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The Characterization of Nonexpansive 
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Given a reduced, cycle-free context-free grammar G = (~, 27, P, Yl), the following 
statements are equivalent. 

(i) G is nonexpansive; 
(ii) the structure generating functions of the grammars G i= (~,2~,P,y~), 

y~ ~ q~, are rational. 
Furthermore a helpful theorem for proving certain context-free languages to be 

inherently ambiguous is given. 

1. INTRODUCTION 

In Kuich (1970), one of the authors introduced the concept of the 
structure generating function of an unambiguous e-free context-free grammar 
or language and showed that the structure generating function of an unam- 
biguous nonexpansive e-free context-free grammar is a rational function. He 
conjectured that the structure generating function of an unambiguous e-free 
context-free language, which cannot be generated by an unambiguous nonex- 
pansive context-free grammar, is always nonrational (see also Salomaa and 
Soittola, 1978, Exercises IV.3.6 and IV.3.7). 

A simple example similar to that of Jones (1970) shows that this 
conjecture is false. 

EXAMPLE 1. Let D(a, d) be the Dyck language over the alphabet {a, ti}. 
Then it is well known that D(a, d) is a deterministic context-free language 
and hence {a, d } * - D ( a ,  d) is again a deterministic context-free language. 
Hence both languages are generated by unambiguous context-free grammars 
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and so is L = D ( a ,  d) U ({b, 6}* - -D(b,  6)) -- {e}. The structure generating 
function of L is given by the rational function z/(1 - z ) .  

Using almost looping grammars (Maurer, 1969; Gruska, 1969) and the 
result that D(a, if) cannot be generated by a nonexpansive context-free 
grammar (Salomaa, 1969; Salomaa, 1973, Chap. VI.10), it is easily proved 
that L cannot be generated by a nonexpansive context-free grammar. 

In the sequel, G = ( q ~ , 2 ; , P , y  0 with ~ = { y ~  ..... y,}, 2;={z~ ..... Zm} 
denotes a reduced, context-free grammar and G i = ( ~ , 2;, P, y i). 

Let li(w), w E ,Y.*, be the number of distinct leftmost derivations for w 
according to Gi(li(w ) = 0 iff w ~ L(Gi) ), i.e., the ambiguity of w according to 
G i and assume li(w ) < ~ .  

Then the power series g~ E N((2;*)), 1 ~< i~< n, are defined by 

gi = ~ li(w)w. 
WEX,* 

Denote by c(2;*) the free commutative monoid generated by 2; and by hc 
natural homomorphism mapping 2;* into e(2;*). 

Then the power series h i E hl((c(2;*))), I ~< i ~< n, are defined by 

the 

h i = hc(gi), 

i.e., the coefficient of z l z  2 i l  i2 ... Z~m m in h; equals the number of distinct leftmost 
derivation for all w according to G;, such that the Parikh vector of w is 
(il, i2,..., im). 

Denote by z a complex variable and by h: c(2;*)~ z* the homomorphism 
defined by h(zi) = z, 1 <. i ~ m. 

Then the power series f~ E N((z*)), 1 ~< i ~< n, are defined by 

f,(~) = ~ ui(n)z", 
i=0 

where ui(n)=Y~lwj=,l i (w ), i.e., ui(n ) is the number of distinct leftmost 
derivations for words w ~ L(Gi) of length n according to G i. 

The homomorphisms h c and h are nonerasing and 

f t = h ( h i ) = h o h c ( g i ) ,  l ~ i ~ n .  

We denote f l ( z )  by f~(z )  and call it structure generating function o f  G 
(Takaoka, 1974). 

We call G cycle-free if, for each nonterminat Yi, 1 ~ i ~ n, Yi =~* Yi is 
impossible. 
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Then we show, that the power series gi, 1 ~< i ~ n, and hence h i a n d f  i are 
well defined if G is cycle-free. This leads to the following characterization 
result: 

Let G be cycle-free. Then G is nonexpansive iff 
hi E Nrat((c(22*))) for all i, 1 ~< i ~ n. 

The rest of the paper deals with unambiguity of context-free grammars and 
inherently ambiguous context-free languages. 

2. THE CHARACTERIZATION OF NONEXPANSIVE GRAMMARS 

The algebraic system induced by G is defined by 

y i=pi ,  pi~[N((tI)k.)~)*), l<.i<~n, 

where Pi is the polynomial formed by the right sides of the productions for 

Yi" 
Since G is cycle-free, the induced algebraic system has a strong solution 

by Lemma3 of Kuich (1981) and this strong solution equals (g~ ..... g.). 
Hence the power series gx ..... g . ;  h i  ..... hn; f l  ..... f .  are in NSemi-alg((2;*)); 
Nsemi-alg((c(~r'>~))); [~semi-alg((z*)), respectively, by Theorems IV.6.4 and 
IV.3.3 of Salomaa and Soittola (1978) and the fact that the homomorphisms 
h and h c are nonerasing. 

The dependence graph D(G) of the context-free grammar G is defined to 
be the directed graph with vertex set 4 ,  such that there is a line from Yi to yj 
iff yj -~ ay I fl is a production of G. 

If Yi and yj are points in a strong component of D(G), then there exist 
a l ,  a2, fix,/62 ~ ( ¢i~ ~ ~')* such that yj :~* a 1 yia2 and Yi =~* fll Yj f12" 

A strong component of D(G) is called expansive, if it contains vertices 
Yi,Yj,Yk and there exist a l ,  a2, a 3 ~ (1~ [,..J,~)* such that yi:~* alyjazyka 3. 
Otherwise it is called nonexpansive. 

The context-free grammar G is called expansive, if there exists an Yi E 
and al ,a2 ,aaE(~L) ,Y , )*  such that y i~*aly iaEYia3 .  Otherwise it is 
called nonexpansive. 

LEMMA 1. G is expansive iff at least one strong component of D(G) is 
expansive. 

Proof. If D(G) has an expansive strong component, then there exist 
Yi,Yj,Yk and al,a2,a3,]~l,~2,~)l,~)2~ (q~t..).S)* such that yi :~* 
al yja2 yka3, Yj =~* fix Yi fiE, Yk :~* ])1Yi~2 and hence G is expansive. 
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If G is expansive, then there exist Yi and a~, a2, a 3 E (rib U ~ ' ) *  such that 
yi~*alYia2Yia3 and hence the strong component containing Yi is 
expansive. 

In the sequel let Ca, Cz ..... C~ with vertex sets ~1, ~2,..., ~ be the strong 
components of D(G). Then we define the following partial order over the set 
of strong components of D(G): C i >/Cj iff there exist Yi~ E q9 i, Yiz E ~j and 
al ,  a 2 ~ ((J~ U,~)* such that Yi~ =~* al Yi:az. If Ci >/Cj and C i 4: Cj then 
G> Cj. 

THEOREM 1. Let G be cycle-free. Let C be a strong component o lD(G) 
such that all strong components D of D(G) with D <~ C are nonexpansive. 

Then h i C ~qrat((c(S*)}) for Yi a point olD,  D ~ C. 

Proof. Without loss of generality, let C1,C 2 ..... C r be the strong 
components of D(G) such that i < j  implies C i < Cj or C i and Cj are incom- 
parable. Let C----C l. By Lemma 1 the yrproductions of G, YiE qJk, are 
linear in the variables of ~g, 1 ~< k ~< l. 

Hence the commutative variant of the algebraic system induced by G has 
the form 

where Yj and Pj are of dimension [ ~i[ X 1 and Q1 are of dimension [ ~j] X 
I%1, 1 ~<j~< r. 

The components of Pk and Qk, 1 <~k<~l, are in N ( c ( ( S U ~ I  U ... U 
~k-a)*)}, the components of Pk, l < k < . r ,  are in N ( c ( ( Z U ~ I W . - .  U 
~k-1)*)} and the components of Qk, l < k<<. r, are in N(c((ZU ~a U - . .  U 
~)*)). 

By Kuich (1981), the strong solution of this system is H =  (hi ..... h,). 
We now proceed by induction on the index of the strong components of 

D(G). 

(i) Let k =  1. Consider Y~ =P~ + Q 1 Y I ,  Pa, Q1E N(c(2~*)). Since G 
is cycle-free, Q1 has the form Qa = (Qa, e) + S~, S a quasiregular matrix and 
(Q~, e) nilpotent matrix. Hence h i E Nrat((c(Z*))), Yi ~ ~ "  

(ii) Let 1 < k ~</. Consider the subsystem 

Yk =Pk  + QkYk" 

By induction hypothesis h i E ~rat((c(X*))) for Yi E q~ U ..- U ~k-a.  Since 
H is solution of the whole system, H k = (hi)yi~(p k is solution of 

Y k = H .  P~ + H • Qk Yk. 
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Since Pk, Qk ~ H(e((Sk_) ¢ 1 U  ... U ~ k - 1 ) * ) } ,  H .  Pk and H .  Qk are in 
~N~"t((c(Z*))). H .  Qk can be written in the form H .  Qk = (H.  Qk , e )+  
(H.  S~), H ,  S k quasiregular matrix and (H.  Qk, e) nilpotent matrix. This 
implies h t E Nrat((c(*~7*))), y~ E ¢~k" 

COROLLARY 1. Let G be cycle-free and nonexpansive. Then the structure 
generating functionf~(z) is in Nrat((z*)). 

Next we need a few technical lemmas. 
Let G be cycle-free and let R i be the radius of convergence of fi(z), 

l <~'i<.n. 

LEMMA 2. Let G be cycle-free. I f  yi=>* txlyja2, then R i ~ R  j .  

Proof Analogous to the proof of Lemma 3 of Kuich (1970). 

LEMMA 3. Let G be cycle-free. I f  Yi and yj are vertices in a strong 
component of D(G), then R i = Rj. 

Proof Since y~ and yj are vertices in a strong component, there exist 
a l ,  a 2 , / ~ 1 , / ~ 2  such that y~=>* a ly ja  2 and y j ~ *  f l l Y i f l 2 "  Hence by Lemma 2 
R i <. Rj and Rj <~ R i. 

Let l ~> 2 and 

" ' Y m ,  
0<k1+ • • ' +kraal 

p i ;k  l . . . . .  kin(U1 ,..., U.  "~ Z. ) e [N(c ({u  1 .. . . .  u . ,  z } * ) > ,  

1 ~ i ~ m, 0 ~ kl + "" + km ~ 1 be an algebraic system of equations. The 
dependence graph of this system has vertex set {Yl . . . . .  Ym}" There is a line 
from yj to Yi iffthere exists aPi;k ' ..... kin(U1 ..... U, ; Z) ~ 0 with kj > O. 

LEMMA 4. Let l>/2 and 

y, ~ p.k,  ..... ~m( u, ..... u.; z ) y 9  ~ -= " "  Ym  , 
0 < k l +  . . . +km<~l 

1 <~ i ~ m, be an algebraic system of equations with the following properties: 

(1) p . <  ..... kin(u1 ..... u.;z)@~q(e({ul ..... u,, ,z}*)) for all l < ~ i ~ m ,  
O ~ k l  + ... + k m ~ l .  

(2) There exists an index i and l I . . . . .  l m such that Ii + "" + lm ~ 2 and 
Pi; l l  . . . . .  lm(Ul . . . . .  U n ' ~ Z ) - ~  O. 

(3) The dependence graph of the system of equations is strongly 
connected. 
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(4) uj(z) ~ [~rat((z*)), Uj(Z) ~ O, with radius o f  convergence I~ > O, 
l <~j<.n. 

(5) The system o f  equations has a strong solution ( f l ( z )  ..... fro(z)) with 
f i (z)  E Nsemi-alg((z*)),f/(z) ~ O, 1 <~ i <~ m, such that all f i (z) ,  1 <~ i <~ m, have 
a common radius o f  convergence p with 0 < p <~ min{pj [ 1 ~<j ~< n}. 

Then there exists an index i, 1 <~ i<<. m, such that f i ( z ) ~  Nrat((z*)~ or 
f t ( z ) -  l f o r  all 1 <~ i <~ m. 

Proof. For proof  by contradiction assumef,.(z) E ]~rat((z*)), 1 ~< i ~< m. 
i 

(a) 0 < p < + ~ .  

According to Pringsheim's theorem, each power series with center z = 0 
and coefficients in IN and radius of  convergence 0 < p < +oo represents a 
function which has a singular point at z = p (see also Salomaa and Soittola, 
1978, Theorem II. 10.1). Together with (5) this implies 

f / l ( z )  f / l (Z )  
f i ( z )  -- f n ( z ) (  p _ z);t ' , 2 i > O, fi2(z------ ~ > 0 

for O < z ~ p ,  f i l ( z ) , f i z ( g ) E  ~(Z*),  1 <. i <~ m. 
Pringsheim's theorem and (4) imply 

Uj(Z) = Ujl(Z) Ujl(Z) 
ui2(z )(p _ z )~,~ , laj >1 0, uj2(z ) > 0 

at least for 0 < z ~ p ,  Ujl(Z), u j2(z )E IR(z*), 1 ~j<<.n. 
Hence 

f / l (z)  hil(z ) hil(Z ) 
f n ( z ) (  p _ z)~t ~ - hi2(z)(p _ z)~, ,  hi2(z) > 0 

for 0 < z ~ p, hil(Z), hiz(z ) ~ ~(z* ) ,  1 ~ i ~ m, with 

a i ~ > m a x { k l " 2 1 + " ' + k m ' 2 m 1 0 ~ k l + ' " + k m ~ l ,  Pi;~ 1 ..... km ~ 0}" 

Since 2 i = a i for all 0 ~ k I + ... + k m ~< l with Pi~kl ..... km ~ 0, 2 i/> k I • 
2 1 +  ... + k,n . 2rn , l <. i ~ m. 

This implies 21 =22  . . . . .  2m = 2 .  For  proof  by contradiction assume 
without loss of  generality 

2 = 2 1  . . . . .  2 t < ~ 2 t + l ~ 2 t + 2 ~ ' " ~ 2 m ,  t < m .  

Then /l >/(kl  + ... + kt) • 2 + kt+ 1 • At+ 1 + ""  + km " Am, 1 <~ i ~< t, implies 
kt+ 1 . . . . .  k m : O  for all O<~k 1 + ... + k r a a l  with Pi;kl ..... k,,(Ul ..... 
U n ; Z) ~ 0, contradicting (3). 



NONEXPANSIVE GRAMMARS 1 15 

Hence ~ >/(kl + ... + km)~. 
By (2) ~. >/2), which implies ;L = 0, contradicting p < +oo. 

(b) p = +oo. 

Thenf/(z) E N(z*), 1 <.i<~m, and by (4) and (5) u jE  N(z*), 1 ~ j < . n .  
For q ( z ) ~  N(z*), let [q] denote the degree of q. Then by (4) and (5) 

[f/]>/0, l ~ i<~m,  [uj]/>0, l <<.j<~ n, and [ f i ]> /k l .  [ f l ] + . . . + k  m. [fm] 
for all 0 ~< k 1 n t- . . .  d- krn ~ I with pi;k 1 ..... k , ~  0, 1 ~ i ~< m. 

Similar to (a) this implies [fl] . . . . .  [fm] = 0 .  Hence f / ( z ) E N ,  
l<~i<m. 

L e t f , . ( z ) - a  i > 0, 1 ~i<<,rn. Then uj(z)E N, 1 < . j ~ n ,  and 

a, > ag...  a~ 

for all 0 ~< kl + ... +km ~ I with pi;k ~ ..... km ~ 0, 1 ~< i ~ m. 
Similar to (a) this implies al . . . . .  a m = 1. 

TI-IEOREr~ 2. Let G be expansive and cyclefree. Then there exists an 
index i, 1 <~ i <~ n, such that fi(z) q~ Nrat((z*)). 

Proof. Since G is expansive, there exists a smallest strong component C 
that is expansive. Hence if D < C, then D is nonexpansive. By Theorem 1 
h i E [Nrat((c(z~*)}) and hence f,. E [Nrat((z*)) for Yi vertex of D, D < C. 

We are now in the position to apply Lemma 4: Yx,..., Y= are the vertices of 
C, ul ..... u, are the structure generating functions corresponding to the 
vertices of the strong components D, D < C. The system of equations is 
induced by the yi-rules of G, Yi vertex of C. Condition (1) is trivially 
satisfied, (2) is implied by the fact that C is expansive, (3) is satisfied since 
C is a strong component, (4) is implied by Lemma 2 and Theorem 1 and (5) 
is implied by Lemma 3 and the fact that G is reduced. Since G is cycle-free, 
(2) implies that f/(z) = 1, 1 ~< i ~< m, is no strong solution. Hence there exists 
an Yi, Yi a vertex of C, such that f~ ~ Nrat( (z*>) .  

COROLLARY 2. Let G be expansive and cycle-free. Then there exists an 
index i, 1 ~ i <~ n, such that h i q~ nqrat((c(X*))). 

Proof. Since f t=h (h i ) ,  h nonerasing, the Corollary is implied by 
Theorem 2 and Theorem IV.3.3 of Salomaa and Soittola (1978). 

We are now in the position to characterize nonexpansive grammars. 

THEOREM 3. Let G be reduced and cycle-free. Then G is nonexpansive 
iff for all i, 1 <. i <~ n, h i @ Nrat((c(X*))). 

COROLLARY 3. Let G be reduced and cycle-free. Then G is nonexpansive 
iff for all i, 1 ~ i ~ n, f i E  []'qrat((z*)). 
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Let G be cycle-free and denote hi by h a. Let L ___ 2J* be a formal language 
and denote the commutative variant of char L by h t . Then we can formulate 
the following conjecture: 

(A) Let G be cycle-free and expansive. Then h a q~ ~ra t ( (c (~r '* ) ) ) .  

This would imply at once: 

(B) Let G be unambiguous and expansive with L = L(G). Then h L 
[~ rat ((C(~'*)>>. 

Hence together with Theorem 1 this would imply: 

(C) Let G be unambiguous with L = L(G). Then G is nonexpansive iff 
hL 

3. INHERENTLY AMBIGUOUS LANGUAGES 

Let L be a formal language and v(n), n/> 0, be the number of distinct 
words of length n in L. Then the functionft(z ) of the complex variable z 

f t ( z ) =  ~ v(n)z n 
n=O 

is called structure generating function of L. 
The next theorem was noted by several authors (Kuich and Maurer, 1971; 

Semenov, 1973; quoted in Salomaa and Soittola, 1978, Chap. IV.5; 
Takaoka, 1974). 

THEOREM 4. Assume that L is a context-free language and G is a 
contextfree grammar of which it is known that L(G) ~_ L. 

Then f t ( z )  =fa(z) iff G is unambiguous and L ( G ) =  L. 

The next theorem is useful in proving context-free languages of a certain 
form to be inherently ambiguous. 

THEOREM 5. Let G 1 and G 2 be unambiguous context-free grammars with 
L1 --- L(G1) and L 2 = L(G2). 

Then L 1 L A L  2 is an inherently ambiguous contextfree language if 

Al 2(z) 
Proof. Since A1ut2(z) =ftl(z) +fL2(z) - f t ~ ( z ) ,  fLl(z), A~(z) @ 
senll alg ~ semi alg IN "- ((z))  andft~c-~2(z)~Z '- ((z)), TheoremlV.3.1 of Salomaa and 

Soittola (1978) implies ft~utz~ zsemi-alg((z*)). Hence Theorem IV.1.6 of 
Salomaa and Soittola (1978) implies that L 1 L)L: is inherently ambiguous. 
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COROLLARY 4. Let G 1 and G 2 be unambiguous context-free grammars 
with L 1 = L(G1) and L 2 = L(G2). 

Let fLl~2(z) = ~ = o  a. zk" with l imn_~ kn/n = +oo. 
Then L~ U L 2 is inherently ambiguous. 

Proof. Exercise IV.5.8 of  Sa lomaa  and Soi t tola  (1978). 

EXAMPLE 2 (due to Ginsburg  and Spanier  (1971)). Let L 1 --- {baibai+Z[ 
i~> 1}* ba*b and L 2 =ba2{baibai+2]i>/1}*b. Then L 1 and L 2 are unam- 
biguous context-free languages and L 1 ~ L 2 = {baZba4b ... ba 4k + 2b I k ~ 0 }. 

Z cx3 z 4 ( k +  1) 2 Hence f L l ~ (  ) =  ~k=0  and by Coro l l a ry  4 Z 1 LJL 2 is inherently 
ambiguous.  

EXAMPLE 3 (due to Kemp  (1980)). Let  L l = a { b i a i l i > / 1 } *  and L 2 =  
{aibZili >/1}* a +. Then L 1 and L 2 are unambiguous  context-free languages 
and L 1 A L 2 = {ab2a2b4a 4 ... b2ka 2k I k >/1 } t.) {a }. 

Hence fLI~c2(Z)= ~°.0Z2k+2-3 and by  Coro l l a ry  4 L l k . ) L  2 is inherently 

ambiguous.  

Since the languages L 1 and L 2 of  Examples  2 and 3 are generated by  
nonexpansive context-free g rammars  the following theorem holds. 

THEOREM 6. There are reduced cyclefree nonexpansive contextfree 
grammars G with L = L(G) c_ y,* such that h L q~ ~qrat((c(2;*))). 

Hence in Conjecture (C) "unambiguous" cannot be replaced by "cycle- 
. e e .  ~ '  
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