition , the resulting
sequence converges to .

d) Let be the continuous dynamical system defined
on by

(18)

Then, for every initial condition , the
resulting trajectory , , converges, when tends
to , to .

Both proofs are outlined in Section IV. Proof of Theorem III.2
is detailed in Section V, while the complete proof of Theorem
III.3 is postponed in the Appendix.

IV. PROOFS OUTLINE

First, we will rely on several results of [3] and, more precisely,
on properties established for the maps

(19)

and

(20)

where is a -tuple of vectors of verifying hypothesis
(H2). Similarly to (15), one has

(21)

Let us recall that, in [3], it was proved that is homogeneous
of degree zero, uniformly bounded over , and it can be con-
tinuously extended to by zero on . More-
over, reaches its maximum over a unique half-line ,
with . Finally, it was proved that is eventually
completely increasing of order .

Remark IV.1: We can explain the differences between this
paper and [3]. In terms of problem formulation, [3] assumes that

is deterministic, while in this paper, is a random variable

with unknown pdf. The main difference stems from the fact that
is not homogeneous of degree one (as is) and that creates

other difficulties with respect to [3]. The only way we were able
to find to overcome these obstacles consisted in relating with
a family of maps [see (25)], which turn out to be only
subhomogeneous. As explained later, one must first study the

s to deduce information for : each shares properties
with , and this is the reason why we start with the
study of . It takes all the present work to follow the steps of
the above-described program, and most of the related arguments
are new with respect to [3].

A. Proof Outline of Theorem III.3

We start by proving some facts on the functions and .
Proposition IV.1: With the notations above, we have the fol-

lowing, for every and positive integer .
i) , which implies that is strictly de-

creasing.
ii) . As a con-

sequence, the function is uniformly
bounded over .

iii) , which implies that is strictly de-
creasing.

iv) has a monotony inverse with respect to
that of . As a consequence, for all
known pdfs, is strictly increasing. In that case, define

(22)

Clearly, and either or .
Taking into account the previous proposition, we show a) of

Theorem III.3 as the consequence of the next proposition.
Proposition IV.2: Let be a -tuple of vectors of veri-

fying hypothesis (H2). One has the following.
A) reaches its maximum at some point .
B) Assume that is strictly increasing and is a

critical point of (or, equivalently, a fixed point of ).
Then, Hess , the Hessian of at , is negative def-
inite, implying that is a strict local maximum of .

Then, we turn to an argument for c) of Theorem III.3. It first
requires one to study the mapping .

Proposition IV.3: Let be a -tuple of vectors of ver-
ifying hypothesis (H2). Then, verifies the following proper-
ties.

i) is strictly increasing and eventually completely in-
creasing of order .

ii) If is strictly increasing, then is subhomogeneous
(see [14]), i.e., for every and

(23)

As a consequence, for every and

(24)

Finally, we combine the above proposition with the uniqueness
of the fixed point to derive c). Item b) of Theorem III.3 follows
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at once, as well as d), since , defined in (18), is a gradient
system (see [22] for references on gradient systems).

It is important to notice that several statements of the theo-
rems could be derived by using the results of [14], but it requires
study of the linear map (defined as the differential of

), which leads to more involved computations than those of
this paper. In addition, the convergence results of [14, Corollary
2.2] are weaker than those obtained here, but one can adapt the
proof of Corollary 2.2 to the present situation. We chose to pro-
vide a more direct argument in order to be self-contained. As a
last remark, it is not clear to us how to obtain our results from
those of [21] since we are not able to check the following con-
dition:

there exists such that ,
for all

for .

B. Proof Outline of Theorem III.2

Even though the statements of the theorems are similar,
dealing with presents new difficulties with respect to .
First, is not related to the gradient of a real-valued function
defined on , and thus it is difficult to relate the existence of a
fixed point of to that of a critical point of some real-valued
function. More importantly, does not have useful properties
shared by such as monotonicity or subhomogeneity. As a
consequence, the study of requires other ingredients.

The starting point of the analysis consists of the next remark.
A fixed point of (if any) verifies the equation

for some , i.e., is the fixed point of the mapping

(25)

with . This suggests to consider the whole family of map-
pings , for an arbitrary , as defined in (25). Indeed,
these mappings retain all the useful properties of : if one con-
siders the real-valued map defined on by

(26)

where , then

(27)
and, in particular, every fixed point of is a critical point of

(if any). Moreover, it is trivial to see that B) of Proposition
IV.2 and Proposition IV.3 hold true when is replaced by

. However, for a general pdf, does not admit critical
points for every , but we can show that A) of Proposition
IV.2 holds true for , where is an open (in

) interval containing one. As a consequence, admits a
unique fixed point for . More precisely, we
show the following proposition.

Proposition IV.4: Let be a -tuple of vectors of
verifying hypothesis (H2) and assume that is strictly in-
creasing. Then, Theorem III.3 holds true when and

are, respectively, replaced by and for and only for
, where . For , we

use to denote the unique fixed point (respectively,
global maximum) of (respectively, ). In addition, the
following mappings, defined on :

are strictly decreasing (28)

and

(29)
It follows that the real-valued function is a
bijection from to . Since takes values in the matrices
of with trace equal to , we easily deduce that admits a
unique fixed point . As regards the convergence
of the iterative scheme, it can be directly deduced from [14,
Corollary 2.5] since the second point of the orbit starting at any

is already normalized.

V. PROOF OF THEOREM III.2

Before starting the argument, let us add the notation

for and . In the next proposition, we gather facts on
, , , and .

Proposition V.1: With the notations above, we have the fol-
lowing, for every , , and .

a1) ; is strictly de-
creasing and is strictly increasing.

a2)
. In particular, is a critical point of if

and only if is a fixed point of .
a3) is strictly increasing and eventually completely in-

creasing of order .
a4) If admits a fixed point, then it is unique (denoted

) and the iterative scheme associated to
converges to for every initial condition.
Moreover, is a strict maximum for
with negative definite Hessian at .

One can derive the above proposition by easily adapting the ar-
guments provided for Theorem III.3, i.e., for the case .

We next establish a technical lemma, which is crucial for the
rest of this paper.

Lemma V.1: Assume that admits a fixed point
for some . Then, there exists a open neighbor-

hood of in such that, for every , admits a
fixed point .

Proof of Lemma V.1: This is a consequence of the implicit
function theorem applied to the mapping

defined on . We only have to show that, at a point
where , the differential of with respect to is
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invertible as an endomorphism of the vector space of the sym-
metric matrices, i.e.,

is invertible. For every symmetric matrix , a simple computa-
tion gives

We now proceed as in the proof of B) of Proposition IV.2. Set
and for .

Using the fact that , one has

Then

(30)

where is the set of indexes for which and
. The last inequality shows that

is clearly injective, and the lemma is proved.
We next study the subset defined as the set of s

such that admits a fixed point. By a4) of Proposition V.1,
if , then admits a unique fixed point .
Since , the latter is nonempty and, thanks to the lemma, it
is open (in ).

We now prove that is an interval of .
Lemma V.2: With the notations above, the maps defined

on and are de-
creasing and then is convex, which implies that is an interval
of .

Proof of Lemma V.2: Consider in . Then

Then the orbit of associated to defines
a strictly increasing sequence in , which converges to

, according to a4) of Proposition V.1. We deduce
that . Moreover,
is also strictly smaller than since it is also a point
of the orbit. We deduce at once that and are strictly
decreasing.

Let us pick and show that , that
is well-defined. For that, consider the orbit

of associated to . By a simple
inductive argument, one shows that and

Therefore, defines an upper bounded increasing se-
quence, which implies that it is converging to a fixed point of

.
It immediately follows that

is an interval with and possibly infinite.
Lemma V.3: With the notations above,

and

(31)

Proof of Lemma V.3: We first prove the last part of the
lemma. Reasoning by contradiction, we would have a finite
limit, as tends to , for since is monotone.
We could therefore extend by continuity at , i.e.,
define . Note, in that case, that .
Applying Lemma V.1 at allows one to extend on the left
of (recall that, if admits a fixed point, it is unique) and
then we would contradict the definition of as the infimum
of the s for which is well defined in .

Next we prove that . From the definition of
, one deduces that

(32)

where

(33)

Taking the trace yields

(34)

Since is strictly increasing, it implies the required inequality.
To prove equality, we first assume that is finite. Then

and . By looking carefully
at the argument of Lemma V.1, one can see from (30) that if

, then the differential is uniformly
invertible in an open neighborhood of . Then can
be extended at . Since it is not possible, we conclude
that .

Assume now that . We first establish the
following lemma.

Lemma V.4: For every

(35)

Proof of Lemma V.4: We may assume that ; oth-
erwise the conclusion follows. Finally, notice that Lemma V.3
follows readily from Lemma V.3 by letting tend to in (34).
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The argument goes by contradiction. Since
is increasing, we can assume that there ex-

ists such that, for every , . Let
, of all indexes such that

, i.e., there exists such that, for every

(36)

We use to denote the set of the other indexes
for which .

Up to a subsequence of s, we may assume that con-
verges to a nonzero vector , for . For and ,
one has

(37)

Since , one deduces, by letting tend to
, that for and . It implies that

the vector space generated by the s, , is of dimension at
most . Thanks to Remark III.1, the cardinality of must
be lower than , and thus , i.e., ,
which is a contradiction.

It remains to study the behavior of as tends to . It is
described in the next lemma.

Lemma V.5: With the notations above, one has
and

(38)

Proof of Lemma V.5: Assume first that
and that is finite. Then, according to (34), is uni-

formly bounded above over and as tends to .
Applying Hadamard’s inequality (see [19]), one deduces that

is also uniformly bounded above as tends
to and then that is uniformly bounded from
below, as tends to . Since is decreasing, we get that

is invertible and belongs to . We would be there-
fore able to extend on the right of and reach a contra-
diction. Therefore, . Since is decreasing, one has

if . By letting tend to , we
have (38).

Assume now that . Since and ac-
cording to ii) of Proposition IV.1, we necessarily have .
Coming back to the definition of , one gets that there exists
a positive constant such that

For , define

We have . Then, is
strictly increasing and bounded over .

Let us first prove that . Use to denote
. For , let us majorize for

. One has

(39)

The right-hand side of the above inequality is the product of
three terms. The first one, , is bounded over . The
second one is also bounded over . For the third term, notice
that, for and

We immediately deduce that is bounded over .
Since tends to zero as gets close to the set of nonin-
vertible matrices, we deduce that reaches its maximum at
some point such that . We will prove,
by contradiction, that . Otherwise, there exists

, of unit norm such that

(40)

Let us evaluate the gradient of at in the direction
for to be fixed later. One has

Choose . Then

Using the fact that and (40), we get

Proceeding as above in every direction verifying (40), we can
prove that takes larger values than in the
interior of , contradicting the fact that reaches
its maximum at .

Since belongs to the interior of , we get that
. Then . Moreover, applying the

previous reasoning to , , instead of , shows
that reaches its maximum over at
and then, by letting tend to , we obtain that admits a
unique maximum over at .

We finally show that
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which will imply ii) of the lemma and (38) in that case. We
reason by contradiction and assume that .

Recall that is the unique fixed point of of
trace equal to . For , we will estimate

in two different ways. First, we evaluate
as tends to zero. Applying (39) and taking

into account the fact that is homogeneous of degree zero,
we get

with

Clearly, tends to as tends to zero and
tends to one as tends to . Let us now choose
as

where is arbitrary. Let tend to . Then tends
to zero and we have

Since admits a global maximum over , we have

and, since is arbitrary, we finally get

(41)

On the other hand, a direct evaluation of
using (39) yields

(42)

For , and we would have, by
gathering (41) and (42) evaluated at

This implies that we have equalities in all the inequalities and,
in particular, that

for all . Since is strictly increasing, we reached
a contradiction. Therefore, and thus

.
It remains to prove (38). Notice that all the terms in (42) ex-

cept remain clearly bounded as tends to
from below. If , then

tends to zero as tends to since can be continuously
extended by zero on the boundary of minus zero. From (41),
it would result , which is impossible. That contra-
diction ends the proof of Lemma V.5.

We now have enough material to provide an argument for
Theorem III.2. Thanks to the previous results, it turns out that
the map , defined on , is a bijection
between and . Therefore, there exists a unique such
that . A simple computation yields that

is a fixed point of . Let us prove that it is the
only one.

Indeed, let be a fixed point of . Then

with , i.e., is the fixed point of .
Then and . We deduce that

; hence .
Remark V.1: Following [14], one could derive similar re-

sults by replacing the normalization by another in-
creasing and homogeneous of degree one real-valued function
over such as .

VI. CONCLUSION

In this paper, the problem of covariance matrix estimation in
impulsive noise modeled by spherically invariant random vec-
tors was considered. The exact maximum likelihood estimate,
defined as the solution of a fixed point equation and denoted

, has been studied; we first demonstrate its existence
and its uniqueness for the chosen normalization on the real co-
variance matrix , i.e., is the unique solu-
tion of the corresponding fixed-point equation, which verifies

. The second main result consists in showing
that the associated algorithm, which has been proposed in [8],
is indeed convergent for any initial condition in

The next step of the estimation analysis regards the statistical
performance of : bias, consistency, and asymptotic dis-
tribution. This will be the object of a future work.

APPENDIX

PROOF OF THEOREM III.3

We provide additional notation. If is invertible
and is a -tuple of vectors of , then denotes the

-tuple of vectors of given by

(43)
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Moreover, one has, for every

(44)

A. Proof of Proposition IV.1

Item i) follows from a trivial computation. For , write
as

where . Set . After some
computations, one has

and is increasing on , decreasing on with
unique maximum at .

Let for and let be a
parameter to be fixed later. Then, by cutting in the three
intervals [0, ], , and , one has

One immediately deduces that

and the conclusion by letting tend to . Similarly

and the conclusion by letting tend to . As for iii), an easy
computation yields

Writing the numerator as a double integral leads to

By exchanging and in the above integral and taking the
arithmetic mean, we get

We proceed similarly for iv). We start from

and get .
In all the integrals, we make the change of variable and
write the numerator of the last fraction as a double integral

Finally, one has

where . By exchanging and in the
above integral and taking the arithmetic mean, we get

Therefore, if the sign of the derivative of is constant, so is the
sign of the derivative of , and the two signs are opposite. A
simple computation on known pdfs shows that is thus strictly
increasing.

B. Proof of Proposition IV.2

For , write

In [3], it was proved that is homogeneous of degree zero,
uniformly bounded over , and can be continuously extended
to the boundary of minus the zero matrix by zero. Moreover,

reaches its maximum over a unique half-line, supported by
a well-defined matrix of trace .

Combined with ii) of Proposition IV.1, we deduce from the
above that is uniformly bounded over . Set

and define

Proving A) amounts to showing that is a compact set of ,
i.e., there exists two positive real numbers , so that, for
every
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We argue by contradiction. Then, there exists a sequence of unit
norm vectors , , and a sequence of matrices in
so that

either or (45)

Note that, if , (44) reduces to

In particular, and only depend on
and not on . Consequently, if is a se-
quence of orthogonal matrices so that , then

and the last term tends to zero as tends to , according to
(45). Since , we reach a contradiction and A) is
proved.

Let be a critical point of or, equivalently, a fixed point
of . A simple computation of the Hessian of at yields

Hess

where is an arbitrary symmetric matrix. Set
and . Then, one has

(46)

Since is a fixed point of , one has

Multiplying the previous equation on the left and on the right by
, then taking the trace and inserting the result in (46), we get

Hess

where is the set of indexes such that and

Then clearly

which is strictly negative if .

C. Proof of Proposition IV.3

Item i) is proved exactly as (P1) of [3, Proposition V.2 and
Proposition V.3]. For ii), consider and . Write

as

Since is increasing, one has

Suppose now that . Apply the previous result to and
1 , respectively, instead of and .

D. Proof of c) of Theorem III.3

Let and be the orbit of by the itera-
tive scheme associated to . Then and

for . There exists two positive real numbers
and such that

Define as the compact subset of given by

By a trivial inductive argument which uses the subhomogeneity
of , we show that the orbit of remains in . We will
prove a more precise statement. For that purpose, define, for

small enough

over all , and , and

over all , and . It is
easy to see that and . Then, one clearly has
the following.

i1) If and , then
.

i2) If and , then
.

Assume now that is very small. Define the integers , ,
and as follows:

where denotes the integer part. We first claim that

(47)
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Indeed, if for some integers and , one
has , then, by i1), we have

, and that goes on as long as
. The argument is identical for the other in-

equality of (47).
With an easy inductive argument using the subhomogeneity

of , we show that, for every

This clearly implies that, for every

Since both and tend to one as tends to zero, we
deduce that tends to as tends to .
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