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We prove that every n-vertex graph of genus y and maximal degree k has an edge separator of size 

O(,:(lkn). The upper bound is best possible to within a constant factor. This extends the known 

results on planar graphs and similar results about vertex separators. We apply the edge separator to 

the isoperimetric number problem. graph embeddings and lower bounds for crossing numbers. 

1. Introduction 

Many divide-and-conquer algorithms on graphs are based on finding a small set of 

vertices or edges whose removal divides the graph roughly in half. Applications 

include VLSI layouts [14], Gaussian elimination Cl.51 and graph embeddings [17]. 

Formally, a class of graphs hasf’(n) vertex (edge) separator if every n-vertex graph in 

the class has a vertex (edge) cutset of sizef(n) that divides the graph into two parts 

having no more than 2n/3 vertices. Lipton and Tarjan [ 161 proved that planar graphs 

have O(J) vertex separator. The genus of a graph is the minimum number of 

handles that must be added to a sphere so that the graph can be embedded in the 

resulting sphere with no crossing edges. Djidjev [7] and Gilbert et al. [9] proposed 
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algorithms that find an O(,,‘gn) vertex separator for graphs of genus y. Further 

generalization was done in [2O, 231 and recently in 1193. Miller 1181 and Diks et al. 

[4] showed that every n-vertex planar graph of maximal degree k has an O(,,&) edge 

separator. Extensions of these results can be found in [S]. 

In this paper we prove that any n-vertex graph of positive genus q and maximal 

degree k has an O(\/&J) edge separator. This bound is best possible to within 

a constant factor. The separator can be found in O(q +n) time provided that we start 

with an embedding of the graph in its genus surface. We apply the edge separator to 

the isoperimetric problem, to efficient embeddings of graphs of genus y into various 

classes of graphs, including trees, meshes and hypercubes, and to showing lower 

bounds on crossing numbers of K,, K,,,, and Q,, drawn on surfaces of genus y. 

2. Separation of graphs of genus y 

-1. I. C’pp holrrlll 

We prove a stronger “weighted” version of the edge separator theorem mentioned 

in the introduction. Before proving it, we state some notions and an important lemma. 

Let G=( V, E) be an n-vertex graph of genus q >O and maximal degree k whose 

vertices have nonnegative weights summing to 1 such that no weight exceeds 2/3. Let 

us denote the sum of the weights of vertices belonging to a set X as weight(X). Let 

) E 1 = m. 

Lemma 2.1 (Djidjev 161). !f’G 1~l.s a breudthyfirst search spunniny tree ofradius r and 

rooted in a certer t then there is (I partition of V into three sets A, B, C such thut no 

edge joins u rertes in A \t?th II vertex in B, weight(il)d2/‘3, weight(B)d2/3 and 

lC/<(4y+2)r+ I. bchere ~EC. 

Theorem 2.2. There is u purtition of’ I/’ into sets A, B and (I set of‘ edges D such thut 

weight(A) d 213, weight(B) d 2,‘3, 1 D / d 5&& and every edge between A und B be- 

longs to D. 

Proof. Let G be connected and t be an arbitrary vertex of G. Suppose that G has 

a breadth-first search spanning tree of radius r rooted in t. According to Lemma 2.1, 

there is a set of vertices C separating G such that /C I< (4y + 2)r + 1. 
/ 

Assume that r < ,/m/((4y + 2)k). Let D be the set of all edges incident to the set C. 

Hence. 

IDI< 
177 

------(48+2)+1 
(4y+2)k 

k<($+ I),/‘&. 

By distributing properly the set C between A and B, we receive the desired partition. 



i 
If r 3 J;nlok) then we set s = Jm/((4y + 2)k). We can assume s > 1; other- 

wise, m < (4y + 2)k and we have a trivial edge separator of size m = &J’& < J&&I. 

Partition the vertices of G into levels UO, U 1, . . , U, according to their distance from t. 

Define 

Lj=((U,U)IU~Ui-,, UE Ui, i=j mod S, i = 1, 2, 3, . . . , r}. 

AS Ius=; Ljl<m and ILinLjl=O, for i#j, there exists se such that IL,,l<m/s. By 

removing the edges of L,,,, the graph G is partitioned into connected components 

Gi=(vi,Ei), i=l,2,3,... 

If weight( Vi)~2/3 for all i then we easily combine the desired partition A, B. Set 

D = L,,,. Thus, 

Let weight (Vi) > 2/3 for some i. Let h(l) be the highest (lowest) level of vertices in Vi. 

Delete the vertices of G at levels > h. Shrink the vertices of G at levels < 1 into the root 

t. The result is a graph Hi of genus < y, / Vi I + 1 vertices and radius s. Apply Lemma 2.1 

to the graph Hi. We obtain a partition of Hi into sets Ai, Bi and Ci such that 

and 

weight(Ai)<f (weight( Vi)+weight(r)), 

weight(B,)<+ (weight( VJ+weight(t)) 

ICiId(4~+2)s+ 1. 

Delete t from Hi. Let Di denote the set of edges incident to Ci. Removing Di from Gi, 

we partition Vi into two sets having weights <2/3. Thus, we have divided G into 

components whose weights do not exceed 2/3. One can easily combine the compon- 

ents into the desired partition A and B. The total number of deleted edges is 

Finally, suppose y d n/48. Then 

If y>n/48 then we have a trivial separator of size 

In the case where G is not connected, we apply the above procedure to the 

component with the greatest weight. 0 



Our proof can be directly transformed to an algorithm for finding the edge 

separator. Provided that we start with an embedding of G in its genus surface, the time 

complexity is O(t?l) = O(y + II) because finding both the set I!,,,, and the vertex cut from 

Lemma 2.1 requires O(cj+n) time 161. 

For some applications, it can be useful to have an edge cut that divides the graph 

into two parts whose numbers of vertices differ at most by I. Such edge cuts are called 

bisectors. 

The proof follows the method used in Corollary 3 of [16]. 

2.2. Lower howd 

In this section we prove that the bound in Theorem 2.1 is tight to within a constant 

factor whenever (ok = O(n). We show this for the unweighted version of Theorem 2.1, 

i.e. all vertices have the same weight. We use essentially the following lemma. 

Lemma 2.4 (Gilbert et al. [9]). There exists II constunt x such that&or ir$nitelp wmny g, 

no, .(I < no, there is LI regdrrr grtrph Go with no vertices, genus g und of degree 6 whose 

ererq‘ 1rerte.x cut dividing Go into parts hminy < 314 vertices has size 3 rd/yn,. 

Corollary 2.5. Ever!, edye cut thut divides Go into puts hiny < 3n/4 vertices has size 

at leust x4’&. 

Proof. Let the claim be false. Hence, there is an edge cut D of G, of size ID I < aJ(]no 

that partitions the vertices of Go in A and B, 1 A I,1 BI d 3n/4. Let 1 A I < IBI. Delete all 

vertices that are incident to edges from D and belong to B. We have constructed 

a vertex cut of size <x\/& that divides Go into parts having <3r2/4 vertices. 0 

Theorem 2.6. For k = 0 mod 6 rlrd ir$nitely many y. Ii, (ok < 2n, there is u graph G qf 

Ii i>ertices, genus .(/ urd rncl.ximal degree k such tht euery edye separator of‘ G has size 

n( J&q. 

Proof. Consider the graph Go from Lemma 2.2. Replace each edge of Go by k/6 new 

parallel edges. Put one new vertex on each new edge. We get a graph G = (V, E) of 

genus Q, maximal degree k and with n vertices, where I1 = n,k,/2+ tt,,. Consider 

a minimal edge separator of G, i.e. we have a partition of V in A, B such that 

1 A ( < 2n/3, I Bl < 2~113 and every edge between A and B belongs to a set D. Our aim is to 

prove that ID I = R(,,/&$. Let V, c Vdenote the set of vertices that correspond to the 

verticesofG,.DenoteA,=AnV,,B,=BnV,.ItholdsthatIA,I+IB,I=rz,.Assume 



1 A 1 I< 1 B1 I. We distinguish two cases: 

(1) ) Al 1 >rz0/4. Then (B1 / < 3n,,/4n. According to Corollary 2.2, G contains at least 

Z& tuples (u, P) such that MEA, ccB and u and u are joined by k/6 paths of length 2. 

From each such path, at least one edge must belong to D. Hence, 

(2) I Al 1 <n,/4. We estimate the number of vertices in A -Al that have a neighbour 

in B1. Each such vertex together with the neighbour defines an edge that must belong 

to D. Hence, 

IDI>IA-A,I-l(vertices of A-A, that have both neighbours in Al}1 

3. Applications 

In this section we apply the edge separator to the isoperimetric problem, to graph 

embeddings and to finding lower bounds for crossing numbers of complete, bipartite 

and hypercube graphs drawn on a surface of genus (1. 

3.1. Isoper-inwtric number 

The isoperimetric number i(G) of a graph G = (V, E) is defined as 

i 

IS( 
i(G)=min (XI: xcv l<lX,<Ic’I 

I 
, , , 2 , 

where 6(X) is a set of edges having one edge in X and the other in V-X. The quantity 

i(G) is a discrete analog of the well-known Cheeger [2] isoperimetric constant 

measuring the minimal possible ratio between the size of the surface and the volume of 

a geometric figure. lsoperimetric numbers for important graphs are computed in [21]. 

Boshier [l] proved that if G is an n-vertex graph of genus LJ and maximal degree k then 

3(g+2)k 

‘(‘)‘fl-3(8+2) 

for II > I S(y + 2)2. Our edge separator immediately implies the following improve- 

ment. 

Theorem 3.1. 



Proof. Let A, B and D be the sets from the unweighted version of Theorem 2.2. 

Clearly, 

3.2. Graph emheddings 

Many computational problems can be mathematically formulated as the graph 

embedding, e.g. representing some kind of data structure by another data structure 

[ 171, simulation of interconnection networks of parallel computers 1221 and laying 

out circuits in standard format [14]. 

LetG,=(V,,E,),G,=(V,,Ez)begraphssuchthat/V,161V,l.Anembeddingof 

G1 into G2 is a couple of mappings (4, $) satisfying 

c/l : v, + v* is an injection, 

$ : El + [set of all simple paths in Gz i, 

such that if (u, II)EE~ then $((u, I’)) is a path between 4(u) and 4(c). 

We shall study the following measures of the quality of the embedding: 

where I$(e)I denotes the length of the path $(e), 

exp($, $)=w 
I VII ’ 

cg(4,rC/)=max l{f~Er: e belongs to Ic/(,f))l. 
eeE2 

The above measures are called the average dilation, expansion and congestion, 

respectively. 

Lipton and Tarjan [17] pointed out that edge separators can be used to embed 

graphs with a small average dilation. Applying their method, Diks et al. [4, 51 proved 

the following results on graph embeddings. 

Theorem 3.2. Every n-vertex planur graph qf maximal degree k can he embedded in 

a path, 2-dimensional mesh, d-dimensional mesh (d 3 3), complete binary tree und a hy- 

percube, with average dilations O(Jkn), O(fi log(n/k)), O(d<&), @(log k), O(log k), 

and expansion O(1). 

Using the same method we can extend this result as follows. 



Theorem 3.3. EcerJ n-vertex graph of genus g und maximal degree k cun he embedded in 

a puth, 2-dimensional mesh, d-dimensional mesh (cl > 2), complete binary tree and a hq’- 

percube, with average dilations O(a), 0( 4% log(n/k)), O(d&.$‘%), O(& log k) 

and O(& log k), and expunsion O(1). 

For the first average dilation we show an optimal lower bound. We use a method 

of [3]. 

Lemma 3.4. Let 1 VI I= n and G2 be an n-verte.u puth. Let f,(n) be the size qf the minimal 
edge cut thut divides G, into two parts huving exactly p und n-p vertices. Then 

Theorem 3.5. Any embedding (4, II/) ofthe gruph G constructed in Theorem 2.6 into the 

n-vertex path requires 

adil(4, $) = Q( .,,/gkn). 

Proof. Let /3 be the constant behind the Q in Theorem 2.6. Then, setting G, = G in 

Lemma 3.4, we get 

In case G, is a path, the minimal congestion is usually called cutwidth. This notion 

has applications in VLSI design. Yannakakis [24] stated an open problem to find 

a good approximation to the cutwidth of planar graphs. This was partially solved in 

[4]. We extend the result for graphs of positive geni. 

Theorem 3.6. Any n-vertex gruph of positive genus g and muximal degree k hus 
a cutwidth of O(G). This bound cannot be improved in general. 

Proof, By breaking the graph recursively into roughly equal parts using the edge 

separator and embedding the parts into subpaths, one can easily estimate the cut- 

width by 

Because the cutwidth of a graph is not smaller than the size of its minimal edge 

separator, the graph from Theorem 2.6 has a cutwidth at least !A(&). 0 
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3.3. Looter houncts on crossing nunzhers 

In this subsection we apply Theorem 2.2 to showing lower bounds for the crossing 

numbers of complete, bipartite and hypercube graphs drawn in an orientable surface 

of genus y. 

The orientable surface S, of genus y is obtained from a sphere by adding g 

handles. The crossing number cr,(G) of a graph G is defined as the least number of 

crossings when G is drawn in S,. Very little is known on cr,(G). In [lo, 111 it is proved 

that 

crl W,,) = @(n4), 

Kainen [12] showed that 

cri (K,,,,) = 0(mZrz2). 

for g > ;’ - 2” m4, where Qn denotes the n-dimensional hypercube graph and 7 its genus. 

The following theorem, which describes a lower-bound method for finding crossing 

numbers, was originally proved for planar graphs [ 131. Our extension to graphs of 

genus g is straightforward. 

Theorem 3.7. Let G = ( V, E) he n graph. Let met(G) denote the size qfthe minimul edge 

cut that divides G into two parts having 62 1 V//3 vertices. Suppose that the class qf 
graphs qf‘genus g and of‘mcr.ximal deyree k hus an&(n) edge sepurutor. Then 

cr,(G)3~~7’(mec(G))-/ VI, 

where ,&’ is the inrerw jirnction to ,fi.k. 

Corollary 3.8. 

cr,(G) 3 %-, V,. (1) 

Proof. From Theorem 2.2, we have.fb,k(tr)= ,/75gkn. cj 

Theorem 3.9. 

n4 2 
cr,(K,)>------- 

6075g 2 

Proof. Define a new graph H,, as follows. Consider a drawing of K, in S, with minimal 

number of crossings. Let 11 be an arbitrary vertex of K,. Let u,,, zdl, u2, . , u, 2 be its 

neighbours. In S,, find a region homeomorphic to an open disc that contains L’ and no 

crossings. Denote p = L 42 1. Place new vertices nil, ui2, , uip on the edge (ui, u) so 

that they lie in the region for i=O, 1, 2, . . . ,n-2. Add edges (Ui,j, ~~~+i~,,,~~,~-~~~~) for 

i=O, 1,2, . . . , n - 2 and j = 1, 2, 3, , p. Delete the vertex 1’. The resulting graph H, has 
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n(n- 1)~ vertices, genus y and degree 4. Clearly, it holds that 

cr,K)3cr,W,,). 

It remains to find mec(H,). In what follows, we show that 

(2) 

2 
mec(H,)>9 PI*. (3) 

Setting G = H, and substituting (2) and (3) into (1) we obtain the desired result. 0 

Lemma 3.10. 

2 
mec(H,)aV b12. 

Proof. We use a method of Leighton [ 131. Recall the definition of the embedding and 

the congestion. Leighton proved that 

mec(G, 1 
mec(G2)>P 

cg(& $) 

Let 2K,,,,- l)p denote the complete graph on n(n- 1)~ vertices where each edge is 

replaced by two new parallel edges. Set Gz = H,, Cl =2K,,,_lJp. We construct an 

embedding (4,$) of Gr in Gz such that 

cg(4, $)<2(n- 1)2p2. 

Noting that 

mec(2K 
4 

n(n-l,p)>- n2(Iz- l)2p2, 
9 

we immediately obtain the lower bound for mec(H,). 

We shall construct 2 paths between any two vertices of H, so that the congestion 

be as small as possible. Let us call the graph induced by the vertices Uij, 

i=O, 1,2, . . .,tt-2, j=l, 2, 3 ,..., p, a cobweb. 

Let Uij and u,., belong to the same cobweb. Suppose j2.s. 

If i=r then we join Uij and u,~ by two shortest (identical) paths. 

If i#r then we join Uij with u,, by two paths U,j, Cli+ r,,i,. . . , ~,j and U,j, u;_ r,j, . , U,j 

and prolong these paths to u,, as above. 

Let two vertices of H, belong to different cobwebs. Let (x, ~8) be an edge joining 

these cobwebs. Join .X(Y) to the vertex belonging to the same cobweb as .x(y) by two 

paths as above. Connect the paths by adding twice the edge (x, y). A simple counting 

analysis shows that the edges between the cobwebs are used by the maximum number 

of paths, which gives 

cg(4,IC/)<2(n- 1)‘p’. 0 
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Using the same approach as above, we can prove the following result. 

Corollary 3.11. 

rn2n2 
cr,(G.,,)>~- 

mn(m + n) 4 

12006 2 ’ 
qAQ,J>~- 

15ooy 
n22”- 1 

4. Conclusions 

Our paper leaves several open questions: e.g. improving and completing the upper 

and lower bounds in Theorems 2.2, 2.6 and 3.3. The most interesting seems to be the 

problem of drawing of K,, K,,,, and Q,, in the surface of orientable genus y. We can 

find drawings that have O(&) times more crossings than the proved lower bounds. 
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