Electronic Notes in Theoretical Computer Science 72 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume72.html 15 pages

Using DAG Transformations to Verify
Euler /Venn Homogeneous and Euler/Venn
FOL Heterogeneous Rules of Inference

Nik Swoboda 2

Media Information Science Labs
Advanced Telecommunications Research Institute
Seika, Kyoto, Japan

Gerard Allwein 3

Department of Computer Science
Indiana University
Bloomington, IN, USA

Abstract

In this paper we will present a graph-transformation based method for the verifica-
tion of heterogeneous first order logic (FOL) and Euler/Venn proofs. It has been
shown that a special collection of directed acyclic graphs (DAGs) can be used in-
terchangeably with Euler/Venn diagrams in reasoning processes [4]. Thus, proofs
which include Euler/Venn diagrams can be thought of as proofs with DAGs where
steps involving only Euler/Venn diagrams can be treated as particular DAG trans-
formations. In the work reported here, we will show how the characterization of
these manipulations can be used to verify Euler/Venn proofs. Also, a method for
verifying the use of heterogeneous Euler/Venn and FOL reasoning rules will be
presented that is also based upon DAG transformations.

1 Overview

It has been shown that a special system of DAGs can be used to capture
the essential properties of an extended version of Hammer’s Venn reasoning
system consisting of Euler/Venn diagrams [4]. This DAG system includes a

L The research reported here was supported in part by a contract with the Telecommuni-
cations Advancement Organization of Japan entitled, “A study of innovational interaction
media for the development of a highly functional networked society”.

2 Email: nswoboda®@atr.co. jp

3 Email: gtall@cs.indiana.edu

(©2003 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

78

http://creativecommons.org/licenses/by-nc-nd/3.0/

SWOBODA AND ALLWEIN

grammar specifying syntactic requirements upon the DAGs as well as rules of
inference, and a semantic interpretation for those DAGs. By saying that we
can capture the essential properties of the Euler/Venn system, we mean that it
is possible to translate any well-formed Euler/Venn diagram into a DAG and
that there is an Euler /Venn diagram which is the translation of any DAG in the
system. Furthermore, these translations preserve the semantic and inferential
properties of the systems. Thus, any reasoning that can be conducted using
Euler/Venn diagrams can be conducted using DAGs and vice versa.

Once we think of a proof involving Euler/Venn diagrams as a proof involv-
ing DAGs, each step consisting of a DAG and using a DAG as support can
be thought of as a DAG manipulation. We can then propose algorithms for
the analysis of these manipulations to determine their validity as applications
of rules of inference. Furthermore, since these data-structure manipulations
can be closely modeled in our mathematical theory, we can also prove the
validity of these proof verification algorithms. In addition to this, heteroge-
neous rules involving DAGs and formulas of FOL can also be verified using
DAGs. By extracting from the formula all information which can be expressed
in an Euler/Venn diagram, a DAG can be constructed and once again DAG
manipulations can be used to verify the reasoning.

In the proofs we will verify, the reasoner will be able to use homogeneous
FOL, homogeneous Euler/Venn, and the heterogeneous FOL and Euler/Venn
reasoning rules. The heterogeneous rules will allow the extraction and re-
expression of information from Euler/Venn diagrams as formulas of FOL. They
also will allow the construction of Euler/Venn diagrams based upon informa-
tion contained in formulas of FOL. We generically refer to these kinds of rules
of inference as Recast rules. Here, following in the tradition of Barwise and
Etchemendy in their work on the Hyperproof system [1], we will focus on a
special kind of Recast rule, known as the Observe rule. Additional background
information regarding these rules can be found in Section 7.

2 Background and motivation

This is the last in a series of papers describing the design of a heterogeneous
FOL and Euler/Venn reasoning system from both theoretical and practical
points of view. This project began with the description of a technique for
using DAGs to represent Euler/Venn diagrams [4]. Subsequently, theoretical
issues involved in the design of the FOL and Euler/Venn logical system have
been presented [5,6]. Here we build upon and extend this work by presenting
the use of DAG transformations in the verification of heterogeneous FOL and
Euler/Venn proofs.

The use of DAGs in the implementation of Euler/Venn diagram systems
has a number of advantages. First, DAGs provide a discrete symbolic repre-
sentation of an Euler/Venn diagram which abstracts away many of the details
of a particular diagram which do not carry interpretable information. Some

79

SWOBODA AND ALLWEIN

of these details include the exact size, shape, and placement of the diagram’s
curves. In fact, any two Euler/Venn diagrams having the same exact infor-
mation content will have equivalent corresponding DAGs. Also, each DAG
is uniquely characterized by its collection of leaf nodes. Since many calcula-
tions involving the DAGs only require the checking of the leafs, DAGs can be
stored in terms of their leafs and the rest of the graph generated from these
leafs only when necessary. Though theoretically the size of a DAG’s leaf node
set can increase exponentially with the number of curves in the diagram, we
have found that in practice people do not typically draw diagrams with many
curve intersections. Diagrams with many curves and curve intersections are
simply difficult to interpret and use.

This project arose from work being done to extend Barwise and Etchem-
endy’s Hyperproof [1] system to include more diagrammatic and sentential
systems. In Hyperproof, users can write and verify proofs involving formulas
of FOL and blocks world diagrams. Currently, development is under way to
build a new system called Openproof in which multiple diagrammatic and sen-
tential systems can be used together in the writing of proofs. One of the core
diagrammatic systems that will be provided in the Openproof framework is a
system of Euler /Venn diagrams based upon Shin and Hammer’s Venn systems.
Techniques similar to those discussed here will be used in the verification of
the FOL and Euler/Venn portions of the Openproof system. We also believe
these techniques can provide valuable insight into the characterization of dia-
gram manipulations that could then be applied to proof verification strategies
used by other diagrammatic proof systems systems.

3 A brief review of Hammer’s Venn system

Euler and Venn diagram notions such as region, basic region, etc. will be used
following Hammer’s definitions [3]; here we will provide a very brief summary
of his terminology. Hammer’s Venn system consists of diagrams containing
closed curves, shading, constant symbols and lines to connect constant sym-
bols. Curves are used to represent sets. In Venn diagrams, every possible
intersection of the curves of the diagram is required to exist in the diagram.
An Euler/Venn diagram is a Venn diagram in which Euler-like features, such
as set containment, can be expressed. In other words, Hammer’s syntactic re-
striction requiring that every possible curve intersection exist in the diagram
is slightly relaxed in the case of Euler/Venn diagrams. An example diagram
of this system can be seen in Fig. 1. A region of a diagram is any area of the
diagram that is completely enclosed by lines of that diagram. The collection
of regions is closed under union, intersection, and complement; thus a region
may contain disconnected parts. Any region of the diagram completely en-
closed by a closed curve is referred to as a basic region. Each basic region has
a unique label. A minimal region is any region which is not crossed by any
of the lines of that diagram (i.e., any region that can not be thought of as

80

SWOBODA AND ALLWEIN

Fig. 1. An Euler/Venn diagram

the union of other regions). Two regions in two different diagrams are said
to be counterparts if they are both interpreted as representing the same set.
Shaded and missing regions in a diagram are used to express the fact that the
set denoted by that region is empty. Chains of constant sequences are used to
show that the object represented by that constant is a member of one of the
sets denoted by the regions containing the links. The collection of well formed
Euler/Venn diagrams will be referred to as EV.

Thus, from the information in Fig. 1 we can see that there are no Sloths
that are both Three-toed and Two-toed due to the location of the shaded
region. We can also see that Manned sloths are either Three-toed and not
Two-toed or both Three-toed and Two-toed from the placement of the Manned
constant symbol links. We will now proceed by presenting the notion of a tag
for a region and the homogeneous rules of inference for the Euler /Venn system.

3.1 Notion of a Tag

Given the set {L4,..., L,} of labels of a diagram V' € EV, a tag is a subset of
{Ly,Ly,..., Ly, L,} containing at most one of L; and L; for each i. A tag 7
is said to be complete if for each label L; of V, either L; € 7 or L; € T.

Thus for each basic region labeled L there will be a tag { L} corresponding
to it and tag {L} corresponding to the complement of that region. Then given
two overlapping regions tagged with 73 and 75 the tag for the intersection of
those regions will be 7 U 7. We then see that the complete tags correspond
exactly to all the potential minimal regions of the diagram. Here we say “po-
tential” due to the fact that there are complete tags which might correspond
to missing minimal regions.

3.2 Euler/Venn rules of inference

Given diagrams V and V' of £V, V' can be inferred from V if V' is the result
of applying any of the following rules to V:

(i) Erasure of part of a constant sequence — V' is obtained by erasing a ¢ of
a constant sequence of V' where that ¢ falls within a shaded region and
provided that the possibly split ¢ sequence is rejoined if necessary.

81

SWOBODA AND ALLWEIN

(ii) Extending a constant sequence — V" is the result of adding a new c link to
a constant sequence of V' in a minimal region not already containing a
link of that sequence.

(iii) Erasure — V' is obtained from V by erasing: an entire constant sequence,
the shading of a region, or a closed curve (and possibly redrawing the
remaining curves to keep the diagram well-formed) if the curve removal
does not cause any counterpart regions to disagree with regard to shading
or containment of links of a constant sequence.

(iv) Introduction of a new curve — V' is the result of adding a new curve to
V in such a way that V' is well-formed, the other labels of V' are left
undisturbed, and all counterparts agree with respect to shading and con-
tainment of links of a constant sequence.

(v) Inconsistency — V'’ of any form can obtained from V' if V' contains a region
that is both shaded and contains all the links of some constant sequence.

(vi) Adding shaded regions — V" is the result of adding a new minimal (but not
basic) region which is a counterpart of a missing region in V' provided
that this new region is shaded and is drawn so that the region is contained
within the basic regions to whose intersection it is intended to correspond.

(vii) Removing shaded regions — V"' is the result of removing a shaded minimal
but not basic region of V. To emphasize the fact that the region has
been removed the lines enclosing the now non-existing region should be
smoothed into curves, and the remaining curves should be spaced out to
remove points of unintended intersection.

Unification — V' can be inferred from diagrams V; and V5 if it is the case that:

(i) The set of labels of V' is the union of the labels of V; and Va.

(ii) If there is a region in either V; or V4 that is shaded or missing than its
counterpart region in V' must be either shaded or missing. Also if there
is a region in V' that is shaded or missing than the counterpart region in
either V1 or V5 must be either shaded or missing.

(iii) If there is a region in either V; or V5 that contains the constant sequence
¢, than the counterpart region in ¥V’ must contain the constant sequence
c. Also if there is a region in V' that contains the constant sequence
¢, then the counterpart region in either V; or V5 must also contain the
constant sequence.

4 Euler/Venn diagrams and DAGs

The DAGs that we will be considering consist of labeled nodes representing
regions of the diagram along with shading and constant sequence information
in the form of node properties. Edges connecting the nodes of the DAG will

82

SWOBODA AND ALLWEIN

Fig. 2. A sample Euler/Venn diagram and its corresponding DAG

be taken to represent the cover relation between regions of the diagram.?

Each DAG will have one node representing its domain (the collection of all
the objects that the diagram could explicitly represent), and other nodes each
uniquely representing each of its corresponding diagram’s basic regions, com-
plements of basic regions, and non-missing regions that are the intersection
of some collection of basic regions and their complements. The label of each
node consists of U, for the root node, or the union of curve labels and their
complements. With the exception being the root node labeled U, each node
is labeled with the tag which corresponds to the region it represents. For
example, the node labeled A BC' is taken to represent the intersection of the
complements of the basic regions A and B, and the basic region C. Thus,
the DAG’s root node represents the domain of the diagram, the diagram’s
rectangle, and the leaf nodes of the DAG represent the minimal regions of the
diagram. The collection of well formed DAGs will be referred to as D.AG.

A sample Euler/Venn diagram and its corresponding DAG can be found
in Fig. 2. In this diagram, the region corresponding to the intersection of the
basic regions A and B is missing, and this can be interpreted to mean that
there are no members of the set denoted by A that are also members of the
set denoted by B. The shading of the basic region A denotes that the corre-
sponding set is empty. The location of the constant x carries the information
that the object that it denotes does belong to the set corresponding to basic
region B, and does not belong to the set corresponding to the basic region A.
In the diagram’s DAG, note the shading of the node AB, the lack of a node
labeled AB, and the locations of the x constant symbols.

5 Characterizing DAG manipulations

In the easiest case, the rules of inference that we would like to verify consist
of a supporting Euler/Venn diagram and a resulting Euler/Venn Diagram.
To check the application of these rules, one can translate these diagrams into
DAGs and study the differences that exist between them. Thus it is important
for us to be able to characterize and to analyze these DAG transformations. In
order to do this more easily we will introduce the notion of a DAG delta. Each

4 “A covers B” iff B C A and there is no region C such that B C C and C C A.

83

SWOBODA AND ALLWEIN

delta will denote some meaningful transformation to the DAG. A collection of
DAG deltas will be used to describe the changes made to transform one DAG
into another. Once we have the collection of DAG deltas that exist between
two DAGs, we can then see if the specified rule of inference allows each of
those deltas. The following is the list of deltas that we will use.

Definition 5.1 Given any curve label [, constant symbol ¢, and complete tag
t all relating to some diagram V' € £V, the following are all valid DAG deltas:

e ADD CURVE : [and REMOVE CURVE : [

e ADD REGION : ¢ and REMOVE REGION : ¢

e ADD SHADE :t¢ and REMOVE SHADE : ¢

e ADD CONSTANT LINK : ¢;t and REMOVE CONSTANT LINK: c;t

A simple algorithm is used to compute the collection of DAG deltas,
DELTAS, between the support DAG and the resulting DAG. First we determine
which curves need to be added or removed from the supporting DAG to result
in a DAG with the same basic regions as the resulting DAG. For each such
curve we add the appropriate ADD CURVE or REMOVE CURVE delta to DELTAS.
In the case in which a curve is added we can use the Introduction of a new
curve rule of inference to add the curve. In the case of removing a curve, we
use the Erasure rule of inference to remove that curve from the DAG. Then,
since the entire DAG can be constructed from its leafs, we can consider only
the differences between the leafs of the resulting two DAGs. So we proceed by
checking each leaf node one by one and adding any of the appropriate deltas to
DELTAS as would be expected. A more detailed description of this algorithm
will now be presented.

Algorithm 1 Given D, D" € DAG we use the following to compute the col-
lection DELTAS of DAG deltas describing the differences between D and D’.

(i) Compute curve deltas:

(a) For each curve | in D' not in D we add ADD CURVE : | to DELTAS
and we use the Introduction of a new curve rule of inference (using the
inductive DAG construction algorithm) to add the curve l to D.

(b) For each curvel in D not in D' we add REMOVE CURVE: | to DELTAS
and we use the Erasure rule of inference to remove l from D.

(ii) Compute region deltas:

(a) For each n’ a leaf node of D' with tag t such that there is no node n
in D with the tag t we add ADD REGION : t to DELTAS. If the added
region in D’ is shaded we add ADD SHADE : t to DELTAS and if it
contains links of constant sequences we add ADD CONSTANT LINK: c;t
deltas to DELTAS for each constant link c.

(b) For each n a leaf node of D with tag t such that there is no node n’
in D" with the tag t we add REMOVE REGION:t to DELTAS. If the re-
moved region in D is shaded we add REMOVE SHADE :t to DELTAS and

84

SWOBODA AND ALLWEIN

Fig. 4. The result of adding curve C' to the left diagram

if it contains links of constant sequences we add REMOVE CONSTANT LINK :
c;t deltas to DELTAS for each constant link c.

(iii) Compute all other deltas:

For each n a leaf node of D and n' a leaf node of D' such that n and n’'

have the same tag t:

(a) if n’ is shaded and n is not then add ADD SHADE : 1 to DELTAS

(b) if n is shaded and n' is not then add REMOVE SHADE :t to DELTAS

(c) ifn' has a constant ¢ that is not in n we add ADD CONSTANT LINK: c;t
to DELTAS.

(d) ifn has a constant c that is not inn' we add REMOVE CONSTANT LINK :
c;t to DELTAS.

For example, when computing the deltas between the diagrams of Fig. 3,
we first need to add a curve to the support diagram resulting in the situa-
tion in Fig. 4. Thus the collection DELTAS for Fig. 3 would consist of: ADD
CURVE:C, REMOVE SHADE:ABC, REMOVE CONSTANT LINK:x;ABC. Note that in
Fig. 3 there is no node labeled B since the basic region B is the same as the
minimal region AB which is included in the DAG.

85

SWOBODA AND ALLWEIN

Lemma 5.2 All logically significant differences between any two DAGSs in
DAG can be captured with a set of DAG deltas.

Theorem 5.3 Algorithm 1 for computing DAG deltas captures all logically
significant differences between the two DAGs.

6 Verifying the Euler/Venn homogeneous rules of in-
ference using DAGs

Using these DAG deltas, the checking of the homogeneous Euler/Venn rules
from the collection DELTAS can be done without difficulty. For example, to
check the Erasure of part of a constant sequence rule, we verify that the col-
lection DELTAS between the support and the result only consists of a single
REMOVE CONSTANT LINK delta whose region is shaded in the resulting DAG.
More detailed algorithms for all of the Euler/Venn homogeneous rules of in-
ference will now be given.

Algorithm 2 Given D, D’ € DAG, and the set DELTAS resulting from the
application of Algorithm 1 to D and D', we do the following to check the
application of a homogeneous rule of inference(checking of the Unification rule
will be given in the next section):

o Erasure of part of a constant sequence — We check to see that DELTAS only
contains one delta of the form REMOVE CONSTANT LINK : c;t and that the
region tagged by t is shaded in D.

e Extending a constant sequence — We check to see that DELTAS only contains
one delta of the form ADD CONSTANT LINK : c;t, that the node correspond-
ing to t doesn’t already contain the link ¢, and that some other node n'
in D contains the link ¢ (i.e., that a new constant sequence has not been
introduced).

e Erasure — We check to see that DELTAS only contains:
- REMOVE SHADE or REMOVE CURVE deltas
- REMOVE CONSTANT LINK deltas where for each removed constant link c
there is a REMOVE CONSTANT LINK : c;t delta for every leaf node with tag
t containing c (i.e., that the entire constant sequence is being removed,).

e Introduction of a new curve — We check to see that DELTAS only contains
one ADD CURVE delta.

e Adding shaded regions — We check to see that DELTAS contains only one
delta of the form ADD REGION : t and that the node labeled t in D' is shaded.

* Removing shaded regions — We check to see that DELTAS only contains one
delta of the form REMOVE REGION : t and that the node labeled t in D 1is
shaded.

* Inconsistency — We check to see that for some constant sequence c in D that
every leaf node in D containing c is shaded.

86

SWOBODA AND ALLWEIN

6.1 The Unification rule

In the case of the Unification rule there are two support diagrams and one
resulting diagram. This rule is used to combine the information contained
in two different diagrams into one diagram. An example of the use of the
Unification rule can be found in Fig. 5. To check this rule it is first verified that
the set of basic regions in the resulting diagram is the union of the basic regions
in the two supporting diagrams. If this isn’t the case then the rule fails. Then,
as above, the curves that are in the resulting diagram that aren’t in either of
the support DAGs are added, and any curves not in the resulting diagram are
removed. Next we find the deltas between the first support diagram and the
result and the second support diagram and the result. Then we sort through
the deltas searching for a delta that is not allowed. Deltas that are allowed
are deltas that are based upon information in the other support diagram. For
example if region ¢ in the second support has a constant which also appears
in the result in ¢, then the fact that it is missing from the first support can be
ignored. Also, if in one support, region ¢’ is shaded and in the other region #'
is missing then the result can have either a missing or shaded region ’. An
example of this process, using Euler/Venn diagrams in place of DAGs, can
be found in Fig. 5. The top two diagrams are the support diagrams and the
second row of diagrams are the result of adding Pencil Urchin curve to the
first support and then the Eel curve to the second support. We then compare
the contents of all of the minimal regions. On close examination, it can be
seen that any discrepancy between the first or the second support and the
result is justified on the basis of the other support. For example, though the
region with the tag Sea-Urchin Pencil-Urchin Eel is not missing in the first
support and is missing in the result, it is missing in the second support so this
modification is justified.

Algorithm 3 Given D, D', D" € DAG, we do the following to check the ap-
plication of the Unification rule of inference.

(i) If there is some curve in D" not in either of D or D', or some curve in
D or D' that is not in D", then the rule fails.

(ii) Using Algorithm 1 we compute the set DELTAS between D and D" and
the set DELTAS' between D' and D".

(iii) While using D' as “the other support” we check that for each delta d €

DELTAS that if d is:

e ADD REGION : t, then the node labeled t is shaded in the other support
and in D".

e REMOVE REGION : t, then the node labeled t is missing in the other
support.

e ADD SHADE :t then the node labeled t is is shaded in the other support.

e REMOVE SHADE: t, then the node labeled t is missing in the other support
and in D".

87

SWOBODA AND ALLWEIN

Sea Urchin Eel U Sea Urchin u

Pencil Urchi

Fig. 5. The checking of the Unification rule

e ADD CONSTANT LINK : c;t, then the node labeled t in the other support
has the constant link c.

e REMOVE CONSTANT LINK : c;t, then the link c is missing in the node
labeled t in the other support and there is some other minimal region
in D and D' containing a link of ¢ (i.e., that the constant sequence
1sn’t being removed, and that if it isn’t being removed that that constant
appears in the other diagram,).

e ADD CURVE : [then a curve labeled | appears in the other support.

e otherwise the use of the Unification rule fails (it always fails when en-
countering REMOVE CURVE deltas).

(iv) We repeat the last step to check each d' € DELTAS' but this time we use
D as the other support.

Theorem 6.1 Algorithm 2 and Algorithm 8 correctly check the use of all the
Fuler/Venn homogeneous rules of inference.

7 Verifying heterogeneous rules of inference using DAGs

The heterogeneous rule of inference that we will check is the Observe rule.
Though inspired by the work of Barwise and Etchemendy, its use in this
context will be slightly different. Here the rule’s use will be symmetric, it
can be used to transfer information from Euler/Venn diagrams to FOL and
from FOL to Euler/Venn diagrams. Also, in our case the rule will only be
used to extract explicit information. This notion of being explicit is based
upon Dretske’s notion of secondary seeing that [2]. Dretske attempted to

88

SWOBODA AND ALLWEIN

define a notion of epistemic seeing, or seeing that, which has a fundamental
relation to a notion of non-epistemic seeing. He took very seriously the idea
that any genuine instance of “seeing that” should have as its basis a visual
event. This was done to preserve, as he says, the “visual impact” of “seeing
that” and thus to exclude such natural language uses of the phrase “to see
that”, as “Mary could see that the eggs were completely hard boiled (from
the ringing of the timer)”, from his notions of seeing. Part of the motivation
for doing this was to ensure that the “How?” justification of any information
gathered through an act of “seeing that” involves an act of non-epistemic
seeing in an essential way. For our purposes, this locution is important because
it will help us to characterize information which can be observed, acquired
through fundamentally visual means, from a diagram. These kinds of rules
are further discussed in [6], and will be minimally presented here. An example
of a valid use of the Observe rule with Fig. 2 as support would be the formula
-3z (A(x) A B(z)).

7.1 Observing formulas of FOL from Euler/Venn diagrams

Before we define a notion of observation from Euler/Venn diagrams to formulas
of FOL we will first introduce the notion of an Euler/Venn observational
formula(EVOF). These formulas have been specially selected so that each
formula of EVOF carries information which corresponds directly to a syntactic
feature of an Euler/Venn diagram.

Let £ be some finite set of predicates, each of which can be thought of as
the label of some curve of an Euler/Venn diagram, and let the set Terms be the
union of a set Cons of constant symbols and a set Var of variable symbols also
occurring in those diagrams. For the purposes of this project, free variables
and constants will be treated almost identically. Thus, free variables will be
replaced by fresh constants at the point of their evaluation. Please note that
where (t) is written in the following definitions it will mean that all of the
predicates in the formula ¢ contain the term t.

Definition 7.1 Euler/Venn Observational Formulas (EVOF)

(i) Basic formulas: For every predicate P in £, and term ¢ in Term, P(¢) is
in EVOF.

(ii) Negations, Conjunctions, and Disjunctions: For every ¢1(t),. .., on(t) in
EVOF, the following are also in EVOF"
* —pi(t)
* (@B A Apn(t))
* (@1t V... V()
(iii) Quantifiers: For every unquantified ¢(x) in EVOF, the following are also
in EVOF:
* Nz ¢(z) (read as “There is no x such that ¢(z).”)
¢ 30 ol2)

89

SWOBODA AND ALLWEIN

Definition 7.2 Given a diagram V' € £V containing curves labeled Py, ..., P,,
the partial region assignment function regiony from EVOF to the regions of
V' will be defined as follows:

(i) For each basic region r labeled P in V' regiony (P(t)) = r.
(i) If regiony (p1(t)) =11, ..., regiony (@, (t)) = r, then:
e regiony (- (t)) =71.°
o regiony ((p1(E) Ao Apn(t)) =rmiN...Nmy,
o regiony ((p1(t) V... Vpu(t)) =mU...Ur,
» regiony (Nz ¢(x)) = regiony (Iz p(x)) = regiony (p(x))
Definition 7.3 The relations of strong observation, V=" ¢(t) and V=" ¢(t),

will be defined between diagrams of £ and formulas of EVOF by induction
on the complexity of (t) as follows:

e For unquantified formulas:
- Vit p(#) if the term symbol ¢ appears in regiony (o(t)).
- V=" ¢(t) if the term symbol ¢ appears in the complement of regiony (p(t)).

6

e For quantified formulas:
- Vi1 Nz 4 (x) if the region regiony (1(z)) is shaded or missing.
- VE~ Nz ¢(z) if V=" 3z ¢(2).
- VT3 () if some term symbol t appears in regiony (¢¥(z)).
- V=" 3z ¥(x) if V= Nz ().

V" will be written if neither V"¢ nor V.

To define observation for all formulas in monadic first order logic (MFOL),
we introduce a special normal form called EVCNEF. In this form each of the for-
mula’s conjuncts carries information regarding some feature of an Euler/Venn
diagram. Sentences of EVCNF have only unary predicates, atomic negation,
minimized quantifier scope, and are in the form of conjuncts of disjuncts or
quantified expressions (using 3 and N) where every predicate in the scope of
the quantifier contains the quantified variable. In this form each conjunct is
either a quantified formula of EVOF, a disjunction in EVOF or a mixed term
disjunction.

Definition 7.4 Given a Euler/Venn diagram V € £V and a formula ¢ in
MFOL, we will define the relations of observation as follows:

« VTg if when ¢ is transformed info EVCNF every conjunct is in EVOF,
and for each conjunct 1 it is the case that V}::*zp

e VR p if when ¢ is transformed info EVCNF every conjunct is in EVOF,
and there is some conjunct ¢ such that V"1, and for the rest either

V=" or Vi)

5 Here 7 will be taken as denoting the region bound by the diagram’s rectangle with r
removed.

6 The term symbol ¢ appears in the region r if ¢ is not part of a term sequence and ¢ appears
in r or if ¢ is part of a term sequence and the entire sequence appears in r.

90

SWOBODA AND ALLWEIN
V' will be written if neither V"¢ nor VR ¢.

7.2 Using DAGs to verify this rule

We begin with a support Euler/Venn diagram and a resulting formula of
FOL. Due to the nature of Euler/Venn diagrams, we begin by assuming that
the formula only contains monadic predicates. First we convert the formula of
FOL into EVCNF and then using this formula we construct a DAG containing
all the information in that formula that could be expressed in an Euler/Venn
diagram. Here we will focus on just the positive part of the observe relation,
V"o, as the negative part can be addressed analogously.

Algorithm 4 Given a formula p of MFOL, we use the following algorithm to
extract all pertinent Euler/Venn information from the formula and to produce
a DAG. We begin with D as the empty DAG.

(i) For each predicate P occurring in ¢ we add to D, using the Introduction
of a new curve rule, a basic curve with the label P.

(ii) Convert ¢ into ¢’ in EVCNF. If any of the conjuncts of ¢’ is not in
EVOF then the construction fails.
(iii) For each conjunct ¥ in @', if 1 is of the form:
o 01(t) V ...0,(t) - We make a new constant sequence in D placing the
term t in every minimal region of D that is a subregion of regionp(01(t)V

. 0,(1)).
e Nz 0(x) - We shade every minimal region of D that is a subregion of
regionp(6(z)).

e Jz O(x) - We make a new constant sequence in D placing the term t
in every minimal region of D that is a subregion of regionp(01(t1) V

On(t)).

So now to verify the observation of a formula of MFOL from an Euler/Venn
diagram we first use Algorithm 4 to generate a DAG from that formula. As
before we then need to calculate the deltas between the support and the result.
Then the collection of deltas are examined to insure that no inappropriate
changes have occurred. The swapping of shaded regions for missing regions,
and the weakening of information is permitted. However, any changes which
introduce new information are not permitted.

Algorithm 5 Given a DAG D in DAG and a formula ¢ of MFOL we use
the following procedure to verify the observation of ¢ from D;

(i) Construct the DAG D" which is supported by ¢ using Algorithm 4. If the
construction fails then the rule fails.
(ii) Use Algorithm 1 to compute the set DELTAS between D and D'.

(iii) We check that for each delta d € DELTAS that d is:
* a REMOVE CURVE, ADD REGION or REMOVE SHADE delta.
e a REMOVE CONSTANT LINK delta and that for the removed link c there is

91

SWOBODA AND ALLWEIN

a REMOVE CONSTANT LINK: c;t delta for every leaf node in D with tag
t containing c (i.e., that the entire constant sequence is being removed).

e ADD CONSTANT LINK delta and that there is a region t containing a c
for which there are no ADD CONSTANT LINK : c;t deltas (i.e., that an
entire new constant sequence isn’t being added).

e a ADD SHADE delta and d’s region was missing in D.

* otherwise the use of the Observe rule fails. (Note that is is not possible
for a REMOVE REGION delta to occur, since Algorithm /4 does not produce
DAGSs with missing regions.)

Theorem 7.5 The verification technique given in Algorithm 5, correctly ver-
ifies the Observe rule presented in Definition 7.4.

7.8 Observing from formulas of FOL Euler/Venn diagrams

Due to space constraints, we are unable to give a detailed description of the
verification of the observation of formulas of FOL from Euler/Venn diagrams.
However, after providing the appropriate definitions regarding when a diagram
can be observed from a formula, an analogous procedure can be used to the one
given in the last section (switching the roles of the diagram and the formula).

References

[1] Barwise, J. and J. Etchemendy, “Hyperproof,” CSLI Publications, Stanford,
1994.

[2] Dretske, F. 1., “Seeing and Knowing,” Chicago University Press, Chicago, 1969.

[3] Hammer, E. M., “Logic and Visual Information,” CSLI and FOLLI, Stanford,
1995.

[4] Swoboda, N., Implementing FEuler/Venn reasoning systems, in: M. Anderson,
B. Meyer and P. Olivier, editors, Diagrammatic Representation and Reasoning,
Springer-Verlag, London, 2002 pp. 371-386.

[5] Swoboda, N. and G. Allwein, A case study of the design and implementation of
heterogeneous reasoning systems, in: L. Magnani and N. J. Nersessian, editors,
Logical and Computational Aspects of Model-Based Reasoning, Kluwer Academic,
Dordrecht, 2002 .

[6] Swoboda, N. and G. Allwein, Modeling heterogeneous systems, in: M. Hegarty,
B. Meyer and N. H. Narayanan, editors, Diagrammatic Representation and
Inference, number 2317 in Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin, 2002 pp. 131-145.

92

