
FlexOS™
Programmer's Guide

Version 1.3

1 073-2023-00 1

COPYRIGHT

Copyright 1986 Oigital RI!scarch Inc. All rights reserved. No part of this publication may bel
reproduced. transmitted, transcribed. stored in a retrieval system. or translated into any language or
computer language. in any form or by any means, electronic. mechanical. magnetic. optical. chemical.
manual or otherwise. without the prior written permission of Digital Research Inc .• 60 Garden Court.
Ball OR!. Monterey. California 93942

DISCLAIMER

DIGITAL RESEARCH INC MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPliED WARRANTIES OF MERCHANTABIliTY
OR FITNESS FOR ANY PARTICULAR PURPOSE Further, Digital Research Inc. reserves the right to
revise this publication and to make changes from time to time' in the content hereof without obligation
of Digital Research Inc to notify any person of such revision or changes

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to the software
named herein OccaSionally changes or variations ellist in the software that are not reflected in the
manual Generally. if sllch changes or variations are known to ellist and to affect the product
significantly. a release note or README DOC file accompanies the manual and distribution disklsl. In
that event. be sure to read the release note or README DOC file before using the product.

TRADEMARKS

~igital Research, CP/M, and the DI91tai Research logo are registered trademarks of Digital Research
Inc. FlellOS IS a' trademark of Digital Research Inc. We Make Computers Work is a service mark of
Digital Research Inc.

First EditIOn: November 1966

Foreword

FlexOS ™ is a real-thne, multitasking operatinn systom desiunod for
single-user and nlultiuser microcoillpliter systealls. .. he prograllllllinu
interface to FlexOS is CPU- and peripheral·-independent so you can
develop programs that are portahle between rnachines with different
components and processors.

FlexOS Features

FlexOS provides comprehensive facilities for process, file, console, and
device managenlent. The following list sUllunarlzes these facilities:

• Process Managernent

- FlexOS process execution
- Independent, modifiahle process environments
- Asynchronous events and software interrupt handling
- Interprocess communication and synchronization

• Disk System

- PC DOS compatible, with hierarchical file directories
- Shared file system with file and record locking
- File systeJn protection hased on file and directory ownership
- User and group file ownership
- Removable nledia support

• ~eal-thneprocessing

- Support for real-time data acquisition and COIHlIlllllications
- Primitives for real·-time process control and other real·-tilllO

applications

iii

I ~;(::1IH! ~;r!q"PllcP dncodill!l
- Slnnd:ud dlfll:H:If!1 :HHI hil flWPIH!d SCrp.fm inlerfncp.
-- SI :1nfiar d Hi and n hil kf? yho:n II in' p.rf ace s inc;ludinn fune lion

I<f~ys. 1m fT1 P. ri c a I k f? yp:1I1 :HHI I 1111" ih~ yp.d eh n r n c I p.rs
- Vir, IIni c on soh! fl1an:tqr!flWn I priflli1 ivp. s t hn I indudp. win dow

support

• Interrwtional conshlerations

Support for 1(j--hil forp.iqn InnHllnqes
- Ctlstolnizntion of console fTlp.sS:1nes including country codes

• Memory rnnppinn nnd protection

• Dynmnicnlly lom'nhle device drivp.rs

• CPU - independent IHOHran1fTlirl!J

Oisl(Fite Systenl

The rtexOS disk file systelll is df?siUlwd for fllultiusnr and networked
rnicrocomputer syslmns tlhnmc:hicnl. shnred disk files allow for the
large, slwred dnta hnses cOlllmonly lIsed with professional work
stcllions. The record and file I()ckin~J nlPclwnisllls. nlong with security
through ownership, nllow integrity f)ful protection of datn.

rtexOS's disk file systmn is designed to protect agninst file destruction
from power Interruptions or nccidentnl systmn resets. A utility Is
provided that reconstructs file directory entries and allocntlon tables
frorn the dnta (lren of the disk

The FlexOS file systern distinguishes removahle from permanent rnedia
nnd recognizes rernovahle medin thnt IHlve open door interrupts.

Real-tinle Kernel

The kernel provides rn\lItIU!~er and flltlltitnsking environments thnt Rllow
both renl-·time control applications nnd integrated office enviroflfnents
on the sntne CPU

Iv

Tho kernel is based on an evenl dlivou dispalchm Ihal doos ptiolily
driven scheduling. Tilne slidliU is dOlle by a lilnm ovmal Ihal occurs
once per TICK, Iypically every Hi 10 2U lIIillisnco"ds (illliliollwnialion
dependenl). Scheduling of o'illal pti(H iI y processHs i~i dOtH! in a "HII "I
rouin fashion.

Pipe File Syste.ll

FlexOS perfofllls process COlllllluuicalion and synduollizaliou Ihrolluh
na.ned pipes. These in-nlemory files are availahle 10 pass dala hO'H
one process to anoUaer or 10 synchronizo aclivilins when aClinB ilS
seillaphores.

Console File Systenl

The FlexOS console syste.ll provides dedicalnd 'ulielicII'S dn~;io"od

specifically for the fast IHi.lUipulaliou of bit - .Ilappml all(J char ac 1m·

oriented displays. A single call can copy or .Bodify a st: rtWIl H!Uioll
ranging in size fronl a sinule character cell 10 lite enlire sc.een. Ilwso·
functions give you a consislelil. hardware--indepondHlll inlnrfacn In IIw
computer's interac live device s wilholl I sal:rificin~J proor a III IHH I ahilil y

The console systerll also providos window lIlallilUHlIlelll fadlilies lilal
a II 0 w a p p I ic a Ii 0 n 5 to c rea I e it Il d • II ell l a U 0 .HlIli i pie vi. lu a I c () 11 ~i () I n ~i

Intended Audience and Manuill Organization

This manual (hereinafter referred 10 as IIw Prowa.Illlter'S (Juidn) i5
wrilten for the proyrallllllor whoso uoal is 10 w.ite apillif:alions ilne!
utilities to run under the flexOS operalinu SySIClIl I he Pr O!J' CllIlIIWr'S
Quide anlicipates, hut does nol require, a workin!) kllowlodoo of IIw C
prograllHning languaue.

v

Spc'inn I fl' 111:; and C()nV(~l1lioll:; 1I';r~d in 'hi~ IllflfHml; filp. ~ys,p.m

ch"'ill:I"ri:;Iic';; :,lIfllltl;UV or S"fH!rvi~;or cnll~ mut tnhles.
()i~,k Ilf!:;OurCf! Manaqf!' Soclio" ')

Spclio" :l COI1~;olp Jlf!~o", u! Mana"",
Snclio" " Pipp Mana~wr
Soctio" r' ,l Proc f! ~ ~ M illHlqp.rtlp.nt

Mi~cp.ll;uwo,,~ IJnvic p. Manrtqr!ITwnt
SUIHHvisor enll rn'p.rp.ncp.

Soc Ii 0" (J

Sp.ctiOI1 7
Sp.ctiOI1 n
I\pJlmulix 1\
I\ppumlix n
I\ppendix C

system 'nhle rp.'erencp.
r1p.xOS dlflrncter codp.~
System return CHili error codw;
r1exOS COUfltry cmlp.s

The FlexOS DOClInlcntation Set

1 he ProHrCHnrner's nuidp. is OflP. 0' sp.vp.rnl fTlfIfHlills in the FlexOS
doc;tJfl1P.ntntion sP.t. 1 he 01 her dOctIl11f'flt'l rJrP.

vi

• rlexOS User's Guide: The user's rerr~rence for rlexOS operntion
The User's Guide descrihes the c0Il1111nnd shell, mlvnnced flexOS
concepts, nnd cornmnnd files
systel1l nlflnnuer functions

It nlso provides an overview of

• FlexOS Systern Guide· The Buhle to FlexOS system
irnplernentntion for nn orininnl equipment rnanufncturer or driver
writer, Infonnntlon presentell In this utride includes driver and
stlJlp.rvisor Interfnces, FlexOS's driver services, and how to
construct a hoot londor.

• rlexOS Supplements: Microprocessor-dependel1t supplements to
the Prograrnrner's Guide nntl the FlexOS System Guide.

• FlexOS Programmer's Utilities ,Guides. the rererence to FlexOS
assernbly langunge prograrnrning fools. There is a separate
utilities guide ror each rnicroprocessor supported by FlexOS.

The PfQgr~mm~r';i. Guide, Wser's Guide, and Syste.n Guide are generic
in that they are appropriate for FlexOS systems based on any
supported microprocessor. Before developing progra'lls, you should
become familiar with the sections of the FlexOS supple.nents that
describe microprocessor-dependent distinctions and differences of
operation. In most cases, the points of difference are noted in the
appropriate sections of this manual. However, not all information is
cross-referenced.

vii

Contents

1 TERMS, CONCEPTS, AND CONVENTIONS

1.1 C language Conventions . 1-1
1.2 Supervisor Calls. 1-1

1.2.1 Calling Conventions . 1-4
1.2.2 Data Structure Representation. 1-5
1.2.3 Synchronous and Asynchronous SVCs. 1-6
1.2.4 Return Codes . 1-8
1.2.5 Asynchronous Supervisor Calls. 1-8

1.3 File Specifications. .. 1-11
1.3.1 Uppercase Versus lowercase Names. 1-13
1.3.2 Wildcards................................ 1-14
1..3.3 Reserved Names. .. 1-16
1.3.4 logical Name Substitution. 1-16

1.4 File Access. .. 1-17
1.4.1 Standard File Numbers . : 1-18
1.4.2 Access Privileges .. 1-19
1.4.3 Access Modes. .. 1-20
1.4.4 File Pointers .. 1-21

1.5 Deleting Files. .. 1-21
1.6 Basic Terms. .. 1-22
1.7 Tables .. 1-25
1.8 FlexOS Functional Components. 1-27

1.8.1 The Supervisor and Resource Managers. 1-28
1.8.2 Kernel ; .. :................. 1-29

2 DISK FILE MANAGEMENT

2.1 File Access. 2-2
2.2 Disk File Attributes. 2-2
2.3 Disk Media '.' 2-3
2.4 Disk File and Directory Security 2-4

ix

ContHnts

2.4.1 Disk Lahel. 2-4
2.4.2 User/group IDs and Available Access Privileges . . . 2-5
2.4.3 Directory Versus File Access Privileges. 2-5
2.4.4 Access Rules and Restrictions. 2-6

2.5 Disk File Access Modes . 2-7
2.6 Direct Disk Access. 2-8

2.6.1 Disk Device READ and WRITE 2-8
2.6.2 SPECIAL Disk Functions. 2-8
2.6.3 Disk Drive Open Modes. 2-9
2.6.4 Disk Securltv INSTALL Options 2-10

3 CONSOLE MANAGEMENT

3.1 Console File System .. " . 3-1
3.1.1 Console-Related SVCs . 3-2
3.1.2 Console-Related Tables . 3-3
3.1.3 Console Screen Model and Data Structures. 3-5

3.2 Controlling the Console , 3-12
3.2.1 Console Attributes. .. 3-12
3.2.2. Manipulating the Screen. 3-13

3.3 Getting Console Input , 3-15
3.3.1 Reading the Keyboard. .. 3-16
3.3.2 Monitoring the Mouse. .. 3-17

3.4 Managing Virtual Consoles ~ ~ .. 3-21
3.4.1 Creating the Virtual Consoles and Windows 3-22
3.4.2 Keyboard and Mouse Ownership , 3-26
3.4.3 Deleting a Virtual Console , 3-27

3.5 FlexOS Window Manager , 3-27

4 PIPE MANAGEMENT

4.1 Creating a.nd Deleting Pipes . 4-2
4.2 Pipe Access . 4-3
4.3 Interprocess Communication. 4-5
4.4 Synchronization and Exclusion . 4-6
4.5 Nondestructive READ . 4-7

x

Contents

5 PROCESS MANAGEMENT

5.1 Process Relationships. 5-2
5.2 Running a Program. 5-:-3
5.3 Process Termination. 5-4
5.4 Memory Managenlent. 5-5

6 MISCELLANEOUS RESOURCE MANAGER

6.1 Device Tables. 6-1
6.2 Device Access . 6-2

6.2.1 Opening and Closing. 6-2
6.2.2 Security................................. 6-3
6.2.3 Data I/O . 6-3

6.3 Device Installation . 6-4
6.3.1 Driver and Subdriver Installation '. 6-4
6.3.2 INSTALL Options. 6-5

6.4 PORT Table Modification. 6-5

7 SUPERVISOR CALL DESCRIPTIONS

7.1 ABORT....................................... 7-2
7.2 ALTER.................. 7-4
7.3 BWAIT . 7-7
7.4 CANCEL...................................... 7-10
7.5 CLOSE .. 7-11
7.6 COMMAND.................................... 7-14
7.7 CONTROL..................................... 7-19
7.8 COpy.. 7-24
7.9 CREATE .. 7-26

7.9.1 Create a File, Directory, or Pipe. 7-26
7.9.2 Create a Virtual Console. 7 -30

7.10 DEFINE...................................... 7-33
7.11 DELETE , 7-36
7.12 DEVLOCK ' ... ' 7-38
7.13 DiSABLE , ,.... 7-40
7.14 ENABLE." , ... , , , ... ' 7-41

xi

Contents

7.15 EXCEPTION................................... 7-42
7.16 EXIT.. 7-45
7.17 GET.. 7-47
7.18 GiVE.. 7-49
7.19 GSX - Perforrn Graphic SVC " 7-51
7.20 INSTALL..................................... 7-53
7.21 KCTRL....................................... 7-57
7.22 LOCK " 7-60
7.23 LOOKUP...................................... 7-63
7.24 MALLOC..................................... 7-66
7.25 MFREE " 7-69
7.26 OPEN....................................... 7-70
7.27 ORDER...................................... 7-74
7.28 OVERLAY " 7-76
7.29 READ....................................... 7-78
7.30 RENAME..................................... 7-83
7.31 RETURN..................................... 7-85
7.32 RWAIT....................................... 7-86
7.33 SEEK '. .. 7-88
7.34 SET... 7-90
7.35 SPECiAL...................................... 7-92

7.35.1 Disk. Resource Manager Functions " 7-95
7.35.2 Miscellaneous Resource Manager Functions 7-110

7.36 STATUS 7-112
7.37 SWIRET 7-113
7.38 TIMER 7-115
7.39 WAIT .. 7-117
7.40 WRITE 7-118
7.41 XLAT .. 7-121

8 SYSTEM TABLES

8.1 CMDENV Table. 8-3
8.2 CONSOLE Table . 8-4
8.3 DEVICE Table. 8-7

xii

Contents
------------------------------. __ .-

8.4 DISK Table .. 8-10
8.5 DISKFILE Table " 8-16
8.6 ENVIRON Table. .. 8-19
8.7 FILNUM Table " 8-21
8.8 MEMORY Table. .. 8-22
8.9 MOUSE Table. .. 8-23
8.10 PATHNAME Table. .. 8-25
8.11 PCONSOLE Table " 8-26
8.12 PIPE Table " 8-29
8.13 PORT Table. .. 8-30
8.14 PRINTER Table .. 8-32
8.15 PROCDEF Table. 8-34
8.16 PROCESS Table. .. 8-35
8.17 SPECIAL Table. .. 8- 39
8.18 SYSDEF Table. .. 8-40
8.19 SYSTEM Table. .. 8-41
B.20 TIMEDATE Table. .. -8-43
8.21 VCONSOLE Table. .. 8-44

A CHARACTER SETS AND ESCAPE SEQUENCES. A-1
A.l Escape Sequences. .. A-l
A.2 16-bit Output Character Set. .. A-6
A.3 16-bit Input Character Set. .. A-8

B SYSTEM RETURN AND ERROR CODES. B-1

C COUNTRY CODES .. C-l

xiii

Contents
------.--.--- _ .. _-- ------.---------.- .. ------------ ------------

Figures

.1-1 Data Structure OiagraJTl. 1-6
1-2 SVC Paranleter Block. 1-7
1-3 File Security Word. .. 1-19
1-4 Computer System Software Categories. 1-27
3-1 FflAME Planes with RECT. 3-6

. 3-2 Attribute Plane Byte Format. 3-7
3-3 Extension Plane Byte Format. 3-8
3-4 FRAME Data Structure Diagram. 3-9
3-5 RECT Structure .. 3-11
3-6 CONSOLE Table. .. 3-12
3-7 Examples of RECT Clipping. .. 3-14
3-8 MOUSE Table. ... 3-18
3-9 Virtual Console Relationships '.. 3-23
3-10 Virtual Console Characteristics " 3-25
4-1 Spooler Pipe. 4-4
A-1 High Byte Bit Usage of 16-bit Input Character. A-8
B-1 Error Code Conventions. 8-1

xiv

Contents

Tables

;v

1-1 Standard Data-type Definitions . 1-1
1-2 Superviso~ Call Summary. 1-2
1-3 Supervisor Calls by Number. 1-4
1-4 Asynchronous SVCs. 1-9
1-5 Rules for Forcing Name Case. .. 1-14
1-6 Wildcards .. 1-14
1-7 Reserved File Names. .. 1-16
1-8 Standard File Numbers and Names 1-18
1-9 FlexOS Opera~ing System Terms. 1-22
1-10 FlexOS Tables. .. 1-26
1-11 Resource Managers. .. 1-29
2-1 Disk Resource Manager. 2-1
2-2 FlexOS Disk File Attributes. 2-2
2-3 Privilege Definitions tor Files and Directories. ·2-6
2-4 SPECIAL Disk Functions. 2-9
3-1 Console-Related Supervisor Calls 3-3
3-2 Console-Related Tables. 3-4
3-3 Foreground and Background Colors by Byte Value. 3-7
3-4 Line-Editing Characters. .. 3-17
3-5 Virtual Console File Names .. 3-24
4-1 Pipe-related Supervisor Calls. 4-1
5-1 Process-related SVCs . 5--1
6-1 Miscellaneous Device Control Supervisor Calls 6-1
7-1 Exception Condition Numbers .. 7-43
8-1 System Table Access. 8-2
A-1 Escape Sequence Functions. .. A- 2
A-2 Output 16-bit Character Set .. A~6

A-3 16-bit Input Character Set. .. A-9
B-1 Error Source Codes--High Order Word. 8-2
B-2 Low-order Word Error Code Ranges. B· .. 3
B-3 Driver Error Codes. B-4
B-4 Error Codes Shared by Resource Managers. U-5
B-5 Supervisor and Memory Error Codes. B-' 7
B-6 Kernel Error Codes _. n . n
B-7 Utility Return Codes .. UH

Contents

Listings

1-1 Data Structure Representation. 1-6

xvi

SECTION 1

Terms, Concepts, and Conventions

This section defines the terms, concepts, and conventions used in this
manual and describes the file system characteristics and FlexOS
architecture.

1.1 C Language Conventions

Table 1-1 lists the data-type definitions used to promote C portability
and reduce compiler differences.

Table 1-1. Standard Data-type Definitions

Data Type

BYTE
BOOLEAN
WORD
UWORD
LONG
STRUCT

1.2 Supervisor Calls

Definition

Signed 8-bit value
Byte with one ot two values: true/false
Signed, 16-bit value
Unsigned 16-bit value
Signed 32-bit value
Named sequence (structure) of variables

The functions performed by FlexOS are reterred to as Superviso"r calls
(SVCs). SVCs provide file, console, event, process control, and device
1/0 and management services. Table 1-2 lists the SVCs according to
their purpose (asterisks indicate those SVCs that can be called
asynchronously).

1-1

1.2 Supervisor Calls FlexOS Programmer's Guide

Table 1-2. Supervisor Call Summary

---_._----._-------_._-------------------------

Purpose Call

File Management

DEFINE
CREATE
DELETE
OPEN
CLOSE
READ*
WRITE'"
SEEK
LOCK*
RENAME

Console 'Managefnent

KCTRL
ORDER
XLAT
GIVE
COPY
ALTER
RWAIT'"
SWAIT

Event Management

1-2

CANCEL
WAIT
STATUS
RETURN

Action

Define logical name for a path
Create a file
Delete a file
Open a disk file
Close a disk file
Read from a file
Write to a file
Modify or obtain current file pointer
Lock/Unlock an area of a disk file
Rename or move a file

Obtain keyboard and mouse ownership
Order windows on parent screen
Specify keystroke translation
Give keyboard and mouse to child process
Copy one screen rectangle to another
Alter a screen rectangle
Wait for mouse to enter/leave a rectangle
Wait for mouse button state change

Cancel asynchronous events
Wait for multiple events
Get status of asynchronous events
Get return code of completed event

FlexOS Prograllllner's Guide 1.2 Sllp(1rvi~or Call~

Table 1-2. (Continued)

---------------_ .. _._-_._----_.-.-

Purpose Call Action
-------------------------_. __ . _.

Real Tirne and Process Managen18nt

Set and wa.it for thner interrupt
Abort specified process
Perform conllnand

TIMER*
ABORT*
COMMAND*
EXCEPTION
MALLOC
MFREE

Set software interrupt s on exceptions
Allocate 1l1emory to heap

EXIT
ENABLE
DISABLE
SWIRET
CONTROL *
OVERLAY

Device Management

Free me,nory from heap
Tenninate with return code
Enable software interrupts
Disable software interrupts
Return from software interrupt
Control a process for deillJgning
load overlay from command file

Perform special device function SPECIAL*
DEVlOCK
INSTALL

lock or unlock device for user /gr(Hlp
Install. replace and associate drivers

Table Management

GET
SET
LOOKUP

Get a table
Set tahle values
Scan and retrieve tables

* Your program can call these SVCs asynchronously.

--------------------- .- ... _-_. __ ._-----_.-- -- --

Table 1-3 lists the SVCs by their number.

1- :l

1.2 Supervisor Calls FlexOS Programmer's Guide

Table 1-3. Supervisor Calls by Number

---_._---.--~.--'-" -_ .. _ .•. -... -

Number Call Number Call
--.-------- ---.------- -.---------

0 F _GET 21 Reserved
1 F_SET 22 F~GIVE

2 F _LOOKUP 23 Reserved
3 F _CREATE 24 F _TIMER
4 F _DELETE 25 F _EXIT
5 F _OPEN 26 F _ABORT
6 F _CLOSE 27 F _CANCEL
7 F _READ 28 F _WAIT
8 F _WRITE 29 F _STATUS
9 F _SPECIAL 30 F _RETURN
10 F_RENAME 31 F _EXCEPTION
11 F _DEFINE 32 F _ENABLE
12 F _DEVLOCK 33 F _DISABLE
13 F _INSTALL 34 F _SWIRET
14 F _LOCK 35 F _MALLOC
15 F _COpy 36 F _MFREE
16 F _ALTER 37 F _OVERLAY
17 F _XLAT 38 F_COMMAND
18 Reserved 39 F _CONTROL
19 F _KCTRL 40 Reserved
20 F _ORDER 41 F _SEEK

1.2.1 Calling Conventions

FlexOS Supervisor calls are made by invoking the FlexOS entry point.
The entry point takes two arguments and returns a value, as follows:

Arguments: a SVC 16-bit number
a parameter block pointer or value, 32-bit

Return: a 32-bit value

1-4

FlexOS Programmer's Guide 1.2 Supervisor Calls

See the processor-specific supplement for the actual entry mechanislll
and registers used.

You can call FlexOS independent of a processor by calling the _osif
function supplied with the operating systefn. The _osif function has
two arguments: the SVC number (16 bits) and, depending on the SVC,
a 32-bit parameter block address or parameter value. The C language
definition of the _osif function is:

WORD
LONG
LONG

SVCno;
parm;
ret;

ret = __ osif(SVCno,parm);

The _osif function returns the return code in registers, according to
the convention of the language processor used to create the proorafll.

You can also call FlexOS independent of the processor by using the
standard FlexOS SVC library supplied with the language processor
available for FlexOS. Each of these library functions builds a
parameter block for the corresponding SVC and calls FlexOS. This
high-level interface allows the description of FlexOS supervisor calls in
processor-independent and register convention independent rnethods.

1.2.2 Data Structure Representation

Throughout this manual, data structures are represented as shown in
Figure 1-1. listing 1-1 contains the corresponding code representation.
Byte and word order are critical when using these structures.

1--5

1.2 Supervisor Calls FlexOS Prograrnmer's Guide

o 2 3

o byte1 I byte2 byte3 I byte4

4 word1 word2

8 long1

12 byte5 I byte6 word3

Figure 1-1. Data Structure Diagram

Listing 1-1. Data Structure Representation

STRlJCT thlsstruct
(

BVTE by tel; ,t byte offset 0 t,
BVTE byte2; ,t byte offset 1 .,
BVTE byte3; ,t byte offset 2 t,
BVTE byte4; ,t byte offset 3 t,
WORD wordl ; ,t byte offset 4 .,
WORD word2; ,t byte offset 6 t,
LONG longl; ,t byte offset B t,
BVTE byteS; ,t hyte offset 12 ./

BVTE hyte6; ,t byte offset 13 .,
WORD word3; ,t byte offset 14 ./

) ; /. length = 16 ./

1.2.3 Synchronous and Asynchronous SVCs

All SVCs have a synchronous fornl. This means the call does not
return' until the operating system completes the event--for example,
reads a record frorn the disk, writes a string to the console, or opens
a file. Some SVCs also have an asynchronous form. These calls
return a value immediately which uniquely identifies the event
requested. Program operation can then proceed independently of the
event.

Synchronous and asynchronous SVCs take the following forms:

1- 6

FlexOS Programmer's Guide 1.2 Supervisor Calls
--------- --------

ret = s_funcname(parrn 1,parm2, ... ,parmN);
emask = e_funcname(swi,parm 1,pann2, ... ,parmN);

SVC names starting with "s_" are synchronous SVCs. The ret value is
the conlpletion code for the event.

SVC names starting with "e_" are asynchronous. The ernask value is
the event mask which uniquely identifies the event. The completion
code for asynchronous calls is acquired with the RETURN SVC.

The contents of the parameter block block built from an SVC call are
different, depending on the SVC.

The individual parameters are always provided in the fornl shown in
Figure 1-2. The largest parameter block is 28 bytes long.

o 2 3

o mode J option I flags

4 software interrupt address

B parm1 - id (fnum, pid, name, elc.)

12 parm2 - Buffer Address

16 parm3 - Buffer Size

20 parm4

24 parm5

Figure 1-2. SVC Parameter Block

The Supervisor checks the mode to deterrnine if the SVC is
synchronous or asynchronous. A rnode value of () indicates a
synchronous SVC; a mode value of 1 indicates an asynchronous SVC_
A parameter error is returned if the mode specified is not 0 or 1. The
option and flags values select options unique to each SVC.

1-7

1.2 Supervisor Calls FlexOS Programmer's Guide

The software interrupt address is a pointer to an optional software
interrupt routine availnhle with asynchronous SVCs. FlexOS forces the
calling process to jump to this routine when the asynchronous event
completes.

The 10 parameter uniquely identifies the object of the call. For
example, for a WRITE call the object is a disk file, console,. printer, or
other peripheral device. The 10 value in this case Is a 32-bit file
number.

The buffer is used to store data for transfer to or from the object.
FlexOS checks the address and size values to ensure there are no
memory boundary violations.

Many fields are marked with a 0 (zero) in the individual SVC calls.
These fields must be set to zero to be compatible with future releases
of FlexOS. An error is returned if they are not zero.

1.2.4 Return Codes

The return code for synchronous and asynchronous SVCs is always a
LONG value (32 bits). A zero or positive value (high order bit is off)
indicates ':l successful operation. SVCs not returning any particular
value, such as a file number or a process 10, return a NULL (0) value to
indicate success. For synchronous SVCs, the return value is the
completion code. For asynchronous SVCs, the return value is the
event mask, not the results of the operation.

A negative return code (high order bit is on) for synchronous and
asynchronous SVCs indicates that an error occurred. The high order
word contains the module or device code and the low order word
contains the error type code. See Appendix B for the error code
descriptions. These codes also apply to the asynchronous call's
completion code.

1.2.5 Asynchronous Supervisor Calls

Asynchronous Supervisor calls allow a program to process multiple
events simultaneously. Table 1-4 lists the Supervisor calls with
asynchronou~ forms.

1--8

FlexOS Programmer's Guide 1.2 Supervisor Calls

SVC

Table 1-4. Asynchronous SVCs

Purpose

Read fronl a file.
Write to a file.
Lock/unlock an area of a disk file.
Wait for a time period to expire.
Create a process.
Perform a special device function.
Control a process with another pro.cess.
Wait for a process to terminate.
Wait for a fllouse button state to occur.

READ*
WRITE*
LOCK
TIMER
COMMAND
SPECIAL
CONTROL
ABORT
BWAIT
RWAIT Wait for the mouse to enter or exit a region.

* You cannot read or write a disk file asynchronously. You can
only use asynchronous READ and WRITE on console files, pipes,
printers, and designated special devices.

Each process can have up to 31 on-going events; each identified by a
single bit set in the event mask. The event mask is relevant to the
following SVCs:

• WAIT to synchronize on one or more asynchronous events
• RETURN to acquire an event's cOfllpletion code
• STATUS to indicate completed events
• CANCEL to cancel an event

FlexOS provides two mechanisnls sensitive to event completion. You
can suspend program execution until an event or one of several
events completes or you can execute the software interrupt routine
(swi) when the event completes.

Waiting on Events

Use the WAIT SVC to synchronize program operation on the
completion of an event.

1-B

1.2 Supervisor Calls FlexOS Programmer's Guide
-'-'-'-'-'-- -----_.- ------_. __ .------- - - _. - -- - -_._-------------_ .. _---------------

The event or events to wait on are specified in the WAIT argument
and the call returns when any of the specified events completes. The
event completed is indicated in the return code. While the process is
waitinn. it is removed from the dispatcher's ready list and minimizes
the CPU load.

lo get the completion cQde for an asynchronous event, use the
RE TURN SVC. RE1 URN use is limited to asynchronous events that do
not have a software interrupt (swi). (The cornpletion code is passed to
the software interrupt and hence is not available to the process.) For
asynchronous events without a swi. use the WAIT return code as
RETURN's event rnask. The event mask bit is not reset until RETURN
has been called.

The STATUS SVC is also useful to determine completed events.
STATUS places a heavy burden on the CPU and excessive use impacts
program perforrnance. You specify the events you want considered in
STATUS's argument, and the call 'returns with the bit of all completed
events set.

Interrupting upon Event Completion

Each asynchronous SVC allows a. pointer to a swi so program code
can he executed asynchronously when an event occurs. When the
event completes, FlexOS preserves the stack pointers and proceeds
with the swi.

Two values are passed to the swi. the completed event's mask and its
completion code. Both are LONG values. A swi has the following. C
form:

swi_rout)ne(emask,compcode);

LONG emask;'*lIIask of completed event·'
LONG compcode;'*event·s completion code.'

s_swiret(OL);'*swi e>lit cal I"-r'eturll to mai" program.'

FlexOS clears the event mask when the swi is called; do not call
RETURN to reset the bit.

1·-10

FlexOS Programmer's Guide 1.2 Supervisor Calls

You must use the SWIRET SVC to exit the swi. It gives you two
options: return to the progralll at the point of interruption or aSSlJlne
the process identity froni the main program. For 110th options the
stack pointer is restored to its condition when the progralll was
interrupted.

When you have the swi assume the process identity, you can force a
return to the main progranl or not return at all. If you force the return
to the main program, the stack condition is unknown. Consider the use
of a routine that returns the stack to a known place and jump to this
routine from the swi.

When you have the swi assume the process identity, use EXIT to
terminate the process. Do not call EXIT until after you have called
SWIRET, however.

Note: The asynchronous fOrln of ABORT is typically used as a
mechanism to preserve a process when it is user-aborted. For
example, consider a menu-driven program where the user enters a
control-C to abort a menu-selection. To trap the control-C and return
to a menu within the program rather than the operating system, you
would use' the asynchronous ABO.RT and a swi to force the return to
the program. To abort the menu program entirely, the user would have
to enter two control-Cs.

To establish critical regions where a swi cannot interrupt program
execution, use the DISABLE SVC. No swi is executed while DISABLE is
active, however, FlexOS does log the completion of asynchronous
events during this time. Use the ENABLE SVC to end the DISABLE
mode. All event swis impeded while DISABLE was active are executed
after ENABLE is called.

1.3 File Specifications

A file is a logical construct applicable to the range of devices and
functional units managed by FlexOS. FlexOS uses files to store or
display information (disk files, pipes, console files, device files), get
data input (keyboard and device files), and control access (zero length
pipes).

1· - 11

1.3 File Specifications FlexOS Prograrnmer's Guide

Every file is specified by a path. A path consists of the following
elements:

node::
device:
\
directory\
filenClme

network node nanle
logical device name
root directory
subdirectory name
file name and extension

These elements are always entered in the following sequence:

node::device:\directory\ ... directory\fiIename

If you do not specify a node, device, or directory, the current disk
directory is assumed.

The node and device names can be one to eight alphanumeric
characters. A directory name can have one to eight alphanumeric
characters and always has the DIR extension. File names consist of a
one to eight alphanumeric character name and an optional one to
three alphanumeric character extension. You cannot have a NULL file
name. The complete specification cannot exceed 127 characters.

Directories are distinguished from files in a path specification by either
backslash (\) or slash (/). FlexOS recognizes the following
abbreviations:

.I rneans the current directory
.. .1 means the parent directory
/ / nleans the root directory of' the specified device

Although .I, . .I, and / / are most useful at the user interface level, the
FlexOS logical name substitution means these abbreviations can also
be useful at the programmatic level as well. Note that' / / ignores
whatever directory specification preceded the / / and specifies the root
directory on the specified device or, if no device was specified, the
default device.

Paths are also used to identify pipe files, console files, and devices.
The following are exarnples of path specifications.

1-12

FlexOS Programmer's Guide

remote disk file
disk file
pipe
virtual console

device
abbreviations

svr::hd:\dir\FILE.EXT
hd 1 :/rnydir/file.typ
pi:mypipe
con 1 :vc002/console

mydevice:
m: a/b\././../x
m:a/b//c/d

1.3.1 Uppercase Versus Lowercase Names

1.3 File Specifications

full path
device, directory, and file

screen and keyboard for
virtual console # 2

means m:a/x
means m:c/d

File names can consist of uppercase and/or lowercase characters.
Name matching is conducted according to the following rules. The
rules are summarized in Table 1-5.

• The Disk Resource Manager accepts two types of disk media,
uppercase media (default) and case sensitive media. You "make
the selection in the disk label. All file names on uppercase media
are converted to uppercase. On case sensitive media, the Disk
Resource Manager either converts names to lowercase or leaves
them as is, depending on the force case flag in the SVC.

• Device names are always lowercase and are searched in force
lowercase mode. This way, an uppercase or lowercase name will
match a device name.

• The DEFINE SVC forces logical names to lowercase but leaves the
substitution string as is. All logical names are forced to
lowercase when the define tables are searched, but left as is if no
substitution occurs.

• Programs using flexOS's SVCs can choose between force case or
not.

1-13

1.3 Filn Spncificalions FlexOS Programmer's Guide

Table 1-5. Rules for Forcing Name Case

Default
Device Case

-.-.. ------ ----. ---

Disk Upper-only

Pipe Mixed

Console Lower-only

Miscellaneous lower-only

1.3.2 Wildcards

Cases
Supported

Upper-only
Mixed

Mixed

lower-only

lower-only

Forced
Case

Upper
Lower

Lower

Lower

Lower

Wildcard characters are available for use with the FlexOS LOOKUP SVC.
This supervisor call is a scanning tool that searches tables by type and
extracts iterns matching the name specification in the LOOKUP call.
Where there Is a match, LOOKUP puts all or part of the table into a
buffer. The Table 1-6 lists the wildcard characters.

Wildcard

*
?

Table 1-6. Wildcards

Meaning

Matches any number of characters, 0 or more
Matches any single character
Finds names that do not match the wildcard name

The * and ? characters can be freely intermixed with characters that
inust be in the item names. The " must be the first character of the
wildcard name. The following examples illustrate the use of wildcard
characters.

1-14

FlexOS Programmer's Guide 1.3 File Specifications

Suppose the following set of. names exists for a tahle type:

a ab abc bac bb bc c

The following wildcard names would specify the indicated set:

* a,ab,abc,bac,bb,bc,c (all files)

*c abc,bac,bc,c (all files ending with c)

" *c a,ab,bb (all files not ending with c)

?b ab,bb (all files with a 2 character narne ending with b)

a* a,ab,abc (all files starting with a)

b ab,abc,bac,bb,bc (all files with b anywhere)

? a,c (all files with a 1 character narne)

?*b* ab,abc,bb (all files with b anywhere atter 1 character)

*b? abc,bb,bc (all files with b as next-to-Iast character)

You can have logical name translation with LOOKUP and use paths in
your LOOKUP name specification. In path specifications, wildcards can
only be used in the last elernent of path. The following exarnples
demonstrate valid and invalid uses of wildcards in LOOKUP name
specifications.

§fl~~!fiG~Hq~

hd:/B 1 IGL *. *

pi: " mx\input

hd?:/

hd?:

~xpla~~t!on

Valid: Returns the table for all files in directory B 1
on device hd: that begin with GL.

Invalid: The wildcard cannot be used if the file is
not at the end of the specification.

Invalid: The wildcard cannot be in the device name
if there are subsequent directory or file references.

Valid: Returns the table for all devices beginning
with hd.

1 -- 15

1.3 File Specifications FlexOS Programmer's Guide

1.3.3 Reserved Names

Tahle 1-7 lists file na.nes reserved by FlexOS. The BOOTINIT script
initially defines default: in the process logical name table and definef
sy~tell1: and boot: in the ~ystem logical name table.

Narne

stdln

stdout

stderr

stdcmd

prn:

default:

system:

boot:

Table 1-1. Reserved File Names

Definition

The standard input file.

The ·standard output file.

The standard error file.

Reserv~d for system use.

The system list (print spooler) device.

The process's current directory: FlexOS expands a NULL
path to' the path associated with default:. A path
consisting of filename alone is expanded to begin with
default:.

The process's system directory: The system directory is
intended as the location to store shared program and data
files. FlexOS searches it after any unsuccessful attempt to
find a match in the default: directory when the path
specification consists of a file name alone. Files in the
system: directory must have the system attribute set to be
loaded in this manner.

The systern boot directory: Device drivers are typically
located in the boot directory.

1.3.4 Logical Name Substitution

FlexOS contains a logical name preprocessor which allows paths to be
represented by a single logical name. FlexOS checks the first item in a
path specification against a logical name table and substitutes the

1-16

FlexOS Programmer's Guide 1.3 File Specifications

replacement string when a match is found. An item is defined as a
character string delimited by a NULL, space, tab, or colon. For example,
if you define home: to be the string

floppy 1 :dir1/dir2/

then the path specification home:datafile is expanded to:

floppy 1 :dir 1/dir2/datafile

After the replacement string has been inserted into the original path
specification, FlexOS checks the first itenl again for a replacelnent
string. This loop continues until no replacement is found. The complete
file specification after all substitution has been performed cannot
exceed 127 characters.

If the file datafile in this example is a logical name, FlexOS does not
search for the replacement string because it is not the first item in the
path· specification.

FlexOS maintains a single, system-wide logical name table--the
SYSDEF table--and separate logical name tables for each process--the
PROCDEF tables. FlexOS cross-references the logical names in the
PROCDEF table first and then the SYSDEF table. You make changes to
both tables with the DEFINE SVC; however, only privileged users can
make changes to the SYSDEF table. You can assign logical names for
complete or partial paths.

When a process creates another process, the new process, called the
child, inherits a copy of its parent's local process logical name table.
Any changes the child process makes affect its tabie only. The parent's
table is not modified. This is how the logical names replacements for
the standard files are passed from parent to child processes.

1.4 File Access

FlexOS monitors file access for tour types of privileges--read, write,
delete/set, and execute--and three types of users - -owner, group, and
world. For disk files, access is nlonitored only when disk security is
enabled. (See the description of the disk lahel in Section 2.4.1 for the
description of disk security.) Before you can read frolll or write to a

1-17

1.4 File Access FlexOS Programmer's Guide
--_ .. _ .. __ -.---------.--- .. _---_ ... __ . __ ._-- ---

file, you rHust open it. In your' open call, you select which privileges
(read and/or write) you require and specify an access mode. The
access privileges availahle to you depend upon your user and group 10
numhers.

When the open is successful, FlexOS returns a 32-bit file number. You
subsequently access the file by its number. FlexOS keeps all file
numhers in a global table of open files and uses them to dispatch
re(lUests to the proper resource manager. The number is disassociated
from the file when you clos.e it.

1.4.1 Standard File Numbers

FlexOS reserves four file numbers for reference to the standard files.
Table 1-8 lists these file numbers by their reserved names.

Table 1-8. Standard File Numbers and Names

File NlImber Name Description

0 stdin standard input file
1 stdout standard output file
2 stderr standard error file
3 overlay overlay file

Note: The overlay file is the comrnand file from which the program
was loaded. This file is left open when an indication of overlays exists.

These numbers are not the actual file numbers of your standard Input,
output, error, and overlay files. FlexOS translates these numbers into
the actual file numbers. The definition of the standard to actual file
numbers is made by the shell or· window manager program. Should
YOll need the actual file number, you can gel thenl from the ENVIRON
table.

The COMMAND SVC opens stdin, stdout, and stderr. These ·names are
inherited frorn the parent process which called the COMMAND SVC.
The standard input file is opened for read access in shared file pointer
mode; the standard output and the' standard error files are opened for
write access in shared file pointer mode.

1- 18

FlexOS Programmer's Guide 1.4 File Access

1.4.2 Access Privileges

There are four access privileges: read (R) allows the process to read
from the file; write (W) allows the process to write to the file; execute
(E) allows the process to run the progran); and delete (D) allows the
process to delete the file and set values in the file's table.

Access privileges are assigned on a owner, group, and world basis
when the file is created. Which access privileges are available to a
given process is determined by comparing its user and group
identification numbers against the file creator's. At log in, FlexOS reads
the user's 10 numbers from the USER.T A8 file. The comparison is rnade
when the user attempts to open, execute, or delete the file. If both
numbers match (indicating the user is the file owner), FlexOS allows
the user the access privileges established for the owner. If there is a
match on the group 10 only, FlexOS allows only the group-level access
privileges. It neither match or the user IDs match but the group IDs do
not, only world~level privileges are available.

User, group, and world categories are independent and do not have to
·provide diminishing levels of access.' For example, you can set the
world leve.1 to have complete rights over a file, while the group level
can only write to the file and the owner can only read the file. The
file owner and superuser can always change the attributes of lhe file,
regardless of the security word.

The privileges available for owner, group, or world access are kept in
the file's File Security Word. The File Security Word is a 2-byte bit
map of the access privileges by level as shown in Figure 1-3. The
values are set in the CREATE call. Only disk and pipe files and
directories have a File Security Word. Console file access privileges
are determined by the mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

R D

~ Reserved~ ~ WORLD ~ 1- GROUP ~ 1- OWNER ~

Figure 1-3. File Security Word

1-19

1.'1 Hie I\ccess FlexOS Prograrnmer's Guide

The 'execute and delete privileges are determined· when the process
atlelnpls to run or erase lhe file. You do not need to open the file for
either operation. You can, however, delete a file once it is open. The
delete is not performed until the last close is performed on the file.

You select the process's read and/or privileges in bits 2 and 3 in the
OPEN SVC's flags. If the privileges requested are available in the File
Security Word, the resource manager checks them against the file's
current access modes (see below). If the privilege is available given
existing modes, the file is opened and the file number returned.

When a requested privilege is not available, the OPEN succeeds or fails
depending on the value of the Reduced Access flag in the OPEN call.
The access level granted is derived by ANDing the privileges requested
with those in the File Security Word. For example, if the requested
OPEN access rights are RW and the File Security Word access rights
are ROE, then the reduced access right is R--the only common access·
privilege. The resource manager determines if that privilege is
available given any current access modes before opening the file and
returning the file number. If none of the requested rights match, then
an access violation error code is returned and the file is not opened.

1.4.3 Access Modes

FlexOS provides a set of access modes which determine whether or
not and, if so, how open files are shared. These modes are selected in
the OPEN flags word and consist of the following:

• EX: exclusive access by calling process
• AR: allow reads by other processes
• ARW: allow reads and writes by other processes

The default mode is exclusive access, where the calling process
prevents any other process from sharing the file. Exclusive access to a
file is denied if another process has the file open.

If a process tries to open a file with write privilege and another file
has the file open. in (AR) mode, then the new open is denied and an
error is returned.

ARW rnode has two options: shared or unique file pointer. The shared
file pointer mode is only available to processes with the same family
10, and all processes in the family must specify this mode.

1-20

FlexOS Programmer's Guide 1.4 File Access

For processes outside of the family, the file appears in exclusive mode.
There are no such restrictions when the unique file pointer option is
selected.

1.4.4 File Pointers

FlexOS supports both sequential and random access to pipes and disk
files. Sequential file access is supported ~y a file poinfer. File reads
and writes increment the pointer so you need not constantly calculate
your position within the file. Random tile access is supported through
the use of offsets in the READ and WRITE supervisor calls. The offset
can be specified relative to the file pointer, the beginning of the fUe, or
the end of the file.

The file pointer is initialized to 0 when you create or open the file.
Subsequent reads and writes move the file pointer to the byte position
of the next sequential location. For example. if a new file is created
and then 12 bytes are written, the file pOinter would be pOinting at the
13th byte (essentially the EOF marker). '

Separate processes sharing access to the saine file can share the
same file pointer or can have separate ones. File pointer sharing is
limited to processes with the same family identification number (FlO).
When the pointer is shared, READ or WRITES by any process update
the file pointer. Use the SEEK SVC to detennine the file pointer's
location. SEEK can also be used to set the pointer's location.

Randorn access on printer, console, ,and other serial files produces
results that are device dependent. Consequently, file painters are not
maintained on these types of devices but rather assume an offset of 0
independent of the actual request.

1.5 Deleting Files

Files are deleted by name with the DELETE SVC. Unless the disk
, security h'as been enabled or the file has the read-only attribute, there
is nothing to prevent the calling process frOOl erasing the file. A file
cannot be erased when it is set read-only. When file security is
enabled and the file has not been opened, the calling process must
have the delete privilege, It the process has the tile opened, it must
have either write or delete privilege.

1··· 21

1.5 Deletinn Files FlexOS Programmer's Guide

FlexOS does not immediately erase an open file when you try to delete
it. Instead, FlexOS returns success to the DELETE call but marks the
file as temporary. FlexOS leaves files marked temporary available until
the last close is performed. At this point, the file is deleted.

You can automatically delete files by setting one of two flags when
YOll create the file. One CREATE flag designates the file as ternporary
or permanent. TefTlporary means the file is deleted after the last open
is closed; permanent rneans the file remains after the last close. The
other CREATE flag deletes a file if it has the same name as the file
you are creating. (Alternatively, you can have CREATE return an error if
it finds a file with the same name.)

1.6 Basic Terms

Table 1-9 defines the special terms used in this manual.

Term

Buffer

Bufsiz

Table 1-9. FlexOS Operating System Terms

Meaning

Address of buffer: M'any SVCs require buffers for either 1/0
or information. -Buffers must be within the logical address
range of the calling process. FlexOS checks the buffer
address and size to ensure legal buffers.

Size of buffer (in bytes): The size of the buffer sets the
SVC's limit. For instance, the buffer size indicates the
number of bytes to transfer in the WRITE SVC. The buffer
size is also used with the buffer address to catch illegal
buffer specifications.

Completion code
The return code of an asynchronous event.

1-22

FlexOS Programmer's Guide 1.6 Basic T enns

Term

Event

Event Mask

Flags

Fnum

Name

Table 1-9. (Continued)

Meaning

Asynchronous operation: When a process issues an
asyn~hronous SVC, the requested activity is called an
event. For example, in an asynchronous write call to a
printer, the event is the output of the character or string.
Events can be successful or unsuccessful, the latter
indicating that the resource manager's or driver's error
recovery mechanism determined that the action could not
be completed. A process can have up to 31 ongoing
events.

Asynchronous SVC return value: When you call an
asynchronous SVC, a 32-bit value is returned irnrnediately.
If it is positive (the most significant bit is 0), the value is
the event mask for that event. If the value is negative, the
SVC could not be perfonned. The event Inask is a unique
value in which one of bits 0 to 30 is set to designate the
event started. You use this value in subsequent calls to
check event status and to retrieve the event's completion'
code.

The flags word in many SVCs offers options that are
enabled by setting a bit. Not all SVCs have flags. Bit· 0 in
the SVC descriptions corresponds to the lowest order bit
and bit 15 the highest. All unused bits must be set to O.

File number: SVCs that do I/O require a file number. You
get the file number from the OPEN and CREATE SVCs.

File specification address: File specifications are not
typically entered in an SVC. Instead, you enter the address
of a NUll terminated string containing the complete
speCification. For all SVCs, the maxirnunl length string is
128 bytes limiting you to a 127-byte file specification.

1-- 23

1.U Un sic lerms rlexOS Program'Tler's Guide

Table 1-9. (Continued)

Tenn Meaning

OEM

Option

Original Equipment Manufacturer: In the context of this
manunl, the OEM is the person or company who integrates
FlexOS with the computer or develops the interface to a
supplemental piece of hardware such as a plotter or
communications card.

SVC options: Several SVCs have, besi~es the flags, options
numbered from 1 to 255. Where options are available they
are shown in the SVC descriptions in Section 7. OEM
supplied SPECIAL calls may also have options not
documented in this manual. Select the option by entering
the corresponding value in your call or parameter block.

Privileged user

Process

1-24

A process with group and user numbers of O. Group and
user numbers are established when FlexOS is loaded from
information in the USER.TAB file

Program entity: FlexOS provides a multitasking environment
in which multiple processes can execute program
instructions independently of each other. Processes are
uniquely identified by a process identification number and
are related to other processes through a family Idenfication
nurnber. A process is always in one of three states:

• running when it has the CPU
• ready when it could use the CPU if it had it
• blocked when it is waiting ·for an event to complete

FlexOS Programmer's Guide 1.6 Basic Terms

Table 1-9. (Continued)

Term Meaning

Return code
LONG value returned by a Supervisor call. (SVC).

Superuser Synonymous term for a privileged user.

swi

Table

1.7 Tables

Software Interrupt Routine: Each asynchronous SVC allows
the optional use of a software interrupt routine (swi) that
functions similarly to a hardware interrupt routine. When
the asynchronous SVC completes its operation, the calling
process is interrupted and control passes to the swi. When
the swi is finished, it either returns control back to the
main process where the main process wa~; interrupted or
becomes the main process~ It is not necessary to have a
swi specified to execute an SVC asynchronously.

FlexOS data structure: FlexOS provides information' about
itself in structures known as Tables. You can exalnine
these tables and in many cases control process
environments by selting values in the tables. FlexOS also
provides an SVC for scanning and retrieving portions of
tables. Table 1-10 lists the FlexOS tables.

You can monitor most aspects of FlexOS operation through its tables.
Use the GET and LOOKUP SVCs to retrieve the information and the
SET SVC to modify those table fields that are read/write. Tables are
assembled by the supervisor when you make the call; they are not
maintained in system memory. Section 8 contains detailed information
about FlexOS tables. Table' 1-10 lists the tables.

1-25

1. 7 Tahles FlexOS Programmer's Guide
--------------- .. _._----_._------------------

Table 1-10. FlexOS Tables

------_ .. -- -----------.--- -----.-------

lable Name

Supervisor/Kernel
PHOCESS
ENVIRON
TIMEDATE
MEMORY
SYSTEM
FILNUM
SYSDEF
PROCDEF
CMDENV
DEVICE
PATHNAME

Pipe

Disk

PIPE

DISK
DISKFILE

Console
PCONSOLE
VCONSOLE
CONSOLE
MOUSE

Miscellaneous Device
PRINTER
PORT
SPECIAL

1-26

Contents

Process information
Process environment information
System time and date
System memory information
Global system information
Table information for a given file number
System level defined names
Process level defined names
Command line entry
Information on devices
Fully-expanded path for given logical name

Pipe infornlation

Disk device information
Disk file information

Physical console information
Virtual console information
Screen and keyboard information
Mouse information

Printer device information
Port device information
Special device information

FlexOS Programmer's Guide 1.8 flexOS Functional COlnponents

1.8 FlexOS Functional Components

The computer system software can be grouped into three ~ategories.
figure 1-4 illustrates the three categories and their relationship to
each other.

Program System Physical

Resource
Managers Drivers

Utilities Disk r71 Disks

Applications Console ~ Keyboard
Screen

Supervisor

~I Shell Mise I/O po;]
Window
Manager Pipe

Figure 1-4. Computer System Software Categories

The categories are defined as follows:

• Program: "fhis group includes the applications run by users to
perform tasks and various system nwnagenlent utilities.
Background programs which control the user interface such as the
shell and window manager also fall into this category.

1 21

1.8 FlexOS functional Components FlexOS Programmer's Guide

• System: This group provides the file system services, process
seheduling, and dCtta flow mediation. Programs use these services
on a system call hasis. The supervisor receives the functions and
sends thern to the appropriate resource manager for servicing .

• Physical: The physical functional unit contains the device-specific
code, called device drivers. The physical functional unit varies for
each cornputer system. This unit translates the generic SVCs
from the resource managers into the device-specific routine for
execution.

These divisions illustrate FlexOS's two interfaces: the program-to
system interface and the system-to-physical interface. This manual
describes how to call the Supervisor and what you get in return. Refer
to the FI~xQ$ ~ystem Guide for detailed information on how the
system functional unit relates to the physical functional unit.

1.8.1 The Supervisor and Resource Managers

The Supervisor receives SVCs from the program units and sends them
to the appropriate resource manager. File numbering is another of the
Supervisor's duties. Every time you open a file or device or create a
file, the Supervisor returns the file number. You use this number to
access the file, and the Supervisor uses it to send the call to the
proper resource manager.

The resource managers control the access to the physical devices and
pipes. Table 1-11 lists the resource managers and summarizes their
tasks.

1- 28

FlexOS Programmer's Guide 1.8 FlexOS FUllctional Components

. Resource
Manager

Disk

Console

Pipe

Misc

1.8.2 Kernel

Table 1-11. Resource Managers

Task

Manages the disk file system for disk drives.

Manages physical and virtual consoles.

Manages interprocess comnlunications through FIFO
(first-in-first-out) memory files called pipes.

Manages all devices not managed by the other resource
managers.

Not shown in Figure 1-4 is the FlexOS kernel. This proprietary module
is responsible for all process management tasks. This includes process
creation, state maintenance, and dispatching. The kernel also manages
process context switching and scheduling and menlory allocation.

Process scheduling is performed on a priority pasis. Priority is
established at program invocation by a nurnber in the range of 0 to
255 (see the COMMAND description in Section 7). 200 is the
recommended priority for user processes. Higher numbers have a
lower priority; lower numbers have a higher priority. Processes with
the same priority are scheduled on a round-robin ~asis.

End of Section 1

1··29

SECTION 2

Disk File Management

This section describes FlexOS's disk file management tools and the
fundamental concepts involved in dealing with files. Table 2-1 lists
the SVCs available for disk device, directory, and file management.

Table 2-1. Disk Resourc.e Manager

Disk Disk Disk
SVC Device Directory File

CLOSE y y* y
CREATE Y Y Y
DELETE Y Y y
DEVLOCK Y N N
GET Y Y y
LOCK N N Y
LOOKUP y Y Y
OPEN Y y* Y
READ Y N Y
RENAME N Y y

SE' Y Y y
SEEK N N y
SPECIAL y N N
WRITE y N y

* You open and close a directory file to get and set its DISKFILE
table only; you do not open it to read from or write to it.

2-1

'2 1 Hie I\ccess FlexOS Programmer's Guide
- ----------- ... ------

2.1 File Access

Access to files is initiated using the OPEN or CREATE SVC. Use OPEN
to open an existing file; use CREATE to make and open a new file.
Both calls require you to specify a file name; both return a 32-bit file
rHlfllher. You use the file number for all subsequent file operations.
The CLOSE SVC disassociates the file number from the file. Use the
DELETE SVC to remove files.

Files can he accessed in a byte-oriented manner. Any record in a disk
file can be accessed at random. The file system maintains a byte level
end-of-file on disk files.

2.2 Disk File Attributes

Each file in FlexOS has attributes that corltrol access and define
characteristics. The attributes are initially established by setting the
ATTRIB word in the DISKFILE tables. Any user with the delete/set
access privilege can change the ATTRIB word. The Disk Resource
Manager records this value in the file's directory entry. Table 2-2 lists
the attributes.

Attribute

Read-only

Hidden

2-2

Table 2-2. FlexOS Disk File Attributes

-----_. ----------------------------------
Meaning

The Read-only attribute overrides the access rights that
are User/Group based. A process cannot delete or write
to a Read Only file even if it has write and delete
privileges for the file.

Flies with the Hidden Attribute ON are not shown in a
directory listing unless you use a special option.

FlexOS Programmer's Guide 2.2 Disk File Attributes

Attribute

Syste.n

Archive

Table 2-2. (Continued)

Meaning

Files in the system: directory can be opened indirectly
when the System attribute is ON. Indirectly mea'ns,
"from another directory." On each open, if a filena.ne is
given without device or directory specification, the Disk
Resource Manager first searches the default: directory.
If the file is riot found, the system: directory is searched.
If the file is found and the System attribute is ON, the
file is opened. Files with the System Attribute ON are
not included in a directory listing unless YOll explicitly
ask to see them (see LOOKUP in Section 7).

If the Archive Attribute is OFF, the file has been archived
since it was created or last modified. It is automatically
turned ON if the file is modified. Prograrns performing
backup functions can turn this attribute OFF to perform
incremental backups.

------------ ---.--...• ----- .•

2.3 Disk Media

FlexOS disk media have the following characteristics:

Disk label

File security

File record size

A root directory entry containing the lahel name,
user and group number of the label's creator, and
mode flags. The mode flags determine if disk
security is enabled and whether uppercase and
lowercase or just uppercase file narnes are
supported.

A four-byte field in the file's directory entry
containing the creator's user and group IllHllher and
the two-byte File Security Word. Both are set when
the file is created.

A two-byte field in the file's directory entry
indicating its record size. A record size of zero is
equivalent to a record size of one hyte.

2-]

2 J Disk Media FlexOS Programmer's Guide

1 he rile Security Word and record size are set when the file is created
and the disk lahel is initialized to O. The label and its options are set
in the DISK tahle.

2.4 Disk File and Directory Security

File and directory access is controlled by four factors:

• The security enable flag value in the disk label.
• The user and group 10 of the calling process.
• The owner, group, a!ld world access privileges available.
• The access privileges requested in the OPEN call.

The read-only attribute supersedes the access privileges. An error will
be returned if you attempt to write to. set DISKFILE values of, or delete
a file with the read -only attribute return.

2.4.1 Disk label

The disk label is created when you set the LAMODE and LABEL fields
in the DISK table for the first time. The Disk Resource Manager
completes the remainder of the DISK table's label fields by adding the
label maker's user and group IDs and setting the LAFLAG.
Subsequently, only that user or a superuser can change the label. You
cannot remove a label after it is created. You can set all fields to
NUl.l.

File security is not enahled on a disk without a label. Once the label
is established, you enahle and disahle disk security by setting and
resetting LAMODE bit O. When file security is disabled, all processes
have full (R,W,E,D) access to all files on the disk. When file security is
enabled, all users except the superuser are monitored for read, write,
execute, and delete privilege according to their user and group 10.
The superuser always has full (R,W,E,O) access to flies; regardless of
the File Security.Word contents.

The disk label also determines if the drive supports uppercase only or
uppercase and/or lowercase file narnes.

2-4

FlexOS Programmer's Guide 2.4 Disk File and Directory Security

2.4.2 User/group IDs and Available Access Privileges

Before a file is opened, FlexOS grants all processes the minilllum
access privileges. This lets the process lookup the file's DISKFILE
table. To execute, read frolll, write to, or set the file's attrihutes, a
process must have the corresponding privilege. FlexOS qualifies a
process for read or write privilege when the process attempts to open
the file. Execute and delete privilege are deterrnined when the process
attempts to run and delete the file, respectively.

To determine the access privileges available to a process, FlexOS
compares the process's user and group 10 against the file creator's
user and group 10. This indicates whether the process falls into the
owner, group, or world category. The privileges set in the file's File
Security Word for that category are the only ones available to the
calling process.

The privileges given to the calling process are dependent on three
other factors: the conlparison of the privileges requested to those
available, whether or not the file has the read-only attribute, and any
current access modes. FlexOS compares the privilege requested
against those specified in the File Security Word. If there is a match,
FlexOS then determines if the file is read-only. Finally, FlexOS checks
the file to see if it is open and, if so, the access mode is set. Some
access modes--for example, write exclusive mode- -prevent all other
processes from using the file. Other access .nodes ... -for example, read
exclusive--Iet other processes open the file but only for the purpose
of reading.

FlexOS opens the file and returns the file numher, executes the
program, or deletes the file when the requested privileges are
available. The function is not performed if the privileges requested do
not match those available or are not available given the current access
mode. Processes can acquire reduced access by setting the
corresponding flag bit in the OPEN call.

2.4.3 Directorv Versus File Access Privileges
. .

The user and group mechanisms used to qualify users for access to
files are also used for directory security. However, access privileues
to directories have a slightly different meaning than they do for files.
Table 2-3 compares the two meanings Directory security, like tile
security, is only enabled when the corresponding LAMODE bit is set.

2"~) .

2 If Di!1k rile and Directory Security FlexOS Programmer's Guide

Table 2-3.

Security
Privilege

neild (n)

Write (W)

Execute (E)

Delete/Set (D)

Privilege Definitions for Files and Directories

File

Allows reading
from a f.ile

Directory

Allows LOOKUP
operations on files
in the directory

Allows writing to a Allows file creation
file plus the privileges and deletion
listed for delete/set

Allows a file
to be executed

Allows renaming,
changing file
attributes, or
deleting files

Allows opening of files
in the directory

Allows changing
attributes of
files in directory

2.4.4 Access Rules and Restrictions

Read-only file attribute overrides file access privileges set in the File
Security Word. The following list describes other access restrictions
for files and 'directories. Recall that the rules only apply when disk
security is enabled.

• To acce-;s any file you need execute access in each directory
specified in the pathname of the file.

• To LOOKUP files you nlust have read access to the last named
directory in the path. No access is needed of the files
themselves.

• The GET SVC requires only a file number; you do not need any
access privilege to a file's DISKFILE table.

2-6

FlexOS Programmer's Guide 2.4 Disk file and Oirectory Security

• The SET SVC requires write access to the directory the file is in,
as well as delete or write access to the file itself. The. file rnust
be successfully opened with delete access before SET can he
c'alled. A tile owner cannot use SET to change file attributes
without write access to the directory. After obtaining write
access to a tile's directory, the owner can always obtain delete
access to a file, even if is set to R/O.

• The DELETE and RENAME SVCs require write access in the
directory as well as delete or write access for the file. No
exception is made for the owner at the file.

• The COMMAND and OVERLAY SVCs require execute access to the
file being loaded. Read access in not required.

• The CONTROL SVC requires both execute and read access to load
a tile for debugging.

• The READ SVC requires read access to the tile.

• The WRITE SVC requires write access to the file.

2.5 Disk File Access Modes

The flexOS disk file systenl divides open modes and the privileges
allowed with each mode into three categories.

1. All exclusive opens, with the exception of read/exclusive (R/EX)
reserve the file for the exclusive use of the calling process.

2. (R/EX) opens are treated as read/allowed shared read (R/AR)
opens in order to allow the shared open of read/only file~ by
multiple processes.

3. Shared read/write opens - do not restrict file access hy other
processes. You can restrict record access with the LOCK SVC,

The first category applies to other processes only. Previolls open
modes set by a process do not delimit its suhsequent open modes
options. Thus, a process with a file opened in read/write exclusive
mode can open the file again and in any other mode. However, the
exclusive mode is in force until that open is closed.

2-- 7

'2 fi Disk rilo Access Modes r-IexOS Programmer's Guide

2.6 Direct Disl< Access

lhere are two wnys to ilccess the disk directly:

• with the READ and WRIlE SVCs
• with the SPECIAL. SVC disk functions

Both methods require you to open the disk drive before access is
provided. Use the OPEN SVC for this purpose using the device name
to select the drive and the OPEN flags to select the access privileges
and access mode. FlexOS returns the file number number you use in
your READ, WRITE and SPECIAL calls. Disk security measures are
provided to restrict access.

2.6.1 Disk Device READ and WRITE

Using the READ and WRITE SVCs requires the process to have read
and write privilege and the drive to be installed to allow raw reads and
writes. In your calls, the Disk Resource Manager translates the offset
specified into a logical record nunlber. (The disk is treated as a serial
sequence of records starting with the first head, cylinder, and sector
and ending at the last sector, cylinder, and head.) The buffer size you
specify must be a multiple of the sector size and all operations must
be performed on sector boundaries. The information transferred is the
data portion of the sector only; the sector header is not included.

2.6.2 SPECIAL Disk Functions

The SPECIAL disk functions provide the disk fornlat capabilility and
direct access to any sector of the disk, including the system area,
using the file system's head, cylinder, and sector identification scheme.
Table 2-4 summarizes the SPECIAL functions and the access modes
required to use them.

Note: We cannot guarantee the compatibility of the SPECIAL disk
functions with future releases of Digital Research® operating systems.

2-8

FlexOS Programmer's Guide 2.G Direct Disk Access
------------- ------------_._----.----_. __ . __ .. _--_._. __ .. -

Function

Table 2-4. SPECIAL Disk Functions

Description

Read the system area of the disk
Write to the system area of a disk
Format the system area of a disk
Format a track of the disk
Check the media for change or errors
Flush butter contents to the disk
Read physical record by head, sector, track
Write physical record by head, sector, track
Set drive's Media Descriptor Block (MOB)

1 Must open in at least shdCed read-only mode
2 Must open in exclusive mode

2.6.3 Disk Drive Open Modes

Disk device access is subject to the current access modes. You
specify the mode you require along with the READ and/or WRITE
privilege in your device OPEN call. FlexOS compares the request
against the privileges available, any modes in aflect, and. when
write/exclusive mode is requested. the presence of open files by other
processes. Three open modes are supported for direct disk access:

• GET-only
• Shared read-only (AR)
• Exclusive (EX)

The GET-only mode starts when you open the drive without
requesting any access privileges or modes. Use this nlode to (nake a
connection to the device. This connection allows you to use GEl to
retrieve the drive's DISK table and DEVLOCK to lock the device. This
type of open has no effect on disk usage lJy other processes until
DEVLOCK is initiated.

The shared read-only mode allows the calling process to have reall.
write, and set access. Other processes are limited to read access with
the SPECIAL read functions. with the READ SVC, and through the disk
file system. Use DEVLOCK to restrict disk access further.

2···n

2(i ()irect Disk Access FlexOS Prograrnrner's Guide

-, he exclusive mode precludes all access attempts by other processes.
fhe calling process can declare read, write, and/or set access. FlexOS
does not nrant exclusive mode while there are open files or existing
DEVLOCKs on the drive_ While the disk is open, no file system
operations can be performed. All the SPECIAL disk functions
supported by a device driver can be accessed in this mode if the
calling process has obtained the required access level. This is the
only mode that lets you set the disk label.

NOTE: Superusers get full read, write, and delete access to a disk for
any mode, DEVlOCK status, or INSTAll option.

2.6.4 Disk Security INSTAll Options

Disk security is established in two places: Options selected when the
disk driver is installed and the options set in the disk label. See 2.4.1
above for the description of the disk label.

The installation options offered in the INSTAll SVC follow:

• Removable or Perrnanent Device
• Device raw reads allowed
• Device raw writes allowed
• Device set allowed
• DEVlOCKs allowed

The device read, write, and set options control the level of direct
access to the disk supported by the device driver. Disk security
cannot be guaranteed if the disk driver allows raw reads lnd/or writes.
When a disk is opened as a device, the read, write, and set options
determine the allowed access level.

The DEVlOCK option determines whether processes can use the
DEVlOCK SVC to lock the drive. The DEVlOCK SVC allows a process
to lock a disk for its exclusive use or the exclusive use of processes in
the same family. Superusers can use the DEVlOCK SVC regardless of
this' option.

End of Section 2

2-10

SECTION 3
------_._-_._----_. __ ._. __ ._--- _ ...

Console Management

This section describes how to perf orin console I/O under FlexOS. The
presentation has four parts:

• The first part describes general characteristics of the console
system and introduces the supervisor calls and tables used to
manage it. Also described are the FRAME and RECT data
structures and the console file nanling conventions_

• The second part describes how to use the WRITE, ALTER, COpy,
and READ SVCs to control the screen and keyboard.

• The third part describes how to monitor console input frOin the
keyboard and pointing device with the READ, XlAT, RWAIT, and
BWAIT SVCs.

• The fourth part describes use of the CREATE, OPEN, KCTRl, GIVE,
ORDER, SET, and GET SVCs to create and manage virtual consoles
and windows.

The 8-bit and 16-bit character sets referenced in this section are
described in Appendix A. For the list of the country codes mentioned
below, see Appendix C.

3.1 Console File System

A console under FlexOS consists of a keyboard and screen and
optionally a pointing device. For convenience, the term nlouse is used
to refer to all kinds of pointing devices_

3--1

3.1 Console File SystmH FlexOS Programmer's Guide
- - -----------_._------------------------------

lhe Console nesolJrce Manager controls console I/O on a file-oriented
hasis. A single file can represent the keyboard and screen or you can
have separate files. With a single file, read and write access are
independent so fllat keyboard and screen access privileges and modes
can he different. Separate files are used to monitor mouse input and
to represent window horders.

Other Console Resource Manager features are: 8-bit and 16-bit
character modes (individually selectable for keyboard and screen),
escape sequence decoding, keystroke translation, and multiple
international character sets. All features are turned on or off with the
SET SVC.

FlexOS maintains each physical console independently of other
consoles on the systern, so dif!erent features and options can be
selected for each console. The same independence applies to virtual
consoles.

The COMMAND or CREATE SVCs open the standard files stdin .(file
number 0), stdout (file nunlber 1), and stderr (file number 2). The' files
are opened in shared file pointer mode so all processes in the family
have console access. (See Section 5 for the explanation of process
farnilies.) The definitions for these logical names are inherited from
the parent process. The Supervisor always translates file numbers 0,
1, and 2 to the actual file numbers.

For applications invoked from the shell, the standard files should
represent the keyboard and screen. However, these files might be
defined to be other than console files through redirection. Get the
FllNUM table for files 0, 1, and 2 to determine the type of device each
references_

3.1.1 Console-Related SVCs

The console-related SVCs provide two types of services: console file
110 and virtual console management. The first type are the SVCs you
use in applications and utilities to control the screen and gather user
input. Use the second type in window management programs and
applications to create and control virtual console displays. Table 3-1
lists the console-related SVCs by type.

3-2

FlexOS Programmer's Guide 3.1 Console file System

Table 3-1. Console-Related Supervisor Calls

SVC

Console File I/U

ALTER
COpy
READ
WRITE
XLAT
BWAIT
RWAIT

Purpose

Modify a RECl (rectangle)
Copy a RECl from one FRAME to another
Read from a console file
Write to a console file
Translate keyboard input
Wait for mouse button state change
Wait for mouse to enter or exit a RECl

Virtual Console Management

CLOSE
CREATE
DELETE
DEFINE
GET
GIVE
KCTRL
LOOKUP
OPEN
ORDER
SET

Close a console file
Create a virtual console file
Delete a virtual console file
Set process's stdin, stdout, and stderr files
Get a table
Transfer physical keyhoard and (nouse ownership
Obtain physical keyboard and mouse ownership
Scan virtual console tables
Open a virtual console file
Change order of virtual consoles

. Change table contents

3.1.2 Console-Related Tables

The Console Resource Manager also maintains tables for each
physical, logical, and virtual console and mOllse so applications can
determine their console environment and, to the extent allowed,
change it. Table 3-2 lists the tables associated with console
management and indicates the console characteristics (naintained in
that table. Complete descriptions of the tables and their contents are
provided in Section 8.

]-]

3.1 Console File Syslem FlexOS Prograrnmer's Guide

Table 3-2. Console-Related Tables

---------------------------.------------------------------------

Table Name Informalion

CONSOLE

ENVIRON

PROCESS

VCONSOLE

PCONSOLE

3-4

Number of characters in keyboard's type-ahead buffer
Screen and keyboard modes
Cursor position
Number of character rows and columns
Virtual console number
Console type
Physical console name

Current stdin, stdout, and stderr file numbers

Process's DEFINEd physical console number
Process's virtual console number

Window mode
Virtual console number
Console type
View origin reference point on virtual console
Total character rows and columns in window
Window position reference point on parent console
Total rows and colurnns in virtual console
Top, bOHom, left, and right border sizes

Physical device name and identification number
Current number of virtual consoles
Number of pixel and/or character rows and columns
Console type
FRAME planes supported
Attribute and extension plane bit maps
Country code
Number of function keys
Number of mouse buttons
Mouse serial number

FlexOS Programmer's Guide 3.1 Console file System

Table 3-2. (Continued)

Table Name Information

Current mouse form position
Keystate of Alt. Control and Shift keys
Current state of nlouse button
Mickeys/pixel sensitivity of rows and columns
Click interval time period
Height and width of mouse form
Position of mouse form hotspot
Mask to mask effect of DATA rectangle
DATA rectangle to "BlT" to screen

3.1.3 Console Screen Model and Data Structures

The screen is represented by a three-dimensional data structure called
a FRAME. The FRAME's height and width are defined in terms of
character columns and rows. Each intersection of a row and column
defines a FRAME character cell. A cell is always one byte. Figure 3-1
illustrates the FRAME model.

The FRAME's depth is defined in terms of planes, each with the same·
dimensions as the FRAME. There are three planes: character, attrihute.
and extension. Each plane consists of either a two-dimensional by~e
array or a single byte used by the Console Resource Manager to s,et
all plane bytes.

]--5

3.1 Consule File System FlexOS Prograrnmer's Guide

o ncol-1
O-r--------------------------~

REel I
Plane 0 - Characters

nrow-1-tr-----y---------------"'r---,r---'t

FRAME

Plane 1 - Attributes

Plane 2 - Extension

Figure 3-1. FRAME Planes with REel

Plane Descriptions

The FRAME planes are defined as follows:

• Character Plane (plane 0): Each byte _ corresponds to a text
character space on the screen. The 8-bit character set used in
this plane is defined on a per country basis .

• Attribute Plane (plane 1): Each byte defines the foreground color,
background color, and color intensity and contains a blink flag for
the corresponding character cell. The attribute plane byte is used
as shown in Figure 3-2.

3-6

FlexOS Programmer's Guide 3.1 Console File Systern

Bit: 7 6 5 4 3 2 1 0

'--------.. Foreground Color

~----------. Intensity

'-------------... Background Color

'--------------... Blink

Figure 3-2. Attribute Plane BVte Format

• The three bits in the foreground and background color fields are
assigned as follows:

low bit: blue
middle bit: green
high bit: red

Table 3-3 lists the colors corresponding to each 3-bit value in the
lefthand column. The righlhand column shows the foreground
color resulting when the intensity bit is set.

Table 3-3. Foreground and Background Colors by BVte Value

Foreground and
Background Colors

o - black
1 - blue
2 - green
3 - cyan
4 - red
5 - magenta
6 - brown
7 - light gray

.------ --- --------

Foreground Color with
Intensity Bit Set

8 - dark gray
9 - light blue

10 - light green
11 - light cyan
12 - light red
13 - light magenta
14 - yellow
15 - white

3-7

3.1 Console File System FlexOS Programmer's Guide
---- _. __ .. _--------_ ---- .. -.-.--------- ...•. --.-------------------------

Set bit 7 to have the character blink. This feature is not available
if the hardware does not support it.

• Extension Plane (plane 2): An OEM--implemented option that

3-8

provides support for 2-hyte characters. Each extension-plane
byte is formatted as shown in Figure 3-3.

Bit: 7 6 5 4 3 2 1 0

'----~ Cell Type

'-------t~ Cell Number

'---------. ReseNed

'---------------l~ OEM Extension

Figure 3-3. Extension Plane Byte Format

The Cell Type bit is 1 when characters are two cells long. Single
cell characters are indicated by a 0 in this bit.

The Cell Number bit indicates if the corresponding character plane
cell is the first or second cell of a two-cell character. If the value
is 0, the cell Is the first part of the cha'racter; if it's a 1, the cell is
the second part. This bit is always 0 for single-cell characters.

The OEM Extension field is implementation-dependent and defines
alternate character sets. The Console Resource Manager assumes
the standard character set when this field is O.

FlexOS Programmer's Guide 3.1 Console File System

FRAME C Structure

The FRAME's C structure is as follows. Figure 3-4 illustrates this'
memory model.

struct fRAME

BYTE *character,*attribute,.extension;
'*Pointers to planes./

WORD nrow,llcoli
'*Number of character rows and COIUIIIIlS.'

WORD usei
'*Plane bit map·'

o 2 3

o CHARACTER

4 ATTRIBUTE

8 EXTENSION

12 NROW NCOl

16 USE

18 = size in bytes

Figure 3-4. FRAME Data Structure Diagram

3--9

3.1 Console rile System FlexOS Programmer's Guide
-----_._---_._._-----_.- - .. _- ._---_.- .. _---_.- ---

The FHAME fields are defined as follows:

• character: Address of FRAME's character plane

• attribute: Address of FRAME's attribute plane

• extension: Address of FRAME's extension plane

• nrow: Number of character rows in the FRAME

• ncol: Number of character columns in the FRAME

• use: A bit map indicating plane characteristics as follows:

Bit 0: 1 - character pointer addresses a two-dimensional array
o - character pointer addresses a single byte

Bit 1: 1 - attribute pointer addresses a two-dimensional array
o - attribute pointer addresses a single byte

Bit 2: 1 - extension pointer addresses a two-dimensional array
o - extension pointer addresses a single byte

The FRAME's use field indicates if the plane consists of a complete
two-di~ensional array or a single byte. When the plane's bit value is
0, the Console Resource Manager applies the single byte's value to all
bytes in the plane. Otherwise, the full array must be specified.

A FRAME is defined as either a screen FRAME or a memory FRAME.
The screen FRAME is the console screen representation contained in
the console file. You use the ALTER, COpy, or WRITE SVC to modify
the screen FRAME, and modifications ar~ immediately reflected on-·
screen. The memory FRAME is a data structure you create in the
application's memory space and hence is not limited to modification
by Al TEA, COpy, and WRITE alone. Changes made to the memory
FRAME .are not reflected on-screen until they are COPYed to the
screen FRAME.

Screen FRAME dimensions are indicated by the NROW and NCOl
values in the CONSOLE table (see Figure 3-6). There are no restrictions
except physical memory restraints limiting the size of a memory
FRAME.

3-10

FlexOS Progralnmer's Guide 3.1 Console File Systelll

RECT C Structure

The RECT data structure defines a rectangular region of a FRAME. The
point of reference is the FRAME coordinates of the region's Lipper
lefthand corner. The region's width and height are specified within the
data structure in terms of character rows and columns. The SVCs
using the REeT structure specify which FRAME planes are included in
the RECT. Figure 3-5 shows the RECT data structure diagrarn. The
corresponding C structure is as follows:

struct RECT

1*

WORD row,col,nrow,ncol;
Top left corner- FRAME coordinates
and RECT width and heiyhPI

04 ~ ________ R_O_W ________ +-________ CO __ L ______ ~
_ NROW NCOL

Figure 3-5. RECT Structure

The RECT fields are defined as follows:

• row: The row coordinate relative to the FRAME of the rectangle's
upper fefthand corner

• col: The column coordinate relative to the FRAME of the
rectangle's upper lefthand corner

• nrow: The number of rows (height) in the rectangle

• ncol: The number of colulllns (width) in the rectangle

]-11

3.2 Controlling the Console rJexOS Programmer's Guide

3.2 Controlling the Console

Console attributes such as screen and keyboard modes, cursor
location, and the numher of character rows and columns are contained
in the CONSOLE table. You manage the console screen on a FRAME
hasis with the ALTER and COpy SVCs and on a character basis with
the WRITE SVC.

3.2.1 Console Attributes

The CONSOLE table is your reference source for information regarding
console attributes and conditions. Figure 3-6 illustrates the CONSOLE
table data structure. To get or set your process's CONSOLE table, use
o or 1 or the stdin and stdout file numbers from the ENVIRON table as
the GET or SET 10 value

3-12

o

4

8

12

16

20

24

o 2 3

TAHEAD SMODE

KMODE CURROW

CURCOL NROWS

NCOLS VCNUM I TYPE

CNAME

Figure 3-6. CONSOLE Table

FlexOS Programmer's Guide 3.2 Controlling the Console
------------_ .. _._------- --.--.--- --------------_._-----

SMODE and KMODE set the screen and keyboard modes, respectively.
CURROW and CURCOl indicate the current cursor location. These
values are initialized to 0 when the console is created. Set the rnode
options to select 8-bit or 16-bit characters, escape s~qlJence

decoding, and other features. Set CURROW and CURCOl to change the
cursor position. The remainder of the parameters are read-only; their
values determined by the physical console characteristics or
established when the corresponding virtual console was created.

3.2.2 Manipulating the Screen

There are three ways to manipulate the console display: use ALTER to
change a screen region, use COpy to copy one screen region to
another, or WRITE to send a character, character string, or escape
sequence. ALTER and COpy are also useful for character and string
output, however, they cannot be used when console output is
redirected to non-console devices.

Note: The window border files vcxxx/top, Ibottorn, Ileft, and Iright are
a special class of console file- -only COpy and ALTER can be used to
manipulate their contents. See 3.4 for the description of the border
files.

Using ALTER and COpy

ALTER and COpy work on RECl structures to rnodity a FRAME. The
FRAME can be a memory or a screen FRAME. The RECT can specify a
FRAME region from single cell up to the entire FRAME itself. The
ALTER form is as follows:

ret = s_alter(flags,fnum,dfrallle.dr-ect.alterb);

Use ALTER's flags to select the character, attribute, andlor extension
plane. To modify the screen FRAME, specify the console file number
in the fnum field and set the dfrarne value to zero. To modify a
memory frame, set the fnum value to zero and put the FRAME address
in the dframe field. (Although 0 is the file number of the stdin file, the
Console Resource Manager ignores the file reference.)

ALTER modifies the plane according to the two bytes in corresponding
planes alterb argurnent. Alterb is an array of six bytes that deterrnines
the alteration of the destination frame

]- 13

3.2 Controlling the Console FlexOS Programmer's Guide

Bytes 0, 2, and 4 in alterb are ANDed with each cell in, respectively,
the character, attribute, and extension planes. Bytes 1, 3, and 5 are
XORed with each cell in the same three planes.

COpy copies the contents of one rectannle to another. As with ALTER,
each plane is individually selectable in the flag word. Source and
destination RECl structures can be on the same or different FRAMEs
and when on the same FRAME can overlap. The COpy form is as
follows:

ret = s_copy(flags.fl1lJrn.dframe.dr'ect.sfr·ame.srect);

You distinguish memory from screen FRAMEs using specific
combinations of fnurn, sframe, and dframe. To specify the screen
FRAME as the destination FRAME, put the console file number in the
fnum field and set the dframe pointer to zero. To specify the 'screen
FRAME as the source, set the sframe pointer to zero and specify the
file number. To copy from one memory FRAME to another use a fnum
value of 0 and enter the dframe and sfrarne addresses.

The source rectangle is described by the RECT at the srect address
and the destination region by the RECl at the drect address.
Rectangles do not have to be the same size. COPY clips the rectangles
so that the region modified corresponds to the intersection of the
srect and drect. Figure 3-7 illustrate;; how the excess is trimmed.

Region
Modified

3-14

Source
Rectangle

Destination
Rectangle

Source
Rectangle

Destination
Rectangle and

r~~mm~-I- only region
f~ modified

Figure 3-7. Examples of RECl Clipping

FlexOS Progranllner's Guide 3.2 Controlling lhe Console

Using WRITE

The WRITE SVC sends the contents ot the buffer to the console tile
specified by fnum.' Use WRITE to send 8-bit escape sequences, 16-bit
characters, and character strings to the console tile. Each character
output. is placed at the current cursor position and the cursor position
is updated. The screen scrolls automatically when the bottom line is
reached.

The synchronous and asynchronous WRITE forms are as follows:

nbytes = s_write(flags,fnuln,lluffer,lIufsiz,offsel);

emask = e_write(swi.flags,fnl.IIl,lIl1ffer,lIl.fsiz.offset);

The bufsiz value indicates how many bytes long the buffer is, not the
number of characters in it. This is important when outputting 16-bit
characters. Similarly, WRITE's return value (nbytes above) indicates the
number of bytes, not characters, written. SMODE bit 1 determines it
the Console Resource Manager outputs 8- or 16-bit characters.

Use an offset of zero when writing to a console tile. Specify the 'offset
relative to the end of file to accommodate redirection to non-console
tiles. The flags and option values must be 0 for console writes.

The character string can contain displayable and non--displayable
characters. The latter consist ot 8-bit escape sequences, ASCII control
sequences, and 16-bit character codes. Appendix A lists and describes
the character sets and escape sequences supported by the Console
Resource Manager.

3.3 Getting Console Input

Applications get console input from two sources: the keyboard and, it
present, a mouse. The keyboard is accessed by reading stdin. The
mouse is represented by a separate tile. Mouse movement is
automatically relayed to the screen without reading the mouse tile.
You use the mouse tile to wait tor a button state change---the SWAIT
SVC- or for mouse form movement into or out ot a RECl --the RWAIT
SVC. The SET and GET SVCs are used to define the rnouse fonn and
determine its location.

]-15

3.3 Getting Console Input FlexOS Programnler's Guide

3.3.1 Reading the Keyboard

There are two words in the CONSOLE tahle relevant to keyb'oard input:
T AHEAD and KMODE. TAIfEAD indicates how many characters are
waiting in the type-ahead buffer. The KMODE word provides a variety
of options including keystroke translation, character echo, 8-bit or 16-
hit characters, and escape sequence decoding among others.

The READ SVC gets the characters from the console file's keyboard
buffer and puts them in the buffer specified. READ might return fewer
characters than requested; your program should be written
accordingly. The READ forms are shown below. There are two
synchronous forrns: one for undelimited reads and one that allows
delimiters to specify an end of string.

nbytes = s_read(flags.frlum,huffer,bufsiz,offset):

r,l)ytes = s_rdel fm(flags,fnum,bl.ffer,uIJfsfz.offset ,delimiters):

ernask = e_read(swf,flags,fnurn,huffer,hIJfslz,offset):

Use an offset of 0 in your read calls and nlake it relative to the file
pointer to accommodate redirection to a non-console file. The bufsiz
specifies the end of the read event in terms of bytes read. Get the
CONSOLE table's T AHEAD value to find out the number of characters
waiting to be picked up from the keyboard buffer.

Delimiters let you set up conditions for terminating the read before the
buffer is full and editing the character string. Set flag bit 1 to select a
delimited read and bit 5 to use the editing characters. Use the READ
return value to find the number of bytes read. Delimiters cannot be
used with the asynchronous READ and you are limited to a READ
buffer size of 256 bytes on delimited reads.

The 'delimiter specification is an address of a WORD array with two
components. Th,~ first word is a number indicating the number of
delimiters that follow. The remalnmg words are the delimiters
themselves. Set the high order byte in each delimiter to 0 when the
keyboard is in 8-bit mode.

The Console Resource Manager provides the line-editing characters
listed in Table 3-4 when READ flag bit 5 is set. You can change these
definitions with the XLAT SVC.

3-16

FlexOS Programmer's Guide 3.3 Gelling Console Input

Character

Table 3-4. Line-Editing Characters

Action

Moves cursor one character to the left
Moves cursor one character to the right
Deletes next character
Deletes previous character

LEFT ARROW
RIGHT ARROW
DELETE
BACKSPACE
CTRL-B
CTRL-X

Toggles cursor between beginning and end of line
Erases from cursor to beginning of line

The Console Resource Manager compares each character read with
each delimiting and editing character. READ returns with the number of
bytes read when the buffer is filled or one of the delimiters is
encountered. Use flag bit to select whether the delimiter is included in
or excluded from the character string. When character echo is on
(KMODE bit 5), the cursor is positioned at the beginning of the line just
edited after a delirrited read.

3.3.2 Monitoring the Mouse

Note: This discussion assumes that the mouse device was installed in
the CONFIG.SYS configuration script. If it is not, your application can
use the INSTALL SVC given the following conditions:

• The application must know the drive location and file name of the
loadable mouse driver progranl .

• The application must have a user and group number of O.

The INSTALL SVC is described in Section 7.

Mouse information and status is maintained in the MOUSE tahle.
Figure 3-8 illustrates this data structure.

3-17

3.3 Gettin~J COfl50le Input FlexOS Programmer's Guide

o

4

8

12

16

20

52

84

o 2, 3

ROW COL

KEYSTATE I RESERVED BUTTONS

PIXAOW PIXCOL

CLICK HEIGHT I WIDTH

HOTROW HOTCOL

MASK (16 words)

DATA (16 words)

Figure 3-8. MOUSE Table

The PCONSOLE table also includes information on the mouse. See
offset 1 BH for the number of mouse buttons and offset 1 CH for the
mouse serial number. The mouse can have up to 16 buttons.

Mouse movement is automatically read from the device and shown on
the screen by the mouse driver. Get the ROWand COL values from the
MOUSE table to determine the mouse location; set these values to
move the form independently of device input. The HOTROW and
HOTCOL values set the hotspot--the point of reference within the
mouse 'onn. You can set these and all other MOUSE table values
except the PIXROW and PIXCOl.

3-18

FlexOS Programmer's Guide 3.3 Getting Console Input

Opening the Mouse File

The mouse is opened by calling OPEN. In your OPEN call you specify
the mouse name, the access privileges required, and the access rnode.
The mouse name is vcxxx/,nouse where xxx is a decimal number
indicating the current virtual console nurnber. Get the virtual console
number from the VCNUM field in your standard input file's CONSOLE
table. (Call GET with an ID value of 0 to retrieve stdin's CONSOLE
table.) For example, if the VCNUM value is 3, your mouse name would
be vc003/mouse.

In your OPEN call, specify at least read access privilege. If you need to
set the MOUSE table, request set access as well. For the access mode

. specify exclusive mode unless mouse access will be shared by
multiple processes. In this case, specify shared, shared file pointer
mode. Access is restricted to processes with the sanle family ID.

Your application should close the mouse file when you are done,
otherwise you cannot close or delete the virtual console. CLOSE flag
bit 0 has no meaning with respect to the mouse and is ignored.

Using BWAIT

Use the BWAIT SVC to monitor button state changes. BWAIT counts
the number of times a specified nlouse button condition occurs within
a gi\(en time period. A button condition is defined by two criteria:
buttons and their ON or OFF state.

The BWAIT form is as follows:

ret = s_bwait(clicks,fnulII.llldsk.stdte):

emask = e_bwait(swi"clicks,fnulIl,lIIask.state);

The fnum value is the file number returned when you OPEN the
vcxxx/mouse file. The mask and state parameters are 32-bit values
which define the mouse button condition.

You select buttons for the mask value by their position on the n~ouse.
The rightmost button is represented by the least significant hit in the
mask; the next button to the left is represented by the next hit, and so
forth. To select the button, set its corresponding Illask hit.

3-19

3.3 Gettinu Console Input FlexOS Programmer's Guide
- .. ----.----- ._ _---_ .. _._- --_._--------------

YOll define whether the button selected is to be ON or OFF in the
state value. The Console Resource Manager looks only at the state bits
corresponding to the buttons selected in the mask. Set the bit for ON.

As an example of the use of the mask and state fields, consider a
two-button mouse. You can have the following button conditions:

1. The right button is pressed (ON) without concern for the state of
any other buttons: rnask = 1, state = 1.

2. The right button is pressed while the left button is not: mask = 3,
state = 1.

3. The left button is pressed while the right button Is not: mask = 3,
state = 2.

4. The left button is pressed without concern for the state of any
other buttons: mask = 2, state = 2.

5. Both buttons are pressed simultaneously: mask = 3, state = 3.

Use the clicks value to delimit the event by a specific number of
incidences of the specified button condition. Any number of clicks can
be specified, including O. Use a click value of 0 to determine the
mouse's current condition. BWAIT returns with a value of 0 when you
specify 0 clicks and the mouse is in the condition defined in the mask
and state.

BWAIT counts button conditions for a limited time period--the CLICK
time limit specified in the MOUSE table. If the time period expires
before the BWAIT click count is reached, the event terminates. The
Console Resource Manager starts the tirner upon the first incidence of
the condition. Consequently, the count returned is always at least one
except as described above.

Using RWAIT

RWAIT establishes an event boundary for the mouse. RWAIT returns
with the row and column coordinates of the mouse's hotspot when it
crosses the boundary. The RWAIT form is as follows:

position 5 rwait(flags,fnum,region): --
elllask = e_rwait(swi,flags,fnurn,region):

3-20

FlexOS 'Progranuner's Guide 3.3 Getting Console Input

Set RWAIT flag bit 0 to clip the region to the current window borders.
Otherwise, the region can include areas not visible on the parent
screen. Flag bit 1 deternlines if the event occurs when the form exits
or enters the region. The other flag bits are not used.

The region is a RECT structure confined to the calling process's virtual
console's FRAME. The position value returned is 32-bits where the
high order word indicates the row and the low order word the colurnn.

3.4 Managing Virtual Consoles

For applications with multiple processes sharing access to the console
and keyboard, it is otten necessary or convenient to have a separate
virtual console for each process. The key to these applications is a
process--the window manager--which creates the virtual consoles,
sets each window's size and position, and passes keyboard and mouse
access from one process to another according to a planned transfer
scheme. (These are basically the same functions as the FlexOS window
manager supplied with the operating system.)

The window manager flow chart would include the following FlexOS
functions; the SVCs used appear in parentheses.

1. Create a virtual console (CREATE).
2. Get the virtual console number (GET).
3. Set the virtual console's window size and location (SET).
4. Assign the console file to stdin, stdout, and stderr (DEFINE).
5. Define conditions under which keyboard and mouse ownership is

returned (KCTRl and/or MCTRl).
6. Invoke shell or application that will use screen (asynchronous

COMMAND).
7. Give keyboard and mouse ownership to the new virtual console

(GIVE).
8. Read from your keyboard buffer (READ).
9. Reorder the virtual consoles to put the selected olle on top

(ORDER).

Steps 1 through 5 are repeated to create each virtual console. You
have a numerical limit of 255 virtual consoles.

]-·21

3.4 Mannuin~J Virtual Consolns FlexOS Programmer's Guide

3.4.1 Creating the Virtual Consoles and Windows

To create a virtual console, you must specify the console screen on
which it is to appenr. This is called the parent screen. The virtual
console created is referred to ~s a child console. Child consoles
created on the same parent screen are referred to as sibling consoles.
There are four rules of virtual console management based on these
relationships:

• A child console always overlays its parent.

• Sibling consoles are "stacked" on the parent in the order of their
creation until reordered by ORDER.

• The ORDER SVC only reorders a "stack" of sibling virtual consoles
and cannot be used to put a parent on top of a child.

• An application always has access to its entire console regardless
of its virtual console's position in the stack and the size of its
window.

Figure 3-9 illustrates the parent, child, and sibling console
relationships and the three rules. As shown in this figure, you can
have nlultiple tiers of virtual consoles. As you change tiers, the
parent/child relationships change. All virtual consoles on a given level
are siblings.

3-22

FlexOS Programmer's Guide 3.4 Managinu Virtual Consoles
----_.------- ---_. -------------_._. __ ._--

/
Parent VC001

/

Children I VC0041

\

IVC0051

VC 000

VC002 VC003

Figure 3-9. Virtual Console Relationships

Parent

Children

Creating a virtual console requires write access to the parent console.
The form of the CREATE SVC is:

f num = 5_ vee rea t e (f lags. fnulII. rows, co I umns, top, hu t t om, Ie ft. r i ~Jh t) :

The flag bits select virtual console characteristics as follows:

• Whether the console and border are character- or bit-mapped

• Whether or not the parent's screen dimensions are used.

• Whether or not to keep the parent console contents in Inelllory
while the child console exists.

• Whether the virtual console is temporary (delete on last CLOSE) or
permanent (delete only with DELETE).

For the fnum value, use the file number of the parent screen.

3--23

3.4 ManCluing Virtual Consoles FlexOS Programrner's Guide

You specify the virtual console's dimensions in the rows and columns
pararneters. These become the ROWS and COLS values in the
VCONSOtE table. The virtual console size is independent of the parent
console's dhnensions; you can, for example, create a virtual console
larger than its parent. The top, bottorn, left, and right parameters
define window borders and are described in below.

CREATE returns the file number of your new virtual console file and
autornatically opens the file. Use this value as the ID number in your
GET and SET calls to retrieve and modify the VCONSOLE table.

Virtual Console File Naming

The Console Resource Manager automatically names virtual consoles
when you CREATE them. The name consists of the letters vc followed
by a three digit decimal number corresponding to the VCNUM value
from the virtual console's VCONSOLE table. For example, if the VCNUM
is 10, the virtual console name is vcOl0.

A virtual console is composed of separate files representing the
console (keyboard and screen), mouse, and window borders. Table 3-5
lists the names reserved for these files.

Table 3-5. Virtual Console File Names

-------- --_ .. _----_._-------.

File Name

device: vcxxx/console
vcxxx/iert
vcxxx/right
vcxxx/bottom
vcxxx/top
vcxxx/mouse

Description

Keyboard and/or screen file
Lert border of window file
Right border of window file
Bottom border of window file
Top border of window file
Mouse file

xxx = VCNUM, zero-padded left

Use the vcxxx/console file in your DEFINE call to assign the stdin,
stdout, and stderr files to the virtual console's console file.

3-24

FlexOS Programmer's Guide 3.4 Managing Virtual Consoles
----------_._. __ .. _ .. ---_._ .. _--------_._--_._ .. _. -.----- .----

Be sure to define the files before you call COMMAND so that the files
are automatically opened_ The remainder of the files nlust he opened
explicitly by the process before you can use them.

Windows

The tenn window refers to the view of the virtual console. When you
create a virtual console, the window dimensions are initialized to 0
making the window a point with no height or width.

You set window dimensions in the VCONSOlE table's NROW and NCOl
parameters. Set the VIEWROW and VIEWCOl pararneters to position the
window on the virtual console screen. Finally, set the POSROW and
POSCOl parameters to position the window on the parent console's
screen. Figure 3-10 illustrates these parameters.

0,0 0,47
Parent Console II' , ,-~

24
a '

23,7"""'- ,0 0

r'~~----l 'ID 3 Child Console
I I 32-- t
I '-..... I b ..--c
~-------..... ~~ ,~--------------~

",80 -<\~

Child Console 17,32

"-" ~
.... ,LlLj

a) POSROW and POSCOl

48

b) VIEWROW and VIEWCOl
c) NROW and NCOl

120

Figure 3-10. Virtual Console Characteristics

3-25

34 MarHluinn Virtual Consoles FlexOS Programmer's Guide

fhe VCONSOLE flan hit 1 gives you the option to have the win-dow
view altjust automatically to keep the cursor on-screen or renlain fixed
on a specific portion of the screen. Other flags determine how and
when the view channes with respect to the cursor and freeze the
window borders so you can make comprehensive changes to the
border files without intermediate states appearing.

The window borders are contained in the vcxxx/top, Ibottom, Ileft, and
Iright files. The Console Resource Manager creates these files when
you specify top, bottom, left, and/or right parameters in your CREATE
call. The top and bottorn values set the height of the Itop and Ibottom
border files only; the length is determined by the VCONSOlE table's
NCOl value. The CREATE left and right values set the width of the Ileft
and Iright files; the height is set by the VCONSOlE NROW value.

3.4.2 Keyboard and Mouse Ownership

Keyboard and mouse ownership are always passed as a unit and only
one virtual console can have ownership at a time. The window
manager controls keyboard/mouse access by passing ownership to
another virtual console with the GIVE SVC and specifying the
conditions for its return with KCTRl or MCTRl. The conditions
specified in KCTRl are keys or ranges of keys. With MCTRl, you
specify a rectangle as the condition.

The KCTRl keys and MeTRl rectangles typically serve two purposes.
First, they indicate that the user wants to change windows. Second,
they indicate the user's choice of virtual consoles. When the user
enters one of the specified window-control keys, that key and all
subsequent keystrokes are sent to the parent virtual console's
keyboard 'buffer. If there's a mouse keyboard entries a significant key
is pressetJ or the' mouse leaves the rect~ngle, the key and all
subsequent keystrokes are sent to the window manager's keyboard
buffer and mouse movement' is updated in the window manager's
MOUSE table. Use the information to determine which window to put
on top with your ORDER call.

3-26

FlexOS Programmer's Guide 3.4 Manauing Virtual Consoles

3.4.3 Deleting a Virtual Console

The virtual console's window remains on the parent screen until the
file is closed or overlayed by a sibling virtual console. A partial CLOSE
flushes the keyboard's type ahead buffer and, if the echo option
(CONSOLE table KMODE bit 5) is selected, writes the buffer contents to
the screen. A full CLOSE closes the file but leaves its contents intact
unless it is the last close on a temporary console. In this case, the
virtual console and all temporary files are deleted.

The Console Resource Manager only lets you delete a virtual console
it it has no open Iconsole, Imouse, Itop, Ibottonl, Ileft, and Iright files.
Neither can you dAlete a virtual console with child consoles. If you try,
an error message is returned. You can set CREATE flag bit 8 so that
the virtual console is automatically deleted when the last of its virtual
consoles is closed. Otherwise, use the DELETE SVC to remove the
virtual console.

3.5 FlexOS Window Manager

WMEX, the window manager program provided with FlexOS, lets the
user create, delete and switch virtual consoles. It also creates a
message window you can use to interrupt the user and notify him or
her that something has happened. You write to a reserved pipe to
activate the window. When you write to this pipe, the message
window overlays the current virtual console. You specify in ·your
WRITE call to the pipe if a response is necessary.

To use the message window, you must open the tile "wrnessage."
WMEX defines this tile name to the message window's input pipe and
waits for a message to appear there. In your OPEN call, specify the
write privilege and the shared mode.

WMEX requires the display message to be preceded by a header
When you write to the pipe, format the contents ot your WRI fE huffer
as follows:

]--27

3.5 FlexOS Window Manager FlexOS Prograrnrner's Guide
--_. -_._--_.. _.- ... _----------_._---_._------------

UWORD
LONG
BOOLEAN

UBYTE

UBYTE

rnsysiz
pid
rspflg

rspname[1 0]

nlessage

The total length of the message
The writing process's process ID
When true, indicates that a user
response is expected; when false,
no user response is allowed
Name of the pipe in which WMEX
should put the user's response
(only necessary when rsplfg true)
The message to be displayed

The message itself can be 10 lines long. Each line must be terminated
by a carriage return and line feed. The message is displayed as Is.

If no response to the message is required, set the rspflg byte to false.
The user enters a carriage return to remove the message window. If
you want a response, set rspflg to true and give WMEX the pipe name
to write the message to.

The response message Is limited to one line in length and WMEX
requires the user to enter a carriage return to terminate it. The
carriage return is included in the string written to the pipe. If the
message can be variable length, use the delimited READ call and
specify the carriage return as the delimiter. WMEX removes the
fnessage window when the user enters the carriage return.

End of Section 3

3-28

SECTION 4

Pipe Management

For two or more processes to communicate, a type ot tile known as a
pipe is supported through a special device known as pi:. A tile created
on this device establishes a hutter used for the deposit and withdrawal
of messages. Conceptually, pipe files have two ends, one to write into
and the other to read from. Messages are deposited and withdrawn
on a first in first out basis. Besides the pipe length, there is no limit to
the number of messages you can store in a pipe at one time.

This section describes pipe management in the FlexOS operating
system. Table 4-1 lists the pertinent SVCs.

Table 4-1.

SVC

CLOSE
CREATE
DELETE
GET
LOOKUP
OPEN
READ
SEEK
WRITE

Pipe-related Supervisor Calls

Purpose

Close a pipe
Create and open a pipe
Remove a pipe
Retrieve a pipe table
Scan and retrieve pipe tables
Open a pipe
Read from a pipe
Set or retrieve file pointer
Write to a pipe

You cannot rename a pipe.

In all calls requiring a pipe name, you nlust precede the pipe nallle
with the pi: device name or define a logical name that includes the pi.
reference. Otherwise, the default: device is assumed.

4--1

4.1 Creating and Deleting Pipes FlexOS Programmer's Guide
... - _--..... _---_._--

4.1 Creating and Deleting Pipes

Use the CREATE SVC to make a pipe. The CREATE parameters are used
as follows:

• Set the flags to request read, write, or delete privileges and the
access mode. The privileges have the same meaning for pipes as
they do for disk files. See 4.2 for the use of access modes with
pipes. Flag bits 7 and 9 are meaningless with reference to pipes
and are ignored.

• Put the address of your pipe name in the name field. The name
itself is limited' to eight alphanumeric characters.

• Set the record-size parameter to regulate the message blocks.
For example, if a record size of four is specified, all pipe liD is
conducted in 4-byte blocks.

• Use the File Security Word to set the owner, group, and world
access privileges.

• Set the size to the pipe buffer length. The size is independent of
the message length but must be a multiple of the record-size.

The Pipe Resource Manager maintains a directory of all existing pipes.
Each directory entry includes the pipe creator's user and 'group IDs
and the File Security Word. The resource manager also makes a PIPE
table for each pipe, PIPE table contents indicate the values set by the
CREATE pipe call. Use LOOKUP and GET SVCs to retrieve PIPE tables.
No special access privilege is required to lookup PIPE tables. However,
YOli must have opened the PIPE to get its table. None of the values in
the PIPE table can be set.

Use the DELETE SVC to remove a pipe. A CREATE option can be
selected that automatically deletes a pipe on last close. If the pipe is
being used solely to communicate between two or more processes for
the life of the processes, the pipe is deleted automatically from the
systern when the processes terminate. This Is because files are
autornatically closed on EXIT or ABORT .

.:12

FlexOS Programmer's Guide 4.2 Pipn Access
------------- --- - --------._-----------_._--_._------------ ---- -- ---- -----

4.2 Pipe Access

Processes must open the pipe before they can read frorn or write to it.
When the OPEN call is made, the Pipe Resource Manager compares the
user and group IDs of the calling process with those in the pipe's
directory entry. This determines whether owner, group, or world
access privileges are available. If both user and group IDs match,
owner privileges are available; if only group match, group privileges
are available. If there's no match, only world privileges are available.

The OPEN call succeeds when the access privileges requested either
match or do not exceed the privileges available for the callirlg
process's access level. If more privileges are requested, the OPEN
succeeds or fails depending on the value of the OPEN call's reduced
access flag. When this flag is set, the privileges granted are derived by
ANDing the requested privileges with those available. Should none of
the privileges match, the OPEN fails.

Pipe access privileges are also affected by existing access modes. The
following rules govern ,the privileges available:

• A process's open access is never restricted by an open
connection previously made by the same process.

• The read and write ends of a pipe are considered separate with
respect to open restrictions For example, an exclusive read open
does not restrict a process from opening a pipe as shared write.

• Any exclusive open prevents other access requests to the sanle
end.

• A shared open prevents other exclusive access requests but
allows other shared requests to the same end.

• A shared file pointer request restricts pipe access to processes
with the same family 10. All processes - sharing the pipe must
select the shared file pointer mode; a process that requests a
different mode is denied access. For processes outside the falnily,
the request functions as an exclusive request.

A pipe acts differently depending on whether an end is opened
exclusive or shared mode. If one end of a pipe is opened in exclusive
mode and then closed, a read or write attempt on the other end

4--3

4.2 Pipe Access FlexUS Programmer's Guide
------- _._----------_._-_._ .. _ ... _-_._ .. _. _.-_ .. __ ._-_._---_._._._------------

results in an end-of-file (EOF) error. This is independent of how the
other end was opened. If one end of a pipe has either never been
opened, is currenlly opened, or the last open was In shared mode, the
process accessing data through the opposite end waits until the
operation is complete.

If one end of a pipe file is opened in shared mode and subsequently
clos'ed, FlexOS treats the file as if· it were still open on the other end.
Therefore, any process accessing it waits until the operation Is
complete. Note the distinction between shared mode. and shared file
pointer mode.

A pipe opened in shared file pointer mode is shared only by those
processes with the same family 10 (FlO). After a pipe end opened in
shared file pointer nlode is closed by all of the processes, processes
accessing the other end will receive an end of file error. This tells a
process that the process on the other end of the pipe has either
closed the file or terminated.

The use of modes to restrict access is consistent with spooler-type
applications. For example, consider a spooler process which creates a
pipe reserving for itself exclusive access to the read end. The write
end is available for shared access by any process. Figure 4-1
illustrates this configuration.

• J ·1

Spooler

Request

Oespooler

ReqUeSI~ "'" Ir--------,"----~
. Pipe ..--

Request//
Shared

Request Write

When no opens,
despooler wails

Figure 4-1 .

Exclusive
Read

When closed, requesters
get EOF error

Spooler Pipe

FlexOS Progranuner's Guide 4.2 Pipe Access
------- ------------_. __ .. _---

Processes open and close the write end when they are sending files to
the spooler. After the write end is closed, the des pooler waits until the
write end is opened by another process.

If the spooler closes the read end, processes attempting to write to
the other end get an end of file error. This indicates to the writing
process that there is no process at the other end that will read its file.

4.3 Interprocess Communication

Use the READ SVC to get data from the butter and the WRITE SVC to
put data in the buffer. The READ and WRITE flags and parameters are
used in the same manner for pipes as they are for disk files and the
file pointer is maintained. As many processes can participate in the
exchange as you want.

The amount of data written to and read from the pipe can 'be
independent of the pipe size. The following procedures are observed
when the amount exceeds the size:

• On writes, the process waits when the pipe is full for another
process to- read data from the other end. The event completes
when the reading process removes enough to compensate for the
difference .

• On reads, the process waits when the pipe has been drained for
another process to write data to the other end_ The event
completes when enough data has been written to compensate for
the difference_

Pipes are often used to join two or more prograrns so one program's
output becomes the input of another. To do this, a parent process
would perform the following steps. The SVCs called are in parenthesis.

4-5

4.3 Interprocess Communication FlexOS Programmer's Guide
-- .-- -.---------.-... _-_ .. _._-- ----- -- ---

1. Create a pipe (CFlEATE)

2. Redefine stdin to be the name of the pipe (DEFINE).

3. Create the receiving process (COMMAND). The child inherits the
parent's PJlOCDEF table, including the stdin prefix.

4. Reset stdin back to the original name (DEFINE)

5. Redefines stdout to the pipe name (DEFINE).

6. Create the source process (COMMAND). This child inherits the
redefined stdout but, unlike the receiving child, has the original
stdin.

When the two processes terminate, the parent process closes the pipe.
If the parent terminates before the children, the pipe is automatically
removed when the children terminate.

4.4 Synchronization and Exclusion

The Pipe Resource Manager lets you create pipes with a zero-length
buffer size (bufsiz) for use as a simple semaphore. For semaphore
pipes, a READ operation obtains the pipe and a WRITE releases it. If
another process has obtained the pipe previously, the cal!ing process
waits until a WRITE to that pipe has been performed. WRITE
operations, on the other hand, never wait; if the pipe was released
previously, the call returns without error.

The process creating the sernaphore pipe automatically owns it from
the start. Although the Pipe Resource Manager keeps a record of who
read the pipe, a WRITE by any process releases it. The process 10 is
maintained for two other reasons: First, so that a process can call
multiple READs on a pipe it already owns and second, so the Pipe
Resource manager can release pipes owned by a process that has
terminated.

·1 - ()

FlexOS Programmer's Guide 4.4 Synchronization and Exclusion

Use a semaphore pipe to regulate access to a resource not managed
by the operating system. Any time a process wants to lise the
resource, it reads the pipe. It the pipe is already owned by another
process, the calling process waits until another process releases it
with WRITE. Upon return from the READ, the process is free to use
the resource. Upon completion. the process writes to the pipe which
releases the resource for other processes to use.

4.5 Nondestructive READ

The information stored in a pipe can be previewed using the READ
SVC by setting flag bit 2. This allows a pipe to be used as a conunon
data area among multiple applications. It also allows an application to
preread a length field or message type field within a message and
then read the complete message at a later time.

Note: Nondestructive reads can be dangerous if there are nlultiple
readers of a pipe. It is the responsibility of the application to handle
synchronization of pipe usage when there are multiple processes
involved.

End of Section 4

4-7

SEC-TlON 5

Process Manag~ment

This section describes process creation, memory management, and
process deletion. Table 5-1 list~ the SVCs associat~d with these

. tasks.

SVC

ABORT
COMMAND
CONTROL
ENABLE
EXCEPTION
EXIT
DISABLE
MALLOC
MFREE
SWIRET
TIMER
OVERLAY

Table 5-1. Process-related SVCs

Purpose

Terminate a process or wait for a process to terminate
Create a process
Run a process under the control of another process
Enable software interrupts
Trap error conditions and jump to service routine
Terminate a process with return code
Disable software interrupts
Add memory to heap
Release menlory from heap
Return from a software interrupt
Delay process for specified tinle period
Load overlay from a comrnand file

The presentation belows descnbes how to use the ABORT, COMMAND,
MALLOC, and MFREE SVCs. See Section 7 for the descriptions of the
other SVCs listed in Table 5-·1.

Three supervisor tables are pertinent to process management: the
CMDENV, ENVIRON and PROCESS tables.

5-- I

5.1 Process Relationships FlexOS Programmer's Guide

• CMDENV contains the cOflunand file specification and command
tail from the process's spawning COMMAND 'call.

• ENVmON contains the process's stdin, stdout, stderr, and overlay
file numhers; user and group numbers; and identification numbers.
A process's ENVIRON table contents are inherited from its
parent's.

• PROCESS contains the process's identification number, user and
group ids, narne, current state, parent 10 number, virtual console
number, and rnemory allocation. Some PROCESS table values are
set with the COMMAND SVC and while others are set by the
Supervisor.

5.1 Process Relationships

A process executes program instructions independently of other
processes. A process is constrained by a process environment
rnaintained by the operating system. Environment characteristics
include the process's logical address space (memory), CPU state and
stack condition, user and group 10, and parent process. FlexOS uses
these characteristics to manage the proces and protect it from other
processes.

Processes are identified by a unique 32-bit process identification
number--PID--and a name. The PID is assigned by the kernel when
the process is created and remains assigned to the process until it
terrninates. The Supervisor splits running time for FlexOS processes on
a priority basis. The recommended priority for user processes Is 200.
Processes with the same priority are allocated running time on a
round-robin basis.

Besides the process 10, processes are also distinguished by a process
family identification number--FID. When one process creates another,
they keep the same FlO unless you request a new number. Within a
family, a process that creates another process is called the parent; the
process created is called the child. Typically, the FlO is used to
distinguish processes running under different shells. That is, the shell
is the head of the family.

5-2

FlexOS Programmer's Guide 5.2 Running a Program
._---------------_._ .. _-_ .. _. __ ._.-

5.2 Running a Progranl

Running a program has two steps:

• loading an executable prograrn file froln disk into memory
• Assigning a process to execute the instructions '

You use the COMMAND SVC to perform both steps. The process
calling COMMAND must have the execute access privilege to the file.

Note: At the driver level, you can also use the PCREATE function to
create a process. See the flexQ$ System Guide for an explanation of
PCREATE.

The COMMAND SVC searches the disk for the command file specified.
opens it, and loads it into nlemory. Running a program does not
require the creation of a new process. COMMAND gives you the
following options.

• Run the program as an independent (child) process: This option
creates a new process 10 for the program. Child processes get
their own memory allocation and execute FlexOSly with the other
process.

• Run the program as a proce.dure: This option runs the program
as a subroutine of the calling p'rocess; no new process 10 is
assigned. The calling process's nlemory allocation is
supplemented by the new program's specification. When a
procedure program exits, control is returned to the next
executable statement in the parent process. You must use the
synchronous form of COMMAND to use this option.

• Chain the program to the current program: This option runs the
program as a subroutine within the context of the calling process;
no new process 10 is assigned nor melnory allocated. Uowever.
the process never returns to the previous progniln. The chained
program's memory requirements overlay the process's existing
allocation. When the chained program exits, the process
terminates. You must use the synchronous form of COMMAND to
use this option.

5--]

5.2 HlJllning a Program FlexOS Programmer's Guide
_.-.- .. _--. __ ._._---_ ... __ ._ .. _-- _---- -----_.--._- --- ----_._--------------

When you call the synchronous form of COMMAND, the call does not.
return until the pronrarn exits or the process is aborted. When you use
the asynchronous form of COMMAND, the event mask is returned and
the child's process 10 is recorded at the &pid address you specify in
your COMMAND call. The event completes when the child process
terminates.

Unless externally aborted, a process executes the program instructions
up to and including the EXIT call. When the Supervisor receives the
EXIT call, it closes all open files belonging to the process and cancels
any outstanding events_ This completes the COMMAND event. For the
first and third COMMAND options described above, the process 10 is
then released along with the process's memory; for the second option,
the process returns to the next instruction in the previous program.

5.3 Process Termination

The synchronous form of ABORT SVC terminates the process specified.
This terminates the COMMAND event; all files belonging to the process
are closed, outstanding events cancelled, and memory released.

The asynchronous fonn of ABORT is useful as a self-preservation
measure for processes aborted externally. For example, consider the
user who enters a control-C to terminate his or her program. For
rnany applications, it is preferable to return to a previous location in
the program rather than abort the program entirely.

To trap the control-C and force the return to a specific location in the
program, call the asynchronous form of ABORT; use a process 10 of 0
(this indicates current process) and include a software interrupt (swi)
pointer. In your software interrupt, use the SWIRET option which keeps
the process 10 in the swi and then call a jump instruction to return to
the. program location.

Remember that the stack is in an unknown condition when you make
the jump. At the return point in your program you should include
instructions to rnark the stack frame so it is restored to a known
condition.

5'-4

FlexOS Programlner's Guide 5.4 Memory Management
---------_._- •... -... _. -

5.4 Memory Management

You use the MAllOC and MFREE SVCs to manipulate a process's
memory allocation. Only the heap portion can be modified: MAllOC
extends the heap space or adds a new heap and MFHEE releases
allocated heap ,nemory back to the kernel for subsequent allocation.

To add contiguous memory to an existing heap, select MALlOC's
expand option. In your MAlLOC call you also give a pointer to a buffer
indicating the minimum and maximum arnount of memory and the
base address of the heap to expand. Get this address frorn the
process's PROCESS table. The kernel adds as much as can be allocated
within the parameters given and returns the new block's starting
address and the number of bytes allocated in your bljffer The original
heap base address and contents are not affected.

To get a new, independent heap select MAllOC's allocate option. The
new memory block mayor may not be contiguous with an existing
heap segment, depending upon current system memory usage. As
above, you pass a buffer pointer where a minimum and maximum
amount of memory is specified. You do not need to specify a starting
address, however. The heap's base address and its actual size are
returned in the buffer. When you add a new heap and it is con.tiguous
with an existing heap, the existing heap becomes a fixed dat-a area.

End of Section 5

SECTION 6

Miscellaneous Resource Manager

This section describes the SVCs used for device management through
the Miscellaneous Resource Manager. All devices except for disk
.drives, consoles, mouses, and network controllers are controlled by the
Miscellaneous Resource Manager. This includes such devices as
printers, plotters, modems, and custom, OEM-implemented peripherals.
The term g~~~ce is used in this section as a generic expression to
refer to all miscellaneous devices. Table 6-1 lists the SVCs.

Table 6-1. Miscellaneous Device Control Supervisor Calls

SVC

CLOSE
DEVLOCK
GET
SET
OPEN
READ
WRITE
INSTALL
SPECIAL

6 .. 1 Device Tables

Purpose

Close a device
Lock device from access by other processes
Retrieve a device table
Set device table values
Open a device
Read from a device
Write to a device
Install the device driver or subdriver
Send data to or receive data from driver

The Miscellaneous Resource Manager rnaintains four device-related
tables .

• DEVICE: Scan the DEVICE table to get the logical port and printer
names. The Miscellaneous Resource Manager rnanages all devices
with type numbers 7xH and 80-FFH.

6-1

G.l Device Tahles FlexOS Programmer's Guide

• PniNTER: Use this table to get and set printer parameters. You
cannot get or set a printer's tahle until you have opened the
device.

• PORT: Use this table ~o get and set I/O port parameters. You
cannot get or set a port's table until you have opened it. Ports
linked to a driver cannot be accessed with GET and SET; use the
SPECIAL functions instead.

• SPECIAl: Devices not adhering to the PRINTER or PORT table
models have SPECIAL tables. SPECIAL table contents are OEM
defined.

FlexOS reserves the name prn: for the system list device. Unlike stdin,
stdout, and stderr, prn: does not have a reserved file number. Your
program must open the prn: device, write data to it, and then close
the device.

Note: The following description of device I/O assumes the device
driver is already installed If it Is not or if your software must establish
a driver-to-subdriver link, section 6.3 below reviews device installation.
See the FlexOS System Guide for additional information on drivers.

6.2 Device Access

Unlike files, devices are installed and removed rather than created and
deleted. like files, you must open devices to access them. To indicate
the device, you its name in the OPEN call. The access privileges and
modes characteristic of disk files and pipes also apply to devices. like
pipes and consoles, read and write access privileges are treated
separately and can be implemented with different modes.

6.2.1 Opening and Closing

Use the OPEN SVC to open the device. Set the flags to select the
access privileges and modes. The privileges and modes supported are
determined by INSTAll options selected and the device driver itself.
The Miscellaneous Resource Manager compares the privileges
requested with those available. Set flag bit 7 if you can accept reduced
access. You must set flag bit 0 if you want to set the table values.

6-2

FlexOS Programlner's Guide 6.2 Device Access

Note: The devices with POnT tables cannot be used for data I/O;
access to these devices is limited to getting and setting PORT table
values.

The OPEN call returns the file number used for all subsequent device
access. The file number is also used as the 10 number in GE r and SET
calls and the file number for your CLOSE tall. When you close the file,
the write buffer contents are output to the device.

After the device is opened, you can get and set tahle options. Devices
are process independent; table variables are not initialized or modified
as processes open and close the device. Thus, the PRINTER table
typeface mode or, PORT table baud rate selected by one process
remains set for other processes.

6.2.2 Security

Security options come in two forms: access modes and device locking.
The access modes are selected in the OPEN call. If multiple, related
processes need to share access to the device, set flag bit 6 to shared
file pointer. Although the file pointer mayor may not be meaningful,
this is the mechanism used to limit device access to those processes
in the same family.

The DEVLOCK SVC can also be used to restrict access. This feature is
only valid if the INSTALL option allowing DEVLOCK was selected.
DEVLOCK options let you limit access to the process or the process
family. The lock is removed explicitly using, DEVLOCK or ilnplicitly
when the process terminates.

6.2.3 Data I/O

Use the READ and WRITE SVCs to get data from and to the driver.
The file painter offset mayor may not be meaningful. Although the
Miscellaneous Resource Manager does not Inaintain a file pointer, it
does pass the offset to the device. Consequently, YOll can use an
offset if the device supports randolll I/O. The SEEK SVC is not
supported by the Miscellaneous Resource ManatJer However, the
function not implemented error is not returned if you call it. Instead, a
zero is returned. (This is done so redirection to a miscellaneous device
does not cause an error on seeks.)

6-]

62 Device Access FlexOS Programmer's Guide
-- ----------_. __ ._ .. _ .. __ .. _--._--_._._---------------------.--.------------

All WRITE flag options are supported.

All READ flag options except the edited read (flag bit 5) are supported
by the~ Miscellaneous Resource Manager. This includes the use of
delimiters to complete the read event. As with consoles, your program
should be able to accept fewer characters on a read than requested.

SPECIAL functions are another way to transfer data to -and from a
device. However, all SPECIAL functions are driver-dependent; there are
no generic functions. The Miscellaneous Resource Manager acts as a
conduit for SPECIAL calls and provides no services beyond transferring
the SPECIAL databuf and parmbuf contents.

6.3 Device Installation

Device drivers are installed with the INSTALL SVC.· The driver can be
read from a disk file or replicated from an existing driver. Only
privileged users can call INSTAll

FlexOS supports the concept of subdrivers. This allows a driver unit to
be independent of specific hardware by accessing the hardware in a
generic way For example, multiple units of an RS-232 subdriver can
be installed and then linked to printer, network, or communications
drivers. This relieves the driver writer of hardware dependent code and
provides flexibility when installing add-on or custorn peripherals.

6.3.1 Driver and Subdriver Installation

Although drivers and suhdrivers are usually installed when the system
is loaded, they can be installed after the installation script has been
performed as well. (See the CONFIG.SYS description in the flexOS
~ystem Guige for description of the installation script.) You can also
uninstall drivers, disconnect a subdriver from a driver, and link a
subdriver to a driver dynamically

Once a driver-to-subdriver link is established, the subdriver is no
longer individually accessible; the driver o.wns it. When the link is
dissolved, the subdriver is available for linking to, another driver. The
Miscellaneous Resource Manager manages subdrivers until they are
linked to a driver. Then the driver aSSUfnes subdriver management
responsibilities. Subdrivers can themselves have their own subdriver.

6-4

FlexOS Programnler's Guide 6.3 Device Installation

Note: The subdrivers with PORT tables do not have a standard
interface to the resource manager. Do not attempt to access these
drivers directly.

6.3.2 INSTALL Options

Drivers and subdrivers are installed with the INSTALL SVC. There are
four INSTALL options.

• load driver from the disk: Read the driver froln the specified disk
file, load it into the system space, call the initialization routine for
the first unit, and give it a logical name.

• Add a unit to an existing driver: Replicate an existing driver in
system space, initialize the device, and give it a logical name.

• Link one driver to another: Make one driver the subdriver of
another. Both drivers must already be installed.

• Uninstall the driver: Renlove the device driver and release
subdriver.

Each unit installed manages a separate device; for example an RS-232
port. Multiple units derived from the same driver are distinguished by
unique names, however, they all share the same code.

The driver determines the maximum access privileges supported by
the device and the access modes. The maximum access modes are
determined when the device is installed.

You do not use the DELETE SVC to remove a driver. Instead. use
INSTALL's uninstall option. Only the device specified is removed; if the

. driver had a subdriver, the subdriver is released and becomes available
for direct access or. linkage with another driver.

6.4 PORT Table Modification

PORT table devices cannot be accessed directly; they can only be used
as subdrivers. You can, however, set POnT table values. There are two
ways to do this; depending on whether the device has driver or
subdriver status. To determine the device status, look at the INSTAT
word in its device table.

6-5

{)4 ponl 1 able Modification FlexOS Programmer's Guide

A device that is not a sllhdriver (it as not been linked to another driver
with INSTALL), can be opened directly. In your OPEN call, request only
the set access privilege (flag bit 0). Use the file number returned as
your GET and SET 10.

Devices that are suhdrivers cannot he accessed directly. However, you
can use SPECIAL functions 13H and 93H to get and set the PORT table
values. These SPECIAL functions are described after the SPECIAL disk
functions in Section 7.

To use the SPECIAL functions, you must know the driver that owns the
subdriver. The OWNERID value frorn the subdriver's DEVICE table is the
sign.ificant 16 bits of the subdriver's owner's DEVICE table key value.
Use this value in a LOOKUP call to find the device name. If the owner
is also a subdriver, repeat this procedure to get the owner. When you
determine the owner, open the device and use the file number
returned in your SPECIAL calls.

End of Section 6

6-6

SECTION 7

Supervisor Call Descriptions

This section describes the FlexOS SVCs. The descriptions are
presented alphabetically by SVC name and contain explanatioJls of
each call's arguments and return codes. See Section 1 for the
description of the C and assembler interface conventions used in the
descriptions. Appendix B lists the error return codes.

The descriptions also include a general explanation of the function's
purpose and effect. For specific infornlation regarding when and how
to use the SVCs, refer to the chapters describing disk, console, pipe,
process and special device management.

7-1

7.1 ABOflr FlexOS Programmer's Guide
----_._---_._--- .. _-------- --.--.----._--------_._------------

7.1 ABORT

C Interface:

LONG pid;

ret == s_abort(pid);
ernask == e_termevent(swi,pid);

ret == _osif(F _ABORT,&parmblk);

parmblk:

O=sync
0 0 1 =async

4 swi

8 pid

Parameters:

swi Address of a software interrupt routine

pid

Return Code:

ret

7-2

Process 10 of target process to abort or to wait to .
terminate. Use 0 to specify calling process.

Error Code

FlexOS Programmer's Guide 7.1 ABORT

Description: The synchronous ABORT SVC removes a .process
trom the system. Any outstanding events for that
process are canceled, opened files are closed, and
memory is released. Performing an ABORT on the
calling process is equivalent to an EXIT with a
return code ot E_ABORTEO.

A process can only be aborted by another process
with the same user and group or by a superuser.

The asynchronous version of ABORT does not
terminate the target process. Instead, it makes the
target's termination an event. Specify a process 10
(pid) of zero to have the progranl trap a control-C
entered by the user or any other external abort. Use
the software interrupt (swi) to control program flow
from there.

The return code trolll ABORT reflects only the
operating system's attempt to notify a process to
terminate. If the process has a terrnination sw'j that
does not perforrn an exit~ ABORT's return code
indicates success, but the process will still be
running.

7-3

7.2 AL TEn

7.2 ALTER

C Interface:

UWORD
LONG
FRAME
REeT
BYTE

flags;
fnurn;
*dfrarne;
*drect;
alterb(6);

FlexOS Programmer's Guide

ret = s_alter(flags,fnurn,dframe,drect,alterb);

7-4

ret = _osif(F _AL TER,&parrnblk);

parrnblk:

o

4

8

12

16

20

24

0

andO

and2

0

0

fnurn

dfrarne

drect

xorO

xor2

flags

and1 I xor1

RESERVED

FlexOS Progranlmer's Guide 7.2 ALTER
---------------_ .. _-------------------_._._------_._-_.- -

Parameters:

flags

fnum

dframe

drect

andO
xorO
andl
xor1
and2
xor2

Return Code:

Bit map of planes to alter.

bit 0: 1 = Alter character plane
o = Do not alter character plane

bit 1: 1 = Alter attribute plane
o = Do not alter attribute plane

bit 2: 1 = Alter extension plane
o = Do not alter extension plane

bits 3-15 are reserved.

Console screen or border file number; use 0 to
specify a memory FRAME

Address of FRAME to affect; use NULLPTR to
indicate screen or border specified by fnum.

Address of RECl specification indicating port"ion of
FRAME to alter

alterb[O) = character plane AND
alterb[lI = character plane XOR
alterb(2) = attribute plane AND
alterb[3] = attribute plane XOR
alterb[4] = extension plane AND
alterb[5] = extension plane XOR

ret
Error Code

7-5

7.2 ALlEn

Description:

7-6

FlexOS Programmer's Guide

AL TEn changes a rectangular area of the specified
FRAME. The Console Resource Manager changes
each cell in the planes selected according to the
AND and XOR values you specify for that plane. The
rectangular area is defined by a REeT structure. You
select the planes in the flag word.

The FRAME can be a screen or memory FRAME. To
specify a screen FRAME put its file number In the
fnurn field and a null pointer in the dframe field. To
specify a rnemory FRAME, put a 0 in the fnum field
and the FRAME's address In the dframe field.

The following table lists the AND and XOR 'bit values
used to modify the destination byte or combine it
with another value.

Action Performed on Bit Bit in Bit in
in Destination Byte AND Byte XOR Byte
-.---.----.-- ----- .-------

Clear 0 0
Set 0 1
As is 1 0
Cornplement 1 1

Logical Operation with Data
and Bit in Destination Byte

Load Data 0 data
AND Data data 0
XOR Data 1 data
OR Data NOT data data

FlexOS Programmer's Guide 7.3 BWAIT
--------------_ __ ... __ ._------._------------------

1.3 aWAIT

C Interface:

UWORD
LONG
LONG

clicks;
mask;
state;

ret = s_bwait(clicks,fnum,mask,state);
emask = e_bwait(swi,clicks,fnum,mask,state);

ret = _osif(F _BWAIT,&parmblk);

parmblk:

o o = sync
0

1 = async

4 swi

8 fnurn

12 mask

16 state

clicks

7·-7

7.3 UWAlr

Parameters:

clicks

fnum

mask

FlexOS Programmer's Guide

Number of times the mouse enters this state within
the "click' interval" set up in the MOUSE Table after
this call is made. If clicks Is 0 and the mouse is
already in this state, the event is already complete.

Mouse file number

Bit mask of buttons to consider. The lowest order
bit is set if the first mouse button to the left is to
be considered. The second lowest bit corresponds
to the second button from the left. A total of 16
mouse buttons can be supported in the low word of
mask.

state Bit mask of buttons that define the button state
given the mask that determines the buttons to
ignore all together in the low word of state.

Return Code:

ret

Description:

7-8

Number of Clicks

Error Code

The BWAIT SVC allows the calling process to wait
until a mouse button state is reached. The mask
determines the number of mouse buttons the calling
process wants considered. For example, by setting
the mask appropriately, a one button mouse can be
expected when there is more than one button.

The clicks field allows the calling process to receive
multi-click mouse input. When a user presses a
mouse button, releases it and presses it again
within the "click interval", the mouse has been
double clicked.

FlexOS Programmer's Guide 7.3· BWArI
------------ --------.------- --.- -_._ ... -_ .. __ .. --.

If clicks is set to two, and a second click is not
performed within the "click interval", the event is
considered complete. The return value indicates the
number of clicks actually perfonned. If clicks is set
to zero, BWAIT returns a zero if the button state is
already in the specified state. Otherwise, it returns
one upon the first entry to the state.

The "click interval" is changed in the MOUSE table
through the SET SVC.

1·-9

7.4 CANCEL. FlexOS Programrner's Guide
---_. __ ._----_ ... __ ._---- .-.-... ----.--.-.. ---.---._-----------

7.4 CANCEL

C Interface:

LONG
LONG

dmask;
events;

dmask = s_cancel(events);

dmask = _osif(F _CANCEL,events);

Parameters:

events

Return Code:

dmask

Description:

7-10

Logical OR of event masks to be canceled

Bit map of events that could not be canceled
because they have already completed

The CANCEL SVC terrninates one or more specified
asynchronous SVCs. The events argument is the
logical OR of the event masks you want to cancel.
The dmask return code indicates events that,
although requested for termination, had already
completed. Use the RETURN SVC to get the return
codes for these events so the event bits can be
reused.

FlexOS Programmer's Guide

7.S CLOSE

Interface:

UWORD
BYTE
LONG

flags;
option;
fnum;

ret = s_close(flags,fnum);

ret = _osif(F _CLOSE,&parrnblk);

parmblk:

o·

4

6

Parameters:

option

flags

0 I option I flags

I

J 0

fnurn

May be used by SPECIAL devices.

bit 0: 1 = partial close (flush only)
o = full close

bits 1-15 are reserved.

fnum File number of file to be closed

7.5 CLOSE

7 -11

7.5 CLOSE

Return Code:

Description:

7-12

FlexOS Programmer's Guide

ret
Error Code

CLOSE disassociates an I/O stream from a file
number. Before the close is performed, all
outstanding asynchronous I/O is completed . and
locked file areas are unlocked. If a device error
occurs on a full close, the file is closed making the
file nurnber invalid.

For all types of files, a partial close flushes the
associated I/O buffer but leaves the file open. For
disk files, a partial close updates the directory.

For disk and pipe files and directories created with
the ternporary flag set, the last close deletes the
files. This also applies to a file marked temporary
because an attempt has been made to delete it
while any process had it open. In this second' case
only, the closing process gets an error return code
rather than success to indicate that the close also
resulted in a file delete.

WARNING: CLOSE with the "full close" option
always disconnects an open file from the calling
process regardless of error. This can cause a
failure to flush intermediate buffers to media if the
error is a physical error.

Specifically, if a floppy drive door is open at the
time of a close, the final flush does not occur. An
application can avoid this problem by performing a
"partial close" to flush all intermediate buffers. If an
error is returned indicating an "open door", the
application can warn the user to replace the media
and close the door before attempting the close
operation again.

FlexOS Programrner's Guide 7.5 CLOSE

However, . if any other activity occurs on the device
from the time the door was originally opened. the
"partial close" approach fails since all intermediate
buffers have been discarded. In such a case, the
application must assume the file has not been
updated since the last successful partial close:
After performing a successful partial close, the
application can perform a full close to disassociate
the file frorn the pro~ess.

7-13

COMMAND

1.6 COMMAND

C Interface:

UWORO
LONG
BYTE
PINFO

flags;
pid,bufsiz;
*command,*buffer;
*procinfo;

FlexOS Programmer's Guide

ret = s_command(flags,command,buffer,bufsiz,procinfo);
ernask = e_command(swi,&pid,flags,command,buffer,bufsiz,procinfo);

ret = _osif(F _COMMANO,&parmblk);

parmblk:

o O=sync
0 flags 1 =async

4 swi

8 command·

12 buffer

16 bufsiz

20 procinfo

24 &pid

7-14

FlexOS Programnler's Guide COMMAND

Parameters:

flags bits 0-3 are reserved

swi

command

butter

bit 4: 1 = No new process (set bit 5 to 1)
o = New process (ignore bit 5)

bit 5: 1 = Chain
o = Not implemented (returns EJMPlEMENT error)

bit 6: = Do not release memory on termination
of procedure if procedure uses the
EXIT SVC with the stay resident flag set.

o = Not implemented (returns E_IMPlEMENT error)

bit 7: 1 = Assign a new process family 10 (FlO)
o = Keep the current process family 10 (FlO)

bits 8-12 are reserved (,nust be 0).

bit 13: 1 = Force case to .nedia default
o = Do not affect name case

bit 14: 1 = Literal command
o = Prefix substitution allowed

bit 15: reserved (rnust be 0)

Address of a software interrupt routine

Address of 128-byte, null-terminated string
indicating the name of the load able file.

Address of a variable length buffer containing a
128-byte, null-terminated cOITunand tail and special
information to be passed to the new process. (At
most, the command tail can be 127 characters and
one NUll byte long.) COMMAND puts the tail in the
CMOENV table. Data after the first 128 bytes is put
in the process's heap.

7-15

COMMAND FlexOS Programmer's Guide

7-16

._._ ... _-_._ .. _--_._------_ .. _---_._----------._----------_._---------_._-----------

bufsize

procinfo

o

4

8

12

16

The rHOCESS table contains the heap address and
size. Use this huffer area to pass an environment
string, common data, or special inf~rmation to the
program.

Size of buffer in bytes

Address of the PINFO table. PINFO must be
constructed as follows:

name

I prior J RESERVED

maxmen

ADDMEM

20 = Length in bytes

pid

name: Process name

prior: Process priority (user processes are usually
set to 200)

maxmem: Maximum memory this process can own
(larger minimum requirements specified by the
comrnand file supercede this amount)

addmem: The amount of memory to be added to
the minimum amount specified by the command file
(FlexOS allocates the greater of the two values:
maxmem or the surn of the command file's specified
minimum plus addmem)

Address of new process 10. COMMAND puts the
new process's 32-bit PID at this location when flag
bit 4 equals 0 and COMMAND is called
asynchronously.

FlexOS Progra.nmer's Guide COMMAND

Return Code:.

ret

Description:

Process co.npletion status:
High order word = 0
low order Word = return status (negative if error)

Error Code: Indicates progranl load failure

The COMMAND SVC creates a new process or
chains a new program to the calling process. The
value of flag bit 4 determines which action is taken.
When flag bit 4 is set, use flag bit 7 to specify
whether you want the current process f8fnily 10 kept
or a new one assigned.

The return code is a long value with two
components: if the high order word is zero, the low
order word contains an utility return code. See
Appendix B for a list of utility return codes. If· the
high order word is a negative number, the low order
word contains an operating system error code. A
return code can be used in batch files as an
argument in the IF ERRORlEVEl statement.

When COMMAND is called synchronously, the return
code is provided when the EXIT SVC is called by the
program. When COMMAND is called asynchronously
and a new process is requested, an event mask
(emask) is returned and the new process 10 is
stored at the location indicated by pid.

The chain option causes the calling process's
current program to be overlaid with the new
program. The process 10 does not change.

7-17

COMMAND FlexOS Programmer's Guide
--- -------------

7-18

1 he COMMAND SVC opens the specified command
file in EXECUTE mode without accepting reduced
access. Any error in the attempt to open the file
returns the file not found error.

Priority of 200 is the recommended number for user
processes. Higher numbers have lower priority;
lower numbers have higher priority.

FlexOS Progranlnler's Guide

1.7 CONTROL

C Interface:

UWORD
LONG
BYTE

option;
pid,target,bufsiz,tpid;
*buffer;

ret = s_control(option,pid,buffer,bufsiz,target,&tpid);

CONTHOl

emask = e_control(swi,option,pid,buffer,bufsiz,target,&tpid):

ret = _osif(F _CONTROl,&parrnblk);

parmblk:

o

4

8

12

16

20

24

O=sync
1 =async

0

swi

pid

buffer

bufsiz
)

target

&tpid

option

7-H)

CONTHOt FlexOS Programmer's Guide
---_._------------._--------------------_._-_._---_._--------------------------

Paralneters:

option

swi

pid

"buffer

7-20

bufsiz

target

&tpid

o - Invalid
1 - Load Program for control
2 - Delete Program
3 - Read Target Code Memory
4 - Read Target Data Memory
5 - Write Target Code Memory
6 - Write Target Data Memory
7 - Read Target Registers
8 - Write Target Registers
9 - Go
10 - Single Step (Trace)
11 - Reserved (Force Halt)
12 - 13 Reserved (All Exception Traps ON,OFF)
14 - Select Exception Trap ON
15 - Select Exception Trap OFF
16 - 255 are reserved

Address of a software interrupt routine

For option 1, a pointer to command file
specification; for options 2-15, the process 10 of the
target process

Address of buffer in calling process's· address space;
the purpose of this buffer depends on the option
selected.

Size of buffer in bytes

Address in controlled process's address space: the
purpose of this buffer depends upon the option
selected.

Target process address: tpid is used only with
option 1;' see the first section of the chip
supplement to this book for the description of its
use.

FlexOSProgrammer's Guide CONTHOl
----------- ._-----_._--_. --------_ .. _-_. __ .. __ .. -.. - .. - ... - .. - .•. - . __ ._ .. -

Return Code:

ret

Description:

Error· Code

The CONTROL SVC controls the execution of one or
more child processes. Use the CONTROL options to
select debugging functions such as setting
breakpoints, modifying rnemory or registers, and
starting and stopping process execution. The use of
the pid, buffer, target, and &tpid arguments depends
upon the option selected.

Option l--Load: Use this option to create the
target process. The pid, buffer, bufsiz, target, and
&tpid arguments have the same purpose as the
command, buffer, bufsiz, procinfo, and &tpid
arguments in the COMMAND SVC. CONTROL opens
the specified program (command file) in Execute,
Read mode with no reduced access. When called
synchronously, the load option returns when the
program is loaded; the return code indicates the
success or failure of the operation. Sinlilarly, the
asynchronous CONTROL load event is complete
when the program is loaded. Use the RETURN SVC
to get the return code.

Option 2--0elete: U~e this option to terminate the
program. pid specafies the target process to
terminate.

Options 3 and 4--Read target code or data
memory: Use these options to transfer a portion of
the target process's memory to the calling process's
memory. pid specifies the target process, the buffer
address pOints to the calling process's destination
buffer area, and target contains the logical address
in the target process frorn which to begin the

. transfer. The bufsiz value indicates the number of
bytes to be transferred.

7-21

CONrnOL FlexOS Programmer's Guide
....... _----_ __ .. _._ --..•. - _ .. __ .. _ .. _._--_._ ... _--

7-22

Options 5 and 6--Write target code or data
memory: Use these options to transfer a portion of
the calling process's memory to the target process's
rnernory. pid specifies the target process, buffer
contains the pointer to the calling process's source
buffer, and target contains the first logical ·address
of the target's destination buffer. The bufsiz
indicates the number of bytes to be transferred.

Options 7 and 8--Read and write target registers:
Use these options to transfer the target process's
register data to or from the calling process's buffer.
pid specifies the target process ond buffer contains
the pointer to the destination or source buffer.

Option 9--Go: Use this option to commence
execution of the target program. Execution
proceeds until one of the following conditions is
encountered. The number shown in parenthesis
indicates the condition's return code.

• Error code on CONTROL request « 0)
• Target process EXIT (0)
• Target process exception (> 0): This condition

exists when break point set by CONTROL option
14 or by the EXCEPTION SVC is encountered.

• Target about to be aborted through an external
ABORT or Control-C (512): 512 is the return
code for the COMMAND SVC when using the go
option.

Option 10--Trace: Use this option to step through
the target program one instruction at a time. pid

. specifies the target process and bufsiz must be 1.
The return code is the same as the Go option.
Resume execution with Go or another Trace.

FlexOS Programmer's Guide CONTROL

Options 14 and 15--Trap ON and OFF: Use option
14 to set target progralTl break points at exception
handling routines and SVCs; use option 15 to have
break points ignored. pid specifies the target
process and the target value contains a buffer
.pointer indicating the exception nUlnbers to break
on (see EXCEPTION). When an exception set by the
target program is reached, target prograrn execution
proceeds with the interrupt service routine (isr).
When an exception set by CONTROL is reached,
target program execution stops and control returns
to the calling process.

You set break points by writing a "break point"
instruction into the target buffer, turning the break
point exception trap on, and using the Go option. A
return code greater than 0, where the number
indicates the exception number, indicates that a
break point has been encountered. To proceed,
restore the target process code and set the
instruction pointer to the break point location.

7-23

COpy

7.8 COpy

C Interface:

UWORO
LONG
FRAME
RECl

flags;
fnurn;
*sframe, *dfrarne;
*srect, *drect;

FlexOS Programmer's Guide

ret = s_copy(flags,fnurn,dframe,drect,sframe,srect);
ret = _osif(F _COPY,&parrnblk);

parmblk:

o

4

8

12

16

20

24

Parameters:

0 I 0 I flags

0

fnurn

dfrarne

drect

sfrarne

srect

.flags Bit map of planes to copy

bit 0: 1 = Copy character plane
o = 00 not copy character plane

7-24

FlexOS Programrner's Guide COpy

fnum

dframe

drect

sframe

srect

Return Code:

ret.

Description:

bit 1: 1 = Copy attribute plane
o = Do not copy attribute plane

bit 2: 1 = Copy extension plane
o = Do not copy extension plane

bits 3-15 are reserved.

Console screen or border file number

Address of destination FRAME; NUllPTR indicates
screen or border specified by fnurn.

Address of destination RECT description

Address of source FRAME; NUllPTR indicates screen
or border specified by fnurn.

Address of source RECT description

Error Code

The COpy SVC copies the specified plane contents
from one rectangle to another on the same or
different FRAMEs. The drect and srect rectangles are
defined in the form of RECT structures. If either the
dframe or sframe FRAME specifications are 0, the
file number in fnum indicates the proper FRAME. The
RECT and FRAME data structures are descrihed in
Section 3.

The source and destination rectangles do not need
to be the same size and can overlap on the same
screen. When the rectangles are different sizes,
COpy trims off the larger. The upper lefthand
corner of both rectangles is used as the point of
reference.

7-25

CHEAl E FlexOS Programmer's Guide
---------------_._--- .------._ .. _----_._-------_._--_.---------- ------------

7.9 CREATE

7.9.1 Create a File, Directory, or Pipe

C Interface:

UWORD
BYTE
LONG

flags,record_size,security;
option, *name;
size;

fnum = s_create(option,flags,name,record_size,securitY,size);

ret = _osif(F _CREATE,&parmblk);

pannblk:

o 0

4

8

12

16

Parameters:

option

7-26

I option I
0

name

record_size I
size

o = Disk file or pipe
1 = Disk directory

flags

security

2 = Virtual console (described separately)
3-255 Reserved

FlexOS Programmer's Guide Create a File, Directory, or Pipe

flags bit 0: 1 = Delete file/set attributes access
o = No delete/set access

bit 1: Reserved (must be 0)

bit 2: 1 = Write
o = No Write

bit 3: 1 = Read
o = No Read

bit 4: 1 = Shared
o = Exclusive

bit 5: 1 = Allow Shared Reads if Shared
o = Allow Shared RIW if Shared

bit 6: 1 = Shared File Pointer
o = Unique File Pointer

bit 7: 1 = Zero Fill contiguous region*
o = Do Not Zero Fill

bit 8: 1 = Temporary - Delete on last Close
·0 = Pennanent

bit 9: 1 = Allocate space in a contiguous block'"
o = Contiguous block allocation not required

bit 10: 1 = Delete File if it already exists
o = Return Error if file exists

bit 11 is reserved (must be zero)

bit 12: 1 = Use specified security
o = Use default security (see ENVIRON table)

bit 13: 1 = Force Case to Media Default
o = Do not Force Case on name

7-27

Create a File, Directory, or Pipe FlexOS Programmer's Guide

bit 14:1 = literal Name
o = Prefix Substitution Allowed

bit 15 is reserved

* Only valid if file's size value is non-zero.

name Address of NULL-terminated name string: if file is
not in default:, the string must include path
specification or a previously defined logical name
(maximum 128 bytes, NULL terminated)

record_size File record size: The READ, WRITE and LOCK SVCs
use this value to make sure the requested action
falls on record boundaries. Use a record_size of 0
OR 1 if you want no boundary checks performed (a
record_size- of 0 is equivalent to a record_size of 1).
FlexOS considers disk files and pipes with a record
size of 1 as 8-bit files. Files with a record size of 2
are considered 16-bit files.

security File Security Word (FSW) describing access rights
for file owner, group and world. The FSW is
formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R o

..-Reserved~ ~WORLO~ ~GROUP~ ~OWNER~

7-28

User access is restriced according to the privilege
level set for owner, group, and world users. See
Section 1.4.2 for a description of the R(ead), W(rite),
E(xecute), and O(elete) privileges. This value is only
valid when flag bit 12 is on. Otherwise, the default
security specified in the ENVIRON table is used.

FlexOS Programmer's Guide Create a File, Directory, or Pipe

size

Return Code:

fnum

ret

Description:

Number of bytes to reserve for the file: For disk
files, the space is contiguous only if bit 9 is set. Use
a size value of 0 when you create directories and
files whose size is dynamic. For pipes, the size
value specifies the size of the pipe buffer. Size is
not applicable to virtual consoles.

The file number: The file is automatically opened.
The calling process must close the file if no access
is needed. If the security field conflicts with the
flag bits 0-6, then the file is created but not
opened, and an error code is returned.

Error Code

CREATE option 0 adds a new disk file to a directory
or a new pipe to the pipe system. CREATE option 1
makes a new directory. The record_size and size
fields are only applicabl'e to option 0; for directories,
set these values to zero.

7-29

Create a File, Directory, or Pipe FlexOS Programmer's Guide

7.9.2 Create a Virtual Console

C Interface:

UWORD
LONG
WORD
BYTE

flags;
screen_fnum;
rows,columns;
option,top,bottom,left,right;

fnum = s_vccreate(flags,screen_fnum,rows,columns,top,bottom,left,
right);

ret = _osif(F _CREATE,&parmblk);

parmblk:

o 0 I option flags

4 0

8 screenJnum

12 rows columns

16 top I bottom left I right

Parameters:

7-30

option o = Disk file or pipe (invalid here)
1 = Disk directory (invalid here)
2 = Virtual console (only valid choice)
3-255 Reserved

flags bit 0: 1 = Bit mapped screen
o = Character mapped screen

FlexOS Programmer's Guide Create a Virtual Console

bit 1: 1 = Bit mapped borders
o = Character mapped borders

bit 2: 1 = Sized as specified
o = Same size as parent

bit 3: 1 = Remove parent screen memory and
restore on delete of last child's
virtual console.

o = Keep screen memory and allow writing
to the parent screen

bits 4 - 7 are reserved

bit 8: 1 = Temporarv - delete on last close
o = Permanent

bits 9 - 15 are reserved

screen_fnum File number of the parent console file on which new
virtual console is based.

rows

columns

top

bottom

left

right

Number of character rows in new virtual console. If
flag bit 2 is zero, the number of rows is the same
as the parent.

Number of character columns in the new virtual
console. If flag bit 2 is zero, the number of
cl)lumns is the same as the parent.

Height of top border in characters

Height of bottom border in characters

Width of left border in characters

Width of right border in characters

7-31

Create a Virtual Console flexOS Programmer's Guide
----------_._-_ .. _-_._-----------

Return Code:

fnurn New virtual console's file number: Use this number
to GET and SET the virtual console's VCONSOLE
table. Only the process that created a virtual
console can change VCONSOLE values. The number
returned is not the VCNUM referenced in the
VCONSOLE and CONSOLE tabfes.

ret Error Code

Description: This CREATE SVC option makes a new virtual
console. Before you can CREATE a child virtual
console, you must have at least write access to the
parent console specified in screen_fnum. The row
and column values do not need to be the same as
the parent console's.

7-32

CREATE opens the new virtual console, which allows
you to change values in the VCONSOLE table. No
other process has access rights to this table.
CREATE does not open the console file. Before you
can read from and write to a new virtual console,
you must open the console file. The name of this
file is vcxxx/console where xxx is a 3-digit number
indicating the virtual console's number.

-Unlike the s_create call, the s_vccreate call does not
accept an option.

flexOS Programmer's Guide

7.10 DEFINE

C Interface:

UWORD
BYTE
LONG

flags;
*Iname, *prefix;
size;

ret = s_define(flags,lname,prefix,size);
ret = _osif(f _DEfINE,&parmblk);

parmblk:

o 0 1 0 I flags

4 0

8 Iname

12 prefix

16 size

Parameters:

flags bit 0: 1 = Reference SYSDEf table
o = Reference PROCDEF table

bit 1: 1 = Return prefix string
o = Set prefix string

bits 2 -13 are reserved

bit 14: 1 = literal returned prefix
o = Translated prefix

DEfiNE

7-33

DEFINE

Iname

prefix

size

Return Code:

ret

Description:

7-34

FlexOS Programmer's Guide

If bit 14 = 1, the exact prefix string is returned.
Otherwise, FlexOS translates the logical name until
it cannot find a~other entry. This is done for a
maximum of 99 times, after which an error is
returned.

Address of logical name: Iname is a NULL
terminated string no longer than ten characters.

Address of prefix string buffer: If flag bit 1 = 0,
prefix contents replace Ina me. Use NULLPTR to
delete a Iname. Prefix string must be NULL
terminated and cannot exceed 128 bytes. If flag bit
1 = 1, DEFINE stores the current prefix at this
address.

Size of prefix buffer; cannot exceed 128 bytes

Error Code

The DEFINE SVC either gives a logical name to a
prefix string or returns the prefix for the specified
name. Use DEFINE to redirect 1/0 from hardcoded
filenames to other filenames or to make program
related assignments for stdin, stdout, stderr, and
other logical names. The logical name cannot
contain wildcard characters or path delimiters.

Logical name prefixes are kept in two tables: The
SYSDEF table holds the system-wide logical name
definitions and the PROCDEF table holds the
process-bound logical name definitions. Child .

. processes inherit their parent's PROCDEF table.
However, DEFINE changes affect the calling
process's PROCDEF table only. See Section 8 for the
description of the SYSOEF and PROCDEF tables.

exOS Programmer's Guide DEFINE

Only privileged processes (user and group numbers
equal 0) can call DEFINE to modify SYSDEF table
assignments. No special privilege is required to
return a prefix from the SYSDEF table.

SVCs using names to indicate files have options to
ignore prefix translation. When prefix translation is
requested, the process's PROCDEF table is checked
before the SYSDEF table.

When the file name specified does not include a
device, FlexOS applies the special device name
"default:" to the file name before attempt~ng prefix
substitution. Setting the current default directory of
a process is therefore done by defining "default:".
Since indirection is allowed, the user can set
"default:" to another defined name such as "system:"
or "home:". This implies the default directory is· not
necessarily legal. PI")grams that set the default
directory should check for legality through
accessing "default:" in sorne manner.

FlexOS does not check for loops in the DEFINE SVC.
It does prevent infinite loops by only allowing 99"
iterations when converting a name. FlexOS also
insures that the· logical name and the prefix name
are not the same.

FlexOS does not check for actual device and
directory names. Therefore, you can use DEFINE to
store any string substitution inforrnation needed at
either the system or process level. For example,
you can store command macros for later translation
either by the COMMAND SVC or a user interface
program.

The "system:" and "boot" logical names are initially
defined at boot thlle by the BOOTINIT process.

7-35

DELETE

7.11 DELETE

C Interface:

UWORD
BYTE

flags;
*name;

FlexOS Programmer's Guide

ret = s_delete(flags,name);

ret = _osif(F _DElETE,&parmblk);

parmblk:

o 0 I 0 I flags

4 0

8 name

Parameters:

7-36

flags bits 0 - 12 are reserved

name

bit 13: 1 = Force case to media default
o = Do not affect name case

bit 14: 1 = Literal name
o = Prefix substitution allowed

bit 15 is reserved

Address of name of file to be deleted

FlexDS Programmer's Guide DELETE

Return Code:

ret

Description:

Error Code

The DELETE SVC removes an existing disk file, pipe,
virtual console, or directory file. Before you . can
delete a virtual console, it must have no open files
or child consoles. Before you can delete a directory
tile, it must be empty.

An attempt to delete an open file returns success,
however, the file is not immediately deleted. Instead,
FlexOS marks the file as temporary. The temp.orary
classification results in a file that remains available
until the last close, when it is deleted.

7-37

OEVLOCK

7.12 DEVLOCK

C Interface:

BYTE
LONG

option;
fnurn;

FlexOS Programmer's Guide

ret = s_devlock(option,fnurn);

ret = _osif(F _DEVlOCK,&parmblk);

parmblk:

o 0

4

8

Parameters:

option

fnurn

Return Code:

ret

7-38

I 0 I
0

fnurn

o - lock for process
1 - Lock for process family
2 - Unlock

option

File number of the opened device

Error Code

flexOS Programmer's Guide OEVLOCK

Description: The OEVLOCK SVC locks or unlocks a device;
restricting or releasing access rights to the device.
Use the option field to indicate whether you want
access restricted to the calling process alone or to
the calling process and other processes with the
same family 10 (flO).

flexOS does not lock the device and returns an
error if another process has an open file on the
device. (flexOS allows the calling process to have
open files, however.) It also returns an error if the
device was protected against OEVLOCK when it was
installed.

The device can only be unlocked by the process
that initiated the lock. The lock is automatically
removed when the process terminates and when the
device file is fully closed. If the lock is applied to
allow only related processes access to the device,
flexOS removes the restriction when the initiating
process terminates; related processes no longer
have exclusive access. ..

7-39

DISABLE FlexOS Programmer's Guide

7.13 DISABLE

C Interface:

ret = _osif(F _DISABLE,O);

Parameters:

NONE

Return Code:

NONE

Description:

7-40

The DISABLE SVC suspends the calling process's
program jumps to software interrupt routines (SWls).
DISABLE does not, however, suspend software
Interrupts generated through the EXCEPTION SVC.
FlexOS triggers SWls for events completed while
software interrupts are DISABLEd wh·en the ENABLE
SVC is called.

FlexOS Programmer's Guide ENABLI;

1.14 ENABLE

C Interface:

ret = _osif(F _ENABLE,O);

Parameters:

NONE

Return Code:

NONE

Description: The ENABLE SVC restores program jumps to
software interrupt routines (SWls). (The DISABLE SVC
suspends their execution.) After ENABLE is called,
FlexOS triggers the SWls for events completed while
software interrupts were DISABLEd.

7-41

EXCEPIION

7.15 EXCEPTION

C Interface:

WORD
LONG

number;
isr;

FlexOS Prograrnmer's· Guide

ret = s_exception(number,isr);

ret = _osif(F _EXCEPTION,&parmblk);

parmblk:

·0

4

Parameters:

number

Isr

Return Code:

ret

Description:

7-42

o o number

isr

exception number

Address of Interrupt Service Routine. A NULL pointer
removes the software interrupt for the exception
number specified.

Error Code

The EXCEPTION SVC allows a u·ser program to trap
various conditions that would otherwise result in a
program abort or error.

/

FlexOS Programmer's Guide EXCEPTION

The number parameter is a 16-bit integer specifying
the exception condition to trap. Exception condition
numbers are assigned as shown in Table 7-1;' see
the first section of the chip supplement to this book
for the relationship between your microprocessor's
and FlexOS's condition numbers.

Table 7-1. Exception Condition Numbers

Number

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1~-255

256+n
512-64K

Condition

Non-existent memory
Memory boundary error
Illegal instruction
Divide by zero
Bound exception
Overflow error
Privilege violation
Trace
Breakpoint
Floating point exception
Stack fault
Emulated instruction group 0
Emulated instruction group 1
Emulated instruction group 2
Emulated instruction group 3
Enlulated instruction group 4
Emulated instruction group 5
Emulated instruction group 6
Emulated instruction group 7
Reserved
Software interrupt n
Reserved

7-43

EXCEPTION

7-44

FlexOS Programmer's Guide

Enwlated instruction group 0 is reserved for
software emulation of floating point hardware. Refer
to programmer guide supplements for other
emulation group assignments.

The Interrupt Service Routine is a machine-specific
routine that must save and restore machine state if
it is to return to the program causing the exception.
This includes an "Interrupt Return" tailored to the
CPU architecture to exit the routine. Be careful to
monitor your stack utilization; your isr may have to
do a stack switch for a program that is tight on
stack space. This happens especially' when the
exception occurs in procedure code loaded through
the COMMAND SVC.

FlexOS Programmer's Guide EXIT

7.16 EXIT

C Interface:

LONG status; /*System error code or utility return code*/

s_exit(status);

ret = _osif(F _EXIT,status);

Parameters:

status

Return Code:

A 32-bit value setting exit flags in the high order
word and passing completion status in th~ low
order word.

Set exit flag bit 0 (status bit 16). to 1 to keep
memory resident. Otherwise, FlexOS releases the
terminating processes memory. Exit flag bits 1 - 15
are reserved and must be O. The keep memory
resident flag is only valid when the process is
created with COMMAND flag bits 5 and 6 set. See
Section 7.6

The completion status word is returned to
terminating process's parent process.

NONE to calling process

7-45

EXIT

Description:

7-46

FlexOS Programmer's Guide

The EXIT SVC terminates the calling process, returns
control to FlexOS, and passes back the completion
status value to the parent process. Any outstanding
events are cancelled and open files closed.
Depending on status bit 32 (exit flag bit 16), the
terminating process's memory allocation is either
released or kept resident.

After a process calls EXIT, its parent's COMMAND
call completes. The completion status code is
placed into the low order WORD of the return code
with the high order word set to O. (If exit flag 6 was
set, FlexOS resets it.) See Appendix B for utility
return codes.

FlexOS sets the high bit of the completion status
word to form a negative number when the attempt
to create the process resulted in an error or the
process was abnorrnally terminated. You can use
the remainder of the bits to return a value to the
parent process. By convention, a 0 value is used to
indicate success while positive values indicate some
form of partial completion.

FlexOS Programmer's Guide

7.17 GET

C Interface:

UWORD
BYTE
LONG

flags;
table, *buffer;
id,bufsiz;

ret = s_get(table,id,buffer,bufsiz);

ret = _osif(F _GET,&parmblk);

parmblk:

o

4

8

12

16

0 I table f
0

id

buffer

bufsiz

GET

flags

7-47

GET' FlexOS Prograrnmer's Guide

Parameters:

table Table Number

flags bits 0-7 can be used for SPECIAL devices bits 8-15
are reserved

id

buffer

bufsiz

Return Code:

ret

Description:

7-48

File number or process 10

Address of buffer to place partial or complete table
contents

Size of buffer in bytes

Error Code

The GET SVC stores partial or full table contents in
the buffer specified. You specify the table by its
nurnber and, when there is more than one table with
the same number, by a unique identifier. If the
bufsiz is less than the size of the table structure,
only the table contents up to that byte are stored.

Depending on the table type, the table ID is either a
process 10 or a file number. The table descriptio~s
in Section 8 indicate what the 10 is for each table.
Not all tables require an 10. Use a NUll 10 value for
these GET calls.

FlexOS Program.ner's Guide

1.18 GIVE

C Interface:

LONG fnum;

ret = s_give(fnum);

ret = _osif(F _GIVE,&parmblk);

parmblk:

o

4

8

Parameters:

fnum

Return Code:

ret

0 I 0

File number
keyboard . you
keyboard.

Error Code

I 0

0

fnurn

of virtual console
want mapped to

GIVE

whose virtual
the phvsical

7-49

GIVE

Description:'

7-50

FlexOS Programmer's Guide

The GIVE SVC transfers access to the physical
keyboard and mOllse from the current virtual
console to the virtual console specified by tnum.
The virtual console getting ownership must be the
virtual console for the process making the call or a
child of that virtual console. Keyboard and mouse
ownership is returned through the KCTRl SVC.

Keyboard and mouse ownership is always passed
from one virtual console to anot.her as a unit; they
cannot be separated.

All characters in the previous owner's keyboard
buffer are transferred into the new owner's keyboard
buffer. Characters read subsequently from the
physical keyboard are appended to the end of the
characters in the buffer.

FlexOS Programmer's Guide

7.19 GSX - Perform Graphic SVC

C Interface:

ret = s_gsx();·

ret = _osif(F _GSX,&parmblk);

parmblk:

o

4

8

12

Parameters:

0 I option

GSX - Perform Graphic SVC

I 0

0

fnurn

P8

PB Address of GSX Parameter Block

7-51

GSX - Perform Graphic SVC FlexOS Programmer's Guide

GSX Parameter Block format:

o

4

8

12

16

20

option

Return Code: .

ret

Description:

7-52

o
1

contrl

intin

ptsin

in tout

ptsout

reserved

normal GSX call
VOl aborting due to a CTRl-C.

Error Code

The GSX SVC allows the calling process to perform
a Graphics operation on the indicated file.

FlexOS Program.ner's Guide

1.20 INSTALL

C Interface:

BYTE
UWORD

option, *devname, *parm;
flags;

ret = s_install(option,flags,devname,parm);
ret = _osif(F _INSTALL,&parmblk);

parmblk:

o

4

8

12

Parameters:

option

0 I option I flags

0

devname

parm

o - Remove previouslV installed driver unit.

devname = device driver name
parm = NULL

- Load device driver fronl disk

devname = device driver name for unit 0
parm = loadable driver disk file name

INSTAll

7-53

INSTAI.L FlexOS Programmer's Guide
---_._------_. __ ._-

2 - Add unHto existing device driver

devnarne = device driver name for new unit
parm == device driver name for unit 0

3 - Link a subdriver to a device driver

devname = Front end device driver name
parm = Subdriver device driver name

flags These flags are used for options 1 and 2 only.

7-54

bit 0: 1 = Raw SET allowed
o = Raw SET not allowed

bit 1: Reserved (must be 0)

bit 2: 1 = Raw WRITE allowed
o = Raw WRITE not allowed

bit 3: 1 = Raw READ allowed
o = Raw READ not allowed

bit 4: 1 = Shared access allowed
o = Exclusive access only

bit 5: 1 = Removable device
o = Permanent device

bit 6: 1 = DEVLOCKs allowed
o = DEVLOCKs not allowed

bit 7: 1 = Shared access only
o = Exclusive access allowed

bit 8: 1 = Allow device partitions
o = Do not allow partitions

bit 9: 1 = Verify after disk writes
o = Do not verify after disk writes

·II:::XUOl rl uHI dlllllitH :> UUIUt;

devname

parm

teturn Code:

ret

.escription:

bits 10 - 12 ,are reserved and must be 0

bit 13: 1 = Force case to media default
o = Do not force case

bit 14: 1 = Literal load name
o = Prefix substitution on load name

bit 15 is reserved and nlust be 0

Address of the device name

Depending on the option a null pointer or the
address of the loadable disk driver file name, unit 0
device name, or subdevice name.

Error Code

The INSTAll SVC loads a device driver, removes a
device driver, adds a unit to an existing device
driver, or associates a subdevice to an existing
device driver. The calling process must have group
and user IDs of 0 to call INSTALl. INSTAll's
devname and parm values are different for each
option.

The device privileges set by the driver override
those set by your INSTAll flags. This prevents you,
for example, ·from opening a printer device with read
access.

If a physical device driver has more than one unit,
you must specify a unique device narne to
distinguish each unit. Put the unit's name in the
devname field and specify the physical device driver
in the parm field. devnarne and parrn values must be
null terminated and are Ii.nited to 128 bytes.

7·- 55

INSTAll

7-56

FlexOS Programmer's Guide

When you call option 3, both drivers must be
already installed.

Flag bit 8 is used only by the disk resource manager
and indicates whether or not the fixed disk device
can have partitions. A disk with partitions cannot
be formatted when installed with this bit on. Flag
bit 9 is also used only by the disk resource
manager. Set it when you want to verify every write
to disk. Checksum verification is done.

FlexOS Programmer's Guide

7.21 KCTRl

,C Interface:

LONG
UWORD
UWORD
UWORD
REeT

fnum;
nranges;
f1ags,beg 1,beg2,beg3,beg4;
end 1,end2,end3,end4;

, region;

ret = s_kctrl(fnum,nranges,beg 1 ,end 1,beg2,end2, ... end4);
ret = s_mctrl(fnum,region);
ret = _osif(F _KCTRl,&parmblk);

parmblk:

o

4

8

12

16

20

24

0 I 0

0

fnurn

beg1

beg2

beg3

beg4

(if mouse control)

flags

end1

end2

end3

end4

116

2 L _________ ---.J

_ region

KCTRL

7-57

KCTRl FlexOS Programmer's Guide
.------- ---_._--------- -- -------------

Parameters:

flags

nranges

fnum

begn

endn

region

Return Code:

ret

Descripti.on:

7-58

Reserved, must be 0
bit 0: 1 = Mouse control

o = Character control

If 0, keyboard ownership is controlled through
characters typed on the keyboard and the begin
range and end range parameters are required. If 1,
keyboard ownership is controlled through mouse
movement and a region is required.

The number of beginning and ending ranges to
follow--maximum 4.

Console file number of console to get keyboard;
must· be console file of the parent virtual console.

First character in range of characters; pressing any
character in range causes keyboard to return to
specified console.

last character in the range.

RECT structure defining a character rectangle on the
parent's virtual console.

Error Code

The KCTRl SVC transfers keyboard ownership to the
console file specified by fnum when a character is
entered that falls within any of the four ranges
specified. The initial transfer of ownership is
conferred with the GIVE SVC.

FlexOS Prograrnmer's Guide KCTRL

You can specify up to four character ranges. The
ranges are inclusive of the first and last characters.
A single character is specified by using it as the
beginning and ending character. When a character
falling in the range is typed, that character and all
subsequent characters are diverted to the parent
console file's keyboard buffer. The process
controlling the virtual consoles can either give
control of the keyboard to another virtual console or
take some special action on behalf of the user.

You can also use mouse position to change
keyboard and mouse ownership. In this case you
specify a RECT (see Section 3 for the REeT
description) on the parent console in which the
mouse form must be resident. This region must be
within the virtual console. When the mouse leaves
the region, keyboard and mouse ownership go back
to the parent.

7--59

LOCK FlexOS Programmer's Guide

7.22 LOCK

C Interface:

UWORD
LONG

flags;
fnum,offset,nbytes;

ret = sJock(flags,fnum,offset,nbytes);
emask = 9_lock(swi,flags,fnum,offset,nbytes);
ret = _osif(F _lOCK,&parmblk);

parmblk:

o

4

8

12

16

O=sync
1 =async 0

swi

fnurn

offset

nbytes

flags

Parameters:

7-60

flags bits 0 and 1 select the LOCK mode

o = Unlock
1 = Exclusive lock
2 = Exclusive write lock
3 = Shared write lock

bits 2-3 are reserved (must. be 0)

r-I6XU~ t"rugranuner 5 lJUIUe

swi

fnum

offset

n'bytes

Return Code:

ret

Description:

bit 4: 1 = Return error on lock conflict
o = Wait on lock conflict

bits 5-7 are reserved (must be 0)

bits 8 and 9 determine how the offset field is
interpreted

o = Relative to beginning of file
1 = Relative to file pointer
2 = Relative to end of file

bits 10-15 are reserved (must be 0)

Address of software interrupt routine

File number whose contents you want to lock and
unlock

Offset of region to lock in file

Length of region to lock

Error Code

The LOCK SVC either locks or unlocks a region of a
disk file, restricting or releasing access rights In the
process. The disk file is specified by fnum and the
area to be locked is determined by flag bits 8 and 9,
offset, and nbytes. The Disk Resource Manager
verifies that offset and nbytes define a region that
falls on record boundaries for files created with a
record size. If you specify a region that does not fall
on a record boundary, no records are locked or
unlocked and an error nlessage is returned.

The lock modes selected by flag bits 0 and 1 are
defined as follows:

7-61

LOCK

7-62

FlexOS Programmer's Guide

• 1--Exclusive lock: Prevents other processes
from locking, reading from, writing to, or
deleting the region.

• 2--Exclusive write lock: lets other processes
read from the region but prevents them from -
locking, w.riting to, or deleting the region.

• 3--Shared write lock: Allows other processes
to read from and establish a ,shared write lock
on but prevents them from writing to the
region

Flag bit 4 determines what happens when the region
requ,ested is already locked in an exclusive mode.
When you set bit 4 to 1, an error code Is returned;
when you set bit 4 to 0, LOCK waits for the region
to be unlocked, locks the region, and returns.

The offset of the lock region in the file is,
depending on the value in flag bits 8 and 9, relative
to the beginning of the file, the current file pointer,
or the end of the file. The file pointer location is
modified by the READ, WRITE and SEEK SVCs. The
nbytes value determines how many bytes are
locked.

To unlock a region set flag bits 0 and 1. to O. The
offset indicates the first byte of the region to ':Inlock
and nbytes the number of bytes to unlock. Because
the region unlocked is independent of the region
Initially locked, you can lock a large region of a file
and then release portions as the lock becomes
unnecessary so that other processes can have
access. Once a region is unlocked, it can be locked
by another process.

An unlock specification with flags and offset values
equal to 0 and nbytes equal to OxFFFFFFFF removes
all locks on the file made by the calling process.
The number of unlock calls does not have to match
the number of lock calls.

FlexOS Programmer's Guide

7.23 LOOKUP

C Interface:

UWORD
BYTE
LONG

flags;
table, *name, *buffer;
key,bufsiz,itemsiz,nfound;

LOOKUP

nfound = s_lookup(table,flags,name,buffer,bufsiz,itemsiz,key);

ret = _osif(F _LOOKUP,&parmblk);

parmblk:

o

4

8

12

16

20

24

Parameters:

0 I table I
0

name

buffer

bufsiz

ilemsiz

key

flags

table Table Number (Table 10-1 lists the table numbers)

flags bits 0 - 7 are dependent on table type

bits 8 -12 are reserved (must be 0)

7-63

LOOKUP

name

buffer

bufsiz

itemsiz

key

Return Code:

nfound

ret

7-64

FlexOS Programmer's Guide

bit 13: = Force name case to media default
o = Do not change name case

bit 14: 1 = Literal name
o = Prefix translation allowed

bit 15 Is reserved (must be 0)

Address of the table narne to search for; names are
case sensitive.

Address of buffer to store information collected.

Size of buffer In bytes.

The number of bytes to store from each table. If
itemslz is less than the table size, only that many
bytes from each table found are written in the
buffer. If itemslz is greater than the table size, the
excess area is not modified.

Key from which to continue searching. The key
value depends on the table type. Each table allowing
LOOKUP specifies a key for continued search. The
LOOKUP SVC continues the search from the first
item after the key. A key value of 0 always starts
the LOOKUP search from the beginning of the table.

Number of tables found. LOOKUP stops searching
when the end of the buffer is reached or there are
no more tables. If the last table does not fit into the
remaining buffer space, it is discarded.

Error Code

FlexOS Programmer's Guide LOOKUP

Description: The LOOKUP SVC searches the system tables for
those matching the table and name specified. The
key field is used to specify the starting point for the
search. A key value of zero specifies the beginning.
A table's key value is defined by the resource
manager responsible for that table. When a match is
found the table, or an excerpt corresponding to the
itemsiz in length, is copied into the buffer. The
search continues until the buffer is filled or there
are no more tables.

The name specification is limited to 128 bytes and
must be null terminated. You can use wildcards in
the name specification. However, you are restricted
to the lowest level of a path name--that is, files
within a directory and devices on a node. The name
"*,, is translated to mean "default:*".

Table names are case sensitive and you must enter
your specification with the same case letters to get
a match. This is also true when you use wildcards.
For example, the entry "s*" returns only those tables
beginning with a lowercase s.

A return of 0 indicates success, but means that
LOOKUP found no tables.

Table numbers, names, keys and the use of flag bits
o through 7 are described in Section 8.

7-65

MALLOC

7.24 MAllOC

C Interface:

LONG
BYTE

*mpbptr,mpbsiz;
option;

FlexOS Programmer's Guide

ret = s_malloc(option,mpbptr);

ret = _osif(F _MALLOC,&parmblk);

parmblk:

o

4

8

12

16

Parameters:

7-66

option

mpbptr

mpbsiz

0 I option I
0

0

mpbptr

mpbsiz
~

o = Expand existing heap
1 = Allocate a new heap

0

Address of Memory Parameter Block

Size of Memory Parameter Block in bytes

FlexOS Programmer's Guide MAllOC

The Memory Parameter Block must have the following format:

o

4

8

~eturn Code:

ret

Description:

start

min

max

start: For option equals 0, set the base address Of
the heap segment to be expanded in this field.
MAllOC writes the base address of the added
memory portion before it returns. For option equals
1, set this field to zero. MAllOC fills in the base ~,

address of the new heap here.

min: Specify the minimum number of bytes
required. MAllOC fills in the .actual number
allocated before returning.

max: Specify the maximum number of bytes
required. MAllOC does not change your entry.

Error Code

MAllOC either adds contiguous memory to the end
of an existing heap or allocates a new heap. Use the
option field to select one or the other and the
Memory Parameter Block to specify the minimum
and maxirnum memory requirements. Set the
Memory Parameter Block's start parameter to the
base address of the existing heap for option 0 or to
zero for option 1.

7-67

MALLOC

7-68

FlexOS Programmer's Guide

Note: Process are not automatically given an initial
heap allocation. Consequently, option 1 must be
called the first time heap space is needed.

When you select option 0, MALLOC extends the
designated heap contiguously and modifies your
Memory Parameter Block's start and min parameters
to indicate the new allocation's starting address and
actual allocation, respectively. The original heap's
base address (which is present PROCESS table) and
contents remain unchanged.

When you select option 1, the new heap mayor
may not be contiguous with any previously
allocated heap. MALLOC modifies your Memory
Parameter Block's start and min values to indicate
the new heap's base address and actual allocation.
These new values a.lso appear as the PROCESS
table's HEAP and HSIZE parameters. The new heap
may be allocated such that an existing heap Is no
longer expandable.

MALlOC use is affected by the type of processor.
See the supplement corresponding to your
processor for more information.

FlexOS Programmer's Guide MFREE

7.25 MFREE

C Interface:

BYTE *start;

s_mfree(start);

ret = _osif(F _MFREE,start);

Parameters:

start . First address in heap to free

Return Code:

ret Error Code

Description: The MFREE SVC releases the memory in a heap
from the address specified to the end of that heap.

7-69

OPEN

7.26 OPEN

C Interface:

UWORD
BYTE
LONG

flags;
*narne;
Inurn;

FlexOS Programmer's Guide

Inurn = s_open(flags,narne);

ret = _oslf(F _OPEN,&parrnblk);

parmblk:

o

4

8

0 I option I flags

0

name

Parameters:

option May be used by SPECIAL devices

flags bit 0: 1 = Delete file/set attributes access
o = No delete/set access

bit 1: 1 = Execute access
o = No execute access

bit 2: 1 = Write access
o = No write access

bit 3: 1 = Read access
o = No read access

7-70

FlexOS Programmer's Guide OPEN

name

Return Code:

fnum
ret

Description:

bit 4: 1 = Shared
o = Exclusive

bit 5: 1 = Allow shared reads if shared
o = Allow shared RIW it shared

bit 6: 1 = Shared file pointer
o = Unique tile pointer

bit 7: 1 = Reduced access accepted
o = Return error on reduced access

bits 8 - 12 are reserved (must be 0)

bit 13: 1 = Force case to media default
o = Do not affect name case

bit 14: 1 = literal name
o = Prefix substitution allowed

bit 15 is reserved (must be 0)

Address of file, pipe, or device name

file number
Error Code

The OPEN SVC opens an existing file and returns a
32-bit file number u sed for subsequent lID. "file" in
this context refers to disk files, pipes, and device
files used to communicate with printers, mouses,
consoles, and special devices. FlexOS sets the file
pointer to 0 when you open the file.

7-71

OPEN

7-72

FlexOS Progranuner's Guide

Use flag hits 0 through 3 to request the file access
privileges--read, write, execute, and delete/set. Use
flags 4, 5, and 6 to set the access mode--shared
versus exclusive, shared read only versus shared
read/write when shared, and shared versus unique
file pointer. The use of these flags to monitor file
access differs slightly from one type of file to
another. See the sections in this manual on disk
file, console, pipe, and special device management
for the description of flag use with these types of
files.

Set flag bit 6 when you want two or more
processes to share the same file pointer; this
feature is only available to processes with the same
family identification number (FlO). Each process
sharing the pointer must have this flag set. When
this bit is set, the value of flag bit 1 is assumed to
be 1; the actual value is ignored.

Set bit 7 to accept reduced access privileges. The
file's governing privileges for owner, group, and
world categories are set when it is created. Reduced
access is an issue when a disk label's security flag
bit is set and you request a privilege level not
available to a process with your 10 and group
number. Set this flag to 1 If you can accept
reduced access; FlexOS ANOs the file's R, W, E, and
o privileges corresponding to your category with
those you requested to determine the privileges you
actually get. Set this flag to 0 if you cannot accept
reduced access; FlexOS returns an error code when
the privileges do not match.

FlexOS Programmer's Guide OPEN

Files can be opened any number of times. Each
open returns a different file number and each must
be closed. Use this technique to obtain greater
access to a tile without losing your previous access.
The standard protection rules do not apply on
multiple opens of the same file by the same
process. For example, if you open a file in SHARED,
READ-ONLY mode, you can later open it ,in
EXCLUSIVE, READ-WRITE mode. The protection
rules still apply, however, with respect to other
processes attempting to open the file.

Pipe file's read and write ends are separate and
independent of each other. Similarly, a console file
can be opened for read and write access separately.
If one process opens a console or pipe file with
EXCLUSIVE, READ access, another can open it with
EXCLUSIVE, WRITE access. One end of a pipe file
can be opened in SHARED mode while the other is
opened in EXCLUSIVE mode. For pipes, how you
open the file affects the pipe's operation.

7-73

ORDER

7.27 ORDER

C Interface:

WORD
LONG

order;
fnurn;

ret = s_order(order,fnum);

ret = _oslf(F _ORDER,&parmblk);

parmblk:

o 0 I 0 I
4 0

8 'nurn

Parameters:

FlexOS Programmer's Guide

order

order New virtual console position

o = Bottom
1 = Next to Bottom
2 = 2nd from Bottom
n = Nth from Bottom

-1 = Top

fnum File number of virtual console to move

Return Code:

ret Error Code

7-74

FlexOS Programmer's Guide ORDER

Description: The ORDER SVC changes the position of the virtual
console with file number fnum in a "stack" of sibling
virtual consoles. The "order" value specifies the
virtual console's new position. Use -1 to specify
the ~op. All other positions are designated by
number where 0 is the bottom console, 1 the next,
then 2, and so forth. The Console Resource Manager
adjusts the position numbers after you m~ke a
change.

The initial order of precedence corresponds to the
order of creation.

7-75

OVERLAY

7.28 OVERLAY

C Interface:

BYTE
LONG

*codeadr, *dataadr;
fnurn,offset;

FlexOS Programmer's Guide

ret = s_overlay(fnum,codeadr,dataadr,offset);

ret = _osif(F _OVERLAY,&parmblk);

parmblk:

o

4

8

12

16

20

Parameters:

fnum

codeadr

7-76

0
... I 0 I 0

0

fnurn

codeadr

dataadr

offset

File number of the opened file containing. one or
more overlay procedures

Address in calling process's code area in which to
load the overlay code.

FlexOS Programmer's Guide OVERLAY

dataadr

offset

Return Code:

ret

Description:

Address in .calling process's data area in which to
load the overlay data.

Eyte offset into file of the overlay header.. The
header must be in the same format as the default
program load image used by the COMMAND SVC.

Error Code

The OVERLAY SVC loads the code and data frol11 the
designated overlay file into the calling process's
memory. The overlay file is specified by fnum and
the code and data addresses by the codeadr and
dataadr painters, respectively. Use the offset value
to select a. specific overlay within a file containing
several. Each overlay in a file must have its own
header. The overlay file must be open and the
calling process must have EXECUTE privilege.

An E_MEMORY error is returned if the overlay does
not fit into the calling process's code or data area
starting at the specified address.

When the COMMAND SVC detects overlays in the
program file, it automatically keeps the file open.
The file number can be found in the ENVIRON table.

7-77

READ

7.29 READ

C Interface:

LONG
UWORO
BYTE

fnum,offset,bufsiz,nbytes;
flags, *delimiters;
*buffer,option;

FlexOS Programmer's Guide

nbytes = s_read(flags,fnum,buffer,bufsiz,offset);
emask = e_read(swl.flags,fnum,buffer,bufsiz,offset);
nbytes = s_rdelim(flags,fnum,buffer,bufsiz,offset,delimiters);

ret = _oslf(F _READ,&parmblk);

parmblk:

o

4

'8

12

16

20

24

o=sync
1 =async

option

swi

'num

buffer

bufsiz

offset

delimiters

flags

Parameters:

option May be used by SPECIAL devices

7-78

FlexOS Programmer's Guide READ

flags bit 0: 1 = Read frorn device. On disk files
internal buffers are flushed and
discarded before reading. On a keyboard
file, the type ahead buffer is flushed.

o = Allow reading from internal buffers

bit 1: 1 = Read until delimiter
o = Not delimited

bit 2: 1 = Non-destructive read: Read the internal
buffer contents without removing bytes
pertinent to keyboard and pipe files only;
disk file reads are always non-destructive.

o = Norrnal read

bit 3: 1 = Preinitialized read
o = Normal read

bit 4: 1 = Include delimiter in buffer
o = Exclude delimiter

hit 5: 1 = Edited read (only relevant when "Read
until Delimiter" flag is on.)

o = Normal Read

bits 6-7 are reserved (must be 0)

bits 8 and 9 deterrnine interpretation of the offset field:

o = relative to the beginning of file
1 = relative to the file pointer
2 = relative to the end of file

bits 10-15 are reserved (rnust be 0)

7-79

READ

swi

fnum

buffer

bufsiz

offset

delimiters

Return Code:

nbytes

Description:

7-80

FlexOS Prograrn.ner's Guide

Address of software interrupt routine

File number of file to read

Address of buffer in which to place information

Size of buffer in bytes

Byte offset relative to the position indicated by flag
bits a and 9. Negative offsets are allowed.

Address of an array of WORD values. This field is
ignored on non-delimited reads. The first item
indicates the number of delimiters in the array; 16-
bit character delimiters follow. If the file being read
is an a-bit file, the high byte of each delimiter is
ignored. Disk files and pipes with a record size of 1
are considered 8-bit files; files with a record size of
2 are considered 16-bit files. If the record size is
greater than 2, a record size error is returned. The
keyboard mode in the CONSOLE table determines if
a console file is 8-bit or 16-bit oriented. On other
devices, the device driver determines if it is an 8-bit
or 16-bit device.

Number of bytes read

Error Code

The READ SVC extracts data from the specified file.
Data can be read either sequentially or randomly.
The offset field is always added to either the
beginning of a file, the current file pointer, or the
end of file (see flag bits a and 9). You can specify a
negative offset; this is useful, for example, to reread
the last record of a file. Set flag bits 8 and 9 to one
and the file pointer to one to perform sequential
liD.

FlexOS Programmer's Guide READ

LEFT ARROW

RIGHT ARROW

DELETE

BACKSPACE

CTRL-B

CTRL-X

The file pOinter is updated on every read to the byte
position after the transferred data in .the file.. It is
initialized to 0 at OPEN.

The READ SVC verifies that the offset and bufsiz
fields are on record boundaries if the file was
created with a record size. If the values do not fall
on record boundaries, no characters are read and an
error code is returned.

The READ SVC can be called asynchronously on
character oriented devices such as keyboards and
special devices if the delimited read flag is not set.
In this case, the number of characters read is at
least one before the event is completed. The disk
system does not support asynchronous READs. The
pipe system supports asynchronous undelimited
READs and reads as many characters as requested.

When using the delimited read flag. READ cannot be
called asynchronously. The buffer size is limited to
256 bytes. Editing is performed by keyboards on
delimited reads only. Common delimiters include
the < carriage return>, < line feed> and < help>
keys. The standard editing characters are as
follows:

Move cursor one character to left.

Move cursor one character to right.

Delete next character

Delete previous character

Move cursor to beginning of line if not at beginning,
otherwise move to end of line.

Erase from beginning of line to cursor

7-81

READ

7-82

FlexOS Programmer's Guide

If a standard editing key is used as a delimiter, it
has no effect on the returned buffer. These keys
can be changed by an application program through
the use of the XlAT SVC. The OEM that configures
the system can also set the original . editing
character set.

FlexOS Programmer's Guide

7.30 RENAME

C Interface:

UWORO
BYTE

flags;
*name, *newnarne;

ret = s_rename(flags,name,newname);

ret = _osif(F _RENAME,&parmblk);

parmblk:

o

4

B

12

Parameters:

0 I 0 I flags

0

name

newname

flags bits 0 - 12 are reserved

bit 13: 1 = Force case to media default
o = Do not affect name case

bit 14: 1 = literal name and new name
o = Prefix translation allowed

bit 15 is reserved

RENAME

name Address of string containing name of existing file.

7-83

RENAME

newnarne

Return Code:

ret

Description:

7-84

FlexOS Programmer's Guide

Address of string containing new name of file.

Error Code

The RENAME SVC renames an existing disk file or
directory. If the file is currently open by another
process, FlexOS does not rename the file and
returns an error. For files, if the new name specifies
another directory, the file is moved to that location.
This feature is limited to directories on the same
drive. Attributes, ownership, protection and date
stamps are not changed.

FlexOS Programmer's Guide RETURN

7.31 RETURN

C Interface:

LONG emask;

ret = s_return(emask);

ret = _osif(F _RETURN,emask);

Parameters:

emask

Return Code:

ret

Description:

Event mask of completed event

return code of asynchronous SVC

The RETURN SVC retrieves the return code of an
asynchronous SVC. If the event is not complete,
FlexOS waits for it to complete before returning
from the RETURN call. Use WAIT or STATUS to
determine if the event has completed. The return
code is the code that would have been returned if
the SVC had not been called synchronously. Once
the RETURN SVC has been called, the event's emask
bit is cleared.

Note: You cannot use RETURN for events with a
software interrupt (swi). The event's completion is
provided to the swi and is not kept available to the
parent process.

7-85

nWAIT FlexOS Programmer's Guide

7.32 RWAIT

C Interface:

REel *region;

position = s_rwait(flags,fnum,region);
emask = e_rwait(swi,flags,fnum,region);

ret = _osif(F _RWAIT,&parmblk);

parmblk:

o o = sync
0

·1 = async

4 swi

8 fnum

12
region

16

flags

Parameters:

flags

fnum

7-86

bit 0: 1 = clip to current window
o = no clip

bit 1: 1 = return on exit from rectangle
o = return on entry to rectangle

bits 2-15 are reserved and must be O.

File number of open mouse file

FlexOS Programmer's Guide RWAIT

region REeT structure describing a rectangular area of the
screen associated with the mouse.

04 1~ ________ R_O_W ________ r-_______ C_O_l __ ~ __ ~
. NROW NeOl

Return Code:

ret

Description:

Error Code

The RWAIT SVC allows a process to detect the
mouse entering or exiting a described region of the
screen.

7-87

SEEK

7.33 SEEK

C Interface:

LONG
UWORO

fnum,offset;
flags;

position = s_seek(flags,fnum,offset);

7-88

ret = _osif(F _SEEK,&parmblk);

parmblk:

o

4

8

12

0 I 0 I
0

fnum

offset

FlexOS Programmer's Guide

flags

FlexOS Programmer's Guide SEEK

Parameters:

flags bits 0-7 are reserved (must be 0)

offset

Return Code:

position

Description:

bits 8-9 determine how to interpret the offset field

o - Relative to beginning of file
1 - Relative to file pointer
2 - Relative to end of file

bits 10-15 are reserved

Number of bytes relative to reference selected in flag
bits 8 and 9

Current position of the file pointer after SEEK call ...

The SEEK SVC either returns or changes the file
pointer position of the specified file. To get the
current pointer position, select the "Relative to file
pointer" option in flag bits 8 and 9 and specify an
offset of O. Any other combination of values for flag
bits 8 and 9 and the offset cause a change in the
file pointer position. For all SEEK calls, the value
returned indicates the current file pointer position.

The offset value can be positive or negative. An
error is returned, however, if the new pointer
position is less than o. If the file consists of
multibyte records, the offset rnust fall on a record
boundary.

7-89

SET

7.34 SET

C Interface:

BYTE
LONG
UWORO

table, *buffer;
id,bufsiz;
flags;

ret = s_set(table,id,buffer,bufsiz);

ret = _osif(F _SET,&parmblk);

parmblk:

o 0 I table I
4 0

8 id

12 buffer

16 bufsiz

Para~eters:

table Table number

FlexOS Programmer's Guide

flags

flags bits 0-7 may be used by SPECIAL drivers
bits 8-15 are reserved and must be 0

7-90

FlexOS Programmer's Guide SET

buffer

bufsiz

Return Code:

ret

Description:

Table identifier (required only when you have more
than one table with the same number)

Address of source buffer with new table contents

Size of buffer in bytes

Error Code

The SET SVC changes table contents. The table is
specified by the table number and, if necessary, an
id. The id is table dependent; see the individual
table explanations in Section 8 for the id value of a
specific table. Not all tables can be modified with
SET and some tables can only be modified by
privileged processes.

If the bufsiz specified is less than the size of. the
table, the buffer contents replace the table contents
starting from the beginning of the table. The
remainder of the table is not changed.

7-91

SPECIAL

1.35 SPECIAL

C Interface:

UWORD
LONG
BYTE

flags;
fnum,dbufsiz,pbufsiz,;
func, *databuf, *parmbuf;

FlexOS Programmer's

ret = s_special(func,flags,fnurn,databuf,dbufsiz,parmbuf,pbufsiz
emask. = e_special(swi,func,flags,fnum,databuf,dbufsiz,parmbuf,
pbufsiz);

• ret = _osif(F _SPECIAL,&parmhlk);

7-92

parmblk.:

o

4

8

12

16

20

24

O=sync
1 =async func

swi

fnurn

databuf

dbufsiz

parrnbuf

pbufsiz

flags

FlexOS Programmer's Guide SPECIAL

Parameters:

func

flags

swi

fnum

databuf

dbufsiz

parmbuf

pbufsiz

Return Code:

ret

ret

SPECIAL function number field: Bits 6 and 7 indicate
the data flow direction of the databuf and parmbuf
buffers as follows:

~!!]_--p~rmQ4f
1 = write buffer
o = read buffer

~i~ ~~-d(J~~byf
1 = write buffer
o = read buffer

If no data or parameters are to be transferred, set
th.e bits to O. The remainder of the bits in the
number are determined bV the device drivers ..

Depends on type of file;. however bits 11, 14, and 15
are alwavs reserved and must be O.

Address of software interrupt routine

File number returned when device was opened

Address of data buffer. If dbufsize field is NUll, this
field is data.

Size of data buffer in bytes or NUll to indicate that
data is in databuf field or that there is no data. -.

Address of parameter buffer. If pbufsiz field is NUll,
this field is data.

Size of parameter buffer or NUll to indicate that
parameter is in the parmbuf field or that there are
no paranleters.

Return code depending on type of file

Error code

7-93

SPECIAL

Description:

7-94

FlexOS Programmer's Guide

The SPECIAL SVC provides direct access to a device.
The calling process must have opened the device
before a SPECIAL function can be used. The function
number indicates what type of operation to perform.
SPECIAL requires the driver, not the resource
manager, to interpret the function number and
perform the operation.

Although SPECIAL functions and return codes differ
according to the driver, the SPECIAL SVC parameter
block is always formatted as shown above. The
format rules are as follows:

• The most significant 2 bits of the func field
determine the direction of the buffer data flow
as described in the func description above.
The lower 6 bits of the func field and flag bits
0-10, 12, and 13 are driver dependent.

• The flags field is a bit map of flags affecting
the function's mode of operation and are
typically function dependent.

• The databuf and dbufsiz fields make up a buffer
specifier. If dbufsiz is 0 (NULLPTR), databuf
field is a 32 bit data value rather than a pointer.

• The data buffer cannot contain pointers.

• The parmbuf and pbufsiz fields are also buffer
specifiers and follow the same rules as the
databuf and dbufsiz fields.

There are a maximum of 64 SPECIAL function
numbers. (This is because only function number bits
o through 5 can be used.) The first 32 digits are
reserved for use by Digital Research Inc. The second
32 digits are available for use by an OEM.

FlexOS Programmer's Guide SPECIAL

7.35.1 Disk Resource Manager SPECIAL Functions

The Disk Resource Manager recognizes nine SPECIAL functions for disk
initialization and raw disk lID. These SPECIAL calls allow you to access
the disk directly, bypassing normal operations and restrictions. You
must specify OEM-defined parameters, such as sector size or file
allocation table (FAT) address, to use some functions.

The parameter blocks for the Disk Resource Manager functions adhere
to the model shown above but differ in their flag use and buffer
requirements. Each function description below includes the flag
definitions. Buffer requirements are shown in the parameter block
illustrations. It a 0 is shown in the field, there is no corresponding
parameter.

The return code for all Disk Resourc.e Manager functions is either
E_SUCCESS or EJOERRS.

Note: Before you can perform the SPECIAL disk initialization functions
1 through 3, you must open the device with exclusive access and call
SPECIAL function 8. Read, write, andlor set privileges are also required
as described below.

7-95

Disk Function 0 FlexOS Programmer's Guide

Disk Function 0: Read System Area

SPECIAL disk function 0 reads in the system area of the disk into the
data buffer. GET the drive's DISK table before you call function 0 to
determine if the system area exists on the disk. The size of the data
buffer must be greater than or equal to the size of the system area.
FlexOS requires the user to have disk read privilege to perform this
function.

o

4

8

12

16

20

24

Parameters:

flags

7-96

0 I 0 I flags

swi

'num

databuf

dbufsiz

0

0

Bits 0-15: Reserved

FlexOS Programmer's Guide Disk Function 1

Disk Function 1: Write System Area

SPECIAL disk function 1 writes the contents of the data buffer onto the
system area of the disk. GET the drive's DISK table to determine if the
disk has a system area before calling function 1. The size of the data
buffer must match the size of the system area. You must must open
the drive in e><clusive mode with write privileges and call SPECIAL disk
function 8 before you can write to the system area.

0 I 41H I flags

swi

fnurn

databuf

dbufsiz

0

0

Parameters:

flags Bits 0-15: Reserved

7-97

Disk Function 2 FlexOS Programmer's Guide

Disk Function 2: Format System Area of Disk

SPECIAL disk function 2 formats the disk's system area according to
the convention of the driver. GET the drive's DISK table to determine
if the system area exists before calling function 2. Y9u must open the
drive in exclusive mode with read, write, and set privileges and call
SPECIAL disk function 8 before you can format the system area.

0 I 2 I flags

swi

'nurn

0

0

0

0

Parameter:

flags Bits 0-15: Reserved

7-98

FlexOS Programmer's Guide Disk Function 3

Disk Function 3: Format Track

SPECIAL disk function 3 formats the disk media according. to the
specifications in the parameter buffer. You must open the drive in
exclusive mode with r~ad, write, and set privileges and call SPECIAL
disk function 8 before you can use this function

0 I 83H I flags

swi

fnum

0

0

parmbuf

pbufsiz

Parameters:

flags Bit 0: Reserved

Bit 1: = Mark the whole track as bad

Bit 2: = Use C, H, S, and N fields

Bit 3: 1 = Use HEAD, CYLINDER, BYTE SEC, and SECTOR
fields

Bits 4-15: Reserved

7-99

Disk Function 3 FlexOS Prograrnrner's Guide

Set bit 1 to remove tracks designated bad by the
manufacturer from file system access. Set flag bit 3
rather than flag bit 2 and specify the track in the
head and cylinder fields. The remainder of the fields
are irrelevant in this operation.

You select the format locations and characteristics
in the parmbuf (parameter buffer). The data
structure provides two, mutually exclusive means for
sp~cifying the starting head, cylinder, sector
number, and the number of bytes per sector for the
format operation. The other fields are valid for both
options. Set flag bit 2 or 3 to select one means over
the other.

parmbuf Format:

HEAD

DENS,

HEAD

CYLINDER

DENS

FILL

7-100

C

c

0

FILL

SECTRK

H S

H S

Starting head number

Starting cylinder number

Format density where

o - Single density
1 - Double density

Fill character

CYLINDER

BYTE SEC

SECTOR

I N

N

FlexOS Programmer's Guide Disk Function 3

BYTESEC Number of bytes per sector

SECTRK Number of sectors per track

SECTOR Starting sector number. When you set bit 3, the
format operation begins with the sector field
specified here

C, H, S, Be N a variable length list of 4-byte fields where:

C is a starting cylinder number
H is a head number
S is a starting sector number
N is the number of bytes/sector

When you set bit 2, the format operation begins
after the sector specified in each entry. The number
of items in the list is determined by pbutsiz.

7-101

Disk Function 4 FlexOS Programmer's Guide

Disk Function 4: Media Check

SPECIAL disk function 4 checks to see if the media has changed or if a
physical or logical error condition exists on the media. You must have
opened the drive in at least GET -only nlode to use this function. (GET
only mode is described in Section 2.6 above.)

0 I 4 I flags

swi

fnurn

0

0

0

0

Parameters:

flags Bits 0-15: Reserved

7-102

FlexOS Programmer's Guide Disk Function 5

Disk Function 5: Flush Buff~.rs

SPECIAL disk function 5 writes any updated buffers onto the disk. The
user must have opened the device, however, no particular privilege is
required.

0 I 5 I flags

swi

tnum

0

0

0

0

Parameters:

flags Bits 0-15: Reserved

7-103

Disk Function 6 FlexOS Programmer's Guide

Disk Function 6: Read Phv~ical Record

SPECIAL disk function 6 either reads data from the media into the data
buffer or verifies the data is valid; flag bit 2 determines which
operation is perforrned. The media starting point for both operations
is defined in the parameter buffer by head, sector, and cylinder
numbers. The dbufsiz value determines how much data . is read.
dbufsiz must be a multiple of the media's sector size. You must have
opened the drive with at least read privilege to use function. No data
is read, however, when you select the verify option.

0 I 86H I flags

swi

fnurn

databuf

dbufsiz

head I sector I cylinder

0

7-104

FlexOS Programmer's Guide

Parameters:

flags Bits 0-1: Reserved
Bit 2: 1 = Verify media

o = Read media
Bits 3-15: Reserved

Disk Function 6

The starting head, sector and cylinder numbers are
specified in the H, S, C fields above.

7-105

Disk Function 7 FlexOS Programmer's Guide

Disk Function 7: Write Physical Record

SPECIAL disk function 7 writes the data buffer contents to the media.
The media starting point is specified in the parameter buffer by head,
sector, and cylinder number. The dbufsiz value determines how much
data is written. dbufslz must be a multiple of the media's sector size.
You must open the drive in exclusive mode with write access before
you can use this function.

0

head

Parameters:

flags

7-106

I C7H I flags

swi

fnurn

databuf

dbufsiz

I sector I cylinder

0

Bits 0-15: Reserved

The starting head, sector, and cylinder numbers are
specified in the H, S, C fields, above.

FlexOS Programmer's Guide Disk Function 8

Disk Function 8: Initialize Format

SPECIAL disk function 8 supplies the file system and the disk driver
with the drive's Media Descriptor Block (MOB). This function must be
called before the user calls SPECIAL disk functions 1, 2, and 3. To
execute this call, the user must have opened the drive in exclusive
mode with read, write and set privileges.

0 48H flags

swi

fnurn

databuf

dbufsiz

0

0

7-107

Disk Function 8 FlexOS Programmer's Guide

Parameters:

flags Bits 0 - 15: Reserved

The Media Descriptor Block is s..,ecifled in the data
buffer as follows:

SECTSIZE FIRSTSEC

NSECTORS

SECTRK SECBLK

NFATS I FATID NFRECS

DIRSIZE NHEADS I FORMAT

HIDDEN

SYSSIZE

SECTSIZE Size of sectors in bytes

FIRSTSEC First physical sector number of File Allocation Table
(FAT) on track 0

NSECTORS Number of sectors in logical image of disk Including
FATs, directory, and boot record

SECTRK Number of sectors per track

SECBlK Number of sectors per block

NFATS Number of FATs

FATID FAT identification byte

NFRECS Number of sectors in a FAT

DIRS.IZE Number of directory entries in the root directory

NHEADS Number of heads

7-108

FlexOS Program.ner's Guide Disk Function 8

FORMAT

HIDDEN

SYSSIZE

Media format according to the following values

0= RAW
1 = 1.5 byte FATs
2 = 2 byte FATs

Number of sectors in partitions preceding the
media's logical image

Number of bytes in the system area.

7-109

Miscellaneous SPECIAL Functions FlexOS Programmer's Guide

7.35.2 Miscellaneous Resource Manager SPECIAL Functions

Two SPECIAL functions are provided for accessing serial-type port
devices when they are serving as subdrivers. Use these functions as
you would GET and SET to determine the driver's current values and
set thern. The data structure used for both functions is the PORT table.

The fnum value for both calls is the file number returned when you
open the subdriver's owner .. See Section 6 for the description of the
owner and the procedure for finding it.

Miscellaneous Device Function 0: Get Current PORT Table Values

Use this function to determine the subdriver's current PORT table
values.

Parameters:

parmbuf

pbufsize

7-110

0 I 13H I 0

0

fnum

0

0

parmbuf

pbufsiz

Address of buffer to place the PORT table.

length of the buffer; if the number splits a field,
that value is not copied.

FlexOS Programmer's Guide Miscellaneous SPECIAL Functions

Miscellaneous Device Function 1: Set Port Table Values

Use this SPECIAL function to set a subdriver's PORT table values.

Parameters:

parmbuf

pbufsize

0 I 93H I 0

0

Inurn

0

0

parrnbuf

pbufsiz

Address of buffer with source PORT table values.

length of the butter; if the number splits a field,
that value is not set.

7-111

STATUS FlexOS Programmer's Guide

7.36 STATUS

C Interface:

LONG cmask;

cmask = s_statusO;

ret = _osif(F _STATUS,OL);

Parameters:

NONE

Return Code:

cmask

Description:

7-112

Bit map of completed events

The STATUS SVC informs the calling p'rocess of
previously initiated asynchronous events that have'
completed and whose return codes have not been
retrieved by the RETURN SVC. If the event specified'
has a software interrupt (swi), the cmask value for
that event is 0 rather than 1. (You do not call
RETURN for events with a software interrupt.)

Note: STATUS places a heavy burden on the CPU;
excessive use of STATUS impacts program
performance.

FlexOS Programmer's Guide SWIRET

7.37 SWIRET

C Interface:

LONG option

s_swiret(option);·

ret = _osif(F _SWIRET,option);

Parameters:

option

Return Code:

NONE

Description:

o - return to main program at point of interruption

1 - assume process identity from main program

The SWIRET SVC is used to return from a software
interrupt routine (swi). It provides two options:

o return to the main program at the point of
interruption

o retain control of subsequent program execut~on

"main program" means the process that made the
initial asynchronous call. Both options return the
registers to their values when the process was
interrupted.

When you select SWIRET's second option, the
software interrupt assumes the main program's
process 10 and environment, including the stack.

7-113

SWIRET

7-114

FlexOS Programrner's Guide

Use this option to return to a location in the main
program other than the point of interruption or to
assume the entire process identity without returning
to the main program. Because the current condition
of the stack is unknown when SWIRET is called, you
should restore it to a known place before·
proceeding.

You can exit a program with SW'RET. Specify option'
1 and call EX.IT in your next instruction.

FlexOS Programmer's Guide

7.38 TIMER

, C Interface:

UWORD
LONG

flags;
time;

ret = s_timer(flags,time);
emask = e_timer(swi,flags,time);

ret = _osif(F _ TIMER,&parmblk);

parmblk:

O=sync
0 1 =async '0

4 swi

8 time

Parameters:

flags bit 0: 1 = absolute
o = relative

bits 1-15: Reserved

flags

swi Address of software interrupt routine

TIMER

time If bit 0 = 1 (absolute), number of milliseconds to
delay after midnight. If bit 0 = 0 (relative), number of
milliseconds to delay.

7 -115

TIMER

Return' Code:

ret

Description:

7-116

FlexOS Programmer's Guide

Error Code

The TIMER SVC delays the calling process until the
specified time or the specified period of time
expires. Use TIMER asynchronously with bit 0 = 0
(relative time) when you need a watchdog timer for
an asynchronous SVC.

If absolute time is specified and the current time of
day Is beyond it, the process delays until the
specified time the next day.

FlexOS Programmer's Guide WAIT

7.39 WAIT

C' Interface:

LONG events,cmask;

cmask = s_wait(events);

ret = _osif(F _WAIT,events);

Parameters:

events

Return Code:

cmask

Description:

Logical OR of emasks to wait for

Bit map of completed events

The WAIT SVC causes the calling process to wait for
an asynchronous event to occur. Specify one or
more events by their emask in the WAIT events
argument. FlexOS returns when one of these events
has run to completion. For events that do not have
a software interrupt, the cmask return code
indicates which event completed. Subsequently, call
the RETURN SVC to retrieve the return code of the
completed event. This also releases that emask so
it can be reused.

You can wait on events that have a software
interrupt (swi). However, the event bit in the cmask
returned is 0 rather than 1 when WAIT returns. Also,
do not call RETURN to retrieve the completion code
after WAIT returns--the cornpletion is no longer
available having already been provided to the swi
for handling.

7-117

WRITE

1.40 WRITE

C Interface:

·LONG
BYTE
UWORO

fnum,bufsiz.offset,nbytes;
option, *buffer;
flags;

FlexOS Programmer's Guide

nbytes = s_wrlte(flags,fnum,buffer,bufsiz,offset);
emask = e_write(swi,flags,fnum.buffer.bufsiz,offset);

ret = _osif(F _WRITE,&parmblk);

parmblk:

7-1'18

o

4

8

12

16

20

O=sync
1 =async option

swi

fnurn

buffer

bufsiz

offset

flags

FlexOS Programmer's Guide WRITE

Parameters:

option

flags

swi

fnum

buffer

bufsiz

offset

May be used by SPECIAL devices

bit 0: 1 = Flush buffers after WRITE.
This forces the data to the media.
If this is a zero length request,
the media is updated with any pending
writes.

bit 1:

o = Allow optimized .internal buffering

= Truncate file to size specified in
offset field. The bufsiz field
must be 0 to allow a truncate.

o = Do not truncate

bits 2 - 7 are reserved (must be 0)

bits 8 and 9 deternline how the offset field
is interpreted:

o - Relative to beginning of file
1 - Relative to file pointer
2 = Relative to end of file

bits 10-15 are reserved (must be 0)

Address of software interrupt routine

File number of file to write to

Address of buffer from which to write

Size in bytes of buffer

Offset into file to start writing depending on bits 8
and 9.

7-119

WRITE

Return Code:

nbytes

Description:

7-120.

FlexOS Programmer's Guide

Number of bytes written. When nbytes is less than
bufsize, an error ocurred during the write operation.
An error code is returned only If no data was
written before the error ocurred.

Error Code

The WRITE SVC places data into the specified file.
Flags bits 8 and 9 determine whether the offset
value is added to the beginning of file, the current
file pointer, or the end of file. The. offset can be a
negative number, allowing a write to the last record
of the file. Sequential liD is performed by writing
relative to the file pointer with an offset of O.

The file pointer is updated on every write to be the
byte position after the transferred data in the file. It
is initialized to 0 at OPEN. Use the SEEK SVC to
determine the current value of the file pointer.

The WRITE function verifies that the offset and
bufsiz are on record boundaries if the file was
created with a record size. No data is written if the
values do not correspond.

The disk system has an asynchronous interface to
allow for I/O redirection from the pipe or console
systems. However, the disk system does not
support asynchronous WRITE operations. An
asynchronous WRITE to disk is slower and requires
more memory than a synchronous WRITE.

FlexOS Programmer's Guide

7.41 XLAT

C Interface:

LONG
UWORD
BYTE

fnum,bufsiz;
flags;
*buffer;

ret = s_xlat(flags,buffer,bufsiz);

ret = _osif(F _XLAT,8cparmblk);

parmblk:

o

4

8

12

16

Parameters:

0 I 0 I
0

0

buffer

bufsiz

XLAT

flags

flags bit 0: 1 = replace existing table with buffer contents

buffer

bufsiz

o = add buffer contents to current table

bits 1 - 15 are reserved and must be O.

Address of the buffer' with the replacernent or
supplemental keystroke translations

Size of buffer in bytes

7-121

XLAT

Return Code:

ret

Description:

FlexOS Programmer's Guide

Error Code

The XLAT SVC creates, replaces, or supplements a
key translation table for the console specified by
fnurn. When the CONSOLE table KMODE (offset 2)
bit 2 Is 0, FlexOS translates characters entered from
the keyboard Into the string specified in the key
translation table.

The key translation table consists of an unlimited
number of 32 byte entries. Each entry is formatted
as follows:

1 f------------32 bytes-----------~~I

7-122

]
The fields are defined as follows:

.• key: The 16-blt character to be translated; fill
the high byte with a 0 for 8-bit Input.

• nch: A WORD value Indicating the number of
16-blt replacement characters; the maximum
number of replacement characters is 14

• replacement: The replacement string; all
characters are 16-bit

FlexOS Programmer's Guide XLAT

The key translation table is maintained on a per
process basis. Child processes inherit their parent's
table and share it until either process makes a
change. This allows a parent to set up the
keyboard environment before an application is run.
When XLAT is called to change a table shared by
two processes, FlexOS makes a separate copy for
the calling process so that the modifications do not
affect the other process.

There is no inherent limit to the number of
translated keys supported for each process. The
space for these keys are taken out of the Transient
Program Area (TPA).

End of Section 7

7-123

SECTION 8

System Tables

System status and parameter values are available to applications
through the GET, SET, and LOOKUP SVCs which operate on a set of
formalized data structures that comprise FlexOS's system tables. This
section presents descriptions of the system tables in alphabetical
order.

The GET SVC transfers the table to a buffer in the application's
memory space. The SET SVC changes values in a table. For both
SVCs, the table is identified by its number and, when that table type
has more than one. version, a unique 10 number. The LOOKUP SVC
searches for and retrieves tables of the same type. Each table that
can be accessed with LOOKUP has a key value field; use this field to
specify a starting point for the search.

The GET, SET, and LOOKUP SVCs will not access all of the system
tables. Table 8-1 lists each of the system tables and. the SVCs used
to access them. Also listed in Table 8-1 are each table's number, 10,
and key value.

8-1

FlexOS Programmer's Guide

Table 8-1. System Table Access

Untque LOOK Table No.
& Name GET SET 10 UP Key Descrtption

01-1 PROCESS X
lH ENVIRON X
2H TlMEDATE X

31-1 MEMORY X
10H PIPE X
20H DISKFILE X

21H DISK X
30H CONSOLE X

31H PCONSOLE X
32H VCONSOLE X
40H SYSTEM X
41H FILNUM X

42H SYSDEF
43H PROCDEF
44H CMDENV X
45H DEVICE
46H PATHNAME
71H PRINTER
81H PORT
82H+- SPECIAL

X

X

X

X

X

X

X

X
X

X
X
X

X

X

X

pid
o
o
o
fnum
fnum
fnum
fnum
fnum
fnum
o
fnum

pid

fnum
fnum
fnurn

X

X

X

X

X

X

X

X

X

pid Process informatton
Process environment
System time of day
System memory use

key Ptpe informat'on
key Disk f'le information

Disk device 'nformation
Console f'le 'nformation
Console device informat'on

VCNUM Console information
Global system information

fnum File number's table
key System logical name table
key Process logical name table

Command environment
key Device information
none Full path name

Printer device information
Port device informatton
Special device information

In the following system table descriptions, only those fields marked
R/W are read-write; all other fields are read-only. In all bit-mapped
values the bits for which there are no options are reserved and must
be o.

Note: FlexOS does not maintain memory representations for the
tables described in this section. The corresponding resource manager
or driver constructs them only when you call the GET, SET, or LOOKUP
SVCs.

8-2

FlexOS Programmer's Guide

8.1 CMDENV Table

Q~I?
Yes

10: 0 or process 10
Key: none

§~T?
No

bQQ~VPl
No

o

128

Command File Specification ...

Command Tail ...

256 = Length in bytes.

8.1 CMDENV Table

The CMDENV table contains a process's command file specification and
command tail. The strings are set by the COMMAND SVC. 80th fields
are 128 bytes in length and the strings are NUll terminated. The file
specification includes the full pathname.

You can get the CMDENV table for the calling process or another
process. For the calling process, specify an 10 of 0 in the GET 10 field.
Otherwise, put the process 10 of the target in the 10 field.

8-3

8.2 CONSOLE Table FlexOS Programmer's G

8.2 CONSOLE Table

~'h!mtJ~r
30H

GET?
Yes

SET?
Yes

LOOKUP? -. -

No

10: File number of the console file
Key: none

The CONSOLE table describes the screen and keyboard of a can:
file.

o 1 2 3

TAHEAD SMODE
.

o

4

8

KMODE CURROW

12

16

20

24

CURCOL

NCOLS

26 = Length In bytes

CNAME

NROWS

VCNUM I TYPE

• TAHEAD: Number of characters waiting in type-ahead buffer

• SMODE (R/W): Screen modes

8-4

bit 0: 1 = Disable escape sequence decoding
o = Select Escape sequences supported

bit 1: 1 = Characters are l6-bit values
o = Characters are 8-bit values

bit 2: 1 = Convert < LF > to < CR > < LF >
o = 00 not convert <LF> or <CR>

FlexOS Programmer's Guide 8.2 CONSOLE Table

• KMODE (R/W): Keyboard mode

bit 0: 1 = Disable Control-C
o = Control-C attempts external abort

bit 1: 1 = Disable Control-S/Control-Q
o = Allow Control-S/Control-Q

bit 2: 1 = Disable keyboard translation
o = Translate keys

bit 3: 1 = Disable ESC sequence decoding
o = Support ESC sequence

bit 4: 1 = Characters are 16-bit values
o = Characters are 8-bit values

bit 5: 1 = Disable echo
o = Echo input characters on screen

bit 6: 1 = Disable CTRL-Z
o = CTRL-Z = end of file

bit 7: 1 = Enable toggle characters
o = Disable toggle characters

bit 8: 1 = Convert <LF> or <CR> to <CR> <LF>
o = 00 not convert <LF> or <CR>

bit 9: 1 = 00 not echo carriage returns
. 0 = Echo carriage returns

bit 10: 1 = 00 not echo < CR > on any delimiter
o = Echo <CR> on any delimiter

• CURROW (R/W): Current cursor row position

• CURCOL (R/W): Current cursor column position

8-5

8.2 CONSOLE Table FlexOS Programmer's Guide

• NROWS: Height of virtual screen in character rows

• NCOlS: Width of virtual screen in character columns

• VCNUM: Decimal number of virtual console

• TYPE: Type of virtual console

bit 0: 1 = Graphics capability
o = Character only

bit 1: 1 = No numeric keypad
o = Keypad

bit 2: 1 = Mouse support
o = No mouse support

bit 3: 1 = Color
o = Black and white

bit 4: 1 = Memory-mapped video
o = Serial device

bit 5: 1 = Currently in graphics mode
o = Currently in character mode

• CNAME: Physical console device name

Each console file opened has a corresponding CONSOLE table. The
TAHEAO, CURROW, and CURCOL values are initialized to 0 when the
console file is opened. NROWS and NCOLS correspond to the rows and
columns set in the virtual console. SMODE and KMODE are initialized
to 0; TYPE and GNAME are inherited from the parent console.

GET and SET the CONSOLE table using as the 10 the file number
returned when you OPENed the file vcxxx/console. Do not use the file
number returned when you CREATEd the virtual console. For most
applications, this file number is contained in the stdout--the screen
file number--and stdin--the keyboard file number--In the ENVIRON
table. Stdl" and stdout can have the same or different file numbers.

Use SET to change the cursor position and the screen and keyboard
modes ..

8-6

FlexOS Programmer's Guide

8.3 DEVICE Table

~um!!~!
45H

10: none

Q~I?
No

§~Tl
No

~QP~!JP'?
Yes

Key: Key value assigned by resource manager

8.3 DEVICE Table

This table describes a physical device. Each device installed has a
DEVICE, table. All fields are read-only.

o

KEY o

4

8
DEVNAME

12

16

20

ACCESS

OWNEAID

22 = length in bytes

• KEY: Key field for LOOKUP

• DEVNAME: 10-byte device name

• TYPE: Type of device

OxH - Kernel drivers
2xH - Disk drivers
3xH - Console drivers
5xH - Extension drivers
6xH - Network drivers
7xh - Miscellaneous drivers
80-FFH - Special drivers

2 3

lYPE

INSTAl

8-7

8.3 DEVICE Table

• ACCESS: Access modes

bit 0 1 = -Delete allowed
0'= Delete not allowed

bit 1 Reserved

bit 2 1 = Raw write allowed
o = Raw write not allowed

bit 3 1 = Raw read allowed
o = Raw read not allowed

bit 4 1 = Shared access allowed
o = Exclusive access only

bit 5 1 = Removeable device
o = Permanent device

FlexOS Programmer's Guide

bit 6 1 = Device lock (DEVlOCK) allowed
o = Device lock not allowed

bit 7 1 = Shared access only
o = Exclusive access allowed

bit 8* 1 = Device partitions allowed
o = Device partitions not allowed

bit 9'" 1 = Verify disk writes
o = Do not verify disk writes

bits 10-15 reserved

'" Applicable to disk devices only.

8-8

FlexOS Programmer's Guide 8.3 DEVICE Table

• INSTAT: Installation status

OxOO - Not installed
OxO 1 - Requires subdriver
Ox02 - Owned by the Miscellaneous Resource Manager
Ox03 - Owned by another driver

• OWNERID: Significant 16 bits of the key field of the owner's
DEVICE table entry. Use this value with a LOOKUP to find the
driver that owns this subdriver. This field is only valid when
INSTAT has a value of Ox03.

The DEVNAME, TYPE, ACCESS, and KEY values are established when
the device· is installed and do not change. The ACCESS flags override
conflicting requests made by programs when they open the device.

The INSTAT and OWNERID values are also static except for subdrivers
assigned to different drivers. In this case, the current values are
subject to change as the driver is linked and unlinked to different
owners.

You must use the LOOKUP SVC to get DEVICE tables. Wildcards can be
used in the L~OKUP device name specification.

8-9

8.4 DISK Table

8.4 DISK Table

Nunlber .-- - - - - --- -
21H

G~T?
Yes

~I;T?
Yes

~9QKUP?
No

10: File number returned by OPEN
Key: none

FlexOS Programmer's Guide

The DISK table describes a disk driver. All fields are read-only except
the label options.

8-10

FlexOS Programmer's Guide 8.4 DISK Table

o

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

62

72

76

o 2 3

NAME

TYPE

IOPTIONS STATUS

LRFID LRNID

LRPID

FREE

SIZE

SECTSIZE FIRSTSECT

NSECTORS

SECTS/TRACK SECTS/BLOCK

NFATS I FATID NFSECTS

DIRSIZE NHEADS I FORMAT

HIDDEN

SYSSIZE

LAFLAG I LAMODE LAUSER I LAGROUP

LABEL

78 = Length in bytes

8-11

8.4 DISK Table

• NAME: Disk device driver name

• TYPE: Media type

bit 0: 1 = Removable media
o = Permanent nledia

• IOPTIONS: Install options

bit 0: 1 = Set allowed

8-12

o = Set not allowed

bit 1: Reserved

bit 2: 1 = Raw write allowed
o = Raw write not allowed

bit 3: 1 = Raw read allowed
o = Raw read not allowed

bit 4: Reserved

bit 5: 1 = Removable device driver
o = Permanent device driver

bit 6: 1 = DEVLOCKs allowed
o = DEVLOCKs not allowed

bit 7: Reserved·

bit 8: 1 = Partitioned disk driver
o = Non-partitioned disk driver

bit 9: 1 = Verify after writes
o = Do not verify after writes

FlexOS Programmer's Guide

FlexOS Programmer's Guide 8.4 DISK Table

• STATUS: Disk status

bit 0: 1 = Disk locked to process
o = Disk not locked to process

bit 1: 1 =' Disk locked to familv
o = Disk not locked to familv

bit 2: 1 = Disk opened for exclusive access
o = Disk not opened for exclusive access

bit 3: 1 = Disk currentlv in use bV other processes
o = Disk not currentlv in use bV other processes

bit 4: 1 = Disk currently in use bV processes in other families
o = Disk not currently in use bV processes in other families

bit 5: 1 = Disk activated for file system access
o = Disk not activated

bit 6: 1 = File system files currently open
o = No open file system files

• LRFID: Familv 10 of locking process

• LRNID: Network node 10 of locking process

• LRPID: Process 10 of locking process

• FREE: Number of bytes of free space on disk/partition

• SIZE: Size in bytes of total file space on disk/partition

• SECTSIZE: Sector size in bytes

• FIRSTSEC: First sector of logical media

• NSECTORS: Number of sectors on disk

• SECTS/TRACK: Number of sectors per track

• SECTS/BLOCK: Number of sectors per block

• NFATS: Number of File Allocation Tables (FATs)

8-13

8.4 DISK Table FlexOS Programmer's Guide

• FATID: Implementation-dependent value indicating media format

• NFSECTS: Number of sectors per FAT

• OIRSIZE: Maximum number of directory entries in root directory

• NHEADS: Number of heads on disk

• FORMAT: FAT format

o - Raw
1 - 1 1/2 byte FATs
2 - 2 byte FATs

• SVSSIZE: Size of system area in bytes

• HIDDEN: NUmber of hidden sectors on partitioned' disk

• LAFlAG: Label flag

o - Label does not exist on media
1 - Label exists
2 - Return device error on attempts to read label

• LAMODE (R/W): Label mode

bit 0: 1 = File security enabled
o = No file security

bit 1: 1 = Upper and lower case file names
o = Upper case file names only

• LAUSER (R/W): Label maker's User 10

• LAGROUP (R/W): Label maker's Group 10

• LABEL (R/W): 11-character label (also referred to as volume)
name. Bytes 12 through 14 in LABEL data block are ignored. The
.name does not need to be null-terminated.

8-,14

FlexOS Programmer's Guide 8.4 DISK Table

Most of the OISK table's read-only fields are static. The exceptions
are:

• STATUS which changes as processes lock, unlock, open, and close
files.

• FREE and DIRSIZE which increase and decrease as files are
removed and added.

• lRFIO, lRNID, and lRPID which change with each change in the
locking process.

Use the file number returned by OPEN as the 10 in your GET and SET
calls.

All of the label-related fields are read/write. However, once they have
been set, only the superuser (user and group IDs 0) or the original
label setter can 'make any changes.

8-15

8.5 OISKFILE Table

8.5 DISKFllE Table

Number
20H

QET?
Yes

~ET?
Yes

LOOKUP?
Yes

FlexOS Programmer's Guide

10: File number returned by CREATE or OPEN
Key: Key number assigned by resource manager

The DISKFILE table describes a disk file. The disk file must be open
before you can GET its table. To SET values in the table, the calling
process must have the same USER and GROUP IDs or have GROUP
and USER numbers O. Files do not need to be open for the LOOKUP
SVC. LOOKUP flag bits determine the type of file to search for and are
used as follows:

bit 0: 1 - Include HIDDEN files
o = Exclude HIDDEN files

bit 1: 1 = Include SYSTEM files
o = Exclude SYSTEM files

bit 2: 1 = Include VOLUME label
o = Exclude VOLUME label

bit 3: 1 = Include directories
o = Exclude directories

bit 4: 1 = Exclude normal files
o = Include normal files

8-16

FlexOS Programmer's Guide

o

4

8

12

16

20

24

. 28

32

36

40

44

o

RECSIZE

PROTECT

RESERVED

MODYEAR

MODHR I' MODMIN

48 = Length in bytes

• KEY: Key field for LOOKUP

• NAME: Disk file name

8.5 DISKFILE Table

2 3

KEY

NAME

ATfRl ATTR2

USER GROUP

RESERVED

RESERVED

SIZE

MODMONTH MODDAY

MODSEC RESERVED

8-17

.B.5 DISKFILE Table FlexOS Programfner's Guide

• ATTRl (R/W): The sum of the following file attributes:

01H Read-only
02H Hidden
04H System
08H Volume label
lOf-f Subdirectory

,20H Archive attribute.
40H Reserved
BOH Reserved

• ATTR2 (R/W): The sum of the following file attributes:

01 H Security enabled (label only)
02H Disk supports uppercase and. lowercase tile names

(If not set, disk supports uppercase file names only)

04H through BOH are reserved.

• RECSIZE: Record size

• USER (R/W**): User 10 of owner

• GROUP (R/W**): Group 10 of owner

• PROTECT (R/W): File Security Word

• SIZE: File size

• MODVEAR (R/W): Year of last modification

• MODMONTH (R/W): Month of last modification (1 - 12)

• MODDAY (R/W): Day of last modification (1 - 31)

• MODHR (R/W): Hour of last modification (0 - 23)

• MODMIN (R/W): Minute of last modification (0 - 59)

• MODSEC (R/W): Second of last modification (0 - 59)

** These fields are read/write to a superuser only.

All OISKFllE values are set and updated by the Disk Resource Manager.
This does not preclude setting these values yourself. However, you
should exercise caution when modifying the attributes and record size.

B-18

FlexOS Programmer's Guide 8.6 ENVIRON Table

8.6 ENVIRON Table

N~m~~r
.1H

10: 0
Key: none

g~T?
Yes

~~T?
Yes

~QQK~P?
No

The ENVIRON and PROCESS tables describe the calling process's
environment. Although there is some overlap between the two, the
standard input, output, error, and overlay file numbers, file security
word,. and· requester node numbers are unique to the ENVIRON table.

o

4

8

12

o 1

STDIN

STOOUT

STDERR

OVERLAY

16

20

24

28

SECURITY

USER 1 GROUP

PIO

RNIO

32 RPID

36 = length in bytes

2

RESERVED

FID

RFID

• SIDIN (R/W): Process's standard input file number

3

• SIDOUI (R/W): Process's standard output file nurnber

• .SIDERR (R/W): Process's standard error file number

8-19

8.6 ENVIRON Table FlexOS Programmer's Guide
----_ .• _---_._-----_ ... - -... ----------

• OVERLAY (R/W): Current program's file number

• SECURITY (R/W): Default file security word for CREATE

• USER (R/W**): Current User 10

• GROUP (R/W**): Current Group 10

• FlO: Calling process's family 10

• PIO: Calling proc~ss's 10

• RNID (R/W"): Requester process's remote node 10

" . • RFIO (R/W): Requester process's family 10

• RPIO (R/W"): Requester process's process 10

**These fields are read/write for a superuser only.

The RNID, RFID and RPID fields are used by network server processes
only. See the f'~xl'J~!. N~twQr~. Qp~r~Hng _~.'l~tef!L_ Q!;M_. ~D!!
rrQgf~~rn~!'~ .. Q~~~~ for the description of their use.

8-20

FlexOS Programlner's Guide 8.7 FILNUM Table

8.1 FllNUM Table

!\h!m~~f
41H

Q~T?
Yes

~~T?
No

~OOK~P?
Yes

ID: File number returned by CREATE or OPEN
Key: File number returned by CREATE or OPEN

The FllNUM table provides the table number for a given file number.
For example, the Console Resource Manager returns the VCONSOlE
table number when you GET the FllNUM table tor a virtual console tile.

o 1 2

o FNUM

4 ACCESS I· TABNUM

6 = length in bytes

• FNUM: File number and key field for LOOKUP

• ACCESS: Access privileges returned from OPEN call

bit 0: 1 = Delete/set access
o = No delete/set access

bit 1: 1 = Execute access
o = No execute access

bit 2: 1 = Write access
o = No write access

bit 3: 1 = Read access
o = No read

• TABNUM: table number for that type of file's table

3

8-21

8.8 MEMORY Table

8.8 MEMORY Table

Nurnber
3H

ID: 0
Key: none

GET?
Yes

SET?
No

LOOKUP?
No

FlexOS Programmer's Guide

The MEMORY table indicates the system memory usage. The FREE and
SYSTEM values change as processes use and release memory and the
resource managers take up transient program area.

o

4

8

o

12 = length in bytes

1

FREE

TOTAL

SYSTEM

• FREE: Total free memory in bytes

• TOTAL: Total memory in bytes

2

• SYSTEM: Size of system memory in bytes

8-22

3

FloxOS Programmer's Guide B.B MEMORY Table

8.9 MOUSE Table

~Mm~~r
33H

g~T?
Yes

~~T?
Yes

~QQKl)P?
No

10: File number returned by OPEN
Key: none

The MOUSE table describes a pointing device. Every installed pointing
device has a MOUSE table. The initial values are set by the driver and
you can set all of them except for the PIXROW and PIXCOL.

o 2 3

o ROW COL

KEYSTATE I RESERVED BUTTONS

PIXROW PIXCOL

4

8

12

16

20

CLICK HEIGHT I WIDTH

HOTROW HOTCOL

MASK (16 words)
52

84
DATA (16 words)

• ROW (R/W): Current row position of mouse

• COL (R/W): Current column position of 'mouse

8-23

8.9 MOUSE Table FlexOS Programmer's Guide

• KEYSTATE: Keyboard state of the right Shift, left Shift, Control,
and Alt keys

Bit 0 right Shift key
Bit 1 left Shift key
Bit 2 Control key
Bit 3 Ait key

o - up position
1 - down position

• PIXROW: Number of mickeys per pixel for rows

• PIXCOL: Number of mickeys per pixel for columns

• CLICK (R/W): Click interval In milliseconds

• HEIGHT (R/W): Height of mouse form

• WIDTH (R/W): Width of mouse form

• HOT ROW (R/W): Hot row of mouse form

• HOTCOL (R/W): Hot column of mouse form

• MASK (R/W): On a bit map screen, a 16 x 16 pixel rectangle that
masks the effect of the DATA rectangle.

• DATA (R/W): On a bit map screen, a 16 x 16 pixel rectangle to
"Bl Til to the screen given the mask.

The ROWand COL values are updated by the Console Resource
Manager to Indicate the current mouse location. You can, however, set
these values to move the mouse form to a location without device
Input. The HEIGHT and WIDTH values have a maximum value of 4, but
can be less. If either is less, the length of the MASK and DATA fields
is not affected.

8-24

FlexOS Programmer's Guide

8.10 PATHNAME Table

~~m~~r
46H

10: none
Key: none

Q~T?
No

§~T?
No

~OOKLJP?
Yes

B.l0 PATHNAME Table

The PATHNAME table contains the fully-expanded path name for a
defined symbol. LOOKUP is the only way to retrieve a PATHNAME
table; you cannot SET or GET a PATHNAME.

o 2 3

PATHNAME

124

128 = Length in bytes.

The PATHNAME table consists of a single 128 byte field. Only one path
is ever returned when you lookup a defined symbol. If the symbol
specified starts with a defined name, the prefix is substituted for the
symbol. If the first name in the prefix is itself a defined symbol, the
substitution is made again. The search and substitute routine. is
repeated until no prefix is found for the' starting name.

The SYSDEF and PROCDEF tables are searched when you lookup the
PATHNAME table. (DEFINE only looks in one or the other.) These
tables are searched for the first name in the specification only.

Wildcard characters can be used but they are not expanded; for
example, as asterisk is interpreted only as an asterisk.

8-25

PCONSOLE Table

8.11 PCONSOLE Table

N~~t?~r
31H

Q~T?
Yes

SET?
Yes

~OOKUP?
No

10: File number returned by OPEN
Key: none

FlexOS Programmer's Guide

The PCONSOLE table describes a physical console device. Each
console installed has its own PCONSOLE table. All parameters are
read-only except the country code.

o

4

8

o

TYPE

1

ROWS

CROWS

I PLANES

2 3

NAME

NVC CIO

COlS

CCOlS

ATIRP EXTP

12

16

20

24 COUNTRY NFKEYS BUTIONS

28 SERIAL #

32 MUROW MUCOl

36 = length in bytes

• NAME: Console device name

• NVC: Current number of virtual consoles

• CIO: Physical console 10 number

8-26

FlexOS Programmer's Guide PCONSOlE Table

• ROWS: On graphic console devices, this is the number of rows of
pixels. On character console devices, this is the number of
character rows and is the same as CROWS.

• COLS: On graphic console devices, this is the number of pixels in
a row. On character console devices, this is the number of
character columns and is the same as CCOlS.

• CROWS: The number of rows of characters

• CCOLS: The number of columns of characters

• TYPE: Type of console

bit 0: 1 = Graphics capability
Q = Character only

bit 1: 1 = No numeric keypad
o = Keypad

bit 2: 1 = Mouse supported
o = No mouse supported

bit 3: 1 = Color
o = Black and white

bit 4: 1 = Memory-mapped video
o = Serial device

bit 5: 1 = Currently in graphics mode
o = Currently in character mode

• PLANES: Planes supported

Bit 0: 1 = Character plane supported
o = No character plane

Bit 1: 1 = Attribute plane supported
0' = No attribute plane

Bit 2: 1 = Extension plane supported
o =: No extension plane

8-27

PCONSOlE Table FlexOS Programmer's Guide

• ATTRP: Bit map of attribute plane bits supported

• EXTP: Bit map of extension plane bits supported

• COUNTRY (R/W): Country code; in applications that support
multiple character sets, lise this value to select a specific set.
Appendix C lists the country codes.

• NFKEYS: Number of function keys supported

• BUTTONS: Number of mouse buttons supported

• SERIAL # Mouse serial nurnber

• MUROW Mouse sensitivity in mickey units per row

• MUCOL Mouse sensitivity in mickey units per column

The PCONSOLE values are set by the driver. The Console Resource
Manager updates the NVC value as you create and delete virtual
consoles on this console.

To GET and SET a PCONSOLE table (LOOKUP cannot be used), OPEN
the device and use the file number returned as the GET and SET 10
number. In ydur OPEN call, the only access mode flag bit you can set
is bit 0 and you only need set it if you want to change the country
code.

8-28

FlexOS Programmer's Guide

8.12 PIPE Table

~!!m~er
10H

g~T.?
Yes

§!;T?
No

LQQK!JP?
Yes

ID: File number returned by CREATE or OPEN
Key: Key number assigned by resource manager

PIPE Table

The PIPE table describes a pipe. All fields are set when you create the
pipe and are read-only.

4

8

12

16

o

RECSIZE .

20 = length in bytes

• KEY: Key field for LOOKUP

1

• NAME: 10-byte pipe name

KEY

NAME

• SIZE: Internal buffer size of pipe

• RECSIZE: Record size

• SECURITY: File security word

2 3

SIZE

SECURITY

You can retrieve a pipe table with GET or LOOKUP. Use the the file
number returned when you CREATEd or OPENed the pipe as your GET
ID number. In a LOOKUP call, use the pipe name.

8-29

PORT Table FlexOS Programmer's Guide

8.13 PORT Table

N!!~·~gr.
81H

g~J?
Yes

SET?
Yes

~OOKUP?
No

10: File number returned by OPEN
Key: None

o
o TYPE

2 3

STATE

4 BAUD I MODE CONTROL I RESERVED

8 = Length in bytes

• TYPE: Type of port

o = Undefined
1 = Standard serial driver
2 = Character I/O device
4 = Standard parallel driver

• STATE (R/W): Current state of port

o = Transmit enable

8-30

1 = Character has been received
2 = Change in Data Set Ready or Data Carrier Detect
3 = Parity error

·4 = Overrun error
5 = Framing error
6 = Carrier present (Data Carrier Detect)
7 == Data Set Ready (DSR) active

FlexOS Programmer's Guide PORT Table

• BAUD (R/W): A value selecting the baud rate

o = 50 baud
1 = 75 baud
2 = 110 baud
3 = 134.5 baud
4 = 150 baud
5 = 300 baud

6 = 600 baude
7 = 1200 baud
8 = 1800 baud
9 = 2000 baud
10 = 2400 baud
11 = 3600 baud

12 = 4800 baud
13 = 7200 baud
14 = 9600 baud
15 = 19200 baud

• MODE (R/W): Bit-mapped description of the word length, parity
and stop bits

~H!~ Q-l Bits 2-3 ~~!~ 4~§
Value Bits/word 'Stop aits Parity

0 5 None None
1 6 1 Odd
2 7 1.5
3 8 2 Even

• CONTROL (R/W): Bit-mapped description of serial port control
parameters

o = Enable character transmission
1 = Force Data Terminal Ready low
2 = Enable character reception
3 = Force break signal
4 = Reset error
5 =. For~e Request to Send low

Use the GET and SET SVCs to retrieve and set PORT table values. The
10 is the file number returned when the device .was opened. When the
port is a subdriver, you cannot access the table directly with. GET or
SET. Instead, use SPECIAL functions 13H and 93H, respectively.

For standard parallel drivers, the STATE, BAUD, MODE, and CONTROL
fields are meaningless.

8-31

PRINTER Table FlexOS Programmer's Guide
---------------_._------_._.-----------

8.14 PRINTER Table

N~f!1~er
71H

Q~T?
Yes

SET?
Yes

LOOKUP?
No

10: File number returned by OPEN
Key: None .

The PRINTER table describes an installed printer driver. The printer
driver may drive the physical 1/0 port directly or require a subdriver to
conduct character 1/0. For all bit maps in this table, the least
significant bit Is rightmost.

o

4

8

12

16

20

24

o

MODE

LEG.MODE

28 = Length in bytes

1 2 3

PRINTER STATUS

PAPER WIDTH

SING.PAG LPI I LENGTH

NAME

• PRINTER STATUS: Bit map indicating current status; bits are
assigned as follows:

8-32

Bit
o
1
2
3

Se! Q~n~i!~QI1
Off line
Out of paper
Select error
Initialization error

~!!
4
5
6
7

Set Definition __________ 0 ___ - __ _

Illegal mode requested
Framing error '
Internal buffer full
Waiting for XON

FlexOS Programmer's Guide PRINTER Table

• MODE (R/W): A bit map used to select the current typeface; the
bits are assigned as follows:

~!!
O·
1
2
3

IY~~f~f~ ~~!~~~~q
Boldface
Graphics
Italic
Subscript

~!t
4
5
6
7

TYQ~f~~~ ~~~~fJ~~
Superscript
Condensed
Elongated
letter quality

• PAPERTYP (R/W): A bit map indicating the current paper type;
the default is 8 112 x 11. The bits are assigned as follows:

~!! pa(!gr I'l~~
o Wide paper
1 letterhead
2 Labels

• WIDTH (R/W): Width of paper in columns for all modes except
graphics; in dots if graphics mode.

• LENGTH (R/W): length of paper in ~ines

•. LEG.MODE: Bit map of modes available; bit assignments are the
.. same as MODE above.

• SING.PAG (R/W): Single-page paper feed select; non-zero when
single-page feed mechanism selected.

• LPI (R/W): Number of lines printed per inch

• NAME: 16-byte field for the brand and mode of the printer in
ASCII.

To retrieve a PRINTER table, use the file number returned when the
device was opened as the GET 10 number.

8-33

PROCOEF Table

8.15 PROCDEF Table

N~m~~r
43.-1 .

10: none

GET?
No

SET?
No

LOOKUP?
Yes

FlexOS Programmer's Guide

Key: Key number assigned by resource manager

The PROCDEF table shows the prefix defined for a logical name by the
calling process. The LNAME and PREFIX fields are set by the DEFINE
call; the key value Is set by the resource manager when the name is
defined. All fields are read-only.

o

4

8

12

16

KEY

LNAME

I
PREFIX

138 _I ____________ ----1

142 = Length in bytes

• KEY Key field for LOOKUP.

• LNAME: 10-byte, null terminated logical name string

• PREFIX: 128-byte, null terminated prefix substitution string

Use LOOKUP to get a PROCDEF table. Use the logical name (wildcards
can be used) or key value to specify a table. The maximum name and
prefix length is 9 and 127 characters, respectively; the null character is
always included In the specification.

8-34

FlexOS Programmer's Guide

8.16 PROCESS Table

~!!mbe[
OH

Q~T?
Yes

10: Process 10
Key: Process 10

§JT?
Yes

~OOK~P?
Yes

PROCESS Table

The PROCESS and ENVIRON tables combine to describe a process's
environment. The PROCESS table values are set when the process is
created (see the COMMAND SVC description) and maintained by the
resource managers. All values are read-only except the priority. This
value can be set by a process with the same USER and GROUP
numbers or USER and GROUP numbers O.

8-35

PROCESS Table

o

4

8

12

16

20

24

28

32

36

40

44

48

52

56

o

FlO

FLAGS

60 = Length In bytes

8-36

FlexOS Programmer's Guide

2 3

PIO

I CIO I VCIO

NAME

I STATE I PRIOR

MAXMEM

I USER I GROUP

PARENT

EVENTS

CODE

CSIZE

DATA

DSIZE

HEAP

HSIZE

FlexOS Programmer's Guide PROCESS Table

• PIO: Process 10

• FlO: Process's family 10·

• CIO: Physical console device number

• VelD: Process's virtual console number--only filled after console
is opened

• NAME: Process name

• STATE: Process state

o - Run
1 - Waiting
2 - Terminating

• PRIOR (R/W): Priority

• MAXMEM Maximum memory allowed

• FLAGS:

bit 0: 1 = System process
o = User process

bit 1: 1 = locked in memory
o = Swappable

bit 2: 1 = Running in SWI context
o = Running in main context

bit 3: 1 = Originally a privileged process 1

o = Not originally a privileged process

• USER: User number

• GROUP: Group number

1 A privileged process, also called a superuscr, is one with USER and GROUP numbers O.

8-37

PROCESS Table FlexOS Programmer's Guide

• PARENT: Parent process 10

• EVENTS: Bit map of events that have comp~eted but whose return
values have not been retrieved.

• CODE: Start of code area in user space

• CSIZE: Size in bytes of code area

• DATA: Start of data area in user space

• DSIZE: Size in bytes of data area

• HEAP: Start of heap area In user space2

• HSIZE: Size in bytes of most recently allocated heap area

Use the process 10 as the 10 in GET and SET calls and as the key
value In LOOKUP calls. You can also use the process NAME with
LOOKUP. A process 10 of 0 selects the calling process.

21nformation passed to the process in the COMMAND SVC is stored at this location.

8-38

FlexDS Programmer's Guide

8.17 SPECIAL Table

NurnQ~! QfT?
82H-FFH Yes

§~T?
Yes

~OOKUP?
No

ID: File number returned by OPEN
Key: Key number assigned by resource manager

SPECIAL Table

SPECIAL tables describe special devices installed. The format and size
of a SPECIAL table is defined by the OEM and set by the device driver.
There are two rules, however, for all SPECIAL tables: the first word
indicates the size of the table and table number is the same number
as the device type.

8-39

SYSOEF Table

8.18 SYSDEF Table

~~~~~r 
42H 

10: none 

Q~T7 
No 

SET? 
No 

~OOK~P? 
Yes 

FlexOS Programmer's Guide 

Key: Key number assigned by resource manager 

The SYSOEF table describes the system's logical names. Logical name 
assignments are made with the DEFINE SVC by privileged (USER and 
GROUP numbers are 0) processes. Privileged processes can also 
change existing assignments. 

o 

4 

8 

KEY 

LNAME 

12 

16 

I . 
~------------------~ 

PREFIX 

138 I~ ________________________________________ ~ 
142 = Length in bytes 

• KEY: Key field for LOOKUP. 

• LNAME (R/W): 10-byte, null terminated Logical name string. 

• PREFIX (R/W): 128-byte, null terminated prefix substitution string. 

Use LOOKUP to get a SYSTEM table. Use the logical name or key value 
to specify a table. The maximum name and prefix length is 9 and 127 
characters, respectively; the null character is always included in the 
specification. 

8-40 



FlexOS Programmer's Guide 

8.19 SYSTEM Table 

10: 0 
Key: none 

GET? 
Yes 

.~~Tl 
Yes 

~QQKlJP7 
No 

SYSTEM Table 

The SYSTEM table describes the CPU and operating system. All fields 
are read-only except the 10lECNT. This field is read-write to processes 
with USER and GROUP numbers 0 only. 

o 1 2 3 

o CPU I OSTYPE I VERSION J RELEASE 

4 

8 

12 

16 = Length in bytes 

• CPU: Type of CPU 

1 - Intel 8080 
2 - Intel 8085 
3 - lilog l80 
4 - Intel 8086 
5 - lilog l8000 
6· - Motorola 68000 

SERIAL 

10LECNT 

7 - Motorola 68010 
8 - Motorola 68020 
9. - Intel 80286 

10 - Intel 80386 
11 - Intel 80186 
12 - 255 Reserved 

• OSTYPE: Type of Operating System 

o FlexOS 
1-255 Reserved 

• VERSION: Operating systeol version number 

8-41 



SYSTEM Table FlexOS Programmer's Guide 

• RELEASE: Release level of version 

• SERIAL: 8-byte, operating system serial number 

• IDLECNT (R/W for privireged user onlv): CPU System idle count 

IDLECNT is a value incremented by the CPU when no process is 
running. Monitor CPU utilization by setting this value to 0 and after a 
known period of time, GETting the count. 

8-42 



FlexOS Programmer's Guide TIMEDATE Table 

8.20 TIMEDATE Table 

g~T? ~~T? 
Yes Yes 

ID: 0 
Key: none 

!:QQKWPl 
No 

The TIMEOATE table contains the system time of day. All fields are 
read/write except WEEKDAY. The time is maintained by the kernel once 
the starting is set. Use SET to establish the starting time. 

o 1 2 3 

o YEAR I MONTH 1 DAY 

4 TIME 

8 TIMEZONE I WEEKDAY I RESERVED 

12 = length in bytes 

• YEAR (R/W): Year; a literal value (for example, 1987 = 1987) 

• MONTH (R/W): Month; 1 - 12 

• DAY (R/W): Day of the month; 1 - 31 

• TIME (R/W): Number of milliseconds since midnight 

• TIMEZONE (R/W): Minutes from Universal Coordinated Time 

• WEEKDAY: Day of the week; 0 = Sunday, 6 = Saturday 

You use an 10 value of 0 to GET and SET the TIMEDATE table. 

8-43 



VCONSOLE Table 

8.21 VCONSOLE Table 

N!!rTI~E:!f 
32H 

Q~r? 
Yes 

SET? 
Yes 

LOOKUP?' 
Yes 

10: File number returned by CREATE 

FlexOS Programmer's Guide 

Key: VCNUM assigned when virtual console created 

The VCONSOLE table describes a virtual console. Table values are 
established when you CREATE the console. Use read/write fields to 
modify' window size, location on the virtual console, and placement on 
the parent console. 

o 

4 

8 

12 

16 

20 

24 

o 

TOP 

MODE 

VIEWROW 

NROW 

POSROW 

ROWS 

I BOTTOM 

28 = length in bytes 

• KEY: Key field for LOOKUP 

8-44 

2 3 

KEY 

VCNUM I TYPE 

VIEWCOl 

NCOl 

pas COL 

COlS 

lEFT I RIGHT 



FlexOS Programrner's Guide VCONSOlE Table 

• MODE (R/W): \tVindow mode 

bit 0: 1 = Freeze borders 
o = Synchronize borders (See Note 1, below) 

bit 1: 1 = Allow auto view change (See Note 2, below) 
o = Keep view fixed 

bit 2: 1 = Keep cursor on edge on auto view change 
o = Center cursor on auto view change 

bit 3: 1 = Auto view change on output 
o = Auto view change on input 

• VCNUM: Decimal virtual console number 

• TYPE: Type of console. 

bit 0: 1 = Graphics capability 
o = Character only 

bit 1: 1 = No numeric keypad 
o = Keypad 

bit 2: Reserved 

bit 3: 1 = Color 
o = Black and white 

bit 4: 1 = Memory-mapped video 
o = Serial device 

bit 5: 1 = Currently in graphics mode 
o = Currently in character mode 

• VIEWROW (R/W): Row coordinate on the virtual console of 
window's upper lefthand corner 

• VIEWCOl (R/W): Column coordinate on the virtual console of the 
window's upper lefthand corner 

8-45 



VCONSOLE Table FlexOS Prograrnrner's G~id~ 

• NROW (R/W): NUinber of character rows in the window 

• NCOl (R/W): Nurnber of character columns in the window 

• POSROW (R/W): Row coordinate on parent console of window's 
upper leftha"nd corner 

• POSCOl (R/W): Column coordinate on parent console of wil1dow's 
upper lefthand corner 

• ROWS: Number of character rows in the virtual console 

• COlS: Number of character columns in the virtual console 

• TOP: Height in character rows of the top border 

• BOTTOM: Height in character rows of the bottom border 

• lEFT: Width in character columns of the left border 

• RIGHT: Width in character columns of -the right border 

Notes: 

1. Use bit 0 to freeze a border so that intermediate states are not 
displayed when you make changes to the border file contents. 
Before you change the border file contents, set this bit. After you 
have completed the changes, reset the bit. Normally, keep this 
flag at 0 so that the borders change as you make changes to the 
window dimensions and location" 

2. Bits 1 through 3 determine whether the window view changes to 
keep the cursor on-screen or the view remains fixed on the same 
virtual console coordinates regardless of cursor location. If the 
cursor leaves the window and bit 2 = 1, bit 3 determines whether 
the view changes when the cursor leaves the view (output) or 
when the application READs the keyboard. . 

8-46 



FlexOS Programmer's Guide VCONSOlE Table 

Use the file number returned by the CREATE call to GET or SET the 
VCONSOlE table. Alternatively, use the key value in a LOOKUP call. 
Changes made to the VIEWROW, VIEWCOl, NROW, and NCOl 
immediately affect the shape and position of the window on the virtual 
console. Border files are automatically adjusted accordingly as well'. 
Changes to POSROW and POSCOl are immediately reflected on the 
parent console. 

End of Section 8 

8-47 



/02/7502 / 



Appendix A 

Character Sets and Escape Sequences 

This appendix describes the Console Resource Manager's built-in 
escape sequences and character sets. The presentation begins with 
the description of the 8-bit escape sequences (a superset of the 
VT -52 escape sequences), continues with the description of the 16-bit 
output character set, and concludes with the description of the 16-bit 
input character set. 

Output escape sequence decoding is only available with the WRITE 
SVC. You cannot use COpy or ALTER to output escape sequences. 

The descriptions below cross-reference bits in the CONSOLE table's 
SMODE and KMODE fields. See Section 8, "System Tables," for the 
complete description of these fields. 

A.l Escape Sequences 

You select escape sequence decoding to manipulate the. screen 
display by setting bits 0 and 1 of the CONSOLE table's SMODE word to 
O. Escape .sequence decoding of keyboard input is selected by setting 
bits 3 and 4 of the CONSOLE Table's KMODE word to O. 

An escape sequence consists of at least two 8-bit characters, where 
the first is always an ESC (ASCII character 1 B hex). The second 
character selects a function. Three functions require additional 
numeric values to select a foreground or background color or set the 
cursor position. Table A-l lists the functions supported and the 
escape sequence that invokes it. 

A-l 



A Escape Sequences FlexOS Programmer's Guide 

ESC Sequence 

<ESC>A 

<ESC>B 

<ESC>C 

<ESC>D 

<ESC>H 

Table A-1. Escape Sequence Functions 

Description 

Cursor Up: Move cursor up to beginning of 
previous line. 

Cursor Down: Move cursor down one line without 
changing column position. 

Cursor Right: Move cursor one character position 
right. 

Cursor Left: Move cursor one character position 
left. 

Cursor Home: Move cursor to first column of first 
line. 

< ESC >1 (uppercase i) 

<ESC» 

<ESC>k 

<ESC>E 

<ESC>J 

<ESC>K 

A-2 

Reverse Index: Move cursor up one line without 
changing column position. 

Save Cursor Position: Store current cursor position 
for subsequent restore. 

Restore Cursor Position: Move cursor to position 
previously saved. 

Set Cursor Position: Move cursor to specified 
coordinates; first character is the ASCII equivalent of 
the row number + 310 and second character is 
ASCII equivalent of column number + 310: 

Clear Display: Erase entire screen and home cursor. 

Erase to End of Display: Erase from cursor to end 
of display. 

Erase to End of Line: Erase from cursor to end of 
line. 



FlexOS· Programmer's Guide A Escape Sequences 

Table A-l. (Continued) 

ESC Sequence Description 

<ESC >1 (lowercase l) 

<ESC>d 

<ESC>o 

<ESC>l 

<ESC>M 

<ESC>N 

<ESC>b(n) 

Erase Entire line: Erase current line contents. 

Erase Beginning of Displav: Erase from beginning 
of display through cursor. 

Erase Beginning of Line: Erase from begi~ning of 
line through cursor. 

Insert Blank line: Move current and all subsequent 
lines down one line; keep cursor on current line. 

Delete line: Remove current line from display and 
add blank line at bottom. 

Delete Character: Remove character at cursor. 

Set Foreground Color: Set character color for 
current cursor position where n is a decimal value 
that determines the color as follows: 

o - Black 
1 -'Blue 
2 - Green 
3 - Cyan 
4 - Red 
5 - Magenta 
6 - Brown 
7 - light Gray 

8 - Dark gray 
9 - light blue 

10 - light green 
11 - light cyan 
12 - light red 
13 - light magenta 
14 - Yellow 
15 - White 

A-3 



A Escape Sequence~ FlexOS Programmer's Guide 

Table A-l. (Continued) 

-------------------- ------
ESC Sequence 

<ESC>c(n) 

<ESC>e 

<ESC>' 

<ESC>p 

<ESC>q' 

<ESC>r 

<ESC>u 

A-4 

Description 
-------- -----.---

Set Background Color: Set screen color for current 
cursor position where n is a deCimal value that 
determines the color as follows: 

o - Black 
1 - Blue 
2 - Green 
3 - Cyan 
4 - Red 
5 - Magenta 
6 - Brown 
7 - Light Gray 
8 - 15 are the same as 0 - 7, except the foreground 
blinks_ 

Enable Cursor: Show cursor. 

Disable Cursor: Remove cursor. 

Enter Reverse Video Mode: Swap foreground and 
background colors_ 

Exit Reserve Video Mode: Return to original 
foreground and background color scheme. 

Enter Intensify Mode: Turn on the console's 
Intensity option_ 

Exit Intensify Mode: Turn off the console's intensity 
option. 



FlexOS Programmer's Guide A Escape Sequences 

ESC Sequence 

<ESC>s 

<ESC>t 

<ESC>@ 

<ESC>O 

<ESC>V 

<ESC>W 

Table A-l. (Continued) 

Description 

Enter Blink Mode: Start character blinking· for all 
characters. 

Exit Blink Mode: Stop character blinking. 

Enter Insert Mode: Insert subsequent characters 
from current cursor position, moving existing 
characters over; characters pushed off end of line 
are lost. 

Exit Insert Mode: Replace existing characters with 
characters entered. 

Wrap at End of Line: Automatically scroll cursor to 
beginning of next line when end of line reached. 

Drop Characters at End of Line: Ignore characters 
entered after end of line reached. 

A-5 



A 16-hit Output Charncter Set t-Iexu~ '~I U!:JI til I" I It:1 ~ VUIU<J 

A:2 16-bit Output Character Set 

When SMODE bit 2 is 1, the Console Resource Manager accepts 16-bit 
characters output with the WRITE SVC. Table A-2 defines the 16-bit 
output character set. 

Range 

OOxxH 

01 xxH - OFxxH 

lxxxH 

2xxxH 

A-6 

Table A-2. Output 16-bit Character Set 

Description 

Sarne as 8-bit; each character takes one character 
position in FRAME. . Characters in the range 80H-FFH 
are defined on a per country basis. 

Alternate character sets provided by the system 
implernenter; each character takes one character 
position where the low byte is stored in the 
Character Plane and the low nibble of the high byte 
Is stored in the low nibble of Extension Plane. 

Non-visible characters (take no space). 

Editing characters functionally equivalent to 
the VT -52 ESC sequences defined above: 

2040 
2041 
2042 
2043 
2044 
2045 
2048 
2049 
204A 
2048 

Enter insert character mode 
Cursor up 
Cursor down 
Cursor right 
Cursor left 
Clear display 
Cursor home 
Reverse index 
Erase to end of display 
Erase to end of line 



FlexOS Programmer's Guide A 16~bit Output Character Set 

Range 

Table A-2. (Continued) 

Description 

204C 
2040 
204E 
204F 
2064 
2065 
2066 
206A 
2068 
206C 
206F 
2070 
2071 
2072 
2073 
2074 
2075 
2076 
2077 

Insert blank line 
Delete line 
Delete character 
Exit insert character mode 
Erase beginning of display 
Enable cursor 
Disable cursor 
Save cursor position 
Restore cursor position 
Erase entire line 
Erase beginning of line 
Enter reverse video mode 
Exit reverse video mode 
Enter intensify mode 
Enter blink mode 
Exit blink mode 
Exit intensify mode 
Wrap at end ot line 
Discard at end ot line 

3xxxH Set cursor to row xxx (0 origin) 

4xxxH Set cursor to column xxx (0 origin) 

51xxH Set background color to xx (see < ESC >c ~bove) 

52xxH - 7xxxH Non-visible characters (take no space) 

BOOOH - FCFCH 16-bit language; each character takes two character 
positions on FRAME (the corresponding Extension 
Plane bytes are rnodified to indicate byte order). 

-------------

A-7 



f\ 1G-hit Input Chflrflcter Set rlexOS Programmer's 'Guide 

A.]' 16-bit Input Character Set 

When the CONSOLE tflble's KMODE hit 4 is 1, the Console Resource 
Manager accepts 16-bit characters input with the READ SVC. In a 16-
bit character, the low byte contains the ASCII character code. The 
high byte is used as shown in Figure A-1. Table A-3 defines the 16-
bit character set. 

State Bits 

bit 1 5 14 13 12 11 1 0 9 8 

(01 xx) CTRL Key 

------.. (02xx) AL T Key 

"-----.- '(04xx) SHIFT Key 

'--------.- (08xx) reserved 

(1 Sxx) FUNCTION Keys 
(2Sxx) SPECIAL Characters 
(3xxx) Toggle Characters 

'------------{ (4xxx) Reserved 
(5xxx) Reserved 
(6xxx) Reserved 
(7xxx) Reserved 

'---------------.... Foreign character set 

Figure A-l. High Byte Bit Usage of ,'6-bit Input Character 

Table A-3 lists the 16-bit characters. The "S" In the table represents 
the value of CTRl, ALT and SHIFT state bits 8, 9, and 10. If these keys 
are depressed when another key is pressed, the corresponding bits 
come on. If the ASCII standard includes this character, the standard 
ASCII character is generated instead of the state value. 

A-8 



FlexOS Programmer's Guide A 16-bit Inpu't Character Set 

Table A-3. 16-bit Input Character Set 

Range Description 

0000 - OOFFH ASCII character set 

lSxxH Function keys 

2SxxH Special keys defined as follows: 

2S00 HELP 
2S01 WINDOW 
2S02 NEXT 
2S03 PREVIOUS 
2S04 PRINT· SCREEN 
2S05 BREAK 
2S06 REDRAW (screen) 
2S07 BEGIN 
2S08 END 
2S09 INSERT 
2S0A DELETE 
2S0B SYS REQ 

2S10 Cursor up 
2S 11 Cursor down 
2S12 Cursor left 
2S13 Cursor right 
2S14 Page up 
2S15 Page down 
2S16 Page left 
2S17 Page right 
2S18 Hoole 
2S19 Reverse tab 

A-9 



A 16-bit Input Ch(Jrncter Set FlexOS Prograrnrner's Guide 

Table A-3. (Continued) 

Range lJe~cription 
----_ ... -- -_.- .. -. ---.- .. ---- .. -------.-- ... _._-_._--_ .. _-----------

2S30 Numeric keypad 0 
2S31 Numeric keypmJ 1 
2S32 Numeric keypad 2 
2S33 Numeric keypad 3 
2S34 Numeric keypad 4 
2S35 NumeriC keypad 5 
2S36 Numeric keypad 6 
2S37 Numeric keypad 7 
2S38 Numeric keypad 8 
2S39 Numeric keypad 9 
2S3A Numeric keypad A 
2S3B Numeric keypad B 
2S3C Numeric keypad C 
2S30 Numeric keypad 0 
2S3E Numeric keypad E 
2S3F Numeric keypad F 
2S40 Numeric keypad ENTER 
2S41 Numeric keypad COMMA 
2S42 Numeric keypad MINUS 
2S43 Numeric keypad PERIOD 
2S44 Numeric keypad PLUS 
2S45 Numeric keypad DIVIDE 
2S46 Numeric keypad MUL TIP.L Y 
2S47 Numeric keypad EQUAL 

A-l0 



FlexOS Programmer's Guide A 16-lJit Input Character Set 

Range 

3xxxH 

bit: 15 14 

3 

Table A-3. (Continued) 

Description 

Toggle character where xxx defines a toggle key as 
follows: 

13 12 11 10 

A - Action 0 - OFF 
1 - ON 

key 0 - Caps lock 
1 - Shift lock 
2 - Scroll lock 
3 - Num lock 

10 - Right Shift 
11 - left Shift 
12 - Insert 
13 - Control 
14 - Alternate 

9 8 

A 

7 o 

key ~ 

When the user presses and releases keys 0 - 3 a 
single character is sent. For keys. 10 - 14, a 
character is sent when the key is pressed and 
another is sent when it is released. 

Toggle characters are only available if the hardware 
supports them. 

A-l1 



A Hi--bit Input Clwraclor Sel FlexOS Prograrnrner's Guide 

R_ange 

4xxxH - 7xxxH 

8xxxH - FCxxH 

Table A-3. (Continued) 

- - ._------ ._._------. - - - . ---------------_._--
Description 

Reserved 

15-hit Foreign language character sets including 
KANJI_ 

------------------.-.---------- ---.----

End of Appendix A 

A-12 



Appendix 8 

System Return and Error Codes 

All FlexOS SVCs return 32 bit values. A negative number--the high 
order bit is set--indicates an error occurred. The remainder of the 
value is allocated as shown in Figure 8-1. 

bit 31 30 24 23 16 15 0 

1 Reserved SOURCE ERROR CODE 

High byte Low byte 

High word Low word 

Figure B-1. Error Code Conventions 

In the high order word, only the low byte is significant; the high byte 
is reserved. The low byte indicates the source of the error as indicated 
in Table 8-1. 8y convention, operating system resource managers and 
modules have a zero-value in the low order nibble. 

8-1 



13 Error and Return Codes rtexOS Prograrnmer's Guide 

Table 8-·1. Error Source Codes---I-tigh Order Word 

Value 

OOH 
10H 
20H 

21U - 2FH 
30H 

31H - 3FH 
40H 
50U 

51H - 5FH 
60H 

61H - 6FH 
lOH 

llH - lFH 
81H - FEH 

Source 

Kernel or Supervisor 
Pipe Resource Manager 
Disk Resource Manager 
Disk Drivers 
Console Resource Manager 
Console Drivers 
Command/Load 
OEM Extension Resource Manager 
OEM Extension Drivers 
Network Resource Manager 
Network Drivers 
Miscellaneous Resource Manager 
Miscellaneous Drivers 
Special Drivers 

The low order word indicates the error condition. The codes are 
assigned in ranges of values again to indicate the source. Table B-2 
lists the ranges and their corresponding source. 



FlexOS Programmer's Guide B Error and Return Codes 

Table B-2. low-order Word Error Code Ranges 

Error Code Range 

.0000 - 3FFF 
4000 - 407F 
4080 - 40FF 
4100-417F 
4180 - 41FF 
4200 - 427F 
4280 - 42FF 
4300 - 437F 
4400 - FFFF 

Source 

Drivers 
Errors Common to All Resource Managers 
Supervisor 
Memory 
Kernel 
Pipe and Miscellaneous Resource Managers 
Console System 
File System 
Reserved 

For the source of one of the common error codes, see the low byte in 
the high order word. The remaining tables in this appendix list define 
the error messages by their source. No error codes are currently 
associated with the Pipe, Console and Miscellaneous Resource 
Managers. 

0-3 



n Error and Return Codes rlexOS Prograrnrner's Guide 

Table B-3. Driver Error Codes 

Mnemonic Code De~cription 

E_WPROT OxOO Write protect violation 
E_UNITNO OxOl Illegal unit number 
E_READY Ox02 Drive not ready 
EJNVCMD Ox03 Invalid command issued 
E_CRC Ox04 CRC error on 1/0 
E_BADP8 Ox05 Bad parameter block 
E_SEEK Ox06 Seek operation failed 
E_~NKNOWNMEDIA OxO? Unknown media present 
E_SEC_NOTFOUND Ox08 Requested sector not found 
.E_DKATTACH Ox09 Attachment did not respond 
E_WRITEFAUl T OxOA Write fault 
E_READFAUl T OxOB Read fault 
E_GENERAl OxOC General failure 
E_RESl OxOD Reserved 
E_RES2 OxOE Reserved 
E_RES3 OxOF Reser·ved 

---~------

8-4 



FlexOS Progranlmer's Guide B Error and Return Codes 

Table 8-4. Error Codes Shared by Resource Managers 

Mnemonic Code Description 

E_SUCCESS OxOL No Error 
E_ACCESS Ox4001 Cannot access tile--ownership 

differences 
E_CANCEL Ox4002 Event Cancelled 
E_EOF Ox4003 End of File 
E_EXISTS Ox4004 File (CREATE) or device (INSTALl) exists 
E_DEVICE Ox4005 Device does not match; for RENAME, 

on different devices 
E_DEVLOCK Ox4006 Device is LOCKed 
E_FILENUM Ox4007 Bad File Number 
E_FUNCNUM Ox4008 Bad function number 
E_IMPLEMENT Ox4009 Function not implemented 
E_INFOTYPE Ox400A Illegal Infotype for this file 
EJNIT Ox400H Error on driver initialization 
E_CONFLICT Ox400C Cannot access file due to current 

usage; for DELETE on open file or 
directory with files; for INSTALL, 
attempted replacement of driver in use 

E_MEMORY Ox400D Not enough mernory available 
E_MISMATCH Ox400E Function mismatch--file does not support 

attempted function; for INSTALL, ,mis-
match of subdrive type 

E_NAME Ox400F Illegal tile nanle specified 
E_NO_FILE Ox4010 File not found; for CREATE, device or 

directory does not exist 
E_PARM Ox4011 Illegal parameter specified; for . 

EXCEPTION, an illegal number 
E_RECSIZE Ox4012 Record Size does not match request 
E_SUBDEV Ox4013 INSTALL only: Sub-drive required 
E_FLAG Ox4014 Bad Flag Number 
E_EMEMACCESS Ox4015 Non-existent nlemory 

.-.~- ---------------------------.. ---

8-5 



B Error and Heturn Codp.s r1exOS Programmer's Guide 

Table 8-4. (Continued) 

----_ .. ,---

Mnemonic Code Description 
--- ----.--.- -.- .--- .. - ..... - -- ... -.. ----

E_BOUNDS Oxt1016 Memory hound error 
E_EINSTRUCT Oxt1017 Illegal instruction 
E_EDIVO Ox4018 Divide hy zero 
E_EBOUNOEX Ox4019 Bound exception 
E_OVERFLOW Ox401A Overflow exception 
E_PRIV Ox401B Privilege violation 
E_ETRACE Ox401C Trace 
E_EBREAK Ox4010 Breakpoint 
E_EFLOAT Ox401E Floating point exception 
E_ESTACK Ox401F Stack fault 
E_EGENERAL Ox4020 General Exception 

B-6 



FlexOS Programmer's Guide 8 Error and Return Code~ 

Table 8-5, Supervisor and Memory Error Codes 

Mnemonic 

E_FUll 
E_DEFINE 
E_UNIT 
E_UNWANTED 
E_DVRTYPE· 
E_lSTACK 

Code 

Ox40HO 

Ox4082 
Ox4083 

Ox4084 
Ox4085 
Ox4086 
Ox4087 
Ox4088 
Ox4089 

Memory Error Codes 

Ox4100 
Ox4101 

Description 

Function does not allow 
asynchronous liD 
8ad load format' 
Infinite recursion (99 times) on prefix 
substitution; for INSTAll, subdrive type 
mismatch 
File nunlber table full 
DEFINE only: illegal name 
Too many driver units 
Driver does not need subdriver 
Driver returns bad driver type 
Stack not defined in load header 

Out ot mernory pool 
Specified bad address to free 

8-7 



B Error and net urn Codes FlexUS Programmer's Guide 

Table 9-6. Kernel Error Codes 

---_._---_ .. _----_._--_._-_._---_. __ ._-- _ .. _----_ .. _------------

Mnemonic 

E_OVERRUN. 
E_FOnCE 
E_PDNAME 
E_PROCINFO 
E_LOADTYPE 
E_ADDRESS 
E_EMASK 
E_COMPLETE 
E_STRL 
E_ABORT 
E_CTRLC 
E_CONTROL 
E_SWIRET 
E_UNDERRUN 
E_SPACE 

E_MEDIACHANGE 
E_MEDCHGERR 
E_PATH 
E_DEVCONFLICT 
E_RANGE 
E_REAOONLY 
E_DIRNOTEMPTY 
E_BADOFFSET 
E_CORRUPT 
E_PENDLK 
E_RAWMEDIA 
E_FllECLOSED 

B-8 

Code 

Ox4180 
Ox4181 
Ox4182 
Ox4183 
Ox4184 
Ox4185 
Ox4186 
Ox4187 
Ox4188 
Ox4189 
Ox418A 
Ox418B 
Ox418C 
OX418D 
Ox4300 

OX4301 
Ox4302 
Ox4303 
Ox4304 
Ox4305 
Ox4306-
Ox4307 
Ox4308 
Ox4309 
Ox430A 
Ox430B 
Ox430C 

Ox430D 

Description 

FlfJn fJlready set 
Return code of aborted process 
Process 10 not found on abort 
COMMAND only: no proclnfo specified 
COMMAND only: invalid loadtype 
CONTROL only: invalid memory access 
Invalid event mask 
Event has not completed 
Required SnlL could not be found 
Process cnnnot be terminated. 
Process ahorted by Ctrl-C 
Slave process running 
Not in SWI context 
Flag already pending 
Insufficient space on disk or in 
directory 
Media change occured 
Detected media change after a write 
Bad path ' 
Devices locked exclusivelv 
Address out of range . 
RENAME or DELETE on RIO file 
DELETE of non-empty directory 
Bad offset in read, write or seek 
Corrupted FAT 
Cannot unlock a pending lock 
Not FlexOS media 
File closed before asynchronous lock 
could be completed 
Lock access conflict 



FlexOS ProgranHner's Guide 8 Error and Heturn Codes 

Utility return codes follow the sarne fornlat of operating syster:tl error 
return codes, as illustrated in Figure 8-1. with the following 
exceptions: 

• Utility return codes are positive numbers (LONGS) because the 
high order bit (31) is always zero. 

• When possible, you should use the error codes listed in Table 8-7 
in the error code field (bits 0-15). 

• You can designate given modules within an application ·in the 
source field (bits 16-23). 

To return errors generated within your application, OR the source field 
(module) with the error code field. For example. to indicate that an 
application has detected a parameter error, use: 

return( UR_SOURCE I UR_PARM ); 

Do not OR a source field value with UR_SUCCESS. which is a LONG of 
zeroes. 

Table B-7. Utility Return Codes 

Mnemonic 

UR_SOURCE 
UR_SUCCESS 
URPARM 
UR_CONFLICT 
UR_UTERM 
UR_FORMAT 
INTERNAL 
UR_UR_DOSERR 

Code 

(LONG)O 
(LONG)O 
OxOOOl 
Ox0002 
Ox0003 
Ox0004 
Ox0005 
Ox0006 

Description 

Utility return 
Success 
Parameter error 
Contention conflict 
Terminat~d by user 
Data structure format error 
Internal utility error 
PC DOS error 

End of Appendix 8 

8-9 





Appendix C 
----------------_._--

Country Codes 

All FlexOS console drivers indicate the country code that is currently 
supported. These country codes are used by applications to 
distinquish character sets, accounting practices, currency symhols 
presentation, date presentation and many other country or region 
dependent practices. 

~Q9.~ gQ~fHrV Q[ B~gio!1 

10 Afghanistan 
20 Albania 
30 Algeria 
40 Andorra 
50 Angola 
60 Antigua 
70 Argentina 
80 Austria 
90 Australia 

100 Bahama Islands 
110 Bahrein-
120 Bangladesh 
130 Barbados 
140 Belgium 
150 Bermuda Islands 
160 Bhutan 
170 Bolivia 
180 Botswana 
190 Brazil-
200 British Honduras 
210 Brunei 
220 Bulgaria 
230 Burma 
240. Burundi 
250 Cameroun 
260 Canada 
270 Central African Republic 

C-l 



C Coulltry Codes r-IexOS Programmer's Guide 

Code Country or Reuion 

2m) Ceylon 
2!10 Chml 
300 Chile 
310 Chinfl 
320 Colornhifl 
330 . Congo 
340 Costfl Rica 
350 Cuha 
360 Cyprus 
370 Czechoslovakia 
380 Dahomey 
390 Denmark 
400 Dominica 
410 Dominican Repuhlic 
420 East Germany 
430 Ecuador 
440 Egypt 
450 EI Salvador 
460 Equatorial Guinea 
470 Ethiopia 
480 Fiji 
490 Finland 
500 France 
510 French Guiana 
520 French Somali land 
530 Gabon 
540 Gambia 
550 Ghana 
560 Greece 
570 Greenland 
580 Grenada 
590 Guadeloupe 
600 Guatemala 
610 Guinea 
620 Guyana 

C-2 



FlexOS Program,ner's Guide C Country Codes 

gQ~~ Gq~ntry or Region 

630 Haiti 
640 Honduras 
650 Hong Kong 
660 Hungary 
670 Iceland 
680 Indonesia 
690 India 
700 Iran 
710 Iraq 
720 Ireland 
730 Israel 
740 Italy 
750 Ivory Coast 
760 Jamaica 
770 Japan 
780 Jordan 
790 Kenya 
800 Khmer Republic 
810 Kuwait 
820 laos 
830 lebanon 
840 lesotho 
850 liberia 
860 libya 
870 liechtenstein 
880 luxembourg 
890 Malagasy Republic 
900 Malaysia 
910 Malawi 
920 Malaysia 
930 Maldive Islands 
940 Mali 
950 Malta 
960 Mauritania 

C-3 



C Country Code~ 

Code 

970 
980 
990 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 

C-4 

Country or HeHion 

Mmlritius 
Mexico 
Moldavian SSR 
Monaco 
Mongolia 
Morocco 
Mozambique 
Nepal 
Netherlands 
New Caledonia 
New Guinea 
New Hehrides 
New Zealand 
Niger 
Nigeria 
Nicaragua 
North Korea 
Norway 
Oman 
Pacific Islands 
Pakistan 
Panama 
Papua 
Paraguay 

FlexOS Programmer's Guide 

People's Democratic Republic of Yemen 
Peru 
Philippines 
Poland 
Portugal 
Portuguese Guinea 
Puerto Rico 
Qatar 
Rhodesia 
Rumania 



FlexOS Programmer's Guide C Country Codes 

'~_Q~~ Gountry or flegion 

1310 Rwanda 
1320 S1. Kitts-Nevis-Anguilla 
1330 S1. lucia 
1340 St. Vincent 
1350 San Marino 
1360 Saudi Arabia 
1370 Senegal 
1380 Sierra leone 
1390 Sikkim 
1400 Singapore 
1410 Somalia 
1420 South Africa 
1430 South Korea 
1440 South-West Africa 
1450 Spanish Sahara 
1460 Spain 
1470 Sudan 
1480 Surinan 
1490 Swaziland 
1500 Sweden 
1510 Switzerland 
1520 Syria 
1530 Tahiti 
1540 Taiwan 
1550 Tanzania 
1560 Thailand 
1570 Tibet 
1580 Timor 
1590 Togo 
1600 Trinidad and Tobago 
1610 Tunisia 
1620 Turke,Y 
1630 Uganda 

C-5 



C Coulltry Codes 

Code 

1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 

C-6 

rlexOS Programmer's Guide 

Counlry or Renion 

Union of Soviet Socialist Republics 
United I\rnlJ Emirntes 
United Kingdom 
United Stntes of I\merica 
Upper Volta 
Uruguny 
Vntican City 
Venezuela 
Vietnam 
West Germany 
Western Samoa 
Yemen Arab Republic 
Yugoslavia 
Zaire 
Zambia 

End of Appendix C 



Index 

A 

ABORT, 7-2 
proce~s termi~ation, 5-4 

Access modes, 1-20 
AR (shared read), 1-20 
ARW (shared read/write), 1-20 
default, 1-20 
devices, 6-3 
EX (exclusive), 1-20 
multiple opens, 2.-7 
setting, 7-70 

Access privileges, 1-19 
available, 1-19 
before OPEN, 2-5 
dis.k label, 2-4 
levels, 1.-19 
pipes, 4-2 
reduced, 1-20, 7-72 
requesting, 7-70 
rules and restrictions, 2-6 
setting for devices, 7-53 
to directories, 2-5 

ALTER, 7-4 
memory FRAME modification, 

3-13 
operation, 3-13 
plane byte operations, 7-6 
screen FRAME modification, 

3-13 
Archive attribute, 2-3 
Asynchronous· SVC 

cancelling event, 7-10 
monitoring event status, 

7-112 
retrieving completion code, 

7-85 
Attribute plane, 3-6 

background color, 3-7 
byte forolat, 3-7 
character blinking, 3-8 
foreground color, 3-7 

Attributes (disk files only), 2-2 

B 

BACKSPACE key, 7-81 
Boot, 1-16 
Border files 

dimensions, 3-26 
Borders 

bottorn size, 8-46 
freeze, 8-44 
left size, 8-46 
reserved file names, 3-24 
right size, 8-46 
synchronize, 8-44 
top size, 8-46 

Buttons 
(mouse) waiting on, 7-7 

BWAlT, 7-7 
button specification, 3--19 
clicks description, 7-8 

lndex·-l 



c 

clicks lise, 3-20 
event completion, 3-20 
eV.ent specification, 3 -19 
mask and state exmnple, 3-20 
mask description, 7-8 
mask specification, 3 -19 
selecting buttons, 3-19, 7-8 
state specification, 3-20 

C. interface 
data structure representation, 

1-5 
data ·types, 1-1 
SVC fonn, 1-7 

CANCEL, 7-10 
Case sensitivity, 1-13 
Chained procedure, 5-3 
Character blinking, 3-8 
Character plane, 3-6 
Character plane 

cell number, 3-8 
Child consoles, 3-22 
Child process, 5-2, 5-3 
CID, 8-37 
CLOSE, 7-11 

affects of, 7-12 
console file, 3-27 
device error, 7-12 
partial, 7-12 

CMDENV Table, 8-3 
COMMAND, 7-14 

access privilege requirements, 
2-7 

asynchronous, 5-4 

Index-2 

chained procedure, 5-3 
child process, 5-3 
creating processes, 5-3 
procedure, 5-3 
program load options, 5-3 
standard files, 1-18, 3-2 
synchronous, 5-4 

Command specification, 7-15 
Com~and tail, 7-15, 8-3 
Completion code 

retrieving, 7-85 
specification, 7-45 

Console 
dimensions, 8-5 
keystroke translation, 7-121 
rnodifying screen, 7-4, 7-24 
name, 8-6 
passing keyboard ownership, 

7-49 
returning keyboard ownership, 

7-57 
screen and keyboard modes, 

8-4 
type, 8-6 
virtual console number, 8-6 

Console files 
access modes and privileges, 

3-2 
closing, 3-27 

CONSOLE Table, 8-4 
diagram, 3-12 
how to get and set, 3-12 
source for read-only values, 

3-13 
TAHEAD, 3-15 

Consoles. 
character modes, 3-2 



console files, 3-1 
dimensions, 3-24 
file naming, 3-24 
physical, 8-26 
related SVCs, 3-2 
related tables, 3-3 
type of, 8-45 

CONTROL, 7 -19 
access privilege requirements, 

2-7 
options, 7-20 

COPY, 7-24 
memory FRAME specification, 

3-14 
operation, 3-14 
screen FRAME specification, 

3-14 
CPU 

idle count, 8-42 
type, 8-41 

CREATE, 7-26 
pipes, 4-2 
virtual consoles, 3-22, 7-30 

CTRL-B, 7-81 
CTRL-C 

trapping, 7-3 
CTRL-X, 7-81 
Cursor 

D 

location, 3-13, 8-5 
kee.ping in win'dow, 3-26 
tracking,. 8-45 
updating location, 3-15 

Data Structures, 1-5 

Data types, 1-1 
Date, 8-43 
Debugging, 7 -19 
Default:, 1-16 
DEFINE, 7-33 

device substitution, 7-35 
DELETE, 7-36 

access privilege requirements, 
2-7 

open files, 1-21 
required privileges, ]-21 
virtual consoles, 3-27 

DELETE key, 7-81 
Delimiters, 3-16, 7 -80 
Device drivers 

installing, 7-53 
Device names, 1-12 

case sensitivity, 1-13 
DEVICE 1 able, 8-7 

OWNERID, 6-6 
Devices 

access nlodes, 8-8 
access privileges, 6-2 
direct access, 7-92 
enabling for DEVLOCK, 7-53 
enabling for raw I/O, 7-53 
installation, 6-4 
installation status, 8-9 
installing drivers, ·7 - 53 
linking subdrivers, 7 - 53 
locking/unlocking, 7-38 
name, 8-7 
opening, 6-2, 7-70 
owner 10, 8- 9 
related SVCs, 6--1 
related tables, 6-1 
setting access privileges, 7 -53 

In<inx- ] 



types, B-7 
DEVLOCK, 7 -:Jfl 

enablinn for, 7-53 
rniscellaneous devices, 6 - 3 
options, 2-10 

Directories 
access privileges, 2-5 
creating, 7-26 
deleting, 7-36 
n·aming, 1-12 
renaming, 7-83 

DISABLE, 7-40 
Disk buffers 

flushing, 7 -103 
Disk device 

reading frorn, 2-8 
writing to, 2-8 

Disk directories 
abbreviations, 1-12 

Disk drive· 
access modes, 2-9 
current status, 8-13 
checking contents, 7 -102 
entries in root directory, 8-14 
exclusive mode, 2-10 
FAT 10, 8-14 
first sector, 8-13 
formatting systenl area. 7 -98 
formatting tracks, 7-99 
free space, 8-13 
GET-only mode, 2-9 
hidden sectors, 8-14 
install options selected, 8-12 
label contents, 8-14 
locked information, 8-13 
media format, 8-14 
Media Descriptor Block, 7 -107 

Index-4 

IHlme, 8-12 
number of FATs, 8-13 
numher of heads, 8-14 
numher of sectors, 8-13 
opening, ~-9 
p;utition size, 8-13 
raw read, 7-104 
raw write, 7-106 
reading system area, 7-96 
sector size, 8-13 
sectors/block, 8-13 
sectors/FAT, 8-14 
sectors/track, 8-13 
setting for verify after write, 

7-53 
setting Media Descriptor 

Block, 7-107 
shared read-only mode, 2 -10 
size of system area, 8-14 
total file space, 8-13 
type, 8-12 
writing system area, 7-97 

~isk files 
attributes, 2- 2, 8-18 
File Sectl.rity Word, 8-18 
group and user IDs, 8-18 
group 10. 2-3 
initiating access. 2-2 
lock modes, 7-61 
locking and unlocking, 7-60 
modification date, 8-18 
multiple opens, 2-7 
ownership rights, 1-19 
record size, 2-3, 8-18 
removing aU lock 5, 7 -62 
security, 2-3 
setting attributes, 2-2 



shared access, 2-7 
size, 8-18 
user 10, 2-3 

Disk label, 2-3, 2-4 
selecting options, 2-4 
set mode requirements, 2-10 

Disk media 
characteristics, 2-3 
direct access, 2-8 
raw I/O, 2-8 

Disk Resource Manager 
SVCs, 2-1 

Disk security 
limiting raw I/O, 2-10 

DISK Tabl~, 8-10 
DISKFILE Table, 8-16 
Drivers 

installation, 6-4 

E 

E_bwait, 7-7 
E_command, 7-14 
E_control, 7 -19 
E_'ock, 7-60 
E_open, 7 -70 
E_read, 7-78 
E_rwait, 7-86 
E_termevent, 7-2 
E_timer, 7-115 
E_write, 7-118 
ENABLE, 7-41 
ENVIRON Table, 8-19 
Escape sequences 

output, 3-15 

Events 
cancelling, 7-10 
getting cornpletion status, 

7-112 
outstanding, 8-38 
waiting on completion, 7-117 

EXCEPTION, 7-42 
EXIT, 7-45 

from a swi, 1-11 
Extension plane 

byte 'onnat, 3-8 
External abort 

trapping, 7-3 

F 

Family identification nunlber 
(FlO), 5-2, 8-20, 8-37 

File 
security, 2-4 

File 'Allocation Tables 
10,8-14 
number of, 8-13 
sectors per, 8-14 

file names, 1-12 
case sensitivity, 1-13 
logical name substitution, 

1-16 
reserved, 1-16 
wildcards, 1-14 

File number, 1- 17 
File pointer, 1-21 

after READ, 7 -80 
aUerWnnE,7-120 
determining location, 1-21 
getting current value, 7-88 

Index - 5 



initial value, 7 -71 
pipe~, 11-5 
~ettinu , 7-08 
~et ting loclltion, 1,- 21 
shnred, 7-72 
shared versu~ unique, 1- 21 

File security, 2-3, 2-6 
defau'lt. 8-20 
for pipes, 4-2 
format, 1-19 
setting, 7-28 

File specification, 1-12 
node, 17"""12 
path, 1-12 
root directory, 1-12 
subdirectory, 1-12 

Files 
access mode, 8-21 
closing, 7-11 
console, 3-24 
creating, 7-26 
deleting, 1-21, 7-36 
disk file lock modes, 7-6' 
disk file managenlent. 2-1 
file pointers, 1-21 
locking disk files, 7-60 
name specification, 7-28 
number, 1-17 
opening, 1-17, 7-70 
ra~dom acce.ss, 1-21 
record size specification, 7-28 
removing all disk file locks, 

7-62 
renllming, 7-83 
reserved console names, 3-24 
reserving contiguous disk 

space, 7-29 

Index-6 

~eGurity specification, 7--28 
~equential acce~~, 1-21 . 
~etting size, 7-29 
~ tnn{i;Hd, 1-16 
truncating, 7-119 . 
unlocking disk files, 7-60 

FllNUM Table, 8-21 
Flag~ 

bit ordering, 1-23 
FlexOS 

idle count, 8-42 
release level, 8-42 
version number, 8-41 

FRAME 
attribute plane, 3-6 
C structure, 3-9 
changing rectangle, 7-4 
character plane, 3-6 
copying rectangles, 7-24 
dimensions. 3-10 
Extension plane, 3-8 
memory, 3-10 
modification with ALTER, 3-13 
modification with COPY, 3-14 
plane use flag, 3-10 
planes, 3-5 
screen, 3-10 
structure diagraill, 3-9 

File Security Word (FSW), 2-3, 
7-28 

G 

GET, 7-47 



access privilege requirements, 
-2-6 

table number specification, 
7-48 

GIVE, 7-49 
Group ID, 2-3 
GSX, 7-51 

H 

Heap 
adding a new, 7-66 
current size, 8-38 
decreasing size of, 7-69 
expanding, 7-66 
initial contents, 7-15 
starting address, 8-38 

-Heap management, 5-5 
Hidden attribute, 2-2 
Hotspot 

location within mouse form, 
3-18 

Idle count, 8-42 
INSTALL, 7-53 

disk security options, 2-10 
options, 6-5 

Interrupt condition numbers, 
7-43 

Interrupt Service Routine (ISR), 
7-42 

J 

K 

KCTRL, 7-57 
Kernel, 1-29 
Key translation, 7-121 
Keyboard 

input delinliters, 3-16 
mode, 8-5 
passing ownership, 7-49 
returning ownership, 7-57 
-type-ahead buffer, 3-15 

KMODE,8-5 
initialization value, 3-13 

L 

LEFT ARROW key, 7-81 
Line editing characters, 7-81 
LOCK, 7-60 
Lock modes, 7-61 
Logical names 

default devices, 7-35 
defining, 7-33 
delimiters, 1-17 
global, 1-17, 8-40 
passing to child process, 1-17 
prefix string, 8-34 
process only, 8-34 
process-related, 1-17 
replacement procedure,. 1-17 
specification. 7-34 
subtitution. 1-16 

LOOKUP, 7-63 
access privilege requirements. 

2--6 
directories. 8-16 

Index -} 



hidden file~, 8-16 
include label, 8-· Hi 
name ca~e sefl~itivity, 7 -(j5 
system files, fr-16 
wildcard w~e, 1-15 

M 

MALLOC, 7-66 
adding new heap, 5-5 
increasing existing heap, 5-5 

MCTRl, 7-57 
Media Descriptor Block (MOB), 

7-107 
Media format, 8-14 
Memory 

allocation at proces~ 
ternlination, 7-45 

free byt~s, 8-22 
increasing heap, 7 -66 
operating system size, 8-22 
t9tal bytes, 8-22 

MEMORY Table, 8- 22 
Message Window, 3-27 
MFREE, 7-69 
Miscellaneous device 

get subdriver PORT table, 
7-110 

set. subdriver PORT table, 
7-111 

Miscellaneous devices (see 
"Oevices), 6-1 

Mouse, 7~86 
driver loading requirements, 

3-17 
getting location, 3-18 

opnning, 3 -19 
re~erved file nmne, 3-24 
selling location, 3-18 
virtual console number, 3-19 
waiting on clicks, 7-7 

MOUSE" Table, 8-23 
Mutual exclusion, 4-6 

N 

Names 
cClse sensitivity, 1-13 
re~erved, 1-16 

Node names, 1-12 

o 

OPEN, 7-70 
access privileges, 1-20 
devices, 6-2 
disk drive, 2-9 
multiple, 2-7 
pipes, 4-3 

ORDER, 7-74 " 
Osif, 1-4, 1-5 
Overlay, 1-18, 7-76 

access privilege requirements, 
2-7 

current file number, 8-20 
file number, 1-18 
loading, 7-76 

OWNERIO, 6-6 

p 



Parameter block 
diagram, 1-7 

Parent consoles, 3-22 
Parent process, 5-2, 8-38 
Partition size, 8-13 
Path, 1-12,8-25 

item delimiters, 1-17 
PATHNAME Table, 8-25 
PCONSOlE'Table, 8-26 
Physical console, 8-26 

attribu,te plane bits, 8-28 
character rows and columns, 

8-27 
country code, 8-28 
extension plane bits, 8-28 
10 number, 8-26 
name, 8-26 
number ,of f~nction keys, 8-28 
number of rows and columns, 

8-27 
number of virtual consoles, 

8-26 
planes s,upported, 8-27 
type of, 8-27 

Pi:, 4-1 
PIO, 5-2, 8-20, 8-37 
PIPE Table, 8-29 
Pipes 

access modes, 4-3 
access privileges, 4-2 
creating, 7-26 
d~leting, 4-2, 7-36 
file Security Word, 8-29 
name, 4-2, 8-29 
non-destructive READ, 4-7 
record size, 4-2, 8-29 
related SVCs, 4-1 

shared file pointer, 4-3 
size, 4-2, 8-29 
size specification, 7-29 
used for olutual exclusion, 4-6 
zero length buffers, 4-6 

Planes 
byte or array flag, 3-10 
changing cells, 7-4 

PORT Table, 8-30 
Ports 

baud rate, 8-31 
control paraoleters, 8-31 
current status, 8-30 
serial mode, 8-31 
type, 8-30 

Prefix string, 8-34, 8-40 
specification, 7-34 

PRINTER Table, 8-32 
Printers 

name, 8-33 
paper type, 8-33 
status, 8--32 
typeface mode, 8-32 

Priority (process), 1-29, 7 -16, 
7-18, 8-37 

Prn:, 1-16,6-2 
PROCOEF Table, 8-34 

changing entries, 7-33 
scanning, 8-25 
source, 1-17 

Procedure, 5-3 
Process 10, 5--2', 8-37 
PROCESS Table, 8-35 
Processes 

aborting, 7-2 
child, 5- 2 
code area, 8-38 

IndeK -9 



command file specificfltiol1, 
B-3 

completion code, 7 --45 
creating, 5-3,7-14 
current fmnily 10, 8-- 20 
current process 10. 8- 20 
current state, 8-37 
current user and group 10, 

8-20 
data area, 8-38 
decreasing heap, 5-5 . 
defined logical narnes, 8-34 
family 10, 5-2, 8-37 
group 10, 8-37 
heap, 8-38 
increasing heap, 5-5, 7-66 
loading overlays, 7-76 
maximufn nlemo'ry, 8--37 
maximurn rnemory 

specification, 7-16 
menlory at ternlination, 7-45 
name, 8-37 
name specification, 7 -16 
outstanding events, 8-38 
parent, 5-2, 8-38 
physical console number, 8-37 
PIO, 7-16, 8-37 
priority, '1-29, 7-16, 8-37 
priority numbers, 7-18 
process 10, 5-2 
related SVCs, 5-1 
related tables, 5-1 
relationships, 5-2 
return code, 7-45 
scheduling, 1-29, 7 -115 
source PROCOEF table, 1-17 
states, 1-24 

Index-10 

:;Vllchronization with pipes, 
4-6 

terminating, 5-4, 7-45 
type of, 8-37 
user 10, 8-37 
user priority number, 1-29 
virtual console number, 8-37 

Prograrn 

Q 

R 

code area, 8-38 
data area, 8-38 
heap, 8-38 
load options, 5-3 

Random file access, 1-21 
Raw liD 

enabling for, 7-53 
READ, 7-78 

access privilege requirements, 
2-7 

delimiters, 3-16, 7-80 
disk device, 2-8 
enabling for delimiters, 7 -79 
from keyboard, 3-16 
line editing characters, 7 -81 
nliscellaneous devices, 6":'3 
pipes, 4-5 

Read--only attribute, 2-2 
Record size, 2-3 
Record_size, 7-26 
REel 

C structure, 3-11 



dimensions, 3-11 
structure diagram, 3-11 

Reduced access privileges, 7-72 
Release level, 8-42 
RENAME, 7-83 

access privilege requirements, 
2-7 

Resource Managers, 1-28 
RETURN, 7-85 

limitation, 1-10 
Return code, 1-8 

specification, 7-45 
RIGHT ARROW key, 7-81 
Root directory 

abbreviation, 1-12 
number of entries in, 8-14 

RWAIT,7-86 

5 

clipping region, 3-21 
REeT specification, 3-21 
return value, 3-21 

S_abort, 7-2 
S_alter, 7-4 
S_bwait, 7-7 
S_cancel, 7-10 
S_close, 7-11 
S_command, 7-14 
S_control, 7-19 
S_copy, 7-24 
S_create, 7-26 
S_define, 7-33 
S_delete; 7-36 
S_devlock, 7-38 
S_disable, 7-40 

S_enable, 7-41 
S_exception, 7-42 
S_exit, 7-45 
S_get, 7-47 
S_9ive, 7-49 
S_9SX, 7-51 .. 
S_iristall, 7-53 
S_kctrl, 7-57 
S_lock, 7-60 
S_lookup, 7-63 
S_malloc, 7-66 
S_mctrl, 7-57 
S_mfree, 7 -69 
S_open, 7-70 
S_order, 7 -74 
S_overlay, 7-76 
S_rdelim, 7-78 
S_read, 7-78 
S_renarne, 7-83 
S_return, 7-85 
S_rwait. 7-86 
S_seek, 7-88 
S_set, 7-90 
S_special, 7-92 
S_status, 7-112 
S_swiret, 7 -113 
S_timer, 7-115 
S_vccreate, 7-30 
S_wait, 7-117 
S_write, 7-118 
S_xlat, 7-121 
Screen 

changing display, 3-13. 
cursor location, 8-5 
colors, 3--7 
mode, 8--4 

Screen_fnufll, 7-30 

Index -- 11 



Searchinn tnhles, I-£)3 
Sectors 

first 0--13 
numher on disk, 8-1] 
size, 8-13 

SEEK. 7-88 
Sernnphores, 4-6 
Sequential file access, 1-21 
SET, 7-90 

access privilege requirements, 
2-7 

Sibling consoles, 3-22 
SMODE,8-4 

initialization value, 3-13 
Software Interrupt routine 

disahling, 7-40 
enabling, 7-41 
returning from, 7 -113 

Software interrupts, 1-10, 1-11 
SPECIAL, 7-92 

checking media, 7-102 
disk function mode 

requirements, 2-8 
disk functions, 7 -95 
disk functions return codes, 

7-95 
flushing disk buffers, 7-103 
formatting disk system area, 

7-98 
formatting tracks, 7-99 
Miscellaneous device function 

0, 7-110 
Miscellaneous device function 

1,7-111 
miscellaneous devices, 6-4 

Index-12 

parameter block specification, 
7-92 

rnw disk read, 7-104 
raw disk write, 7-106 
read disk system area, 7-96 
reserved function number bits, 

7-93 
reserved function numbers, 

7-94 
writing disk system area, 7-97, 

7-107 
SPECIAL Table, 8-39 
SPLDVR, 6-2 
Spooling system, 6-2 
Standard files, 1-16 

current numbers, 8-19 
numbers, 1-18 
source definitions, 1-17 
when opened, 3-2 

STATUS, 7-112 
Stdcmd, 1-16 
Stderr (standard error file), 1-16 

current file number, 8-19 
file number, 1-18 
open mode, 3-2 
open privilege and mode, 1-18 

Stdin (standard input file), 1-16 
current file nurnber, 8-19 
file number, 1-18 
open mode, 3-2 
open privilege and mode, 1-18 

Stdout (standard output file), 
1-16 

current file number, 8--19 
file number, 1-18 
open mode, 3-2 
open privilege and mode, 1-18 . 



Subdrivers 
getting PORT table values, 

7-110 
linking, 6-4, 7-53 
PORT table access, 6-3 
s~tting PORT table values, 

7-110 
Superuser 
. disk access privileges, 2-10 
setting privileges, 1-19 

Supervisor, 1-28 
Supervisor calls 

asynchronous, 1-7 
general form, 1-7 
numbers, 1-3 
return codes, 1-8 
synchronous, 1-7 

SVC (see also Supervisor calls), 
1-4 

Swi 
disabling, 7-40 
enabling, 7-41 
exit options, 1-11 

See ,also software 
interrupts 

SWIRET, 7-113 
SYSDEF Table, 8-40 

access rules, 7-34 
changing entries, 7-33 
modification restrictions, 1-17 
scanning, 8-25 

System area 
size of, 8-14 

System attribute, 2-3 
System Data Structures, 8-1 
System overview, 1-27 
SYSTEM Table, 8-41 

System:, 1-16 

T 

Tables, 8-1 
CMDENV,8-3 
CONSOLE, 8-4 
DEVICE, 8-7 
DISK, 8-10 
DISKFILE, 8-16 
ENVIRON, 8-'19 
FILNUM, 8-21 
10 value, 7-48 
lookup, 7 -63 
MEMORY, 8-22 
MOUSE. 8-23 
PATHNAME. 8-25 
PCONSOlE, 8--26 
PIPE, 8-29 
PORT, 8-30 
PRINTER, 8-32 
PROCDEF. 8--34 
PROCESS. 8-35 
retrieving. 7-47 
setting values, 7-90 
SPECIAL, 8-39 
SySDEF. 8-40 
SYSTEM. 8--41 
TIMEDATE, 8-43 
VCONSOLE. 8-44 

TAHEAD,3-15 
Time, 8--43 
TIMEDA1E Tahle. 8-43 
TIMER, 7-115 
Tracks 

sectors per. 8--13 

Index - 13 



Type--nhem' burrer, 3-15, 8-4 

u 

U~er-ID, 2-3 
U~er ~pace 

v 

code area, 8-38 
data area, 8-38 
heflp, 8-38 

VCID,8-37 
VCNUM,8-45 
VCONSOlE Table, 8-4" 
Version number, 8--41 
Virtual consoles 

border dimensions, 3-26, 8-46 
border specification, 7-31 
child, 3-22 
console file closing, 3-27 
creating, 3-22, 7-30 
current number, 8--45 
deleting, 3-27, 7-36 
dimensions, 8-46 
displflY tules, 3-22 
illustration, 3-25 
initialization, values, 3-24 
name, 3-24 
number, 3-24 
number of, 8-26 
parent, 3-22, 7-31 
relationships, 3-22 
reordering, 7-74 
setting dimensions, 3-24 

Index-14 

r.etling- window size and 
dimension, 3-25 

siblings, 3-22 
type of, 8-45 
window location, 8-46 
window mode, 8-44 
window position, 8-45 
window ~ize, 8-46 
windows, 3-25 

w 

WAIT, 7-117 
Watthdog timer, 7-116 
Wildcard, 1-14 
Windows, 3-25 

border files, 3-26 
cursor tracking, 3-26 
dimensions, 8-46 
mode, 8-44 
position on parent, 8-46 
rererence point of view, 8-45 
reserved border file names, 

3-24 
setting size and position, 3-25 

Wmessage, 3-27 
WMEX 

wrnessage pipe, 3-27 
WRITE, 7-118 

access privilege requirements, 
2-7 

disk device, 2-8 
miscellaneous devices, 6- 4 
pipes, 4-5 
to screen, 3-15 
with redirection, 3-15 



X 

XLAT, 7-121 

v 

z 

Index' 1~ 





FlexOS™ 
System Guide 

Version 1.3 

1 073-2013-001 



COPYRIGHT 

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication 
may be reproduced. transmitted. transcribed. stored in a retrieval system. or translated 
into any language or computer language. in any form or by any means. electronic. 
mechanical. magnetic. optical. chemical. manual or otherwise. without the prior written 
permission of Digital Research Inc .. 60 Garden Court. Box DRI. Monterey. California 
93942. 

DISCLAIMER 

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH 
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. 
Further. Digital Research Inc. reserves the right to revise this publication and to make 
changes from time to time in the content hereof without obligation of Digital Research 
Inc. to notify any person of such revision or changes. 

NOTICE TO USER 

This manual should not be construed as any representation or warranty with respect to 
the software named herein. Occasionally changes or variations exist in the software 
that are not reflected in the manual. Generally. if such changes or variations are 
known to exist and to affect the product significantly. a release note or READ.DOC file 
accompanies the manual and distribution disk(s). In that event. be sure to read the 
release note or READ.DOC file before using the product. 

TRADEMARKS 

Digital Research. CP/M. and the Digital Research logo are registered trademarks of 
Digital Research Inc. FlexOS is a trademark of Digital Research Inc. We Make 
Computers Work is a service mark of Digital Research Inc. ADM-3A is a trademark of 
Lear-Siegler. Inc. DEC is a registered trademark of Digital Equipment Corporation. IBM 
is a registered trademark of International Business Machines. Ouadram is a registered 
trademark of Ouadram Corporation. Zenith is a registered trademark of Zenith Data 
Systems. 

First Edition: November 1986 



Foreword 

This guide is for the original equipment manufacturer (OEM) and 
system programmers who install and use FlexOS. 

The FlexOS System Guide is intended for the original equipment 
manufacturer (OEM) and system programmer responsible for 
implementing FlexOS on a specific computer system. The text 
describes FlexOS architecture, its interface to hardware devices, and 
the functions available to the driver writer. To use this guide, you 
should be familiar with device drivers and the C programming 
language. 

Digital Research supplies FlexOS as a set of compiled operating 
system modules and device drivers for a variety of consoles, disk 
drivers, and printers. You can compile these samples to interface to 
the corresponding device or use them as models for building your 
own hardware interfaces. 

The driver routines are written in the C programming language and 
make use of the FlexOS C run-time library. Although FlexOS allows 
you to write device drivers entirely in C, you might need or prefer to 
use assembly language routines in your code where speed of 
execution cannot be compromised. 

To complete your understanding of FlexOS, you should read the FlexOS 
Programmer's Guide for its programming interface and Supervisor calls 
description. For the description of the user interface, read the FlexOS 
User's Guide. The FlexOS documentation set also includes the 
supplements describing important, microprocessor-specific 
information. Refer to the supplement corresponding to the 
microprocessor in your computer. 

iii 



Hardware Requirements 

You can tailor FlexOS to run in systems based on a variety of 
microprocessors. While FlexOS can take advantage of built-in memory 
management found in advanced microprocessors, it does not require 
such memory management units to create a multitasking environment. 
See the processor-specific supplements to this manual for more 
information on memory management. 

Digital Research® suggests that a minimum FlexOS system contain 512 
kilobytes of RAM. FlexOS supports 2 gigabytes of disk storage space. 

FlexOS supports a variety of clock devices and memory management 
units. FlexOS supplies application programmers with a standard 
console and disk interface that supports integrated multi-window and 
desktop applications. FlexOS provides support for a broad range of 
hardware environments. 

Sample device driver code is distributed as models for floppy and hard 
disk drives; serial, bit-mapped, and character-mapped consoles; and 
serial 1/0 and printer ports. 

About this Manual 

This manual is organized into the following sections: 

Section 1 

Section 2 

Section 3 

Section 4 

Section 5 

Introduction to the FlexOS operating system. 

Overview of the FlexOS 1/0 system. 

System configuration. 

Synchronous driver interface to Resource Managers. 

Use and function of the FlexOS driver services. 

Section 6 Driver interface to the Supervisor module. 

Sections 7 through 11 
1/0 functions for console, disk, printer, port, and special 
drivers. 

Section 12 The FlexOS bootstrap program requirements, memory 
image, and SYS utility. 

iv 



Appendixes System character sets, support for foreign languages, 
and window management. 

Data Structure Convention 

Throughout this manual, data structures are represented in diagram 
form as shown below. The corresponding C listing for the diagram 
follows the illustration. Word and byte order are important when using 
these structures. 

o 2 3 

o byte 1 I byte2 byte3 I byte4 

4 word1 word2 

8 lon91 

12 byteS I byte6 word3 

Data Structure 

struct thisstruct 
{ 

BYTE by tel; 1* byte offset = 0 *1 
BYTE byte2; 1* byte offset = 1 */ 
BYTE byte3; /* byte offset = 2 */ 
BYTE byte4; /* byte offset = 3 */ 
WORD wordl; /* byte offset = 4 */ 
WORD word2; 1* byte offset = 6 */ 
LONG longl; 1* byte offset = 8 */ 
BYTE byteS; 1* byte offset = 12 */ 
BYTE byte6; /* byte offset = 13 */ 
WORD word3; 1* byte offset = 14 */ 

} ; 1* length = 16 */ 

v 



vi 



Contents 

1 System Overview 
1.1 Features...................................... 1-1 
1.2 Operating System Organization. . . . . . . . . . . . . . . . . . . . . 1-2 

1.2.1 Programs................................ 1-3 
1.2.2 The Supervisor Module. . . . . . . . . . . . . . . . . . . . . . 1-4 
1.2.3 The Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.2.4 Resource Managers. . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
1.2.5 Device Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 

1.3 File Management . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.4 Memory Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
1.5 Printer Management: Print Spooler. . . . . . . . . . . . . . . . . . 1-7 

2 1/0 Overview 
2.1 File-Oriented Input and Output. . . . . . . . . . . . . . . . . . . . . 2-1 
2.2 Organization of 1/0 Modules. . . . . . . . . . . . . . . . . . . . . . . 2-2 

2.2.1 Device Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 
2.2.2 Units ................. "................... 2-3 
2.2.3 Resource Managers. . . . . . . . . . . . . . . . . . . . . . . . . 2-3 

2.3 Driver Unit Flow of Control. . . . . . . . . . . . . . . . . . . . . . . . 2-4 
2.4 Steps in Servicing 1/0 Request. . . . . . . . . . . . . . . . . . . . . 2-4 
2.5 Asynchronous 1/0. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 2-5 

2.5.1 Support for Handling Asynchronous Events. . . . . . . 2-5 
2.5.2 Synchronous and Asynchronous Interfaces. . . . . . . 2-6 

2.6 Sub-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 
2.7 Installing'Drivers................................ 2-10 

3 System Configuration 
3.1 System Creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 

3.1.1 Required Modules. . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
3.1.2 Steps in Creating FlexOS. . . . . . . . . . . . . . . . . . . . . 3-2 

3.2 The CONFIG Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 
3.3 Boot Script Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

3.3.1 Boot Script Commands. . . . . . . . . . . . . . . . . . . . . . 3-4 



Contents 

3.3.2 Logical Name Definitions .................... . 
3.4 Run-time Driver Installation ..... ; ................ . 
3.5 Example Boot Script ............................ . 

4 Driver Interface 
4.1 Driver Load Format ............................. . 
4.2 Driver Header ................................. . 

4.2.1 Driver Header Synchronization Flags ........... . 
4.3 Entry Point Parameter Interface .................... . 
4.4 Driver Installation Functions ...................... . 

4.4.1 INIT--Initialize the specified driver unit ......... . 
4.4.2 SUBDRIVE--Associate driver to a sub-driver ..... . 
4.4.3 UNINIT--Uninitialize the Specified Driver Unit .... . 

5 Driver Services 
5.1 Flag System .................................. . 

5.1.1 FLAGCLR--Clear a system flag ............... . 
5.1.2 FLAGEVENT--Return an event mask ........... . 
5.1.3 FLAGGET --Allocate a system flag number ...... . 
5.1.4 FLAGREL --Release a system flag ............. . 
5.1.5 FLAGSET --Set a system flag ................. . 

5.2 Asynchronous Service Routines ................... . 
5.2.1 ASRWAIT --Wait for event to complete ......... . 
5.2.2 DOASR--Schedule an ASR .................. . 
5.2.3 DSPTCH--Force a dispatch .................. " 
5.2.4 EVASR--Schedule ASR from Process Context .... . 
5.2.5 NEXTASR--Schedule ASR from an ASR ......... . 

5.3 Device Polling ................................. . 
5.3.1 POLLEVENT --Poll for event completion ......... . 

5.4 System Memory Management .............. ; ...... . 
5.4.1 MAPU--Map another process's User Memory .... . 
5.4.2 MAPPHYS--Map Physical Memory ............. . 
5.4.3 MLOCK-- Lock the User Memory ............. . 
5.4.4 MRANGE--Perform range checking ............ . 
5.4.5 MUNLOCK--Unlock User Memory ............. . 
5.4.6 PADDR--Convert address: System to Physical. ... . 
5.4.7 SADDR--Convert address: User to System ...... . 

3-6 
3-8 
3-8 

4-1 
4-2 
4-5 
4-7 
4-8 
4-8 

4-12 
4-14 

5-2 
5-5 
5-6 
5-7 
5-7 . 
5-8 
5-9 

5-11 
5-12 
5-13 
5-14 
5-15 
5-16 
5-16 
5-18 
5-22 
5-23 
5-24 
5-25 
5-25 
5-26 
5-27 



Contents 

5.4.8 SALLOC--Allocate System Memory. . . . . . . . . . . .. 5-27 
5.4.9 SFREE--Free System Memory. . . . . . . . . . . . . . . .. 5-28 
5.4.10 UADDR--Convert address: System to User. . . . .. 5-28 
5.4.11 UNMAPU--Restore User Memory . . . . . . . . . . . .. 5-29 

5.5 Critical Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-30 
5.5.1 ASRMX--Obtain MXPB ownership. . . . . . . . . . . . .. 5-32 
5.5.2 MXEVENT --Obtain MXPB ownership . . . . . . . . . . .. 5-33 
5.5.3 MXINIT --Create an MXPB . . . . . . . . . . . . . . . . . . .. 5-33 
5.5.4 MXREL --Release an MXPB. . . . . . . . . . . . . . . . . . .. 5-34 
5.5.5 MXUNINIT--Remove an MXPB from the system. . .. 5-34 
5.5.6 NOABORT --Enter no-abort region. . . . . . . . . . . . .. 5-35 
5.5.7 NODISP--Enter a no-dispatch region . . . . . . . . . .. 5-:-35 
5.5.8 OKABORT--Exit flo-abort region. . . . . . . . . . . . . .. 5-36 
5.5.9 OKDISP--Exit a no-dispatch region. . . . . . . . . . . .. 5-36 

5.6 System Process Creation . . . . . . . . . . . . . . . . . . . . . . . .. 5-36 
5.6.1 PCREATE--Create a system process ........... , 5-37 

5.7 Interrupt Service Routines ........................ , 5-39 
5.7.1 SETVEC--Set interrupt vector to ISR ........... , 5-40 

6 Supervisor Interface 
6.1 Supervisor Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 

6.1.1 SUPIF--Make a Supervisor call. . . . . . . . . . . . . . . . 6-2 

7 Console Drivers 
7.1 Console Driver Overview . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
7.2 The FRAME and RECT Structures . . . . . . . . . . . . . . . . . . . 7-3 

7.2.1 Planes................................... 7-3 
7.2.2 FRAME Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

7.3 Console Driver Entry Points . . . . . . . . . . . . . . . . . . . . . . . 7-8 
7.4 Console Driver 1/0 Functions . . . . . . . . . . . . . . . . . . . . . . 7-9 

7.4.1 SELECT --Activate keyboard. . . . . . . . . . . . . . . . . . . 7-9 
7.4.2 FLUSH--Deactivate keyboard. . . . . . . . . . . . . . . . .. 7-12 
7.4.3 COPY/ALTER--Modifya RECT. . . . . . . . . . . . . . . .. 7-13 
7.4.4 WRITE--Write data to VFRAME ............... , 7-20 
7.4.5 SPECIAL Entry Point . . . . . . . . . . . . . . . . . . . . . . .. 7-24 
7.4.6 GET --Provide physical console description. . . . . .. 7-30 
7.4.7 SET--Change the PCONSOLE Table. . . . . . . . . . . .. 7-34 



Contents 

8 Disk Drivers 
8.1 Disk Driver Input/Output. . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 

8.1.1 Reentrancy at the Driver/Disk Controller Level . . . . 8-1 
8.1.2 Disk Driver Types. . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 

8.2 Logical Disk Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
8.3 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-16 
8.4 Disk Driver I/O Functions . . . . . . . . . . . . . . . . . . . . . . . .. 8-17 

8.4.1 SELECT --Initialize driver unit. . . . . . . . . . . . . . . . .. 8-17 
8.4.2 FLUSH--Flush intermediate buffers to media. . . . .. 8-21 
8.4.3 READ--Obtain data from disk medium . . . . . . . . .. 8-22 
8.4.4 WRITE--Write data to disk medium. . . . . . . . . . . .. 8-26 
8.4.5 SPECIAL Entry Point. . . . . . . . . . . . . . . . . . . . . . .. 8-:-30 
8.4.6 GET --Provide unit-:-specific information. . . . . . . . .. 8-45 
8.4.7 SET--Change unit-specific information. . . . . . . . .. 8-47 

9 Port Drivers 
9.1 Port Driver Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
9.2 Port Driver I/O Functions . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 

9.2.1 SELECT --Enable the specified unit . . . . . . . . . . . . . 9-2 
9.2.2 FLUSH--Disable port. . . . . . . . . . . . . . . . . . . . . . . . 9-3 
9.2.3 READ--Read data from port . . . . . . . . . . . . . . . . . . 9-4 
9.2.4 WRITE--Send data to port. . . . . . . . . . . . . . . . . . . . 9-7 
9.2.5 GET --Provide unit-specific information. . . . . . . . . . 9-8 
9.2.6 SET--Change unit-specific information. . . . . . . . .. 9-13 

10 Printer Drivers 
10.1 Support for Printers . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-1 
10.2 Printer Driver I/O Functions. . . . . . . . . . . . . . . . . . . . . .. 10-2 

10.2.1 SELECT --Enable the specified unit . . . . . . . . . . .. 10-2 
10.2.2 FLUSH--Disable Printer .................... , 10-3 
10.2.3 WRITE--Write data to printer. . . . . . . . . . . . . . . .. 10-5 
10.2.4 GET --Provide unit-specific information. . . . . . . .. 10-8 
10.2.5 SET --Change unit-specific information. . . . . . . .. 10-13 



11 Special Drivers 
11.1 Special Driver Access .......................... . 
11.2 Special Driver 1/0 Functions ..................... . 

11.2.1 SELECT --Open a special driver unit for 1/0 . .... . 
11.2.2 FLUSH--Close the specified special driver unit .. . 
11.2.3 READ--Initiate request for data .............. . 
11.2.4 WRITE--Initiate output of data " ............ . 
11.2.5 SPECIAL Entry Point ...................... . 
11.2.6 GET --Provide unit-specific information ........ . 
11.2.7 SET --Change unit-specific information ........ . 

12 System Boot 
12.1 800t Overview ............................... . 

12.1.1 Data Disk Layout ......................... . 
12.1.2 800t Disk Layout ......................... . 

12.2 800t Record Format ........................... . 
12.3 800t Loader Outline ........................... . 
12.4 The FlexOS Memory Image ...................... . 
12.5 The SYS Utility ............................... . 

A The FlexOS Standard Input and Output Character Sets ... . 
A.l 16-bit Input Character Set ....................... . 
A.2 8-bit Input Character Set ........................ . 
A.3 16-bit Output Character Set ...................... . 
A.4 8-bit Output Character Set ....................... . 

8 Foreign Language Support ......................... . 
8.1 Console Driver Support ......................... . 
8.2 Modifying Messages .............. '.' ............ . 

C Modifying Windows .............................. . 

Contents 

11-1 
11-5 
11-6 
11-9 

11-11 
11-14 
11-16 
11-19 
11-21 

12-1 
12-2 
12-3 
12-3 
12-7 
12-8 
12-9 

A-1 
A-l 
A-4 
A-6 
A-9 

8-1 
8-1 
8-2 

C-1 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Index-1 

Tables 

1 ~ 1 Driver/Resource Manager Relationships. . . . . . . . . . . . . . 1-5 
4-1 Driver Header Data Fields . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
4-2 Driver Header Synchronization Flags . . . . . . . . . . . . . . . . 4-6 



Contents 

4-3 Driver Type Values ............................. . 
4-4 INSTALL Flags ................................ . 
4-5 SUBDRIVE Parameter Block Data Fields ............. . 
5-1 Flag Operations and Flag States .................. . 
7-1 Colors Defined in Attribute Byte .................. . 
7-2 Foreground Colors with Intensity Bit Set ............ . 
7-3 Fields in SELECT Parameter Block ................. . 
7-4 Fields in COpy fALTER Parameter Block ............. . 
7-5 FRAME Fields ................................. . 
7-6 RECT Fields .................................. . 
7-7 Fields in WRITE Parameter Block .................. . 
7-8 Fields in SPECIAL Function 0 Parameter Block ........ . 
7-9 Fields in SPECIAL Function 4 Parameter Block ........ . 
7-10 Fields in GET Parameter Block ................... . 
7-11 Fields in PCONSOLE Table ...................... . 
7-12 Fields in SET Parameter Block ................... . 
8-1 Fields in Logical Disk Layout ..................... . 
8-2 Fields in Hard Disk Layout ....................... . 
8-3 Fields in Partition Table ......................... . 
8-4 Fields in BPB ................................. . 
8-5 Media Descriptor Byte Values .................... . 
8-6 Media Descriptor Block Fields .................... . 
8-7 READ Parameter Block Fields ..................... . 
8-8 WRITE Parameter Block Fields .................... . 
8-9 SPECIAL Function 0 Parameter Block Fields .......... . 
8-10 SPECIAL Function 1 Parameter Block Fields ......... . 
8-11 SPECIAL Function 2 Parameter Block Fields ......... . 
8-12 SPECIAL Function 3 Parameter Block Fields ......... . 
8-13 PARMBUF Structure Fields ...................... . 
8-14 SPECIAL Function 8 Parameter Block Fields ......... . 
8-15 SPECIAL Function 9 Parameter Block Fields ......... . 
8-16 GET Parameter Block Fields ..................... . 
9-1 Port Driver SELECT Parameter Block Fields .......... . 
9-2 Port Driver in FLUSH Parameter Block Fields ......... . 
9-3 Port Driver READ Parameter Block Fields ............ . 
9-4 Port Driver GET Parameter Block Fields ............. . 
9-5 Port Driver GET fSET Table Fields .................. . 

4-10 
4-11 
4-13 

5-5 
7-5 
7-6 

7-10 
7-14 
7-17 
7-19 
7-21 
7-26 
7-30 
7-31 
7-33 
7-35 

8-6 
8-9 

8-11 
8-14 
8-16 
8-19 
8-24 
8-28 
8-32 
8-34 
8-36 
8-38 
8-40 
8-42 
8-44 
8-46 
9-3 
9-4 
9-5 
9-9' 

9-11 



Contents 

9-6 Port Driver SET Parameter Block Fields . . . . . . . . . . . . .. 9-14 
10-1 Printer Driver SELECT Parameter Block Fields. . . . . . . .. 10-3 
10-2 Printer Driver in FLUSH Parameter Block Fields . . . . . .. 10-4 
10-3 Printer Driver WRITE Parameter Block Fields. . . . . . . . .. 10-6 
10-4 Printer Driver GET Parameter Block Fields . . . . . . . . . .. 10-9 
10-5 Printer Driver GET ISET Table Fields. . . . . . . . . . . . . . .. 10-11 
10-6 Printer Status Bit Map. . . . . . . . . . . . . . . . . . . . . . . . .. 10-12 
10-7 Printer Driver SET Parameter Block Fields . . . . . . . . . .. 10-14 
11-1 Driver Access Flags. . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-2 
11-2 SELECT Parameter Block Fields . . . . . . . . . . . . . . . . . .. 11-7 
11-3 SELECT Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11-8 
11-4 FLUSH Parameter Block Fields. . . . . . . . . . . . . . . . . . .. 11-10 
11-5 READ Parameter Block Fields. . . . . . . . . . . . . . . . . . . .. 11-12 
11-6 WRITE Parameter Block Fields . . . . . . . . . . . . . . . . . . .. 11-15 
11-7 SPECIAL Parameter Block Fields. . . . . . . . . . . . . . . . . .. 11-17 
11-8 GET Parameter Block Fields. . . . . . . . . . . . . . . . . . . . .. 11-20 
11-9 SET Parameter Block Fields. . . . . . . . . . . . . . . . . . . . .. 11-22 
12-1 Boot Record Fields. . . . . . . . . . . . . . . . . . . .. . . . . . . .. 12-5 
A-1 High-order Byte Values. . . . . . . . . . . . . . . . . . . . . . . . .. A-1 
A-2 Results of 16- to 8-bit Translation . . . . . . . . . . . . . . . . . A-5 
A-3 16-bit Output Character Set. . . . . . . . . . . . . . . . . . . . .. A-6 
A-4 FlexOS Escape Sequences for 8-bit Output. . . . . . . . . .. A-10 

Figures 

1-1 Structure of FlexOS Operating System. . . . . . . . . . . . . . . 1-3 
2-1 1/0 Flow of Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 
2-2 Asynchronous 1/0 Request. . . . . . . . . . . . . . . . . . . . . . . . 2-7 
2-3 Relationship of Sub-drivers to Drivers. . . . . . . . . . . . . . . 2-9 
4-1 Driver Load Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
4-2 Driver Header Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
4-3 SUBDRIVE Parameter Block . . . . . . . . . . . . . . . . . . . . . .. 4-12 
5-1 User Space and System Space. . . . . . . . . . . . . . . . . . .. 5-19 
5-2 Map Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-24 
7-1 Console Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 
7-2 FRAME and RECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 
7-3 SELECT Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . 7-9 



Contents 

7-4 COPY/ALTER Parameter Block. . . . . . . . . . . . . . . . . . . .. 7-13 
7-5 FRAME Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-17 
7-6 RECT Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-18 
7-7 WRITE Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . .. 7-20 
7-8 Dirty Region Format. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-23 
7-9 SPECIAL Function 0 Parameter Block. . . . . . . . . . . . . . .. 7-25 
7-10 SPECIAL Function 4 Parameter Block. . . . . . . . . . . . . .. 7-29 
7 -11 GET Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 7-31 
7-12 PCONSOLE Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-32 
7-13 SET Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 7-35 
8-1 Logical Disk Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
8-2 Hard Disk Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 
8-3 Partition Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-10 
8-4 BIOS Parameter Block . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-·13 
8-5 SELECT Parameter Block . . . . . . . . . . . . . . . . . . . . . . . .. 8-18 
8-6 Media Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . .. 8-18 
8-7 FLUSH Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . .. 8-21 
8-8 READ Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 8-23 
8-9 WRITE Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . .. 8-27 
8-10 SPECIAL Function 0 Parameter Block. . . . . . . . . . . . . .. 8-31 
8-11 SPECIAL Function 1 Parameter Block. . . . . . . . . . . . . .. 8-33 
8-12 SPECIAL Function 2 Parameter Block. . . . . . . . . . . . . .. 8-35 
8-13 SPECIAL Function 3 Parameter Block. . . . . . . . . . . . . .. 8-37 
8-14 PARMBUF Structure. . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-39 
8-15 SPECIAL Function 8 Parameter Block. . . . . . . . . . . . . .. 8-41 
8-16 SPECIAL Function 9 Parameter Block. . . . . . . . . . . . . .. 8-43 
8-17 GET Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 8-45 
9-1 Port Driver SELECT Parameter Block . . . . . . . . . . . . . . . . 9-2 
9-2 Port Driver FLUSH Parameter Block. . . . . . . . . . . . . . . . . 9-3 
9-3 Port Driver READ Parameter Block. . . . . . . . . . . . . . . . . . 9-5 
9-4 Port Driver GET Parameter Block. . . . . . . . . . . . . . . . . . . 9-8 
9-5 Port Driver GET/SET Table. . . . . . . . . . . . . . . . . . . . . . .. 9-10 
9-6 Port Driver SET Parameter Block. . . . . . . . . . . . . . . . . .. 9-13 
10-1 Printer Driver SELECT Parameter Block. . . . . . . . . . . . .. 10-2 
10-2 Printer Driver FLUSH Parameter Block . . . . . . . . . . . . .. 10-4 
10-3 Printer Driver WRITE Parameter Block. . . . . . . . . . . . . .. 10-5 
10-4 Printer Driver GET Parameter Block. . . . . . . . . . . . . . .. 10-8 



Contents 

10-5 Printer Driver GET/SET Ta ble . . . . . . . . . . . . . . . . . . . .. 10-10 
10-6 Printer Driver SET Parameter Block . . . . . . . . . . . . . . .. 10-13 
11-1 SELECT Parameter Block . . . . . . . . . . . . . . . . . . . . . . .. 11-6 
11-2 FLUSH Parameter Block ........................ , 11-9 
11-3 READ Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . .. 11-11 
11-4 WRITE Parameter Block. . . . . . . . . . . . . . . . . . . . . . . .. 11-14 
11-5 SPECIAL Parameter Block. . . . . . . . . . . . . . . . . . . . . . .. 11-16 
11-6 GET Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 11-19 
11-7 SET Parameter Block. . . . . . . . . . . . . . . . . . . . . . . . . .. 11-22 
12-1 FlexOS Disk Layout . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-2 
12-2 Boot Record ...... '. . . . . . . . . . . . . . . . . . . . . . . . . . .. 12-4 
12-3 The FlexOS Memory Image ...... : . . . . . . . . . . . . . .. 12-8 
A-1 High-order Byte Definitions for 01 H to 7FH. . . . . . . . . .. A-2 

Listings 

3-1 Example Boot Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
4-1 C Language Definition of a Driver Header . . . . . . . . . . . . 4-2 
4-2 C Language Calling Convention. . . . . . . . . . . . . . . . . . . . 4-7 
8-1 SPECIAL Function 9 Physical Unit Descriptor. . . . . . . . .. 8-45 





SECTION 1 

System Overview 

This section presents a basic overview of the FlexOS operating system, 
including a description of its various modules. 

1.1 Features 

FlexOS is a real-time, multitasking operating system for single- and 
multi-user microcomputer systems. It is written to be independent of 
a system's microprocessor and peripheral equipment. FlexOS's 
programming interface allows a programmer to take maximum 
advantage of advanced hardware technology, such as bit-mapped 
graphics devices or high-capacity disk storage units. The 
programming interface is machine-independent, so applications need 
not be rewritten for different machines or different sets of peripherals. 

The following is a list of the prominent features of FlexOS: 

• Runs multiple applications in an asynchronous environment that 
allows real-time response to external events. 

• Interfaces to microprocessors that provide memory mapping and 
memory protection through memory management hardware. 

• Allows inter-process communication synchronization through a 
pipe system. 

• Allows asynchronous 1/0 and timing through an event system. A 
process can wait for multiple events or handle asynchronous 
events through software interrupts. 

• Provides a standard terminal interface and standard character
and bit-mapped screen interfaces. 

1-1 



1.2 Operating System Organization FlexOS System Guide 

• Provides standard keyboard interfaces independent of physical 
console types. Supports 8-bit and 16-bit keyboard input modes 
with keyboard translation, which allows support for special 
characters, function keys, multi-keyed characters and foreign 
languages with 16-bit characters, such as KANJI. 

• Manages multiple virtual consoles on each physical console. 

• Supports real-time data acquisition and background 
communications. 

• Allows device drivers to be linked with the system or dynamically 
loaded at run-time. 

• Supplies country codes to determine character set, accounting, 
monetary, and date presentation. 

• Provides applications with full error recovery facilities from 
physical I/O errors on any device. 

1.2 Operating System Organization 

Figure 1-1 illustrates three distinct parts of FlexOS. 

The FlexOS program part consists of utilities, user shell programs, 
shared run-time libraries, applications, window managers, and any 
other loadable programs calling operating system services. You define 
the FlexOS user interface in the program portion. 

The system part contains the device and program independent 
portions of the operating system. The elements of this portion are the 
Supervisor, kernel and resource manager. 

The physical part contains all of the system's device-dependent code 
for the system's disk drives, consoles, and other peripheral devices. 
The code is organized in the form of independent drivers controlled by 
a single resource manager. 

1-2 



FlexOS System Guide 1.2 Operating System Organization 

PROGRAM SYSTEM PHYSICAL 

Supervisor Resource Drivers 
Managers 

Utilities ...... I Disk r- ~I Disks I l 
Appli-

cations 
~I I KBoard 

Console I Screen 
User Super 

Programs visor 

User ~I Misc I Printer , 
Plotter Inter-

Commun. faces 

-I I 
Special 

Window Pipe OEM 

Mngmt ..... 

~ Runtime 
Library Kernel MMU 

Figure 1-1. Structure of FlexOS Operating System 

1.2.1 Programs 

All programs loaded from disk, whether applications, utilities, or user 
interface programs, run independent of each other. Each runs under a 
process context and has separately addressable User Memory. 
Programs call the Supervisor for operating system or machine 
services. 

1-3 



1.2 Operating System Organization FlexOS System Guide 

1.2.2 The Supervisor Module 

The Supervisor controls the flow of requests to the Resource 
Managers. The Supervisor parses all names and file numbers to 
determine which Resource Manager should obtain a function request. 
It handles the DEFINE, CONTROL, COMMAND and OVERLAY Supervisor 
Calls (SVCs) directly. These functions do no actual resource 
management, but call the Resource Managers for services. 

1.2.3' The Kernel 

The kernel manages processes and memory. This facilitates 
intermachine communications, networking, multi-user, and multitasking 
environments. The kernel controls the timer driver and any special 
routines for memory management based on the type of memory 
management unit. The kernel is based on an event-driven dispatcher 
that schedules on a priority basis. Time slicing is done by a timer 
event occuring once per tick. A tick occurs every 16 to 20 
milliseconds, depending on the implementation of the Timer driver. 
Scheduling of equal priority processes is done in a round-robin 
fashion. 

1.2.4 Resource Managers 

A Resource Manager controls the resources associated with it and 
provides a standard interface to the device drivers for each category 
of device. 

The Disk Resource Manager manages the disk file systems on disk 
drives. It supports DOS disk media and provides a single interface to 
floppy and hard disks. 

The Console Resource Manager manages physical consoles, including 
the screen and keyboard devices. FlexOS supports virtual consoles 
through the console drivers. Applications create virtual consoles 
through a Supervisor Call. 

The Miscellaneous Resource Manager manages all devices not 
managed by other Resource Managers, including plotters, printers, 
ports, and communications devices. Drivers for these devices are 
referred to as special drivers. The Miscellaneous Resource Manager 
places more responsibility on the driver than the other Resource 

1-4 



FlexOS System Guide 1.2 Operating System Organization 

Managers do, passing requests from a calling process to the 
appropriate special driver with a minimum of processing. 

The Pipe Resource Manager manages interprocess communications 
and synchronization through named FIFO memory files called pipes. 
These "in-memory" files are used to pass messages from one process 
to another or to synchronize activities. There are no devices 
associated with the Pipe Resource Manager. 

1.2.5 Device Drivers 

A device driver is the software interface to a physical device. Device 
drivers contain all of the machine::'" and device-specific code in the 
system. Each driver is separately built and is independent of other 
drivers. 

A device driver is managed by a single resource manager. A device 
driver can, however, control multiple devices of the same type. For 
example, a disk driver can control a disk controller, which in turn 
controls multiple disk drives. Table 1-1 lists the driver types and 
indicates the resource manager that controls it. 

Table 1-1. Driver/Resource Manager Relationships 

Driver Type 

Disk 
Console 
Port 
Printer 
Communications 
Special OEM 

There are three ways to install drivers: 

Resource Manager 

Disk 
Console 
Miscellaneous 

. Miscellaneous 
Miscellaneous 
Miscellaneous 

• Integrating the drivers with the system . 
• Installing them dynamically when FlexOS is loaded. 

1-5 



1.4 Memory Management FlexOS System Guide 

• Installing them when the system is up and running. 

Link the compiled driver files into the system image to permanently 
install a driver. To install a driver while FlexOS is loading, add a 
DVRLOAD command to the boot script. Use the DVRLOAD command 
once the system is running or add an INSTALL supervisor call to your 
application to install a driver once the system is up and running. 

FlexOS also supports sub-drivers. A sub-driver is constructed just like 
a driver, however, the sub-driver .is controlled by the driver rather than 
a resource manager. In this case, the controlling driver functions as 
the subordinate driver's resource manager. Through sub-drivers, one 
driver can control multiple devices of the same type with different 1/0 
interfaces. 

1.3 File Management 

FlexOS has a hierarchical, shared-disk file system with record- and 
file-locking mechanisms. The disk file system is protected at several 
levels. Access to files is based on file and directory ownership 
through user and group identification numbers. Users identify 
themselves through login procedures that can include password 
protection. The disk file system thus provides integrity and data 
protection in both multi-user and single-user systems. 

FlexOS distinguishes between removable and permanent media. It 
gives special recognition to removable media on devices supporting 
open door interrupts. By knowing the environment, FlexOS optimizes 
performance and minimizes lost data. 

1.4 Memory Management 

FlexOS supports mapped and protected memory management 
hardware. Because of the diversity in memory management units, 
FlexOS supports a simple memory model that maps into the more 
common MMUs on various CPUs. 

1-6 



FlexOS System Guide 1.5 printer Management: Print Spooler 

1.5 Printer Management: Print Spooler 

FlexOS includes a print spooler system in the form of a driver. To 
include the spooler, load the driver SPLDVR.DVR, define a subdirectory 
as tempdir: (the subdirectory must exist), and make a couple of logical 
name definitions for the system printer in your boot script. See the 
example boot script in Section 3 for the commands used to load the 
spooler driver and to make the appropriate logical name assignments. 

To run the spooler, the following files must be present with your 
printer driver on the boot: drive: 

SPLDRV.DRV Application program interface for spooler 
SPOOL Executable spooler module 
DESPOOL Executable despooler module 

In addition, you need the PRINT utility on the system: drive. Only the 
PRINT utility is invoked by the user. SPOOL and DESPOOL are invoked 
by the spooler driver. 

The following spooler description assumes that the spooler driver has 
been installed and defined as the prn: device. If you do not intend to 
use the spooler, be sure to define another list device as prn:. 

Note: Although you define one printer to be the spooler's output 
device, the spooler can make use of multiple printers. The destination 
printer is selected by the user via the PRINT utility. If you are going 
to have multiple printers, the device driver must be loaded before the 
selection is made. The spooler automatically links to the driver when 
the user requests the device; however, it cannot load the device. If the 
device specified is not present, the spooler returns an error message. 

The spooling system has three components: the spooler driver, the 
spooler process, and the despooler process. The spooler driver creates 
the spooler and des pooler processes and a set of pipes used to 
control the system. The driver provides both command-line and 
application interfaces. 

The command line interface uses the PRINT utility to print files. When 
the user invokes PRINT, the utility parses the command line and 
groups the file specifications in a job. PRINT then sends each file in 
the job to the prn: device. Because the spooler driver is defined as the 
prn: device, the files are added to the spooler system's print queue. 

1-7 



1.5 Printer Management: Print Spooler FlexOS System Guide 

See the FlexOS User's Guide for the description of the PRINT utility 
and its options. 

Application programs access the spooler driver through the prn: 
device. Like any device, the program must open prn: before it can use 
it. When the application writes to the prn:, the spooler automatically 
creates a file in the system temporary file directory tempdir: and 
records the output therein. The spooler driver closes the file when the 
program closes the prn: and adds the file name to its print queue. 

The spooler is a user process created by the spooler driver that waits 
on a pipe for the file names of files to be printed. The spooler driver 
provides the file specifications in this pipe. When a name is received, 
the spooler adds it to the end of a print queue. The print queue is 
recorded on disk in the system: directory and maintained on a first in 
first out. When the spooler is created, it loo.ks to this file to see if 
there are any entries. Thus, if the system crashes, jobs in the queue 
are preserved and printed when the system is restarted. 

The despooler is also a user process created by the spooler driver. 
The despooler reads the queue file and prints the file at the top of the 
list on the device assigned as the bgprn: device. When the file output 
is complete, the des pooler removes the entry, moves the next file to 
the top of the queue, and prints it. If no file is present, the despooler 
waits for an entry to be made. 

For the description of spooler use with FlexNet TM, see the FlexNet 
User's Guide. 

End of Section 1 

1-8 



SECTION 2 

I/O Overview 

This section explains, in broad terms, how FlexOS performs input and 
output. It defines the system 1/0 modules and describes their 
interaction. This section also contains an overview of the flow of 
control in an I/~ operation and concludes with a discussion of driver 
installation. 

2.1 File-Oriented Input and Output· 

FlexOS performs input and output by treating a device as a special 
kind of file. Programs initialize 1/0 with the OPEN or CREATE 
Supervisor Call (SVC). Multiple devices and files can be,' open 
simultaneously. Use the OPEN SVC to open an existing disk file, pipe, 
console, or device. Use the CREATE SVC to create and open a new 
disk file, virtual console, or pipe. 

Both OPEN and CREATE calls return a 32-bit value called the file 
number. This value uniquely identifies a specific communication 
channel between a process and a device. All device-related liD SVCs 
reference this number. The Supervisor then uses the file number to 
decide which Resource Manager should receive the request. 

You break a communication channel with the CLOSE SVC. Subsequent 
attempts to access the device or file return with an error message. 
Before the file is closed, FlexOS flushes the write buffers, unlocks 
locked regions, and completes outstanding asynchronous events. 

The FlexOS file-oriented liD scheme is normally device-independent. 
SPECIAL functions are available to perform certain device-dependent 
functions. 

2-1 



2.2 Organization of 1/0 Modules FlexOS System Guide 

2.2 Organization of 1/0 Modules 

This section discusses the principal components in FlexOS relating to 
1/0: device drivers, units, and Resource Managers. 

2.2.1 Device Drivers 

A device driver is the system software that translates logical 1/0 
requests into physical commands to specific devices. Drivers contain 
all of the device-specific code in the system. FlexOS does not create 
a process for a driver. A driver's code is run by the application and 
system processes working through a driver's resource manager. 

A driver is composed of a code group and a data group. The code 
group consists of a set of primitive functions that control the driver's 
devices. FlexOS prescribes a set of functions for each type of driver. 
Each driver type is described in a separate section of this manual. A 
driver's functions can use the SVCs available through the 
programmer's interface. In addition to the SVCs, drivers can take 
advantage of the FlexOS set of driver services, described in Section 5. 

The data group contains a data structure called the Driver Header and 
the remainder of the driver's image. FlexOS controls a driver through 
its Driver Header, which contains entry points to the driver's functions, 
indicates whether and to what degree a driver can operate 
asynchronously, and holds other information about the driver. The 
Driver Header must be the first structure within the driver's data area. 

Functions within a driver's code group access the FlexOS driver 
services through the Driver Services Table. FlexOS places the address 
of the Driver Services Table in the Driver Header. 

FlexOS supports both statically- and dynamically-Ioadable device 
drivers. Both types of drivers have the same structure, so that drivers 
can be written without regard for the time they are linked or loaded. 

2-2 



FlexOS System Guide 2.2 Organization of 1/0 Modules 

2.2.2 Units 

Each loaded device driver supports one or more units. Units are 
specific instances of physical devices. FlexOS manages devices at the 
unit level. Each unit is treated as an independent functional entity 
with its own 

• name, 
• access level, and 
• (opti.onally) associated sub-driver(s). 

Defined from a unit point-of-view, a device driver is a collection of 
functions that control related units. The only time FlexOS deals with 
device drivers, rather than units, is when a driver is installed or 
removed from the system. Both installation and removal of drivers is 
performed with the FlexOS INSTALL SVC command. 

The organization of units into device drivers allows a higher level of 
management for groups of associated devices. For example, consider 
a system where a single disk controller controls multiple disk drives. 
A single device driver manages the controller, while the units 
designate individual drives. As far as possible, the device driver uses 
the same code to control all of the drives. 

FlexOS logically calls each disk drive unit independent of other disk 
drives. However, because of driver organization, the disk device driver 
can force access to the individual drives to be serial. 

2.2.3 Resource Managers 

Each driver unit in the system is controlled by a Resource Manager. 
Resource Managers translate liD requests, such as READ or WRITE, 
into calls to the appropriate driver unit. Typically, an application 
process runs the code in a Resource Manager. 

Through the Driver Header, the driver makes available to the Research 
Manager the addresses of all its primitive functions. After receiving a 
function request, a Resource Manager maps the request to a specific 
unit and passes control to the appropriate function in the unit's driver. 

2-3 



2.4 Steps in Servicing 110 Request FlexOS System Guide 

A driver is defined by the type of Resource Manager controlling it. 
Resource Managers and their drivers fall into four categories: console, 
disk, kernel, and miscellaneous. FlexOS also has a Pipe Resource 
Manager; however the Pipe RM does not have any drivers associated 
with it. 

2.3 Driver Unit Flow of Control 

The following diagram illustrates the flow of control from an 
application to a driver unit. 

LI ~ Resource Driver 
Application I superviso~ r---,--_M_an_a_9_e_r ---'t-------~~ __ U_n_it _-J 

Figure 2-1. 1/0 Flow of Control 

In Figure 2-1, a file number is passed from the application to the 
Supervisor, which enables the Supervisor to select the appropriate 
Resource Manager. In turn, information passed from the Supervisor 
enables the Resource Manager to select the correct unit. 

2.4 Steps in Servicing 1/0 Request 

Applications must open a file by name before they can access that file. 
In FlexOS, by definition, a file specification includes the driver unit 
name. Thus, a. minImum file specification takes the form 
"device:filename." When the file is recorded in a subdirectory rather 
than the device's root directory, place the path specification between 
the device name and the file name. 

The FlexOS Supervisor associates each device with a unique name 
defined through the INSTALL SVC. A device name indicates a particular 
driver unit and the resource manager that controls it. 

2-4 



FlexOS System Guide 2.5 Asynchronous liD 

When a device open call is received, the Supervisor calls the 
appropriate resource manager to establish the connection between the 
calling process and unit. If the call is successful, the Supervisor sets 
up internal control information and returns a file number for the 
opened file. 

For all file liD calls, the Supervisor translates the specified file number, 
calls the appropriate Resource Manager, and provides it with the 
control information. The Resource Manager uses this information to 
select the appropriate driver unit. The control information is 
maintained by the Supervisor until it receives a CLOSE call. 

2.5 Asynchronous I/O 

FlexOS supports asynchronous liD functions in its programming and 
driver interfaces. Applications can start an liD operation, perform 
other activities, then wait for the I/O operation to finish at a later time. 

2.5.1 Support for Handling Asynchronous Events 

Typically, applications use the WAIT SVC to wait for the completion of 
one or more liD event, then call the RETURN SVC to obtain the return 
code of the completed event. To enable applications to use the 
FlexOS asynchronous capabilities, drivers perform their liD 
asynchronously. 

FlexOS provides support for asynchronous drivers with a flag system 
whose functions, a subset of the driver services, communicate with 
the WAIT and RETURN SVCs. The flag system driver services are 
typically called from Asynchronous Service Routines (ASRs), which in 
turn, are initiated by Interrupt Service Routines (ISRs). Driver writers 
must write their own ASRs and ISRs, according to the requirements of 
their hardware and the guidelines given in Section 5. 

FlexOS also provides a polling function for non-interrupt-driven drivers 
and functions to create and declare critical regions, such as mutual 
exclusion regions. These mechanisms for dealing with asynchronous 
events are also described in Section 5. 

2-5 



2.5 Asynchronous I/O FlexOS System Guide 

2.5.2 Synchronous and Asynchronous Interfaces 

A driver's external interfaces can be divided into two classes, 
synchronous and asynchronous. The synchronous interface is the 
interface between a resource manager and a driver's primitive 
functions. Processes request device liD by calling the synchronous 
portion of a driver through the resource manager. The asynchronous 
interface is the driver's interface to the physical device, represented by 
a unit. The following figure illustrates the interaction between the 
synchronous and asynchronous portions of an liD request. 

2-6 



FlexOS System Guide 2.5 Asynchronous I/O 

Appli- Resource Synchronous Asynchronous 

cation Manager Driver Driver Hardware 
Portion Portion 

Async lID start 
r-.. .. 

READ- request lID 

~ ~ 
FLAG EVENT perform 

I operation 

~ (return 
, 

event mask) ! do other 
things ISR 

+ 
Kernel 

+ 
WAIT ASR 

~ , 
FLAGSET 

sleep , 
until -

event (event complete) 
complete (retcode stored by kernel 

I until RETURN SVC) 

~ 
RETURN 

I retcode 

Appli-
Kernel Asynchronous Driver Portion Hardware 

cation 

Figure 2-2. Asynchronous I/O Request 

2-7 



2.6 Sub-drivers FlexOS System Guide 

In Figure 2-2, FLAGEVENT and FLAGSET are driver services provided by 
FlexOS. They are described in Section 5.1. 

2.6 Sub-drivers 

FlexOS allows a driver· to become the Resource Manager of another 
driver, through a concept called sub-drivers. Under this concept, a 
driver can access a specific piece of hardware through the functions 
contained in another driver, which becomes the sub-driver to the first 
driver. This allows the first driver to access a specific piece of 
hardware, while maintaining device-independence. 

In response to a request from a driver, a sub-driver can respond in 
any of three ways. It can 

• perform the requested function, 

• pass the request on to its own sub-driver, or 

• perform part of the function and pass the request on to a sub-
driver for further processing. 

Sub-drivers work at the unit level of a driver. Each driver unit can 
independently request one or more sub-drivers of specified types. 
Sub-drivers themselves are driver units. 

FlexOS guarantees that each driver in the system, including sub
drivers, has only one owner at a time. The owner is either a Resource 
Manager or another driver. 

A sub-driver's place in the FlexOS I/O scheme is shown in Figure 2-3. 

2-8 



FlexOS System Guide 

Resource 
Managers Drivers 

~ 
TIMER.DVR 

Kernel I--------~ 
. timer: (0) 

FLOPPY.DVR 
Disk 

--... floppy1 : (0) 

-... floppy2: (1 ) 

HDISK.DVR 

-... hd1 : (0) . 

--.. hd2: (1 ) 

BMAP.DVR 
Console 

~~ con1: (0) 

VT52.0VR 

r--+- con2: (0) 

--.. con3: (1 ) 

EPSON.OVR. 
Misc -

prt1: (0) 

2.6 Sub-drivers 

Sub-drivers 

SERIAL.OVR 

port 1 : (0) 

port2: (1 ) 

port3: (2) 

port4: (3) 

PARALLEL. OVR 

port5: (0) 

Figure 2-3. Relationship of Sub-drivers to Drivers 

2-9 



2.7 Installing Drivers FlexOS System Guide 

In the preceding figure, numbers in parentheses designate driver units. 
Port 1: and port 2: under the serial port driver are sub-drivers to 
console 2: and 3: under the VT52 driver. In this scheme, con2: and 
con3: are the resource managers to port1: and port2:, respectively. 

At the same time, port3: and port4: under the serial port driver are 
drivers controlled by the Miscellaneous Resource Manager. port5: 
under the parallel port driver is a sub-driver to port1: of the printer 
driver. 

Use of sub-drivers adds flexibility to a system, as the following two 
examples illustrate. 

Through the use of sub-drivers, you can offer a system that allows the 
use of a number of different terminals. FlexOS lets you write a 
console driver for a DEC VT-l00 terminal that requires a port type of 
sub-driver. The same VT-l00 driver could drive a number of different 
terminals, as long as there existed port drivers to interface to the 
terminals' serial controllers. 

To change a terminal, a user need only change a terminal emulation 
module, rather than replacing the entire terminal driver code. An OEM 
can provide several different terminal emulation modules, which a user 
could install through a FlexOS-supported utility or a simple boot script. 

2.7 Installing Drivers 

FlexOS lets you install a driver by either of two methods: 

• Static: Linking a driver into the system 

• Dynamic: Linking a driver to a Driver Run-time Library and loading 
the driver independently 

Dynamically-installed drivers are loaded from disk either through a 
boot script or a user commands. 

Drivers installed at system link time are linked into the operating 
system image and are loaded with FlexOS at boot time. These drivers 
are linked with the Driver Run-time Library, which contains addresses 
that the - driver will need for successful operation. Dynamically
installed drivers are discussed in Section 3. 

2-10 



FlexOS System Guide 2.7 Installing Drivers 

FlexOS loads drivers into· memory in the same way it loads 
applications, with the exceptions that a driver is loaded into system 
space and that FlexOS does not create a process for a driver. 

Because all drivers are identical in structure, drivers are written 
without regard for the time or method they are to be installed. 

End of Section 2 

2-11 



FlexOS System Guide 

2-12 



SECTION 3 

System Configuration 

This section explains, in general terms, how to install drivers and other 
implementation-specific modules in a FlexOS system. FlexOS is 
shipped with operating system modules, drivers, and boot loaders for 
target systems. If your system matches one of the target systems, 
you can compile, link, and load FlexOS without writing any code. 

Refer to the microprocessor-specific supplements sh ipped with this 
manual for configuration information pertinent to your particular 
system. The System Release Notes contain specific directions for a 
implementing a FlexOS system based on a given CPU. They also 
identify the console, disk, port, and printer hardware for which FlexOS 
provides sample drivers. 

You can use the sample drivers without modification if your system 
uses devices identical to those for which these drivers were written. 
The rest of this manual provides guidelines for writing your own 

, drivers or modifying the sample drivers. 

Section 3.1 outlines the steps involved in creating a FlexOS system. 
Creating a system involves linking drivers and any OEM-supplied 
modules into a system. 

Section 3.2 describes how to edit the source code for the CONFIG 
module to link drivers and OEM-supplied modules into the system. 
The CONFIG module drives the FlexOS initialization and configuration. 

Section 3.3 explains how to install drivers with the system using the 
boot script. 

Section 3.4 explains run-time installation. 

3-1 



3.1 System Creation FlexOS System Guide 

3.1 System Creation 

The FlexOS OEM distribution diskettes contain the FlexOS object 
module files. The modules you can modify are distributed in source 
code form. These files have a .C file extension. The diskettes also 
contain a/l the programming tools required to compile, link, and debug 
a system. You create a FlexOS system using the linker provided to link 
the FlexOS modules and your driver modules. 

3.1.1 Required Modules 

The link input files (.INP files) on the FlexOS distribution diskettes 
indicate the various combinations of object and library files needed to 
create FlexOS. See the System Release Notes for detailed instructions 
on object link order. Typ"ically, you link at least one disk driver into the 
system image. 

3.1.2 Steps in Creating FlexOS 

The Programmer's Utilities Guides contains explicit instructions on the 
use of the tools used to create a system. In general terms, the steps 
in creating a FlexOS system are: 

1. Write FlexOS drivers and sub-drivers accordi ng to the guidelines 
presented in this manual or modify the sample drivers provided to 
match your system configuration. 

2. Compile a/l source code with the appropriate C compiler, using 
appropriate options and parameters. 

3. Add the names of any OEM-supplied object modules to the list of 
modules in the CONFIG modules. OEM-supplied modules can 
include user interface programs as well as drivers. Section 3.2 
te/ls you how to modify the CON FIG modules. 

4. Link the object modules with the link utility appropriate to your 
system's microprocessor. 

5. Process the file containing the operating system file with a chip
specific FIX utility that creates a file containing the absolute 
memory image of FlexOS. 

3-2 



FlexOS System Guide 3.3 Boot Script Installation 

The boot loader gets its addresses for loading the FlexOS segments 
from the file produced by the FIX utility. Consequently, you can boot 
FlexOS in a target system without modifying the boot loader. 

Section 12 explains how to build a boot disk. 

3.2 The CONFIG Module 

The CONFIG modules drive the configuration and initialization of 
FlexOS. Edit the source files of the CON FIG modules to add or delete 
modules for your particular FlexOS system. 

Within the CONFIG modules, the list of Resource Manager modules to 
be linked in the operating system is contained in the MODULES Table. 
To add a module, you add the file specification" of that module to the 
MODULES Table. 

The code contained in the CONFIG modules is the first code run in the 
system at boot time. This code initializes the system modules by 
calling the main 0 routine. After the modules are initialized, the 
BOOTINIT function is entered. 

The BOOTINIT function executes the commands in the boot script 
CONFIG.BAT, a modified batch file. BOOTINIT accepts standard batch 
commands (see the FlexOS User's Guide), the boot script commands 
described below, and OEM-written commands. The boot script 
commands call the INSTALL SVC to install drivers. 

3.3 Boot Script Installation 

The boot script lets you install drivers and sub-drivers, as well as user 
interface or window management programs, at boot time. 

Drivers installed with the boot script are read from a disk file and 
loaded into memory. These drivers are linked with the Driver Run
time Library (DRTL), which supplies critical information on driver 
service routine and data addresses in a driver's Driver Header. The 
Driver Header is defined in Section 4.2. 

A sample boot script is supplied with FlexOS in the CONFIG.BAT file. 
Another example is provided at the end of this section. You can 

3-3 



3.3 Boot Script Installation FlexOS System Guide 

modify CONFIG.BAT or create a new boot script. You can also change 
the name of CONFIG.BAT. If you change the name of CONFIG.BAT, you 
must edit the CONFIG modules from which the boot script is called, 
and replace CONFIG.BAT with the new name. 

3.3.1 Boot Script Commands 

The boot script commands are described below. For each command, 
you must specify an access level. FlexOS returns an error if the access 
level is missing. 

DVRLOAD--Load a device driver from disk 

Syntax: 

Return code: 

Where: 

loadfile 

DVRLOAD loadfile devicename accesslevel 

o Success 
1 Parameter error 
2 Failure 
3 Sub-driver needed 

is the name of a loadable driver file. 

\ devicename is the logical device name of a driver's unit O. A 
colon after the devicename is optional 

3-4 

accesslevel is any combination of the following options: 

P = Permanent driver (cannot be removed) 
R = Raw READ access allowed 
W = Raw WRITE access allowed 
S = Raw SET access allowed 
E = No exclusive access 
L = Lockable (through the DEVLOCK SVC) 
M = Multiple partitions allowed 
N = Shared access allowed 
V = Verify writes allowed 



FlexOS System Guide 3.3 Boot Script Installation 

DVRUNIT --Add a new unit to an existing driver 

Syntax: 

Return code: 

Where: 

olddevice 

DVRUNIT olddevice devicename access level 

o Success 
1 Parameter error 
2 Failure 
3 Sub-driver needed 

is the device name of the existing driver 

devicename is the logical name of the driver's new unit. A 
colon after the device name is optional. 

accesslevel is any combination of the above options. 

DVRLlNK--Link an existing driver to another driver 

Syntax: 

Return code: 

Where: 

DVRLlNK devicename subdriver 

o Success 
1 Parameter error 
2 Failure 
3 Sub-driver needed 

devicename is the name of previously installed device 

subdriver is the name of previously installed device which will 
be used as a sub-driver by the device designated 
by devicename. 

3-5 



3.3 Boot Script Installation 

DVRUNLK--Remove a driver 

Syntax: 

Return code: 

Where: 

DVRUNLK device: 

o Success 
2 Failure 

FlexOS System Guide 

device is the name of an installed device 

Note: If the driver removed has a sub-driver associated with it, the 
sub-driver becomes associated with the uninstalled driver's resource 
manager. 

3.3.2 Logical Name Definitions 

A typical boot script contains logical name definitions appropriate to 
the hardware implementation. These definitions are made through the 
DEFINE SVC which updates the SYSDEF Table, which contains system
wide logical name definitions, or the PROCDEF Table, which contains 
definitions for a given process. Which table to modify is indicated in 
bit 0 of DEFINE's flags field. 

The following logical names are reserved by FlexOS and should be 
defined in your CONFIG.BAT file: 

• "system:" indicates the global system directory. It is defined in the 
SYSDEF Table . 

• "a:" - "p:" represent the root directories of the disk drives present. 

3-6 

For example, if there are four disk drives, they would be called 
drives "a:" through "d:" and drives "e:" through "p:" would be 
undefined. Disk drives are defined in the SYSDEF Table. 



FlexOS System Guide 3.3 Boot Script Installation 

• "protect" enables or disables system-wide password protection at 
log on. Put the statement: 

define -s protect=on 

in CONFIG.BAT to select password protection. If password 
protection is n~t required, include the statement: 

define -s protect=off 

instead. When password protection' is required, the LOGON utility 
prompts the user to enter his or her password. The "protect" 
status is defined in the PROCDEF Table. 

• "shell" represents the default user interface program. The 
corresponding shell program is run on each virtual console and is 
defined in the PROCDEF Table. 

• "home:" indicateas the user's initial default directory. It is defined 
in the PROCDEF Table. 

• "default:" indicates the current directory. It is defined in the 
PROCDEF Table. 

• "wmanager" indicates the default window manager to run on each 
physical console. If you don't want window management, set 
"wmanager" to "shell". wmanager is defined in the PROCDEF Table. 

• "con:" determines the physical console that the next LOGON 
program runs on. The value following "con:" is changed for each 
invocation of LOGON. "con:" is defined in the PROCDEF Table. 

• "prn:" is the logical device name for the default list device. It is 
defined in the SYSDEF Table 

• "tempdir:" indicates the directory for temporary files. It is defined 
in the SYSDEF Table. 

• "bgprn:" is the despooler's default output device when the user 
does not specify a device name with the PRINT command. If you 
install the spooler driver, be sure to define prn: as the bgprn: 
device. 

The sample CONFIG.BAT defines the shell to the FlexOS "command" 
utility and a: as the home: and default: devices. 

3-7 



3.5 Example Boot Script FlexOS System Guide 

3.4 Run-time Driver Insta lIation 

Drivers installed at run-time are installed identically to those drivers 
installed via a boot script. Both kinds of installation use the INSTALL 
SVC. Like drivers installed with a boot script, drivers installed at run
time are linked with the Driver Run-time Library, which places critical 
driver service routine 'and process data addresses in the Driver Header. 
See Section 4.2 for a description of the Driver Header. 

3.5 Example Boot Script 

The following is an example boot script. Do not take it as a rigid 
template, but rather as an example showing the general mechanisms 
avaHable. The CONFIG.BAT file distributed with FlexOS contains a 
"bare bones" boot script that you can modify according to your needs. 

This example assumes that the system boots from a diskette and that 
the driver contained in FLOPPY.DVR was installed at system link time. 
The example also assumes that "floppy1:" was established at system 
link time as the logical device name for the boot drive. 

The boot script contains a series of logical name definitions. These 
definitions, made through the DEFINE SVC, are explained following the 
listing. 

3-8 



FlexOS System Guide 3.5 Example Boot Script 

Listing 3-1. Example Boot Script 

REM START OF BOOT SCRIPT 
REM 

define switchar = -
REM 
REM Set up user's default environment. 
REM For protect=off systems, add defines for home:. 
REM wmanager:, and shel I: 
REM 

REM 

define -s boot:=hdl: 
define -s system:=hdO:commands/ 
define -s protect=on 
security -O=RWED -G=RWED -W=RE 
define -s helplvl = 2 
define default = d: 

REM Install other disk devices: floppyO: is name 
REM of floppy disk driver linked in with system 
REM 

REM 

dvrunit floppyO: floppyl: prwsln 
dvrload hdO: floppyO:hdisk.dvr lnwrsm 
dvrunit hdO: hdl: lnwrsm 

REM Define directory on system disk for tempdir: 
REM 

define -s tempdir:=system:/temp/ 
REM 
REM Set up the logical names A: - 0: for instal led 
REM drives 
REM 

define -s a:=floppyO: 
define -s b:=floppyl : 
define -s c:=hdO: 
define -s d: =hdl : 

REM 
REM Install serial and paral leI port drivers 
REM 

dvrload port 1 : boot:serial.dvr prwsel 
dvrunit port 1: port 2: prwsel 
dvrunit port 1 : port3: prwsel 
dvrunit port 1 : port4: prwsel 
dvrload portS: boot:parallel.dvr prwsel 

REM 
REM Install consoles: For consoles or any driver 
REM that needs a sub-driver, you must check the 
REM error level of the driver instal led. 

3-9 



3.5 Example Boot Script 

REM 
dvrload conI: boot:bmap.dvr prwsl 
dvrload con2: boot:vt52.dvr prwsl 
if errorlevel 3 dvrlink con2: port3; 
dvrunit con2: con3: p 
if errorlevel 3 dvrlink con3: port4; 

REM 
REM Note: portl: and port2: can be accessed 

FlexOS System Guide 

REM directly by the application program as serial 
REM ports or linked later to a dynamically 
REM installed special driver. 
REM 
REM Install print spooler 

RErYl 

REM 

dvrload prtl: boot:printer.dvr lnrws 
define -s bgprn:=prtl: 
dvrload spldrv: boot:spldvr.dvr lnrws 
define -s prn:=spldvr: 

REM Startup LOGON program on consoles: LOGON opens 
REM "con:" for its physical console and runs 
REM defined wmanager. LOGON must run in 
REM background for bootinit to continue. 
REM 

REM 

REM 

REM 

3-10 

define con:=conl: 
back logon 

define con:=con2: 
back logon 

define con:=con3: 
back logon 

end 

End of Section 3 



SECTION 4 

Driver Interface 

This section describes the FlexOS driver interface. The interface is 
discussed in terms of driver load format (4.1); the driver header, its. 
data fields, driver type values, and interface flags (4.2); the calling 
conventions for interfacing with the driver I/O function entry points 
(4.3); and the driver installation functions (4.4). 

4.1 Driver Load Format 

Drivers are divided into two separate portions, the code group and the 
data group. The code group portion of a driver 'contains all of the 
driver's executable code. Once the driver has been loaded into 
memory, its code group cannot be modified. The data group contains 
the remainder of the driver's image including the Driver Header, the 
GET/SET Table, and any fixed heap areas. See Figure 4-1. 

High 
Memory Data Group 

Low 
Memory 

- --- --- --- --- ---
Driver Header 

Code Group 

Figure 4-1. Driver Load Format 

High 
Memory 

Low 
Memo!), 

The method of loading a driver with respect to memory independence 
for load image portions and address relocation is dependent upon 
computer's CPU and the program load format. Generally, driver 
loading procedures are the same as those used to load normal 
application programs. There are three major exceptions: 

4-1 



4.2 Driver Header FlexOS System Guide 

• Drivers are loaded into System Space. 
• A process is not created to run the driver code. 
• A driver header is required in the beginning of the data group. 

4.2 Driver Header 

FlexOS installs and manages a driver through its driver header. The 
Driver Header must be at offset 0 relative to the driver's data group. It 
contains the entry pOints to the driver's functions used by the 
resource manager. The interface to the Driver Header entry points 
makes up the synchronous driver interface. Figure 4-2 shows the 
format of the driver header. Listing 4-1 contains a C language 
definition of the driver header structure. Table 4-1 describes the driver 
header contents. 

Listing 4-1. C Language Definition of a Driver Header 

Define struct DriverHdr 

UWORD dh reserve : / * Reserved *1 -
UBYTE dh nbrunits : 1* Max Number of Units Supported *1 -
UBYTE dh_f1ags ; / * Flag Word *1 
LONG dh init() : 1* - INIT Code Entry Point *1 
LONG dh subdrv () ; / * SUBDRV Code Entry Point *1 -
LONG dh uninit() ; 1* UNINIT Code Entry Point *1 -
LONG dh - se1ect() : 1* SELECT Code Entry Point *1 
LONG dh - f1ush() ; 1* FLUSH Code Entry Point *1 
LONG dh read ( ) : / * READ Code Entry Point *1 -
LONG dh - write() ; / * WRITE Code Entry Point *1 
LONG dh_get() ; 1* GET Code Entry Point *1 
LONG dh - set() ; 1* SET Code Entry Point *1 
LONG dh_specia1() ; 1* SPECIAL Code Entry Point *1 
LONG dh ct 11 ; / * Reserved *1 -
LONG dh ct12 ; 1* Reserved *1 -
LONG dh ct13 ; 1* Reserved *1 -
LONG dh - r 1 r ; 1* Pointer to Ready List Root *1 
LONG dh functab ; 1* Pointer to Driver Services Table *1 -

) 

4-2 



FlexOS System Guide 4.2 Driver Header 

o 1 2 3 
+-------+-------+--------+--------+ 

o I Reserved I Units I Flags I 
+-------+-------+--------+--------+ 

4 INIT Function Entry Point 
+-------+-------+--------+--------+ 

8 SUBDRIVE Function Entry Point 
+-------+-------+--------+--------+ 

12 I UNINIT Function Entry Point 
+-------+-------+--------+--------+ 

16 I SELECT Function Entry Point 
+-------+-------+~-------+--------+ 

20 FLUSH Function Entry Point 
+-------+-------+--------+--------+ 

24 I READ Function Entry Point 
+-------+-------+--------+--------+ 

28 I WRITE Funct ion Entry Po int I 
+-------+-------+--------+--------+ 

32 I GET Function Entry Point I 
+-------+-------+--------+--------+ 

36 I SET Function Entry Point I 
+-------+-------+--------+--------+ 

40 SPECIAL Function Entry Point 
+-------+-------+--------+--------+ 

44 Reserved 
+-------+-------+--------+--------+ 

48 I Reserved 
+~------+-------+--------+--------+ 

52 I Reserved I 
+-------+-------+--------+--------+ 

56 I Pointer to Ready List Root I 
+-------+-------+--------+--------+ 

60 I Pointer to Driver Services Tablel 
+-------+-------+--------+--------+ 

Figure 4-2. Driver Header Format 

4-3 



4.2 Driver Header FlexOS System Guide 

Table 4-1. Driver Header Data Fields 

Data Field Explanation 

Units This unsigned byte indicates the maximum number of units 
supported by this driver. A value of 0 indicates support for 
an unspecified number of units. INIT for unit 0 is called 
immediately following the first INSTALL. The unit number 
is incremented on each subsequent INSTALL. 

Flags The first four bits of this unsigned byte are. used to specify 
driver interface information. See Table 4-2. 

INIT Address of the driver installation function called by the 
INSTALL SVC to initialize each unit of the driver. 

SUBDRIVE Address of the driver installation function that manages 
this driver's sub-driver information. 

UNINIT 

SELECT 

FLUSH 

READ 

WRITE 

GET 

Address of the driver function called by INSTALL to 
uninitialize (remove) a driver unit. 

Address of the driver function that prepares a driver unit 
for subsequent 1/0. SELECT is used in conjunction with the 
OPEN SVC. 

Address of the driver function that "closes" a previously 
opened driver unit. The CLOSE SVC is mapped directly to 
this entry point. 

Address of the driver function called when a READ SVC has 
been specified. 

Address of the driver function called when a WRITE SVC 
has been specified. 

Address of the driver function called to fill a buffer with 
information about a driver unit. 

SET Address of the driver function called to control the SET 
function for the driver's units. 

4-4 



FlexOS System Guide 4.2 Driver Header 

Table 4-1. (Continued) 

Data Field Explanation 

SPECIAL Address of the driver function called when a process 
requests special, device-specific functions. 

Pointer to Ready List Root 
Address in the FlexOS internal data area of the Process 
Descriptor for the process running befo.re the current 
asynchronous liD event was begun. This is the PDADDR of 
the process waiting for a system flag to be set which you 
pass to the FLAGSET driver service. This field is filled in 
by the Supervisor when the driver is installed. 

Pointer to Driver Services Table 
Address of a table containing the addresses of the FlexOS 
driver service routines (see Section 5). This table is used 
by the Driver Run-time Library linked with dynamic drivers. 
This field is also filled in by the Supervisor when the driver 
is installed. 

The INIT, SUBDRIVE, and UNINIT driver installation functions are 
common to all driver types. See. Section 4.4 for their descriptions. The 
remaining functions are driver-type dependent and described 
separately according to their resource manager in Sections 7, 8, 9, 10, 
and 11. 

4.2.1 Driver Header Synchronization Flags 

Three driver header flags indicate to the driver's resource manager if 
that driver can handle multiple liD requests. The resource manager 
then controls the flow of requests to the driver depending upon the 
status of these bits. Another bit indicates whether the device 
controlled by the driver is 8- or 16-bit oriented. The following table 
lists the bit values: 

4-5 



4.2 Driver Header FlexOS System Guide 

Table 4-2. Driver Header Synchronization Flags 

Flag Value Meaning 

Bit 0: 0 liD reentrant at the driver level 
1 Synchronize at the driver level 

Bit 1: 0 liD reentrant at the unit level 
Synchronize at the unit level 

Bit 2: 

Bit 3: 

Bit 4: 

o 
1 

o 
1 

o 
1 

liD reentrant at the Resource Manager Level 
Synchronize at the Resource Manager Level 

Byte-oriented device 
Word-oriented device 

Use systems delimited read routine 
Use driver-supplied routine for delimited read 
requests 

Flag bit 0 is the driver level synchronization flag. Set this flag to zero 
if the driver is able to handle multiple I/O requests simultaneously. If 
the driver must get liD requests one at a time, set flag bit 0 to one. 

Flag bit 1 is the unit level synchronization flag. As with the driver, set 
this flag to zero if the unit can handle multiple liD requests 
simultaneously. Set this flag to one if the unit must complete one 
request before receiving another. 

If the Resource Manager level interface flag, bit 2, is set, the resource 
manager allows the driver to perform a series of liD operations for a 
single unit before permitting a different unit to perform another series 
of operations. Set this flag when a device being managed by this 
driver must be deactivated before another device can be used. If flag' 
bit 2 is off, each unit can accept multiple outstanding liD requests. 

Flag bit 3 establishes a record size on a device as 1 or 2 bytes. This 
flag is used for delimited READs, to determine whether FlexOS will 
interpret a device's data as 8- or 16-bit characters. 

4-6 



FlexOS System Guide 4.3 Entry Point Parameter Interface 

Note: The GET function is not considered an I/O request and can be 
called at any time regardless of the synchronization flag value. 

4.3 Entry Point Parameter Interface 

The resource manager provides the driver installation and 1/0 
functions with a 32-bit parameter and expects a 32-bit return code. 
The parameter is data or the address of a parameter block. The return 
code by definition indicates success with a positive value and failure 
with a negative value. The success return codes are described in the 
function descriptions below. See Appendix B in the FlexOS 
Programmer's Guide for the description of the FlexOS error codes. 
Error codes in the range of -64x 103 to -2x 109 are driver-type specific. 

The C language entry point parameter interface convention is shown in 
Listing 4-2. 

Listing 4-2. C Language Calling Convention 

Calling Sequence: ret = function(parm); 

Function Interface: LONG function(arg) 
LONG arg; 
{ 

LONG ret_code; 

return(ret code) 
} 

SELECT and SPECIAL return driver-type-specific error codes. INIT and 
FLUSH return driver-type-specific error codes through the driver's 
synchronous interface. 

The READ, WRITE, and SPECIAL driver liD functions are expected to 
return event masks through the driver's synchronous interface. These 
driver functions pass the completion code through the asynchronous 
interface. 

4-7 



4.4 Driver Installation Functions FlexOS System Guide 

4.4 Driver Installation Functions 

This section describes the three driver installation functions common 
to all driver types: INIT, SUBDRIVE, and UNINIT. These functions map 
to the INSTALL SVC's options as follows: 

• INIT is called to execute INSTALL options l--Ioad driver--and 2-
add a unit. 

• SUBDRIVE is called to execute ,INSTALL option 3--link two drivers. 
• UNINIT is called to execute INSTALL option O--remove a 'driver 

unit. 

4.4.1 INIT--Initialize the specified driver unit 

Parameter: 

High Word 
Low Word 

Return Code: 

Success 

INSTALL Flags--see Table 4-4 below 
Unit number to be initialized 

High word: Return either 0 or sub-drive driver type 
value. A zero value indicates that initialization is 
complete--no sub-driver is required. At this point 
the unit is operational and ma'pped to a resource 
manager. If a sub-driver is required to make this 
driver operational, return the sub-driver's driver type 
value here. The driver type values are listed in Table 
4-3 below. 

Low word: Return this driver's driver type value (see 
Table 4-3. 

E HARDWARE Hardware not available 

4-8 

E EXISTS 

E INIT 

E MEMORY 

E xxx 

Specified unit already initialized 

Driver unit could not be initialized 

Could not allocate enough System Memory for the 
unit 

Driver-specific type of error 



FlexOS System Guide 4.4 Driver Installation Functions 

The INIT driver function is called by the INSTALL SVC for each unit in 
the driver. The INIT driver function must initialize the specified unit's 
hardware. This function should also initialize any Mutual Exclusion 
Parameter Blocks (MXPBs) the unit will require, call FLAGGET for any 
flags to be used by the unit, establish the Interrupt Service Routine 
(ISR) vector through a call to the SETVEC driver service, and allocate 
System Memory for the unit. You can also use INIT to allocate buffers 
for initialized units. 

The INSTALL flags selected by the user are specified in the high word 
of the entry parameter; the unit number is provided in the low word. 
The meaning for each flag value is listed in Table 4-4. INSTALL flag bit 
8 is used by the Disk Resource Manager to determine if the disk 
device may have partitions. A disk device installed with partitions 
allowed cannot be formatted. 

INIT must return the installed driver's type value. If the driver unit 
requires a sub-driver, INIT must also return the driver type of the 
required sub-driver. The following table lists the driver type values: 

4-9 



4.4 Driver Installation Functions FlexOS System Guide 

Table 4-3. Driver Type Values 

Hex Value 

o 
1 

11 
21 
31 
38 
5x 
61 
62 
63 
64 
65 
71 
72 
78 
79 
7D 
7E 
7F 
81 

82-FF 

Driver Type 

Invalid or No Driver 
Timer Driver 
Pipe Driver 
Disk Driver 
Console Driver 
Screen VDI driver 
Extension Drivers 
Network Protocol Driver 
Network Transport Driver 
Network Transaction Server Driver 
NET: Device Driver 
Name Server Driver 
Printer Driver 
Serial Driver 
Printer VDI driver 
Metafile VDI driver 
Network Resource Manager 
DOS Clock Driver Emulator 
Null Device 
Port Driver 
OEM Specific (Special) 

Driver type values never end in zero; for example, 70 is an illegal 
driver type value. Zero in the second digit is reserved for resource 
managers. 

4-10 



FlexOS System Guide 4.4 Driver Installation Functions 

Flag 

Bit 0: 

Bit 1: 

Bit 2: 

Bit 3: 

Bit 4: 

Bit 5: 

Bit 6: 

Bit 7: 

Bit 8: 

Bits 9: 

Bits 10-12 

Table 4-4. INSTALL Flags 

Meaning 

o = User Raw SET not allowed 
1 = Raw SET allowed 

Reserved--must be ,0 

o = User Raw WRITE not allowed 
1 = Raw WRITE allowed 

o = User Raw READ not allowed 
1 = Raw READ allowed 

o = Exclusive access only 
1 = Shared access allowed 

o = Permanent device 
1 = Removable device 

o = DEVLOCKs not allowed 
1 = DEVLOCKs allowed 

o = Exclusive access allowed 
1 = Shared access only 

o = Device partitions not allowed 
1 = Partitions allowed 

o = Do not verity after disk writes 
1 = Verify after disk writes 

Reserved--must be 0 

4-11 



4.4 Driver Installation Functions FlexOS System Guide 

Flag 

Bit 13: 

Bit 14: 

Bit 15: 

Table 4-4. (Continued) 

Meaning 

o = Do not force case to media default 
1 = Force case to media default 

o = Prefix substitution on load name 
1 = Literal load name 

Reserved--must be 0 

4.4.2 SUBDRIVE--Associate driver to a sub-driver 

Parameter: 

Return Code: 

Success 

o 

o 

Address of SUBDRIVE parameter block (see Figure 4-3 
below) 

High word: Set to either 0 or sub-drive. A zero 
value indicates that initialization is complete; the 
unit is operational and mapped to a driver. Return 
the required sub-driver's driver type value if another 
sub-drive is needed to complete the hardware 
interface. Table 4-3 lists the driver type values. 

Low word: Set to O. 

2 3 

Unit SDUnit Access 

4 SDHeader 

Figure 4-3. SUBDRIVE Parameter Block 

4-12 



FlexOS System Guide 4.4 Driver Installation Functions 

Field 

Unit 

SDunit 

Access 

Table 4-5. SUB DRIVE Parameter Block Data Fields 

Meaning 

Driver u'nit that requires this sub-driver 

Sub-driver unit number 

The sub-driver's INSTALL access flags (see above). It is the 
higher-level driver's responsibility to honor these flags. 

SDheader Address of sub-driver's Driver Header 

The SUBDRIVE function links one driver to another. Both drivers must 
be previously loaded and initialized. The user specifies in the INSTALL 
call which driver is to act as the resource manager and which driver is 
to act as the sub-driver. The SUBDRIVE parameter block provides you 
with the user's driver selections in the form of their unit numbers. 
Also provided in the parameter block are the subdriver's access flags 
(specified when that driver was installed) and the address of the sub
driver's driver header. The higher-level driver controls the sub-driver 
through the entry points at this address. 

Sub-drivers are previously initialized units not currently in use. Once 
a unit has been declared a sub-driver, it cannot be addressed through 
its previous device name--it becomes dedicated to the higher-level 
driver. The higher-level driver becomes the sub-driver's resource 
manager. 

4-13 



4.4 Driver Installation Functions FlexOS System Guide 

4.4.3 UNINIT --Uninitialize the Specified Driver Unit 

Parameter: Unit Number 

Return Code: o 
The UNINIT driver function removes a driver unit from the system. 
UNINIT is responsible for releasing any system resources and for 
determining that the unit's hardware has been placed in a quiescent 
state before it. is removed from the system. 

Any files open to the unit are closed by the Resource Manager that 
controls the unit's driver. The Resource Manager also FLUSHs any 
buffers used by the unit. 

UNINIT should not call a sub-driver's UNINIT function because FlexOS 
may map the sub-driver to another driver. It is important that UNINIT 
call the sub-driver's FLUSH function. 

If eve,ry unit in a driver has been uninitialized, the driver can be 
removed from System Memory. 

End of Section 4 

4-14 



SECTION 5 

Driver Services 

FlexOS provides a number of services to drivers not available through 
the normal programmer interface. This section describes those 
services and where a driver would use them. 

The driver service functions are ·described in C and are available to 
drivers whether they are dynamically installed or linked into the 
system image. Drivers linked with the syst~m can access driver 
services directly. Drivers loaded from disk can link to a Driver Run
time Library, which indirectly calls the appropriate operating system 
routines. 

The Driver Run-time Library accesses operating system functions by 
looking up the addresses of these routines in a table supplied by the 
operating system. The location of this table is placed into the driver 
header at the time the driver is installed. 

The driver service functions are grouped into the following seven 
categories: 

• the flag system (Section 5.1) 
• Asynchronous Service Routines (5.2) 
• device polling (5.3) 
• memory management (5.4) 
• critical regions (5.5) 
• system process creation (5.6) 
• interrupt service routines (5.7) 

Driver services are listed alphabetically within each category. 

Besides the driver services described below, drivers can make 
Supervisor calls through the Supervisor Interface (SUPIF). Section 6 
describes how to call the Supervisor and the precautions you must 
observe. 

5-1 



5.1 Flag System FlexOS System Guide 

5.1 Flag System 

The FlexOS flag system acts as a logical interrupt system in which a 
process begins an asynchronous event and indicates that it will wait 
for the future completion of the event. The process that began the 
event then continues its execution asynchronously with respect to the 
hardware interrupt or process that completes the event. The flag 
system indicates the event's completion and awakens the original 
process. 

The FlexOS flag system provides five driver service functions that 
enable the Supervisor to coordinate and acknowledge asynchronous 
events: FLAGGET, FLAGEVENT, FLAGSET, FLAGCLR, and FLAGREL. The 
Supervisor allocates flags to drivers with FLAGGET. FLAGEVENT 
enables a process to signal that it has begun an asynchronous event 
and will wait for the event's completion. The calling process is 
notified of the event's completion when another process or an 
Asynchronous Service Routine (ASR) calls FLAGSET. A process uses 
FLAGCLR to return a flag to its clear state and FLAGREL to release a 
flag back to the system. 

A flag is similar to a binary semaphore - it is a single-event 
communication channel between two asynchronous routines. Unlike a 
binary semaphore, a process can use a flag to return a 32-bit value. 
The communication channel is established when a driver's INIT code 
calls FLAGGET. A flag can be in one of four states: 

• unused - the flag has not been allocated 

• clear - flag has been allocated but is not currently in use 

• pending - A process has an event waiting for the 1/0 to complete 

• completed - An liD event has completed, but no process has 
performed a FLAGEVENT driver service function on it 

There is a limit of 31 flags per process. The total number of flags in 
the system cannot be specified; FlexOS dynamically allocates new 
system flags as they are needed. 

FLAGGET allocates a flag to the driver by searching for a system flag 
that is in the unused state and returning a flag number to be used by 
the driver in all future references to that particular flag. The 
Supervisor initializes the allocated flag by placing it in the clear state. 

5-2 



FlexOS System Guide 5.1 Flag System 

A driver must allocate a sufficient number of flags to handle the 
maximum number of asynchronous events that might occur at a given 
time. For example, a driver should allocate separate flags for READ 
operations and WRITE operations so that a READ and a WRITE event 
can be processed simultaneously. 

For drivers using the flag system, an liD operation takes place in the. 
following sequence of events. 

1. A process starts an .110 event by calling the appropriate. driver 
function through the driver's synchronous interface. This begins 
an liD operation that causes a hardware interrupt when the driver 
unit completes the liD. At this point, the calling process actually 
runs the code in the driver. 

2. The driver, under the process's control, then calls FLAGEVENT 
with a flag number to indicate which flag to mark as pending. 
The flag number was obtained through FLAGGET at the time the 
driver was initialized. 

3. FLAGEVENT returns an event mask used by the calling process to 
wait for the completion of the event. The calling process passes 
the event mask to the WAIT SVC to wait for event's completion. 
If the event is already completed, i.e., FLAGSET has already been 
called and the flag is marked as completed, FLAGEVENT causes 
the flag to be marked as clear and the event itself is noted as 
completed. 

4. When the liD is completed, a hardware interrupt occurs that 
results in an Interrupt Service Routine (ISR) being executed. The 
ISR calls the DOASR driver service to schedule an ASR for 
execution. The ASR notifies the system that the event is 
completed by calling the FLAGSET driver service with the flag 
number, process descriptor address, and completion code as 
arguments. 

If the original process has not caused FLAGEVENT to be called, 
FLAGSET sets the flag to completed, or, if the flag was pending, to 
clear. If the requesting process is waiting for the event, it is 
awakened. If the process canceled the event or the process was 
terminated, FLAGSET returns an error code. 

5-3 



5.1 Flag System FlexOS System Guide 

Because of the asynchronous nature of FlexOS, it is possible for the 
liD event to complete before the process starting the liD has a 
chance to call the FLAGEVENT driver service. Once FLAGEVENT is 
called, the calling process returns from the driver code with the event 
mask as a return code. 

When a flag is set to the clear state, the event it marked is placed on 
a list indicating it is waiting for the original process that called 
FLAGEVENT to perform the RETURN SVC. The flag can then be used 
by other processes, even though the event is not satisfied through 
RETURN. 

The driver must remember the process descriptor address of the 
running process before the liD event is actually started. This value is 
obtained through the Ready List Root (RLR) address field in the driver 
header. The driver must store this value locally until it is used by the 
ASR, or process, that calls FLAGSET. 

The flag system driver services return error codes if a Io.gic error has 
taken place. A FLAG EVENT performed on a flag in the pending state 
returns an E_UNDERRUN error; another process is already using this 
flag for another liD event. A FLAGSET performed on a flag in the 
completed state returns an E_OVERRUN error; an liD request 
completed and set a flag that was previously set. This error is also 
occurs when a process has not performed a FLAG EVENT function on 
the previous liD event. 

FlexOS returns an E_EMASK error if a process attempts, through a 
driver's FLAGGET call, to obtain more than 31 flags or when a driver 
calls FLAGEVENT when the calling process already has 31 outstanding 
liD events. 

When the driver is finished using a flag, it can release it with FLAGREL. 
FLAGREL places the flag back into the unused state. An error occurs if 
a flag is not in the clear state when the release is attempted (see 
FLAGCLR). If a driver is to use a flag frequently, the driver should not 
release the flag until its UNINIT code is executed. 

When the communication between routines gets crossed up, the driver 
can force the flag into a clear state with the FLAGCLR driver service. 
This happens, for example, when the hardware produces spurious 
interrupts. FLAGCLR should be called before an liD request is started. 

5-4 



FlexOS System Guide 5.1 Flag System 

Table 5-1 shows the results of the flag system driver service functions 
on system flags according to their state. 

Table 5-1. Flag Operations and Flag States 

Flag State FLAGGET FLAGREL FLAGEVENT 

unused clear 
clear unused pending 

pending EJNUSE UNDERRUN 
completed EJNUSE clear 

5.1.1 FLAGCLR--Clear a system flag 

C Interface: 

LONG 
LONG 

flagno; 
retcode; 

retcode = flagclr(flagno); 

Parameters: 

flagno System flag number to clear 

FLAGSET 

completed 
clear 

OVERRUN 

Return Code: E_SUCCESS to indicate success 

FLAGCLR 

clear 
clear 
clear 

FLAGCLR forces a system flag into the clear state. In hardware 
environments where spurious interrupts might occur, the driver should 
call FLAGCLR before the process initiates the 1/0 operation. 

5-5 



5.1 Flag System FlexOS System Guide 

5.1.2 FLAGEVENT --Return an event mask 

C Interface: 

LONG 
LONG 
LONG 

swi; 
flagno; 
emask; 

emask = flagevent(flagno,swi); 

Parameters: 

flag no 

swi 

System flag number previously allocated by 
FLAGGET 

Software interrupt routine to be called when the 
event completes. This address is originally passed 
to the driver in the Supervisor call's parameter 
block. A zero value indicates that no swi was 
specified. 

Return Code: 

emask Event mask. The calling process uses this value to 
wait for a subsequent FLAGSET on the given flag 
number. 

E_UNDERRUN Logic Error. A process is already waiting on this 
flag. 

No event mask is available. The calling process has 
31 outstanding events. This error does not occur 
when FLAGEVENT is called by an ASR. 

FLAGEVENT returns an event mask (emask) which allows the caller to 
wait for the setting of a system flag. It is assumed that the flag will 
be set asynchronously, however, in some instances the driver's 
synchronous code can call FLAGSET. The calling process can wait for 
the event through the WAIT SVC. The driver typically returns the 
event mask received through this driver service back to the resource 
manager that called the driver. The resource manager is responsible 
for either waiting for the event or returning to the calling process, 
depending on the type of call made. 

5-6 



FlexOS System Guide 

5.1.3 FLAGGET--Allocate a system flag number 

C Interface: 

LONG flagno; 
flagno = flaggetO; 

Parameters: None 

Return Code: 

Flag number 

5.1 Flag System 

flagno 
E_EMASK 31 flags have already been allocated to this process 

The FLAGGET driver service allocates a system flag number. This 
operation is typically done in the driver's INIT code. 

5.1.4 FLAGREL--Release a system flag 

C Interface: 

LONG 
LONG 

flagno; 
retc; 

retc = flagrel(flagno); 

Parameters: 

flag no 

Return Code: 

E_SUCCESS 
EJNUSE 

Flag number to be released 

Flag is released 
Flag is not in the clear state 

FLAGREL releases a system flag number. This driver service is 
typically called from the driver's UNINIT code. FLAGREL returns an 
error if the flag to be released has not been previously cleared. 

5-7 



5.1 Flag System FlexOS System Guide 

5.1.5 FLAGSET --Set a system flag 

C Interface: 

LONG 
LONG 
LONG 
LONG 

flagno; 
pdaddr; 
retcode; 
retc; 

retc = flagset(flagno,pdaddr,retcode); 

Parameters: 

flagno 

pdaddr 

retcode 

System flag number as previously allocated by the 
FLAGGET driver service. 

Process descriptor address of process waiting for 
this flag. Get this value from the RLR address in 
the driver header. 

Note: This is NOT the pdaddr normally passed with 
parameter blocks into the driver entry points. The 
pdaddr normally indicated in the entry point 
Parameter Block is the process in whose memory 
the buffer belongs. The original calling process may 
be a different process. 

Completion code for this operation. 

Return Code: 

E_SUCCESS Flag is set 
E_CANCELLED Process canceled the FLAGEVENT 
E_OVERRUN Logic error - flag is already set 

The FLAGSET driver service notes the completion of an asynchronous 
operation. The process that is waiting for this operation previously 
called--or is about to call--FLAGEVENT with the indicated flag number, 
from FLAGGET. If the process was aborted while waiting for this flag 
to be set or if the process canceled its WAIT, the E_CANCELLED error 
is returned. 

5-8 



FlexOS System Guide 5.2 Asynchronous Service Routines 

5.2 Asynchronous Service Routines 

Asynchronous Service Routines (ASRs) are routines within a driver's 
code that execute asynchronously to processes. FlexOS provides five 
driver service functions for executing ASRs: 

• DOASR' schedules an ASR for execution at the next dispatch. 

• NEXTASR and EVASR schedule an ASR for execution upon the 
-completion of an event. 

• ASRWAIT suspends ASR execution until an event completes. 

• DSPTCH forces a dispatch which results in the execution of all 
pending ASRs. 

Because ASRs are run by the dispatcher, they have a higher priority 
than processes. At every process dispatch, the dispatcher checks to 
see if any ASRs have been scheduled to run. If there are one or -more 
ASRs ready, it runs the first one to completion and checks for more. 
FlexOS schedules ASRs in priority order. ASRs of equal priority are 
scheduled on a first-come, first-serve basis. When there are no more 
ASRs, the dispatcher runs the next ready process. 

The routines that respond to hardware interrupts are called Interrupt 
Services Routines, or ISRs. To allow FlexOS to respond to multiple 
interrupts, ISRs should be very short. Typically, an ISR schedules an 
ASR to complete the work required by the interrupting event. For 
example, in response to an interrupt, an ISR can call DOASR to 
schedule an ASR to perform 1/0. 

When an ASR starts an event through an SVC or a driver service, 
FlexOS returns an event number instead of an event mask. An event 
mask allows synchronous processes to wait for up to 31 different 
events; event numbers allow ASRs to wait for an unlimited number of 
events. Use multiple ASRs, each receiving its own event number, to 
wait on multiple events. 

SVCs requiring an event mask parameter can be called from either an 
ASR or a process. If an ASR is calling, an SVC accepts event numbers 
instead of event masks. 

When you receive an event number (or, in other contexts, an event 

5-9 



5.2 Asynchronous Service Routines FlexOS System Guide 

mask), you must call ,the RETURN SVC to clear the event from the 
system. This is true even for events used to synchronize ASRs and 
even if the STATUS SVC indicates the event is already complete. In 
response to an ASR, STATUS returns a 0 if the event is not complete. 
Any other value indicates completion. 

To clear an event from the system, the ASR that generates an event 
number should call NEXTASR, EVASR, or ASRWAIT. For all three, the 
event is specified as a parameter in the call. For NEXTASR and EVASR, 
if you do. not pass the event number in the call, you must store it in a 
global area accessible by the ASR scheduled. ASRs scheduled by 
NEXTASR or EVASR should call RETURN, passing the event number as 
the parameter. Call RETURN or STATUS through the Supervisor 
Interface (SUPIF) defined in Section 6. ASRs calling ASRWAIT should 
not call· RETURN, the event is cleared and the completion code is 
returned by ASRWAIT. 

ASRs scheduled by NEXTASR can wait on only one event before being 
scheduled. The event specification must be an event number; it 
cannot be a process's event mask. EVASR, on the other hand, accepts 
either a process event mask or an ASR event number. Like NEXTASR, 
EVASR is restricted to scheduling one ASR for an event completion. 
Use EVASR when you do not know whether the call is made from ASR 
context or process context. 

ASRWAIT is a functional alternative to NEXTASR and EVASR that takes 
an event number (but not a event mask) and returns when the event 
completes. In general, it is more expensive in both CPU and memory 
utilization to use ASRWAIT versus next ASR or EVASR. However, if 
the current ASR stack is complex (that is, the current state of the logic 
is not easily reproduced), ASRWAIT can simplify reproducing it. 
ASRWAIT is a simple way to break up an ASR, since other ASRs can 
run before ASRWAIT returns. 

An ASR may not call the WAIT SVC. Polling operations are strongly 
discouraged. ASRs may effectively perform a block by calling 
ASRWAIT or by chaining to another ASR with NEXTASR or EVASR, 
which executes after a specified event has occurred. 

The priority of ASRs ranges from 0, the highest priority, to 255, the 
lowest. Digital Research recommends that most ASRs run at priority 
200, allowing room for ASRs driven by real-time events to have higher 
priority than ASRs that need not be so timely. 

5-10 



FlexOS System Guide 5.2 Asynchronous Service Routines 

ASRs run to completion. If a hardware interrupt occurs during the 
execution of an ASR, the dispatcher will continue execution of the ASR 
after the ISR completes. This occurs even if a higher-priority ASR is 
scheduled by the ISR. 

ASRs can be disabled through the NODISP driver service, as described 
in Section 5.5. The DSPTCH driver service, described below, takes the 
currently running process out of context and forces all scheduled ASRs 
and poll routines to run. 

5.2.1 ASRWAIT--Wait for event to complete 

C Interface: 

LONG 
LONG 
BYTE 

evnum; 
ev_return; 
*stack_save_area; 

ev_return = asrwait(evnum,stack_save_area); 

Parameters: 

evnum Event number returned by SVC or driver service call 

~tack_save_area 

Return Code: 

ev_return 
E_SUCCESS 

Address of buffer for temporary stack storage 

Event's completion code 
No event number was specified 

The ASRWAIT driver service suspends ASR execution until the 
specified event is complete. The event is designated by its number. 
The event must have been initiated by the ASR; it cannot be a process 
event mask. Specify a null event number to reschedule an eventless 
ASR. While the ASR is suspended, other ASRs are executed at the next 
dispatch. 

The second ASRWAIT parameter is a buffer address. ASRWAIT copies a 

5-11 



5.2 Asynchronous Service Routines FlexOS System Guide 

portion of the dispatcher stack into this buffer and restores the stack 
from it. The area must be big enough to hold all of the stack used by 
this ASR since it was called, plus 50 to 100 bytes. No error or range 
checking is performed. 

The ASR is rescheduled for the next dispatch after the event 
completes. The event's completion code is returned by ASRWAIT. Do 
not call the RETURN SVC after an ASRWAIT. When a null event number 
is specified, the ASR is rescheduled for the next dispatch and receives 
an E_SUCCESS event completion. . 

IMPORTANT: If you called MAPU before calling ASRWAIT, you must 
call MAPU again when the function returns to get the memory back. 

5.2.2 DOASR--Schedule an ASR 

C Interface: 

VOID 
LONG 
LONG 
BYTE 

asr _routineO; 
parml; 
parm2; 
prior; 

doasr(asr _routine,parm 1 ,parm2,prior); 

VOID asr _routine(parm 1,parm2} 
LONG parm1; 
LONG parm2; 
{ 
/* perform activity * / 

return; 
} 

Parameters: 

5-12 

asr _routine 
parm1 
parm2 
prior 

Address of ASR routine 
First general parameter to pass to the ASR 
Second general parameter to pass to the ASR 
ASR priority 



FlexOS'System Guide 5.2 Asynchronous Service Routines 

Return Code: 

Successful operation 
Out of memory 

The DOASR driver service schedules an ASR for execution. Typically, 
Interrupt Service Routines call DOASR when the ISR needs more work 
done than can be performed in a timely manner from within the ISR. 
The ASR is placed in the ASR dispatch queue according to the priority 
parameter (0 = best, 255 = worst). All ASRs with equal priority are 
dispatched on a first-in, first-out basis. 

ASRs run to completion before another ASR is run. While ASRs are 
running, hardware interrupts are enabled. This allows ISRs to run and 
to schedule other ASRs. When an ISR' is complete, an interrupted ASR 
continues to run even if the ISR has scheduled a higher-priority ASR. 
After the ASR is complete, the scheduled ASR with the highest priority 
is run next. 

5.2.3 DSPTCH--Force a dispatch 

C Interface: 

dsptchO; 

Parameters: None 

Return Code: None 

The DSPTCH driver service takes the currently running process out of 
context, reschedules it, runs all scheduled ASRs and poll routines, then 
brings the best priority, runnable process into context. The calling 
process is rescheduled as a running process. DSPTCH returns to the 
calling process when it comes back into context. 

DSPTCH is useful in guaranteeing that all scheduled ASRs have run. 
The DOASR driver service, described above, does not force a dispatch 
but only schedules the ASR to run at the next dispatch. 

5-13 



5.2 Asynchronous Service Routines FlexOS System Guide 

5.2.4 EVASR--Schedule ASR from Process Context 

C Interface: 

VOID 
LONG 
LONG 
BYTE 

asr _routineO; 
emask; 
parm2; 
prior; 

evasr(emask,asr_routine,parm2,prior); 

VOID asr_routine{evnum,parm2) 
LONG evnum; 
LONG parm2; 
{ 

return; 
} 

Parameters: 

asr _routine 
emask 
parm2 
prior 

Return Code: 

Address of an ASR 
Process event mask or ASR event number 
General parameter to ASR 
ASR priority 

None 

The EVASR driver service schedules an ASR for dispatching upon the 
completion of the specified event. If EVASR is called in ASR context, 
this service is equivalent to NEXTASR with the event number as 
parm 1. When EVASR is called in process context, EVASR converts the 
process event mask to an ASR event number, frees the process's 
event bit, and disassociates the event from the process. The new 
event number is passed as the first parameter to the ASR so that the 
ASR can call the RETURN SVC on the event number. 

5-14 



FlexOS System Guide 5.2 Asynchronous Service Routines 

5.2.5 NEXTASR--Schedule ASR from an ASR 

C Interface: 

LONG 
VOID 
LONG 
LONG 
BYTE 

evnum; 
asr _routineO; 
parml; 
parm2; 
prior; 

nextasr(evnum,asr _routine,parm 1 ,parm2,prior); 

VOID asr_routine(parm 1,parm2) 
LONG parml; 
LONG parm2; 
{ 
/* perform activity */ 

return; 
} 

Parameters: 

evnum 
asr_routine 
parml 
parm2 
prior 

Return Code: 

Event number of event to wait for 
Address of ASR routine 
First general parameter to pass to the ASR 
Second general parameter to pass to the ASR 
Priority of ASR 

None 

The NEXTASR driver service schedules an ASR for dispatching upon 
completion of the event specified by the event number. 

Call NEXTASR from within an ASR when an ASR needs to wait for the 
completion of an event. NEXTASR can be called only by the ASR that 
initiated the event upon which NEXTASR is waiting. 

If you run an ASR that generates an event number, you must call 
NEXTASR to schedule an ASR to call the RETURN SVC, which clears 
the event from the system. 

5-15 



5.3 Device Polling FlexOS System Guide 

NEXTASR accepts only event numbers; an ASR cannot use an event 
mask generated by a process. The pending event must have been 
generated from within an ASR, not a process. 

5.3 Device Polling 

For devices not interrupt-driven, FlexOS supports the software 
mechanism of device polling. In single-tasking systems, these devices 
are usually polled with a hard CPU loop. However, this type of polling 
severely degrades the performance of a multitasking system. By using 
the POLLEVENT driver service, a device is polled periodically, allowing 
processes to run between polls. 

Use POLLEVENT to emulate an asynchronous event when there is no 
hardware interrupt to determine completion of an event. POLLEVENT is 
not meant to replace the FLAG EVENT IFLAGSET method of 
communicating with an application, which is described in Section 5.1. 

POLLEVENT is usually called from within an ASR. If called from an 
ASR, it returns an event number. The event number is used to 
perform a NEXTASR driver service, which performs a FLAGSET upon 
completion of the poll event. 

Following the completion of the poll. event, the driver must call the 
RETURN SVC to clear the event from the system. 

The dispatcher calls the poll routine at process context switches. 
Therefore, poll routines run under the dispatcher process context. If 
the poll routine returns true (non-zero), the poll event is noted as 
completed. If a NEXTASR driver service was called based on the poll 
event, NEXTASR schedules an ASR to run. 

5.3.1 POLLEVENT --Poll for event completion 

C Interface: 

5-16 

WORD 
LONG 
LONG 

polI_routineO; 
emask; 
swi; 

emask = pollevent(poll_routine,swi); 



FlexOS System Guide 

WORD poll_routineO 
{ 
/* check device ~':/ 

if (device_ready) 
return(-1); 
else 
return(O); 
} 

Parameters: 

5.3 Device Polling 

poll_routine Address of poll routine. This routine returns 0 if the 
event. is not complete. A non-zero return code 
indicates the poll event is complete. This routine is 
called at each process dispatch until the event is 
complete. 

swi Address of user software interrupt routine 

Return Code: 

emask Event mask used to perform a WAIT based on this 
event (or a NEXTASR on this event number) 

The POLLEVENT driver service establishes a poll routine which is called 
periodically to determine the completion of an event. POLLEVENT 
returns an event mask which allows the calling process to wait, 
through the WAIT SVC, for the software-determined event. 

The poll routine is called under the dispatch-process context and is 
similar in nature to an ASR. If POLLEVENT is called by an ASR, an 
event number is returned instead of an event mask. Following 
completion of the polled event, the driver must call the RETURN SVC, 
through SUPIF, to clear the event from the system. 

5-17 



5.4 System Memory Management FlexOS System Guide 

5.4 System Memory Management 

FlexOS supports mapped and protected memory management units 
(MMUs). The following terms are used in the description of the FlexOS 
memory model. 

• Physical Memory - all physically addressable memory in the 
system. This includes memory used for specific types of 
hardware, such as bit maps for video displays. 

• Physical Space - the address space of Physical Memory. The 
addresses in Physical Space might be used when communicating 
with hardware, such as DMA controllers. 

• User Memory. - Physic~1 Memory allocated for use by a particular 
. process. Programs loaded from disk are placed into User 
Memory. Memory allocated through the MALLOe sve is also 
placed in User Memory. Each process has its own User Memory. 

• User Space - memory that can be addressed while running code 
in User Memory. Each process running code in User Memory is 
running in its own User Space. Each User Space is a separate 
address space. With supporting hardware memory protection, a 
process running in its User Space cannot address memory in 
another User Space. While running code in User Space, System 
Memory and Physical Memory are also not addressable. 

• System Memory - Physical Memory allocated for use by the 
operating system. All drivers are loaded into System Memory. All 
memory allocated to drivers through the SALLOe function, 
described below, is also placed in system memory. 

• System Space - System Space is the memory that can be 
addressed while running code in System Memory. At any point in 
time this space includes all System Memory as well as the User 
Memory of the currently running process. 

5-18 

Some processes, called system processes, do not own User 
Memory. While system processes are running, there is no 
addressable User Memory. 



FlexOS System Guide 5.4 System Memory Management 

All driver code resides in System Memory and therefore executes 
in System Space. This code is always running under a process 
context and therefore includes the process's User Memory. 
Asynchronous Service Routines (ASRs) run under the dispatch
process context and are considered system processes. 

The addressing of User Memory is not necessarily the same in 
System Space as it is in User Space. For example, a buffer 
address supplied by an application while in User Space cannot be 
used directly. while in System Space. The address must be 
translated into System Space before it addresses the same 
physical User Memory . 

• User Address - an address that points to User Memory relative to 
User Space. While in System Space a User Address must be 
converted to a System Address before use . 

• System Address - an address directly addressable while in 
System Space. 

Figure 5-1 shows the relationship of User Space to System Space. 

User Space System Space 

User Memory ~ System Memory 

. ~ User Memory 

Figure 5-1. User Space and System Space 

FlexOS supplies a number of driver service functions to drivers that 
facilitate the use of various types of addresses and also allocate and 
free system memory. These services are as follows: 

5-19 



5.4 System Memory Management FlexOS System Guide 

• SADDR - converts a User Address in User Memory to a System 
Address. 

• UADDR - converts a System Address in User Memory to a User 
Address. An error is returned if the System Address points to 
System Memory. 

• PADDR - converts a System Address to a Physical Address. 

• MAPU - allows a process to change the User Memory currently 
mapped in system space to another process's User Memory. The 
calling process loses access to its own User Memory until the 
UNMAPU function is called. 

• UNMAPU - restores a process's User Memory. 

• MLOCK - locks the current User Memory in Physical Memory. 
This prevents moving the memory to another physical location. 

• MUNLOCK - allows User Memory to be swapped out to disk or 
moved to another physical memory location. System Addresses 
of User Memory may change while the memory is unlocked. 
System Addresses of User Memory should be converted to a User 
Address before the MUNLOCK function is called and converted 
back to a System Address after the MLOCK function has been 
called. 

• MRANGE - checks the start and length of a buffer in User Memory 
to verify it is within the process's current User Space. 

• SALLOC - allocates System Memory from the free pool of Physical 
Memory. This is the same pool used by applications. 

• SFREE - frees System Memor'y and places it back into the free 
pool of Physical Memory. 

• MAPPHYS - maps physical memory not in the free pool into 
System Space and returns a System Address for that memory. 
This is used to address "device memory" such as bit maps or 
read-only Memory. If the device memory is already mapped to 
System Space, the System Address is returned. MAPPHYS should 
be called only at INIT time. 

5-20 



FlexOS System Guide 5.4 System Memory Management 

Resource Managers call the driver entry points to 1/0 functions with 
pointers to buffers that can be either User or System Addresses. If 
the buffer resides in User Memory the pointer is a User Address. If 
the buffer resides in System Memory, the pointer is a System Address. 
The resource manager sets a flag to indicate whether the address is in 
User or System memory. Along with the flag, drivers receive the 
process descriptor address (PDADDR) of the process that owns the 
buffer's memory. 

A User Address is not directly usable until it is converted to a System 
Address. The User Address is relative to a particular process. SADDR 
converts a User Address into a System Address for the currently 
addressable User Memory. 

When drivers pass a User Address to ASRs or other processes, it must 
be passed' as a User Address and process descriptor address pair. 
This allows the ASR or process to call the MAPU driver service to 
assume the original User Memory, then call the SADDR driver service 
to obtain the System Address of the correct Physical Memory. Passing 
a System Address of User Space to an ASR or another process results 
in addressing the wrong Physical Memory or a memory violation upon 
use of that address. 

Driver entry points are called with User Memory locked in Physical 
Memory. A driver has the option of unlocking the memory to allow 
moving the memory to another physical location. 

Moving memory might be done by the memory manager during 
garbage collection. If the driver calls MUNLOCK to unlock' User 
Memory, all System Addresses that refer to User Memory become 
invalid. Before MUNLOCK is called, UADDR must be used to convert to 
user addresses all System Addresses that refer to User Memory. 
These converted addresses cannot be used either by the driver or 
hardware until the User Memory is locked into Physical Memory 
through the MLOCK driver service. The driver can then use SADDR to 
convert User Addresses to System Addresses and Physical Addresses 
for use by the driver and its hardware. 

For all SVCs for which the user program specifies a buffer, FlexOS 
does buffer range checking to ensure that all buffers sent to drivers 
are contiguous in physical memory and legal. An exception to this is 
the SPECIAL SVC, where a buffer is not assumed but might be sent to 

5-21 



5.4 System Memory Management FlexOS System Guide 

the driver by an application. In this case, the driver must perform its 
own range checking though the MRANGE driver service. 

A driver can call the SALLOe driver service to allocate System Memory 
to be used by the driver for buffers and other memory resources. This 
is usually done in the driver's INIT code. Allocating memory at INIT 
time allows a driver's load image to be small. It also allows a driver 
to handle an arbitrary number of units by allocating memory as INIT is 
called for each unit. 

Memory allocated through SALLOe should be freed with the SFREE 
driver service in the driver's UNINIT code. 

SALLOe takes memory out of the Transient Program Area (TPA), which 
is the same Physical Memory pool from which User Memory is 
allocated during program loading. Thus, memory allocated by SALLoe 
is not available to loadable programs. 

Before using SALLOe, you should also consider that more memory 
than requested might be taken out of the Transient Program Area 
(TPA). This potential for wasted memory ranges from 512 to 16K 
bytes. The exact amount depends on the granularity of the MMU's 
mapping ability or, in segmented architectures, on the minimum size of 
a segment. The amount of wasted memory is also related to the 
minimum fragmentation allowed by implementation-dependent 
memory management routines. 

5.4.1 MAPU--Map another process's User Memory 

C Interface: 

LONG pdaddr; 

ret=mapu(pdaddr); 

Parameters: 

pdaddr 

5-22 

Process descriptor address of process whose User 
Memory is to be mapped. No checking is done to 
verify that the pdaddr is valid. 



FlexOS System Guide 5.4 System Memory Management 

The driver usually receives this address through the 
PDADDR field of a parameter block passed through 
one of the driver's entry pOints. The buffer is 
specified in the same parameter block. 

Return Codes: 

E_SUCCESS Successful operation 

emask Designated process is currently swapped out. It will 
be swapped in asynchronously to the calling 
process. A WAIT on this event mask returns when 
the specified .process's memory is in place. 

MAPU removes the calling process's current User Memory and 
replaces it with the indicated process's User Memory. 

5.4.2 MAPPHYS--Map Physical Memory 

C Interface: 

BYTE 
MAPPB 
WORD 

*saddr 
~':parmblk; 

type; 

saddr = mapphys(parmblk,type); 

Parameters: 

parmblk Address of map parameter block describing physical 
memory (see Figure 5-2) 

type 

Return Code: 

saddr 

o = code 
1 = data 

System Address of mapped physical memory 

5-23 



5.4 System Memory Management FlexOS System Guide 

o o 

4 starting address in Physical Memory 

8 length 

Figure 5-2. Map Parameter Block 

MAPPHYS puts the specified Physical Memory into System Memory. 
The specified Physical Memory cannot be part of the TPA. MAPPHYS 
should. be called only once, at the time a driver is initialized. If the 
memory is to contain executable code, the type parameter must be 
zero. If the type parameter is zero, mapped memory cannot be 
modified as data. 

Use MAPPHYS to obtain System Addresses of device memory, such as 
bit maps, or other memory not intended for the direct use of 
applications. An example of this type of memory is read-only memory 
that can be accessed only from System Space. 

5.4.3 MLOCK-- Lock the User Memory 

C Interface: mlockO; 

Parameters: None 

Return Code: None 

MLOCK locks the current User Memory in Physical Memory. MLOCK 
prevents moving the memory to another physical location. The 
Supervisor automatically locks memory whenever an application calls 
an SVC. 

The driver is responsible for matching MLOCK and MUNLOCK calls. 
FlexOS maintains a count of the number of locks in force and will not 
unlock the memory until the number of MUNLOCK calls matches the 
number of MLOCK calls applied to the User Memory. 

5-24 



FlexOS System Guide 5.4 System Memory Management 

5.4.4 MRANGE--Perform range checking 

C Interface: 

BYTE 
LONG 

~:start; 

length; 

retc = mrange(start,length}; 

Parameters: 

start 
length 

Return Code: 

Starting User Address of buffer in User Memory 
Number of bytes in the buffer 

Legal buffer 

Buffer is read only 
Buffer is in system space 

These two bits indicate the designated buffer status 
on a successful return from MRANGE O. 

Range error 

The MRANGE driver service allows a driver to verify that a buffer in 
User or System Memory does not violate memory protection before 
the buffer is used. Following a successful return from MRANGE, a 
driver can call a DMA device knowing a memory violation trap will not 
occur. 

5.4.5 MUNLOCK--Unlock User Memory 

C Interface: munlock(}; 

Parameters: None 

Return Code: None 

5-25 



5.4 System Memory Management FlexOS System Guide 

MUNLOCK unlocks the current User Memory in Physical Memory. 
MUNLOCK allows moving the memory to another physical location. 
The Supervisor automatically locks the current User Memory whenever 
an application calls an SVC. 

The driver is responsible for matching MLOCK and MUNLOCK calls. 
FlexOS maintains a count of the number of locks in force and will not 
unlock the memory until the number of MUNLOCK calls matches the 
number of MLOCK calls applied to the User Memory. If memory is 
unlocked by a driver, the driver must lock the memory before returning 
to the calling process. 

5.4.6 PADDR--Convert address: System to Physical 

·C Interface: 

BYTE *physadr; 
BYTE *sysadr; 

physadr = paddr(sysadr}; 

Parameters: 

sysadr 

Return Code: 

physadr 

System Address to convert 

The physical address of the specified System 
Address 

PADDR converts a System Address to a physical address. Use PADDR 
to convert a buffer address in System Space to a physical address and 
then give the address to a hardware device, such as a DMA controller. 

5-26 



FlexOS System Guide 5.4 System Memory Management 

5.4.7 SADDR--Convert address: User to System 

C Interface: 

BYTE ~·:usradr; 

BYTE :':sysadr; 

sysadr = saddr(usradr); 

Parameters: 

usradr Address of User Memory from User Space 

Return Code: 

sysadr System Address of converted User Address 

SADDR converts a User Address into a System Address relative to the 
current User Memory. The User Address of another process's User 
Memory can be converted to a System Address by first calling the 
MAPU driver service, described above, and then SADDR. 

5.4.8 SALLOC--Allocate System Memory 

C Interface: 

LONG 
BYTE 

length; 
*sysadr; 

sysadr = salloc(length); 

Parameters: 

length 

Return Code: 

sysadr 

o 

Number of bytes to allocate 

Address of memory block allocated in System 
Memory 
No memory available to satisfy the request 

5-27 



5.4 System Memory Management FlexOS System Guide 

The SALLOC driver service allocates System Memory from the TPA. 

5.4.9 SFREE--Free System Memory 

C Interface: 

BYTE *sysadr; 

ret = sfree(sysadr); 

Parameters: 

sysadr 

Return Code: 

E_SUCCESS 
E_MEMORY 

Address of previously allocated System Memory 

Successful operation 
Illegal memory reference 

SFREE frees memory allocated through the SALLOC driver service. The 
address to be freed must be one returned through SALLOC. 

5.4.10 UADDR--Convert address: System to User 

C Interface: 

BYTE ~':sysadr; 

BYTE ~':usradr; 

usradr = uaddr(sysadr); 

Parameters: 

sysadr 

Return Code: 

5-28 

usradr 
E_MEMORY 

Previously converted System Address of User 
Memory 

User Space address of User Memory 
sysadr not in User Memory 



FlexOS System Guide 5.4 System Memory Management 

UADDR converts a System Address to a User Address. The System 
Address must point into User Memory. An error occurs if the System 
Address points into System Memory. 

5.4.11 UNMAPU--Restore User Memory 

C Interface: unmapu{); 

Parameters: None 

Return Code: None 

UNMAPU restores the calling process's User Space. MAPU allows a 
process to map temporarily another process's User Memory into 
System Space. UNMAPU removes the current User Memory and 
restores the process's own User Memory into System Space. If the 
calling process is a system process, no User Memory is mapped. 

5-29 



5.5 Critical Regions FlexOS System Guide 

5.5 Critical Regions 

FlexOS supplies routines to allow a driver to set up critical regions 
without turning off hardware interrupts. FlexOS recognizes three types 
of critical regions: 

• Mutual exclusion regions - allow a driver to restrict multiple 
processes from accessing a resource or data structure. Driver 
services are MXINIT, MXEVENT, ASRMX, MXREL, and MXUNINIT. 

• No-abort regions - guarantee that a particular process will not 
abort while i.n the no-abort region. Drivers can use this type of 
region to ensure that a set of tasks will be completed by the 
calling process. The driver services are NOABORT and OKABORT. 

• No-dispatch regions - guarantee that no other processes or ASRs 
will run while the system is in the no-dispatch region. Typically, 
this region is used where a resource, such as a linked list, is 
accessed by many processes from many different locations in the 
code. A no-dispatch region guarantees that no other process will 
access the resource while it is being used by the current process. 
You can also use this type of region where the calling process 
cannot "hang," waiting for a mutual-exclusion region. The no
dispatch region should be used with care, because it directly 
affects the response time of a process to an external event. The 
driver services are NODISP and OKDISP. 

FlexOS allows drivers to set up mutual exclusion regions to protect 
data structures from multiple processes accessing them, without 
turning off hardware interrupts. These mutual exclusion regions can 
also be used to protect non-reentrant code and make it a serially 
reusable resource. 

5-30 



FlexOS System Guide 5.5 Critical Regions 

The mutual exclusion primitives are similar to a semaphore system, 
where a process must get a semaphore before using a resource. The 
semaphore is released when the resource is no longer needed. If the 
semaphore is in use by another process, the calling process receives 
an event mask which can be used to wait for the semaphore. When 
multiple processes wait for the same semaphore, the requests are 
queued on a a first-come, first-serve basis. 

FlexOS maintains the semaphore, its current owner, and a list of 
processes waiting for the semaphore in a data structure called the 
Mutual Exclusion Parameter Block, or MXPB. Drivers interface with 
MXPBs through routines described below. 

A driver creates an MXPB through the MXINIT driver service. MXINIT 
returns a 32-bit value that identifies the MXPB for future use. 
Typically, a driver stores this v.alue in its data area and accesses the 
value whenever a process attempts to use a protected resource. The 
driver usually calls MXINIT from its INIT code. 

FlexOS provides two driver services for obtaining an MXPB: MXEVENT 
and ASRMX. You use MXEVENT when you are in process context; use 
ASRMX when in ASR context. For both functions, the caller becomes 
the owner if the MXPB is not in use. If the MXPB is owned by another 
process when you call the service, MXEVENT returns an event mask. 
ASRMX returns an event number when the MXPB is owned by any 
process, including the calling process. 

Use WAIT or EVASR with the event mask to wait for the MXPB to be 
released. The WAIT SVC is only valid when you are in process context. 
If you are in ASR context, use NEXTASR or ASRWAIT to reschedule the 
ASR upon the release of the MXPB. When you use WAIT, EVASR, or 
NEXTASR, you must call the RETURN SVC to clear the event after you 
receive control of the MXPB. Do not call RETURN, however, if you use 
ASRWAIT; the event number is cleared and the completion code 
returned by the function. 

5-31 



5.5 Critical Regions FlexOS System Guide 

Use the MXREL driver service to release the MXPB when you are done 
with it. If you acquired the MXPB with ASRMX, you must make the 
MXREL call from within ASR context. If you call MXEVENT from within 
a process's context, you must call MXREL from within the same 
process's context. This is almost impossible to do if you go into ASR 
context between the MXEVENT and MXREL calls. Consequently, most 
calls to obtain an MXPB should be made from within ASR context. 

If a process is aborted while it owns an MXPB, the MXPB is. 
automatically released. 

A driver can remove an MXPB from the system through the MXUNINIT 
driver service. An error is returned if the MXPB is in use. MXUNINIT 
is usually called in the driver's UNINIT code. 

5.5.1 ASRMX--Obtain MXPB ownership 

C Interface: 

LONG 
LONG 

mxid; 
rete; 

rete = asrmx(mxid); 

Parameters: 

mxid MXPB 10 as returned by MXINIT 

Return Codes: 

E_SUCCESS MXPB obtained 
evnum Event number. MXPB is owned. 

The ASRMX driver service obtains ownership of an MXPB. If the MXPB 
is already owned, either by the calling process or another process, an 
event number is returned. Use this number in a NEXTASR or ASRWAIT 
call to schedule ASR execution to wait upon the release of the MXPB. 

5-32 



FlexOS System Guide 

5.5.2 MXEVENT--Obtain MXPB ownership 

C Interface: 

LONG 
LONG 

mxid; 
retc; 

retc = mxevent(mxid); 

Parameters: 

mxid MXPB ID as returned by MXINIT. 

Return Code: 

E_SUCCESS MXPB obtained 

5.5 Critical Regions 

emask Event Mask--MXPB owned by another process 

The MXEVENT driver service obtains ownership of an MXPB. If the 
MXPB is already owned, that is, if the object to be locked is in use, the 
return value will be an event mask that can be used to wait, through 
the WAIT SVC, for ownership. 

5.5.3 MXINIT--Create an MXPB 

C Interface: 

LONG mxid; 

mxid = mxinitO; 

Parameters: None 

Return Code: 

mxid New MXPB's ID 

5-33 



5.5 Critical Regions FlexOS System Guide 

The MXINIT driver service returns a 32-bit value identifying a Mutual 
Exclusion Parameter Block (MXPB) to be used with the MXEVENT and 
MXREL driver services. MXINIT is usually called from the driver's INIT 
code. 

The MXPB is an abstract structure to the driver writer, who passes the 
structure pointer to the MXEVENT and MXREL driver services. FlexOS 
allocates space for the MXPB out of System Memory. 

5.5.4 MXREL--Release an MXPB 

C Interface: 

LONG mxid; 

retc = mxrel(mxid); 

Parameters: 

mxid MXPB ID as returned from MXINIT 

Return Code: 

E_SUCCESS 
E_OWNER 

Successful operation 
Calling process is not owner of MXPB 

The MXREL driver service releases an MXPB and therefore exits a 
mutual exclusion region. If another process is waiting for the MXPB, it 
receives ownership of it. 

5.5.5 MXUNINIT --Remove an MXPB from the system 

C Interface: 

LONG 
LONG 

mxid; 
retc; 

retc = mxuninit(mxid); 

Parameters: 

mxid MXPB ID as returned by MXINIT 

5-34 



FlexOS System Guide 

Return Code: 

E_SUCCESS 
EJNUSE 

Successful operation 
MXPB currently in use. 

5.5 Critical Regions 

The MXUNINIT driver service removes an MXPB from the system. In 
response to MXUNINIT, FlexOS deletes the specified MXPB from the 
MXPB list and frees the memory containing the MXPB for other uses. 
MXUNINIT is usually called from a driver's UNINIT code. 

5.5.6 NOABORT--Enter no-abort region 

C Interface: noabortO; 

Parameters: None 

Return Code: None 

The NOABORT driver service begins a no-abort region, that is, 
NOABORT disables abort routines. A no-abort region prevents abort 
routines from executing as long as the region is active. As soon as 
abort routines are enabled (see the OKABORT driver service) all 
pending abort requests for the process are attempted. In the case of 
multiple NOABORT calls, each NOABORT call must be matched by an 
OKABORT call to reenable abort routines. 

5.5.7 NODISP--Enter a no-dispatch region 

C Interface: nodispO; 

Parameters: None 

Return Code: None 

5-35 



5.6 System Process Creation FlexOS System Guide 

The NODISP driver service begins a no-dispatch region and thereby 
disables dispatches of processes and ASRs. Execution of NODISP 
allows you to disable dispatching of user tasks and ASRs until OKDISP 
is executed. In the case of multiple NODISP calls, each NODISP call 
must be matched by an OKDISP call to reenable process and ASR 
dispatches. 

5.5.8 OKABORT--Exit no-abort region 

C Interface: okabort(); 

Parameters: None 

Return Code: None 

The OKABORT driver service ends a no-abort region and thereby 
enables abort routines. Any abort routines called during the no-abort 
region are executed. 

5.5.9 OKDISP--Exit a no-dispatch region 

C Interface: okdispO; 

Parameters: None 

Return Code: None 

The OKDISP driver service ends a no-dispatch region and therefore 
enables dispatching of processes and ASRs. 

5.6 System Process Creation 

You create system processes with the PCREATE function. driver 
service. A system process runs in System Space and owns no User 
Memory. In your PCREATE call ·you specify the address in System 
Memory where the process is to start execution, the stacksize, the 
priority, and the name of the process. PCREATE lets you send two 
parameters to the process as it starts execution. 

5-36 



FlexOS System Guide 5.6 System Process Creation 

PCREATE allocates a process data space, including a system stack and 
initializes the process name, priority, and other data. PCREATE then 
initializes the stack to contain the specified parameters and finally 
schedules the new process to run. FlexOS starts the process at'the 
address you pass as a parameter to PCREATE. 

The process has the full context and flexibility of any other process in 
the system, with the sole exception that the process does not own 
any User Memory. 

5.6.1 PCREATE--Create a system process 

C Interface: 

LONG 
VOID 
BYTE 
BYTE 
LONG 
LONG 
LONG 
LONG 

pid; 
startO; 
*name; 
prior; 
stacksize; 
parml; 
parm2; 
emask; 

emask = pcreate{&pid,start,name,prior,stacksize,parm 1,parm2); 

VOID start(parm 1,parm2) 
LONG parml; 
LONG parm2; 
{ 
/* first line of "c" Code that the new process */ 
/* will execute follows: */ 

/* Terminate the system process */ 

5-37 



5.6 System Process Creation FlexOS System Guide 

Parameters: 

&pid Address of a 32-bit variable that will be modified by 
this routine to contain the process ID of the new 
process. This value is needed to abort the process 
and to obtain information about it. 

start Address of first instruction the new process will 
execute 

name 

prior 

stacksize 

parm1 

parm2 

Address of process name. The· name is null
terminated. If the string is longer than eight bytes, 
only the first eight bytes are used. 

Initial process priority, ranging from 0 to 255. The 
guidelines for selecting the priority are: 

1 
2-31 

32-63 
64-128 

129-199 
200 

201-254 
255 

INIT process 
High-priority system process requiring 
immediate response to external events 
System process 
Undefined 
High-priority user process 
Normal user process 
Low-priority user process 
Idle process 

Size of the system stack for the new process. If 
this value is 0, a default value is used that allows 
SVCs to be called. 

First 32-bit parameter to new process 

Second 32-bit parameter to new process 

Return Code: 

5-38 

emask Event mask that can be used to wait, through the 
WAIT SVC, for the termination of the created 
process. Upon completion of the WAIT, that is, 
when the process has terminated, use the RETURN 
SVC to obtain the process's exit code. 

E_MEMORY Cannot allocate System Space for this process. 



FlexOS System Guide 5.7 Interrupt Service Routines 

5.7 Interrupt Service Routines 

Interrupt Service Routines (ISRs) are established through the SETVEC 
function described below. FlexOS transfers control to the Entry Point 
of the ISR as though it were calling a C routine. 

It expects back one of two possible WORD values: 

• true (1), meaning dispatching is required 
• false (0), meaning no dispatching is required 

Ideally, the ISR should work along the following lines: 

1. The driver's INIT function sets up the ISR vector through a 
SETVEC call. SETVEC is described below. The driver's SELECT 
function enables hardware and software interrupts. 

2. The driver's READ or WRITE code starts an operation that results 
in an interrupt, which transfers control to the ISR. If the device is 
of a type that does not require immediate service, the ISR might 
do no more than execute the DOASR function. If the device 
requires immediate service, e.g., a serial driver or a disk driver, 
the ISR might set up a DMA transfer or input or output the next 
data byte, then execute a DOASR to clean up. 

3. The ISR determines whether or not a significant event, that is, an 
event which requires dispatching, has occurred. If it has, the ISR 
should return a true value; otherwise, the ISR should return a 
false value. 

The following guidelines should be kept in mind when using ISRs. 

• FlexOS takes care of stack switching, dispatch scheduling, and 
CPU-dependent interrupt resets. 

• Interrupts are disabled upon entry to the ISR. Interrupts can be 
subsequently enabled by the ISR to allow nested interrupts. 

• FlexOS saves all registers for the ISR. Therefore, it is not 
necessary for the ISR itself to preserve any registers. 

5-39 



5.7 Interrupt Service Routines FlexOS System Guide. 

• To allow FlexOS to respond to other interrupts in a timely way, 
ISRs should be kept as short as possible. In most cases, the 
majority of the work should be carried out by an ASR. 

• Forcing a dispatch by returning "true" has overhead. If the 
external event is not required to be handled in real time, a "false" 
should be returned, even if the DOASR driver service function has 
been called. If the dispatch is not forced, the ASR will run at the 
next dispatch. The worst that could happen is that the ASR would 
have to wait for the next tick. 

5.7.1 SETVEC--Set interrupt vector to ISR 

C Interface: 

5-40 

LONG 
WORD 
WORD 

intno; 
isr _routine(); 
pn3vjsrO; 

prev_isr = setvec(isr_routine,intno); 

WORD isr _routineO 
{ 
/* service interrupt condition */ 

/* schedule ASR ~:/ 

do_asr( ... ); 

/~: dispatch or not depending on how critical */ 
/* it is to run the ASR if one was scheduled */ 

if (dispatch) 
return(-l); /* TRUE = force dispatch */ 
else 
return(O); /* FALSE = no dispatch */ 
} 



FlexOS System Guide 5.7 Interrupt Service Routines 

Parameters: 

intno 

Return Code: 

Address of Interrupt Service Routine 

Interrupt vector number 

E_SUCCESS Successful operation 

prevjsr Address of previous ISR routine. A return code of 
zero indicates that this is the first time SETVEC has 
been called for this interrupt vector. If prev_isr is 
non-zero, SETVEC has already been called for this 
vector. 

The SETVEC driver service sets the specified interrupt vector to 
execute the specified Interrupt Service Routine. The physical interrupt 
vector will actually refer to an operating system routine which sets up 
the ISR environment, that is, saves registers. 

Once the ISR returns, the registers are restored and the operating 
system routine either restores the environment and returns to the 
interrupted process or forces a dispatch to occur. If a dispatch is 
forced, the interrupted process is rescheduled and will run at a later 
time, according to its priority. 

End of Section 5 

5-41 



FlexOS System Guide 

5-42 



SECTION 6 

Supervisor Interface 

This section describes how drivers interface to the FlexOS Supervisor. 

6.1 Supervisor Entry Point 

Drivers can use the Supervisor Calls (SVCs) available to user programs 
and· described in the FlexOS Programmer's Guide. Drivers linked with 
the system directly access the operating system services. Drivers 
loaded from disk link. to a Driver Run-time Library which indirectly 
calls the appropriate operating system services. 

Do not call an SVC which forces the driver to be reentered. This can 
result in a deadlock situation. 

ASRs cannot call SVCs that result in a process waiting. If this occurs, 
the Dispatcher cannot schedule any tasks, including ASRs. This results 
in a system crash. 

Calls passed to the Disk, Console, and Network Resource Managers 
might cause a process to wait. The Pipe Resource Manager is 
designed to be used bV ASRs. However, even when performing 
operations on pipes, you must call SVCs asynchronously so that event 
masks are returned, instead of performing a wait. 

ISRs cannot call SVCs. 

When drivers access SVCs through SUPIF: 

• The Supervisor does not perform buffer range checking . 

• Parameter blocks are always 32 bytes and must be in System 
Memory. 

6··1 



6.1 Supervisor Entry Point FlexOS System Guide 

• Bit 1 of the mode field in th'e parameter block must be set to 1 if 
the addresses in the parameter block are User Addresses. The 
mode field is the first byte (lowest address) of the parameter 
block. Set bit 1 to 0 if the parameter block addreses are System 
Addresses. Note that bit 0, the least significant bit, is the 
asynchronous bit. 

The specific interface to SUPIF is described below. 

6.1.1 SUPIF--Make a Supervisor' call 

C Interface: 

WORD 
LONG 
LONG 

funcno 
param; 
ret; 

ret = supif(funcno,param); 

Parameters: 

funcno 
param 

Return Code: 

ret 

SVC number 
32-bit parameter, typically a parameter block address 

32-bit return code 

The SUPIF driver service allows code within System Space to make 
SVC calls. The specific SVC numbers, parameters, and expected return 
codes are specified in the FlexOS Programmer's Guide. 

End of Section 6 

6-2 



SECTION 7 

Console Drivers 

This section describes the specific driver interface to character 
console drivers. It provides an overview of console drivers, discusses 
the FRAME and RECT data structures, and defines entry and return 
parameters for each console driver I/O function. 

7.' Console Driver Overview 

A console driver is composed of one or more driver units. The 
Console ~esource Manager (RM) manages each unit as a separate 
physical console device. Each physical console device has two 
components: a video display and a keyboard. There is no explicit 
limit to the number of physical consoles or the number of console 
drivers managed by the Console RM. Limits depend only on memory 
constraints. 

FlexOS supports a standard console environment model independent of 
physical console device type. As a console driver writer, you must 
translate this model to your specific physical device. All device
dependent code is in the console driver. 

The foremost consideration in writing a console driver is performance: 
the console must appear lively to the user. To help you implement 
'lour drivers. two sample drivers. a serial driver for a Zenith @ Z-29 VOT 
and a character/bit-mapped driver for an IBM PC/AT, are distributed 
with FlexOS. 

The sample drivers take advantage of the sub-driver architecture, 
described in Section 2.6. The use of this architecture eases the task 
of implementing console drivers for similar types of console devices. 

Each console driver manages a class of console devices. The console 
driver can directly control each physical console it manages or can 
control individual physical consoles through sub-drivers. Each unit of 
a console driver corresponds to a single physical console device. 
FlexOS does not require that a driver's physical consoles be of a 
similar type. However, to conserve memory for both driver code and 

7-1 



7.1 Console Driver Overview FlexOS System Guide 

data, it is desirable to have all consoles of similar types controlled by 
the same driver. 

For example, consider a FlexOS system with three terminals; two serial 
consoles and one memory-mapped character console. This system 
should have two console drivers; one driving the memory-mapped· 
console, while the other drives the two serial consoles. The serial 
consoles can be of different types if sub-drivers are used to hide 
differences between them. Figure 7-1 illustrates this example system. 

Console 
Resource 
Manager 

MAPPED 

.UnitO 

~ 
QUAD RAM 

Unit 0 

J SERCON 

·ADM3A+ 

UnitO 
UnitO 

Unit 1 ---- 2-19 

Unit 0 

Figure 7-1. Console Drivers 

PORT 

Unit 0 

: Unit 1 

Unit2 

~ Unit3 

~ Unit4 

f--

f---

In Figure 7-1, the console driver MAPPED supports a single physical 
console. MAPPED interfaces directly to the keyboard and screen 
hardware. It uses a subdriver to interface to the character-mapped 
hardware associated with this physical console. The driver QUADRAM 
handles the video display and keyboard interfaces, but is written to be 

7-2 



FlexOS System Guide 7.2 The FRAME and RECT Structures 

independent of the actual port hardware. QUADRAM uses the port 
driver PORT as a sub-driver to interface with the port hardware. 

The driver SERCON handles much of the higher-level interface to serial 
consoles independent of the type of terminal. SERCON calls the sub
drivers ADM3A+ and Z-19 for the screen and keyboard interfaces. 
ADM3A+ and Z-19 handle the specific terminal interfaces and use 
PORT as a sub-driver to interface with specific port hardware. 

7.2 The FRAME and RECT Structures 

A FRAME is a logical representation of a screen. It is a three
dimensional structure consisting of one or more planes of character 
cells, with one byte per character cell. Each plane consists of· either a 
two-dimensional byte array or a single byte which the Console RM 
uses to define all the bytes in the plane. 

A FRAME's height and width are defined in terms of character columns 
and rows of its planes. A FRAME's depth is defined in terms of the 
number of planes in the FRAME. 

On a FRAME, a rectangle can be described that descends through all of 
the FRAME's planes. This piece of the FRAME is a data structure 
called RECT. COpy and ALTER (see Section 7.4) manipulate FRAMEs by 
acting on RECTs. Figure 7-2, below, illustrates a FRAME with a RECT 
descending through its planes. 

7.2.1 Planes 

FlexOS defines parameters for three planes: the character (plane 0), 
the attribute (plane 1), and extension plane (plane 2). Figure 7-2, 
above, depicts these planes. Support for planes 1 and 2 is optional. 
These planes are defined as follows: 

• Character plane - consists of a Iphanumeric characters. This plane 
uses an 8-bit character set defined on a per-country basis. This 
plane supports two-byte characters, such as KANJI, through the 
implementation of the extension plane (see below). 

7-3 



7.2 The FRAME and RECT Structures FlexOS System Guide 

o ncol 

o~------------------------~~ 

RECT \ 

Plane 0 - Characters 
nrow ~----~------------~---r-~ 

UFRAME 

Plane 1 - Attributes 

Plane 2 - Extension 

Figure 7-2. FRAME and RECT 

• Attribute plane - describes the display characteristics 'of the 
characters in the character plane. Each byte in the attribute plane 
defines the foreground color, background color, color intensity, 
and blink status (on or off) for the corresponding character cell in 
plane O. 

7-4 



FlexOS System Guide 7.2 The FRAME and RECT Structures 

The attribute byte is formatted as follows for monochrome and 
color video display drivers: 

Bits 0-2 
Bit 3 
Bits 4-6 
Bit 7 

Foreground color 
Intensity 
Background color 
Blink 

For video displays supporting the blink attribute, set the blink bit 
in a given attribute byte to cause the corresponding character to 
blinK. 

The three-bit foreground and background color fields are defined 
as follows: 

low bit blue 
middle bit· green 
high bit red 

Use of the three color bits provide the following eight colors: 

Table 7-1. Colors Defined in Attribute Byte 

3-bit Value Color 

0 Black 
1 Blue 
2 Green 
3 Cyan 
4 Red 
5 Magenta 
6 Brown 
7 Light Gray 

The foreground color, specified by bits 0-2, is modified by the 
intensity bit, bit 3. When the intensity bit is set, the low nibble of 
the attribute byte allows for the following colors: 

7-5 



7.2 The FRAME and RECT Structures FlexOS System Guide 

Table 7-2. Foreground Colors with Intensity Bit Set 

Low Nibble Value 

8 
9 

AH 
BH 
CH 
DH 
EH 
FH 

Color 

Dark Gray 
Light Blue 
Light Green 
Light Cyan 
Light Red 
Light Magenta 
Yellow . 
White 

The attribute byte has the same format for monochrome video 
displays as for color. Certain color selections effect monochrome 
display output. For example, when the foreground color is black 
and the background color white, a monochrome display will 
appear in reverse video . 

• Extension plane - allows support for alternate character set or 
other extensions to the standard FRAME. Implement this plane if 
you intend to support foreign languages. Extension plane bytes 
have the following format: 

7-6 

Bit 0 Cell type 
Bit 1 Cell number 
Bits 2 & 3 Reserved 
Bits 4-7 OEM extension 

Cell type (bit 0) determines whether the character corresponding 
to an extension byte is one byte or two. A one-byte character, 
such as an ASCII character, takes up one character position on 
the screen. A two-byte character, such as a KANJI character, 
takes up two character positions. Bit 0 is set to zero to display 
one-byte characters; Bit 0 is set to 1 to display two-byte 
characters. 



FlexOS System Guide 7.2 The FRAME and RECT Structures 

Cell number (bit 1) indicates whether a corresponding byte in the 
character plane is either: a) the first part of a two-byte character 
or a one-byte character or b) the second part of a two-byte 
character. Bit 1 is set to 0 when the corresponding character 
plane byte is the first part of a character or when displaying one
byte characters. Bit 1 is set to 1 when a corresponding character 
plane byte is the second part of a character. 

You can customize the OEM extension field (bits 4-7) for your 
own purposes. This field allows the implementation of alternate 
character sets. This field is set to zero when the FlexOS standard 
character set is supported. 

7.2.2 FRAME Types 

There are three types of FRAMEs: a user FRAME (UFRAME), a virtual 
FRAME (VFRAME), and a physical FRAME (PFRAME). The driver writer 
creates the PFRAME and VFRAME; FlexOS defines the UFRAME. 

The UFRAME is a device-independent representation of a con~ole 
screen used by applications. It is based on the model of the IBM PC 
video map. The FlexOS Programmer's Guide describes the UFRAME for 
the applications programmer. 

The VFRAME is the storage form of a virtual console, as defined by the 
console driver writer. The Console RM stores a virtual console's 
current screen image in the VFRAME that the driver creates. The 
VFRAME can be created to be different sizes, where size is measured 
in rows and columns. FlexOS makes no assumptions regarding the 
VFRAME's format. 

The Console RM calls the SPECIAL entry point to create and delete 
VFRAMEs as virtual consoles are created and deleted. See "SPECIAL 
Entry Point" for a description of the FlexOS support for creating and 
deleting VFRAMEs. 

The Console RM uses the WRITE and COpy fALTER functions to update 
the VFRAME. The WRITE entry point updates a VFRAME and returns a 
"dirty region" that allows the Console RM to determine the portions of 
the VFRAME that must be copied to the PFRAME. The VFRAME's 
design should provide for fast VFRAME to PFRAME COPY. 

Through the SPECIAL functions 0, 2, and 3, FlexOS supports systems 

7-7 



7.3 Console Driver Entry Points FlexOS System Guide 

whose VFRAME is modeled after the video map of an IBM PC. These 
SPECIAL functions are described below, under "SPECIAl Entry Point." 

The PFRAME is a direct representation of the physical screen. Like the 
VFRAME, the PFRAME is defined by the console driver writer. Any 
change to the PFRAME must be reflected on the physical screen. The 
console driver must be able to COpy f ALTER the physical screen and 
therefore needs a copy of the PFRAME in memory. Most memory
mapped screen devices already have a PFRAME: the mapped memory 
itself .. 

If your PFRAME does not follow the IBM PC video map model, you 
must translate between your PFRAME and an IBM PC-type of PFRAME. 

Most implementations of FlexOS console drivers simplify the FRAME 
transformation by defining the VFRAME and PFRAME· to have the same 
memory representation. For serial devices, all three types of FRAME 
can have the same representation. 

7.3 Console Driver Entry Points 

Like all FlexOS drivers, console drivers consist of a driver header and 
entry points for driver functions. Section 4 describes the general 
format of a FlexOS driver. The entry points to a console driver are 
SELECT, FLUSH, COPY fALTER, WRITE, SPECIAL, GET, and SET. 

The SELECT function activates the keyboard. SELECT contains a 
pointer to the keyboard Asynchronous Service Routine (ASR) which 
calls the Console RM asynchronously. This ASR buffers the characters 
to be used by an application. FlexOS calls the SELECT entry point for 
keyboard information; there is no READ entry point. 

FLUSH deactivates keyboard activity by disabling interrupts. Typically, 
the driver activates and deactivates keyboard hardware with SELECT 
and FLUSH calls. 

WRITE and COpy fALTER act on FRAMEs. These entry points are called 
to perform updates to the physical console. COpy f ALTER replaces 
READ 'in the standard FlexOS Driver Header. The Console RM performs 
range checking of the UFRAME before it calls COpy fALTER. 

Note: The WRITE and COpy fALTER entry points are called from ASRs 

7-8 



FlexOS System Guide 7.4 Console Driver I/O Functions 

and therefore can never wait. These functions return a zero if the 
operation is completed successfully. WRITE returns an event mask if 
the driver must wait for an event, or an error code if an error occurs. 

The Console RM calls the SPECIAL entry point to 

• create and delete virtual consoles (VFRAMEs) 
• convert VFRAMEs to conform to an IBM® PC video map model 
• convert VFRAMEs from IBM PC model back to original form 
• change VFRAME configuration 

The SPECIAL functions need not be implemented if you do not support 
virtual consoles or if you do not support PC DOS applications. 

GET provides information on the physical console. SET changes the 
country code for a console for systems that support foreign character 
sets. The SET function is optional. 

7.4 Console Driver 1/0 Functions 

7.4.1 SELECT--Activate keyboard 

Parameter: Address of SELECT parameter block 

Return Code: E_SUCCESS Operation was successful 

o 
4 

8 

12 

16 

o 1 2 3 

UNIT I 0 I 0 

KEYBOARD 

MOUSE 

BUTTON 

PCONID 

Figure 7-3. SELECT Parameter Block 

7-9 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Table 7-3. Fields in SELECT Parameter Block 

Field Description 

UNIT Driver unit number 

KEYBOARD Address of the keyboard ASR. Use this address in your 
DOASR or NEXTASR call to transfer a character from the 
keyboard to the input buffer. You must translate the 
character into the FlexOS 16-bit input character set (see 
Appendix A). If the keyboard generates toggle characters, 
they should always be passed to the keyboard ASR. When 
you call DOASR or NEXTASR, the first parameter is PCONID 
and the second is the character received. 

MOUSE Address of the mouse ASR. Use this address in your 
DOASR or NEXTASR call to transfer the change in the 
mouse position. When you call DOASR or NEXTASR, the 
first parameter is PCONID and the second is the address of 
the mouse movement packet with the delta x and delta y 
values. 

BUTTON Address of the button ASR. Use this address in your 
DOASR or NEXTASR call to indicate the mouse button 
pressed. When you call DOASR or NEXTASR, the first 
parameter is PCONID and the second is a long indicating 
the button pressed where bit 31 represents the leftmost 
mouse button, bit 30 represents the next button to the 
right, and so forth. 

PCONID Physical console identifier for the driver unit being 
SELECTed. The Console RM gives the PCONID to the driver 
of this unit. The driver must pass the PCONID to the 
keyboard ASR to allow it to identify which physical console 
is sending information. 

The Console RM calls the SELECT function to initialize the keyboard. 
Once SELECT has been called, the keyboard is considered live. 

7-10 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

Typically, SELECT turns on the hardware interrupts. FlexOS calls only 
the SELECT entry point for input data. 

The interrupt vector itself is usually initialized in the INIT entry point at 
the time the driver is installed. Initialize the interrupt vector with the 
SETVEC driver service. Section 5.7 explains SETVEC and offers 
guidelines for using ISRs under FlexOS. 

In response to an interrupt, the keyboard interrupt service routine 
should use the DOASR driver service to schedule the keyboard ASR. 
You must use the ASR provided in the SELECT parameter block, so, be 
sure to save this address in your routine. 

Non-interrupt-driven console devices use the POLLEVENT driver 
service to establish a poll routine to receive a physical input. 
POLLEVENTis described in Section ,5.3. 

The console driver must perform any necessary translation of 
hardware data to logical information that can be used by FlexOS. If 
translation is required, the driver, upon receiving a physical input, calls 
the DOASR driver service from an ISR to schedule an ASR to perform 
physical-to-Iogical translation. The translation should not be done in 
the ISR itself. Such translation might include translation to the FlexOS 
16-bit character set. The FlexOS standard input character set is 
defined in Appendix A. 

When translation is finished, the driver should call DOASR again to 
schedule the keyboard ASR, passing the translated information; The 
Console RM places the data into the present keyboard owner's input 
buffer. 

" 

Call the DOASR driver service with a priority of 200 when scheduling a 
translation ASR and the keyboard ASR. 

7-11 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

7.4.2 FLUSH--Deactivate keyboard 

Parameter: 

Return Code: 

The 

E_SUCCESS 
10ERROR 

Console RM 
parameter block: 

Address of FLUSH parameter block 

Operation was successful 
Console driver error code 

calls FLUSH with the 

0 

address 

01 UNIT 0 

of 

The UNIT field contains the driver unit to be FLUSHed. 

the following 

The FLUSH function is the reverse of SELECT. It must perform all 
operations (either hardware or software) required to stop the physical 
input of characters and/or interrupt sources. If a console driver owns a 
sub-driver, it must call the sub-driver's FLUSH function to make the 
sub-driver quiescent. 

7-12 



FlexOS System Guide 7.4. Console Driver 1/0 Functions 

7.4.3 COPY/ALTER--Modifya RECT 

Parameter: Address of COpy I ALTER parameter block 

Return Code: 

E_SUCCESS Operation was successful 

COpy and ALTER share the same entry paint. You determine which 
operation to perform from the OPTION field in the parameter block. 
Figure 7-4 illustrates the format of the COpy IAlTER parameter block. 
The fields are described in Table 7-4. The FRAME and RECT data 
structures referenced in the parameter block are illustrated following 
the parameter block description. 

o 

4 

8 

12 

16 

20 

24 

o 2 3 

UNIT I OPTION FLAGS 

ROW COL 

PDADDR 

DFRAME 

DRECT 

SFRAME or ALTERS 

SRECT 

Figure 7-4. COPY/ALTER Parameter Block 

7-13 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Field 

UNIT 

OPTION 

FLAGS 

7-14 

Table 7-4. Fields in COPY tAL TER Parameter Block 

Description 

Driver unit number 

Bit map of operation and FRAME types: 

bits: 7 6 5 4 3 2 1 0 

Destination FRAME 
(bit 0) 

Io.o.----t~ Source FRAME Type (bit 1 ) 

Io.o.-_---I~ Operation (bit 2) 

Where FRAME type is: 

Operation is: 

o - VFRAME/PFRAME 
1 - UFRAME 
o - COpy source to destination 
1 - ALTER destination 

RECT and FRAME addresses for a UFRAME are always in 
User Memory. You must convert them to system 
addresses (see the SADDR driver service). The driver 
creates the PFRAME and VFRAME; consequently, these 
FRAMEs are in System Memory. 

Bit map of flag usage. 

Bit 0: 1 = Modify plane 0 
o = Do not modify plane 0 , 

Bit 1: 1 = Modify plane 1 
o = Do not modify plane 1 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

Table 7-4. (Continued) 

Field Description 

Bit 2: ~ Modify plane 2 
a = Do not modify plane 2 

Bits 3-6: Reserved 

Bit 7: 1 = This is top virtual console. Update the 
cursor position when this bit is set. 

a = This is not the top virtual console. 

Bits 8-11: Reserved 

Bit 12: 

Bit 13: 

Bit 14: 

Bit 15: 

1 = This call is to move the cursor only. Only 
UNIT, FLAGS, ROW, and COL have meaning. 

a = All fields have meaning 

1 = This is an update of a dirty RECT passed 
from WRITE driver function. 

a = This is not a RECT passed from WRITE. 

1 = Update PFRAME and VFRAME. This means 
the virtual console is the same size as the 
physical, windowed full-screen, and on top. 

a = Update as indicated with option. If VFRAM E 
is modified, the Console RM updates 
windowed RECTs on PFRAME as appropriate. 

1 = Buffer is in User Memory. Use the SADDR 
driver service to convert User to System 
Address before accessing this address. 

o = Buffer in System Memory. 

7-15 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Table 7-4. (Continued) 

Field Description 

ROW With COL, defines current cursor position. When 
COpy IALTER is 'exited, this is where cursor should be. 

COL With ROW, defines current cursor position. When 
COpy IAL TER is exited, this is where cursor should be. 

PDADDR Process descriptor address of user process whose memory 
contains the UFRAME. This' may not be the calling process 
for FLAGEVENT and FLAG SET. Get the pdaddr of the 
process accessing the COpy IALTER entry point from the 
RLR Address iield in the Driver Header. 

DFRAME Destination FRAME. Address of UFRAME, virtual console 
identifier (VCID) of VFRAME, or 0 if PFRAME. 

DRECT Address of destination RECT describing region in DFRAME. 

SFRAME or AL TERB 

SRECT 

7-16 

For COpy operation, address of source RECT describing 
region in SFRAME. For ALTER operation, address of AL TERB; 
a Six-byte array indicating the alteration of the destination 
RECT. The array is arranged as follows: 

alterb[O] = character plane AND 
alterb[1] = character plane XOR 
alterb[2] = attribute plane AND 
alterb[3] = attribute plane XOR 
alterb[4] = extension plane AND 
alterb[5] = extension plane XOR 

Source FRAME. Address of UFRAME, virtual console 
identifier (VCID) of VFRAME, or 0 if PFRAME. Not used for 
ALTER operation. The VelD is returned from SPECIAL 
function 0, Create VFRAME. SPECIAL function 0 is described 
later in this section. 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

o 

4 

8 

12 

16 

o 

NROW 

USE 

2 3 

CHARACTER 

ATTRIBUTE 

EXTENSION 

NCOl 

18 = size in bytes 

Figure 7-5. FRAME Structure 

Table 7-5. FRAME Fields 

Field Description 

CHARACTER Address of the character plane of this FRAME 

ATTRIBUTE Address of the attribute plane of this FRAME 

EXTENSION Address of the extension plane of this FRAME 

NROW 

NCOl 

Number of rows; indicates each FRAME's height. 

Number of columns; indicates each FRAME's width. 

7-17 



7.4 Console Driver I/O Functions FlexOS System Guide 

Table 7-5. (Continued) 

Field Description 

USE Bit map describing how the three plane fields are used. 

7-18 

When the bit value is 0, the byte at the address specifies 
the value for each element in the plane. 

Bit 0: 1 = CHARACTER addresses a two-dimensional array 
of bytes making up the character plane. 

o = CHARACTER addresses a single byte. 

Bit 1: 1 = ATTRIBUTE addresses a two-dimensional array 
of bytes making up the attribute plane. 

o = ATTRIBUTE addresses a single byte. 

Bit 2: 1 = EXTENSION addresses a two-dimensional array 
of bytes making up the extension plane. 

o = EXTENSION addresses a single byte. 

o 1 2 3 

0

4 

~ ________ R_O_W ________ 4-________ C_O_l ______ ~ 
. NROW NCOl 

8 = size in bytes 

Figure 7-6. RECT Structure 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

Field 

ROW 

COL 

NROW 

NCOl 

Table 7-6. RECT Fields 

Description 

Row position of the upper left corner of the RECT. The 
upper left corner, as specified by ROWand COL, is the 
reference point for a RECT. 

Column position of the upper left corner of the RECT. 

Number of rows, indicating the RECT's height. 

Number of columns, indicating the RECT's width. 

COpy copies the bytes from the region described by the source RECT 
into the region described by the destination RECT. If the RECTs are 
different sizes, the driver should trim them to the same size, using the 
upper left corner of each RECT as a reference point. The driver should 
store trimmed RECTs locally. If both RECTs are on the same FRAME 
and they overlap, care should be taken to copy the RECT in the 
appropriate direction. 

ALTER alters the destination RECT by performing a logical AND 
operation with a specified AND byte and a logical XOR operation with 
a specified XOR byte on each byte of a given plane. Separate AND 
and XOR bytes are specified for each plane in the Al TERB array, 
defined above. The FLAGS parameter determines which planes will be 
effected. . . 

The ALTER driver function allows an application to set, clear, 
complement, or leave unchanged any bit in the raw bytes of the 
destination RECT. This function should enable an application to 
perform such operations as clearing a portion of the screen, displaying 
strings of identical characters in different parts of the screen, or 
changing the attributes of a portion of the display without effecting 
the character or extension plane. 

7-19 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

7.4.4 WRITE--Write data to VFRAME 

Parameter: Address of WRITE parameter block 

Return Code: 

E_SUCCESS Operation was successful 
Event Mask Event mask if operation will complete asynchronously 

7-20 

o 
4 

8 

12 

16 

20 

24 

o 2 3 

UNIT I I FLAGS 

VCID 

PDADDR 

BUFFER 

BUFSIZ 

ROW I COLUMN 

DIRTY 

Figure 7-7. WRITE Parameter Block 



FlexOS System Guide 7.4 Console Driver liD Functions 

Field 

UNIT 

FLAGS 

Table 7-7. Fields in WRITE Parameter Block 

Description 

Driver unit number 

Bit map of flags 

Bit 7: 1 = This is the top virtual console. 

Bit 14: 

Bit 15: 

o = This is not the top virtual console. 

This bit determines whether the WRITE 
operation should affect the cursor position 
on the physical console. If bit 7 is set, 
update the cursor position in the .WRITE 
operation. If it is not set, do not update the 
cursor. 

1 = Update PFRAME. 
o = Update VFRAME or PFRAME as indicated. 

Set Bit 14 to 1 when the virtual console is 
full screen, on top. This setting allows 
optimized use of screen-editing commands 
in 16-bit character set. 

1 = Buffer is in User Memory. 
o = Buffer is in System Memory. 

If bit 15 is set to 1, use the SADDR service 
to convert User to System Address before 
accessing this address. 

7-21 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Table 7-7. (Continued) 

Field Description 

VCID Virtual console identifier of VFRAME or, if writing to the 
PFRAME, O. The VCID is returned from SPECIAL function 0, 
described later in this section. 

PDADDR Address of process in whose memory BUFFER (see below) 
resides. This is not necessarily the calling process as 
needed in the FLAG EVENT and FLAGSET driver services. 
Obtain the pointer to the calling process's pdaddr from the 
RLR field in the Driver Header. 

BUFFER Address of buffer of 16-bit characters used to update the 
indicated VFRAME or PFRAME. 

BUFSIZ Size in bytes of BUFFER. This is not the number of 
characters. To obtain the number of characters divide 
BUFSIZE by two. 

ROW Current cursor row position on which to start placing 
characters. 

COLUMN Current cursor column position on which to start placing 
characters. 

DIRTY Address of structure to be filled in by WRITE indicating 
new cursor position and dirty region. Figure 7-8 illustrates 
the format of the dirty region. 

7-22 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

o 2 3 

o Cursor ROW Cursor COL 

4 Dirty ROW Dirty COL 

8 NROWS NCOlS 

Figure 7-8. Dirty Region Format 

Cursor ROWand Cursor COL indicate the cursor's new location. Dirty 
ROWand Dirty COL are the coordinates of the upper left corner of the 
dirtied RECT. NROWS and NCOlS indicate the size of the dirtied RECT. 

WRITE updates a VFRAME with a specified buffer of 16-bit characters. 
The driver should write the string buffer at the specified cursor 
position. Before returning you must update the cursor position (the 
ROWand COLUMN values) and fill in the dirty region data structure. 

7-23 



7.4 Console Driver I/O Functions FlexOS System Guide 

7.4.5 SPECIAL Entry Point 

The Console RM calls the SPECIAL entry point to perform the following 
functions: 

• Special Function 0: Create a virtual console (VFRAME) 
• Special Function 1: Delete a virtual console (VFRAME) 
• Special Function 2: Convert a VFRAME to a PCFRAME 
• Special Function 3: Convert a PCFRAME to its original form 

(inverse of Function 2) 
• Special Function 4: Change VFRAME configuration 

The SPECIAL functions operate on VFRAMEs, the storage form of a 
virtual console (see Section 7.2.2). A driver that does not support 
virtual consoles should return a not implemented (EJMPLEMENT) error 
to the Console RM when the SPECIAL entry point is called. 

Note: A PCFRAME is a VFRAME with the following characteristics: 

• For a character-mapped screen: A 25 row by 80 column display 
, with the characters arranged in character/attribute pairs 

• For a bit-mapped screen: A 200 by 640 pixel display 

FlexOS defines the UFRAME to allow a fast transformation to an IBM 
PC-type of PFRAME. 

SPECIAL Functions 2 converts a VFRAME from its original form to a 
model that replicates an IBM PC video map. SPECIAL Function 3 
converts the VFRAME from the IBM PC model back to its original form. 
These functions are provided to allow applications that poke the IBM 
PC model video map to run in a multiple-virtual console environment. 

7-24 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

SPECIAL Function O--Create a VFRAME 

Parameter: Address of SPECIAL parameter block 

Return Code: 

VCID An identifier of this VFRAME for use in the WRITE, 
COpy IAlTER and SPECIAL functions 1-3. This is 
typically the address of an internal data structure 
known by this driver. The VCID cannot be O. 

o Error. The Console RM assumes a memory allocation 
error has occured. A negative error code cannot be 
returned here since addresses may look like a 
negative number. 

E_IMPlEMENT Virtual consoles are not implemented 

o 2 3 

o UNIT I 0 FLAGS 

4 NROWS NCOlS 

8 PCFRAME 

Figure 7-9. SPECIAL Function 0 Parameter Block 

7-25 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Table 7-8. Fields in SPECIAL Function 0 Parameter Block 

Field 

UNIT 

o 
FLAGS 

Description 

Driver unit number 

One byte set to zero 

Bit map of flag usage 

Bit 0: 

Bits 1-6: 
Bit 7: 

1 = bit-mapped device 
o = character-mapped device 
Reserved 
1 = creating a PFRAME 
o = creating a VFRAME 

NROWS Number of rows in VFRAME 

NCOLS Number of columns in VFRAME 

PCFRAME Preset to zero. If this field is non-zero, the value is the 
address of an IBM PC-compatible character or bit map. 

The Console RM calls SPECIAL Function 0 to create a VFRAME. When 
the PCFRAME field contains the address of an IBM PC-type video map, 
use the FLAGS field to determine whether the display is bit- or 
character-mapped. 

SPECIAL Function 1--Delete a VFRAME 

Parameter: Address of SPECIAL parameter block 

Return Code: 

7-26 

E_SUCCESS Operation was successful 
EJMPLEMENT Virtual consoles are not implemented 



FlexOS System Guide 7.4 Console Driver liD Functions 

The Console RM calls SPECIAL function 1 to delete a VFRAME and 
provides the following information in the parameter block: 

o 

4 

o 

UNIT 

VCID 

2 3 

FLAGS 

The UNIT field contains the driver unit number. 1 is the SPECIAL 
function number. The word at offset 2 is set to zero. VCID is the 
VFRAME identifier of the VFRAME to delete. The VCID is returned from 
SPECIAL function O. 

SPECIAL Function 2--lnitialize a PCFRAME 

Parameter: 

Return Code: 

address 
o 

Address of SPECIAL parameter block 

Video map address 
Operation not allowed 

The Console RM calls SPECIAL function 2 when an application attempts 
to write directly to an IBM PC video map. Use this function to convert 
the specified VFRAME to a facsimilie of an IBM PC video map and 
return the address of the replacement video map. FlexOS directs 
subsequent console output to the video map address returned. 

The SPECIAL parameter block provided by the Console RM is formatted 
as follows: 

o 2 3 

o UNIT 2 FLAGS 

4 VCID 

7-27 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

The UNIT field contains the driver unit number. 2 is the SPECIAL 
function number. The Console RM uses flag bit 0 only. If it is set to 1, 
it indicates that the application attempted to output to a bit-mapped 
display (address B800:0 in the IBM PC). If bit 0 is set to 0, the 
application attempted to output to a character-mapped display 
(address 8000:0 in the IBM PC). The VCID identifies the VFRAME to 
convert. 

SPECIAL Function 3--Revert to VFRAME 

Parameter: 

Return Code: 

address 
o 

Address of SPECIAL parameter block 

Original VFRAME video map address 
Operation not allowed 

The Console RM calls SPECIAL function 3 when an application has 
stopped writing directly to an IBM PC video map. Use this function to 
convert the designated PCFRAME back to the VFRAME originally 
created. 

The SPECIAL Function 3 parameter block is formatted as follows: 

o 2 3 

0

4 

1~ ___ U_N_'T ____ ~~_3 ____ ~ _________ 0 ________ ~ 
. VelD 

The UNIT field contains the driver unit number. 3 is the SPECIAL 
function number. The word at offset 2 is set to zero. VCID identifies 
the PCFRAME to convert back to a VFRAME. 

7-28 



FlexOS System Guide 7.4 Console Driver I/O Functions 

SPECIAL Function 4--Change VFRAME Configuration 

Parameter: Address of SPECIAL parameter block 

Return Code: 

address Video map address 

EJMPLEMENT Virtual console change does not match physical 
capabilities of console device 

E_MEMORY Not enough memory to change virtual console 
configuration 

0 1 2 3 

o UNIT I 4 FLAGS 

4 NROWS NCOLS 

8 VCID 

Figure 7-10. SPECIAL Function 4 Parameter Block 

The Console RM calls SPECIAL Function 4 to reconfigure a virtual 
frame to a new configuration; for example, to convert a 80 x 25 black 
and white character screen to a 320 x 200 pixel color graphics screen. 

7-29 



7.4 Console Driver I/O Functions FlexOS System Guide 

Table 7-9. Fields in SPECIAL Function 4 Parameter Block 

Field 

UNIT 

4 

FLAGS 

NROWS 

NCOlS 

VCID 

Description 

Driver unit number 

SPECIAL function number 

Bit map of flag usage 

Bit 0: 

Bits 1-2: 
Bit 3: 

Bits 4-15: 

1 = Graphics virtual console requested 
o = Character virtual console requested 
Reserved 
1 = Color display 
o = Black and white display 
Reserved 

VFRAME's number of rows (bit 0 = 0) or height in pixels (bit 
o = 1) 

VFRAME's number of columns (bit 0 = 0) or width in pixels 
(bit 0 = 1) 

Identification number of VFRAME to reconfigure. 

7.4.6 GET --Provide physical console description 

Parameter: 

Return Code: 

7-30 

E_SUCCESS 
IOERROR 

Address of GET parameter block 

Operation was successful 
Driver-specific error code 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

o 

4 

8 

12 

16 

Field 

UNIT 

o 
FLAGS 

o 
PDADDR 

BUFFER 

BUFSIZ 

o 2 3 

UNIT I 0 I FLAGS 

0 

PDADDR 

BUFFER 

BUFSIZ 

Figure 7-11. GET Parameter Block 

Table 7-10. Fields in GET Parameter Block 

Description 

Driver unit number 

Byte set to zero 

Bit map of flag usage 

Bit 15: 1 = Buffer in User Memory 
o = Buffer in System Memory 

Long word set to zero 

Address of process descriptor of process owning BUFFER 

Address of PCONSOLE Table--see Figure 7-12 

Size of BUFFER. If this is less than the size of the 
PCONSOLE Table, only complete fields should be filled in. 

7-31 



7.4 Console Driver I/O Functions FlexOS System Guide 

GET must provide information for the FlexOS PCONSOlE Table. The 
PCONSOlE Table describes a physical console device and contains the 
information described in Table 7-11, below. 

o 

4 

8 

12 

16 

20 

24 

o 2 3 

ROWS COlS 

FLAGS I PLANES ATTRP EXTP 

COUNTRY NFKEYS BUTTONS 

SERIAL 

MUROW MUCOL 

CONVERT8 

CONVERT16 

. 28 = Length in bytes 

Figure 7-12. PCONSOLE Table 

GET provides routines to translate the 8-bit output character set to 
the 16-bit output character set and the 16-bit input character set to 
the 8-bit input character set. If the driver does not provide these 
routines, the Console RM uses the standard conversion routines when 
interfacing with a given unit. The FlexOS standard input and output 
character sets and escape sequences are defined in Appendix A. 
Country codes are listed in Appendix C of the FlexOS Programmer's 
Guide. 

For the use of computers in Japan, GET might provide a routine to 
translate 8-bit SHIFT -JIS characters to 16-bit SHIFT -JIS characters as 
defined by Digital Research/Japan. 

7-32 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

Field 

ROWS 

eOlS 

FLAGS 

PLANES 

ATTRP 

Table 7-11. Fields in PCONSOLE Table 

Description 

Number of rows on physical console 

Number of columns on physical console 

Bit map of capabilities: 

Bit 0: 

Bit 1: 

Bit 2: 
Bit 3: 

Bit 4: 

Bit 5: 

1 = graphic and character-mapped display 
o = character-only display 
1 = no numeric keypad 
o = numerical keypad 
Reserved 
1 = color screen 
o = monochrome screen 
1 = memory-mapped video 
o = serial device 
1 = currently in graphics mode 
o = currently in character mode 

Planes supported on PFRAME. FlexOS assumes whatever 
planes are supported on PFRAME are supported on 
VFRAME. 

Bit 0: 
Bit 1: 
Bit 2: 
Bits 3-7: 

1 = character plane supported 
1 = attribute plane supported 
1 = extension plane supported 
Set to zero 

Attribute plane bits supported 

EXTP Extension plane bits supported 

COUNTRY Country code 

NFKEYS Number of function keys 

7-33 



7.4 Console Driver 1/0 Functions FlexOS System Guide 

Table 7-11. (Continued) 

Field Description 

BUTTONS Number of mouse buttons 

SERIAL Serial number of mouse 

MUROW Number of mickey units per row 

MUCOL Number of mickey units per column 

CONVERT8 Address of 8-bit to 16-bit output conversion routine. If 
NULLPTR, the FlexOS standard conversion routine is called 
internally. See the sample driver code for the specific 
interface expected of this routine. 

CONVERT16 
Address of 16-bit to 8-bit input conversion routine. If 
NULLPTR, the FlexOS standard conversion routine is called 
internally. See the sample driver code for the specific 
interface expected of this routine. 

7.4.7 SET --Change the PCONSOLE Table 

Parameter: 

Return Code: 

7-34 

E_SUCCESS 
IOERROR 

Address of SET parameter block. 

Operation was successful 
Driver-specific error code 



FlexOS System Guide 7.4 Console Driver 1/0 Functions 

Field 

UNIT 

o 
FLAGS 

o 

o 

4 

8 

12 

16 

o 2 3 

UNIT I 0 I FLAGS 

0 

PDADDR 

BUFFER 

BUFSIZ 

Figure 7-13. SET Parameter Block 

Table' 7-12. Fields in SET Parameter Block 

Description 

Driver unit number 

Byte set to zero 

Bit map of flag usage 

Bits 0-14: Reserved 
Bit 15: 1 = Buffer in User Memory 

o = Buffer in System Memory 

Long word set to zero 

PDADDR Address of process descriptor of process containing 
BUFFER 

BUFFER Address of PCONSOLE Table 

SET changes the COUNTRY field in the PCONSOLE Table. (See Table 
7-11.) This is the only PCONSOLE Table value that can be modified. 
Support for this console function is optional. 

7-35 



7.4 Console Driver I/O Functions FlexOS System Guide 

End of Section 7 

7-36 



SECTION 8 

Disk Drivers 

This section describes how FlexOS performs reads and writes to disk 
and defines I/O functions for disk drivers. 

8.1 Disk Driver Input/Output 

FlexOS supports an extended PC DOS 2.0 disk file format. The file 
system primitives are contained in the Disk Resource Manager (RM). 
The Disk RM manages the disk file system through the interface with 
the disk driver(s). 

All hardware-dependent code is within the disk drivers. The Disk 
Resource Manager deals with a single, uniform disk driver interface. 
All types of disk media are handled through this single interface. 

FlexOS supports three extensions to the PC DOS 2.0 disk file format. 
The first two extensions are required for file security, the third to 
support variable record sizes on files. These extensions take the form 
of fields in each directory entry that specify a file's User/Group 10, 
protection level, and record size. The FlexOS file system is described 
in detail in the FlexOS Programmer's Guide. 

With minor modifications, the FORMAT and FDISK utilities, distributed 
in source code, support non-DOS disk formats. COPYCPM, also 
distributed in source code, allows you to copy to and from CP/M 
media. 

8.1.1 Reentrancy at the Driver/Disk Controller Level 

Disk drivers are organized at the controller level and the unit level. 
Each disk driver controls one disk controller and as many units as are 
controlled by that controller. Each unit represents a logically separate 
disk drive. A unit might be a single diskette drive or one partition of a 
partitioned hard disk. 

The Disk Resource 
controller/driver level. 

Manager supports reentrancy only 
The unit level is always synchronized. 

at the 
A disk 

8-1 



8.1 Disk Driver Input/Output FlexOS System Guide 

driver can choose to allow only one operation at a time for all units of 
the driver or it can allow each unit to operate independently of the 
other. In either event, there can be only one operation at a time at 
the unit level. 

In the FLAGS field of a disk driver's driver header, bit 0 can be 0 if the 
controller can handle multiple I/O requests. However, bit 1 must be 1, 
indicating that the disk driver synchronizes I/O requests at the unit 
level. See Section 4.2 for a complete description of the driver header. 

8.1.2 Disk Driver Types 

The Disk Resource Manager supports three types of disk drivers: 
removeable with open door support, removeable, and permanent. The 
Disk Resource Manager deals with eac·h of these types differently to 
take advantage of each type's capabilities. 

With all disk driver types, FlexOS allows delayed READs and WRITEs for 
those drivers performing intermediate buffering of data on I/O 
operations. The READ and WRITE disk driver functions have "normal 
read (or write)" and "read (or write) through" options. Normal reads 
and writes can take advantage of buffering, if implemented at the 
driver level. The read or write through option forces a direct read 
from or write to the actual medium, bypassing any intermediate 
buffering. 

Delayed WRITEs are forced out to disk when FlexOS performs a CLOSE 
operation on a unit and on WRITE through and READ through 
operations. I/O will always occur in response to any of these three 
operations. 

The disk drivers shipped with FlexOS do not use intermediate 
buffering. 

Disk driver units inform the Disk RM of their driver type, size, and file 
structure information through a data structure called the Media 
Descriptor Block. The driver returns the Media Descriptor Block 
through the SELECT entry point. The Media Descriptor Block is 
described in detail in the explanation of SELECT, later in this section. 

8-2 



FlexOS System Guide 8.1 Disk Driver Input/Output 

Removeable with Open Door Support 

With disk drive hardware providing "open door" detection, the Disk 
Resource Manager ensures the integrity of removeable media. 

To take advantage of the FlexOS open-door support, the disk driver 
must be able to respond to the hardware's open door interrupt. The 
driver responds to such an interrupt by setting an open door flag. The 
address of the open door flag is given to the Disk Resource Manager 
through a disk driver's GET entry point at the time a driver unit is 
initialized. . 

At each I/O operation, the Disk Resource Manager checks the address 
of the open door flag for a non-z.ero value. If it finds a non-zero 
value, the Disk RM requires verification that the disk has not been 
changed before passing the next I/O request. If a change is detected, 
the Disk RM calls the SELECT function to reinitialize the driver unit .. 
Any intermediate buffers are not written to the disk. 

The Disk RM does not do media verification at any time other than in 
response to the open door flag, thereby improving performance 
significantly over hardware and software without open door support. 

Removable Without Open Door Support 

While FlexOS obtains optimum performance from floppy disk hardware 
and software supporting an open door interrupt, FlexOS also supports 
disk drivers that do not have such an interrupt. For drives in this 
category, the Disk RM maintains checksum information on critical 
portions of the system area of the disk medium. If the drive is not 
used within a certain time interval, the volume is marked as suspect. 
At the next disk access, the checksum is verified. If the verification 
fails, the Disk RM calls the SELECT function to allow the disk driver 
unit to specify which type of media is in place. 

After a failed verification, the Disk RM takes the following steps: 

o The Disk RM assumes that the disk has been changed and 
disregards all buffers pertaining to the drive. 

8-3 



8.1 Disk Driver Input/Output FlexOS System Guide 

• If there are opened files on the removed medium, the Disk RM 
closes the files without flushing any intermediate buffers to the 
disk. 

• The Disk RM attempts to re-Iogin the disk. Then, if the SVC 
request did not assume an open file, the Disk RM retries the 
request. LOOKUP, OPEN, and RENAME are examples of SVCs that 
do not assume open files. 

• The Disk RM sets the open door flag (see previous subsection) 
and returns an error code to the process that requested I/O. 

To improve performance, FlexOS does not perform checksum 
verification on READs and WRITEs. This means that, if a file is active 

'when a disk is changed, FlexOS could write data from that file to a 
changed disk. Digital Research recommends that you implement an 
open door interrupt to eliminate this possibility and to significantly 
enhance floppy disk performance. 

Permanent 

In this usage, "permanent" means that you cannot change the medium 
during the life of the system. The Disk RM does no checksum 
verification and does not check the open door flag. Because of these 
facts, I/O system performance is faster with permanent media than 
with either sort of removable media. 

8-4 



FlexOS System Guide 8.2 Logical Disk Layouts 

8.2 Logical Disk Layouts 

This section illustrates a generalized logical disk layout and a logical 
layout for hard disks. 

Each disk driver unit interfaces to a logical disk drive with the layout 
shown in Figure 8-1; Table 8-1 explains each field. 

Logical Sector 0 ----------------------------------. Sector SECTRK 

System Area (SYSSIZE bytes) 

rrack 0 --.. RESERVED I~ FIRSTSEC FAT Area 

(NFSECS*NFATS)Sectors J Root Directory Area 

(DIRSIZE * 32) bytes I~ OPSYS 

Data Area 

(NSECTORS - NFSECS - (DIRSIZE*32/SECTSIZE) ) 

Sectors J 

Figure 8-1. Logical Disk Layout 

8-5 



8.2 Logical Disk Layouts FlexOS System Guide 

Table 8-1. Fields in Logical Disk Layout 

Field Description 

Logical Sector a 
The first sector of the track containing the beginning of the 
FAT (File Allocation Table) area. This sector is also the 
sector identified bV head 0, track 0, sector O. By definition, 
track a contains the first sector of the 'FAT area. If the FAT 
area does not exist (NFSECS and NFATS are both zero), 
then track a is the track containing the first sector of the 
root directory. The Disk RM handles both one- and zero
based sector numbering. Programs in User Memory and 
disk drivers must have the same numbering scheme. 

SECTRK Specifies the number of physical sectors per track. 

System Area 

8-6 

Usually defined as the area used for booting. The system 
area is considered outside of the disk medium and can be 
formatted independently of the disk medium. For hard 
disks, the system area is zero length and is therefore not 
counted in sequential sector numbering. For a disk 
containing tracks with different densities, the system area 
must end on a track boundary as defined for that disk. For 
a disk with a uniform density, if the system area extends 
into the beginning of the first track of the disk, it must end 
on a physical sector boundary, as defined for that disk. 



FlexOS System Guide 8.2 Logical Disk Layouts 

Table 8-1. (Continued) 

Field Description 

SYSSIZE Size of the system area, in bytes. 

RESERVED Normally, when the system area is zero, this field contains 
the boot- sector. At offset 0 in the boot sector is the BIOS 
Parameter Block, illustrated in Figure 8-4, below. 

FIRSTSEC The physical sector number of the first FAT sector on track 
O. If no FAT exists, FIRSTSEC is the first sector of the root 
directory area. 

NFSECS 

NFATS 

DIRSIZE 

The number of sectors in each FAT. NFSECS is zero for 
CP/M media. 

The number of FATs in the FAT area. NFATS is zero for 
CP/M media. 

The number of root directory entries. A directory entry is 
32 bytes long. The physical sectors occupied by the 
directory area must be contiguous. 

NSECTORS Specifies the total number of sectors on the disk. See 
below for the formula for determining NSECTORS. 

SECTSI~E Specifies the physical sector size of the disk, in bytes. 
Legal sizes are 128, 256, 512, 1024, 2048 and 4096. 

The formula for determining the total number of sectors on a disk 
(NSECTORS) is as follows: 

NSECTORS = FIRSTSEC + (NFATS*NFSECS) + 
(DIRSIZE ~': 32) + {SECSIZE - 1 ))/SECSIZE + 
{Number of Clusters * (Sectors per Cluster)) 

A cluster is the number of physical sectors per file allocation unit on a 
given disk. 

If a disk is boatable, the operating system must be stored starting with 
first sector following the directory area. 

8-7 



8.2 Logical Disk Layouts FlexOS System Guide 

Model Hard Disk Layout 

Figure 8-2 illustrates a model logical hard disk. The following table 
describes the components. 

8-8 

Master 
Boot 

Record 

O.S·I Boot 
Record 

(Part.#1) 

O.S·I Boot 
Record 

(Part. #n) 

Sector 1 
MBR CODE 

Partition Table 

J Signature 

JUMPI BPB 

Code to Load O.S. in 
Partition #1 

I Signature 

.. 1st Sector of 1st FAT 
Logical Disk Layout 

Partition #1 

! 
JUMPI BPB 

Code to Load O.S. in 
Partition #n I Signature 

.. 1st Sector of 1st FAT 

Logical Disk Layout 
Partition #n 

Figure 8-2. Hard Disk Layout 



FlexOS System Guide 8.2 Logical Disk Layouts 

Table 8-2. Fields in Hard Disk Layout 

Field Description 

Master Boot Record (MBR) 
Contains code to load and pass control to the boot record 
for one of four possible operating systems. Also contains 
the Partition Table. For hard disks with a sector size of 
512 bytes, the MBR is usually one sector long. 

Code portion of Master Boot Record. 

Partition Table 

SIGNATURE 

Contains information on each of four possible partitions on 
the hard disk. See Figure 8-3, below. 

Two-byte field at offset 1 FEH from the beginning of the 
MBR. A value of 55AAH indicates a valid partition. 

0.5. Boot Record 

JUMP 

Contains code and data to load an operating system. For 
hard disks with a sector size of 512 bytes, the 0.5. Boot 
Record is usually one sector long. 

Instruction to pass control to boot loader code after ROM 
monitor reads boot record into memory. 

BPB BIOS Parameter Block. Table describing a given operating 
system's partition. See Figure 8-4, below. 

Code to Load 0.5. 
Code portion of an operating system's boot record. 

Logical Disk Layout 
The LDL as it is illustrated in Figure 8-1, above. 

8-9 



8.2 Logical Disk Layouts FlexOS System Guide 

The Partition Table is a structure beginning at offset 1 BEH from the 
beginning of the Master Boot Record. Figure 8-3 illustrates its format. 

8-10 

Hex 
Offset 

1BE 

1C2 

1C6 

1CA 

1CE 

102 

106 

1DA 

1DE 

1E2 

1E6 

1EA 

1EE 

1F2 

1F6 

1FA 

1FE 

o 2 3 

BOOT_IND PART_BEGIN 
H S CYL 

OWNER PART_END 

H S CYL 

HIDDEN 

NSECTS 

BOOT_IND PART~BEGIN 

H S CYL 

OWNER PART_END 

H S CYL 

HIDDEN 

NSECTS 

BOOT_IND PART_BEGIN 
H S CYL 

OWNER PART_END 

H S CYL 

HIDDEN 

NSECTS 

BOOT_IND PART_BEGIN 
H S CYL 

OWNER PART_END 

H S CYL 

HIDDEN 

NSECTS 

SIGNATURE I 

Figure 8-3. Partition Table 



FlexOS System Guide B.2 Logical Disk Layouts 

Table 8-3. Fields in Partition Table 

Field Description 

BOOT JND Indicates whether a partition is bootable, where 0 indicates 
non-boatable and BOH indicates a bootable partition. Only 
one partition can be marked as bootable. 

PART_BEGIN 

OWNER 

Three-byte field indicating the head (H), sector (S), and 
cylinder (CYL) number where a partition begins. The head 

. number is stored in the H field. The sector number is 
stored in the low .order 6 bits of the S fJeld. The cylinder 
number is 10 bits; the low order eight bits are stored in 
the CYL field, while the high order two bits are stored in 
the high order two bits of the S field. 

All partitions are usually allocated on track boundaries and 
begin on sector 1, head O. 

One byte field indicates which operating system owns the 
partition. This field can contain one of the following 
values: 

OOH = unknown 
01 H = DOS 12-bit FAT entries 
04H = DOS 16-bit FAT entries 

PART_END Three-byte field indicating the head (H), sector (S), and 
cylinder (CYL) numbers where a partition ends. See 
PART_BEGIN, above, for an explanation of how these values 
are stored. 

HIDDEN Four-byte field contains the number of sectors preceding a 
partition. Count sectors starting with cylinder 0, sector 1, 
head 0, incrementing the sector number up to the 
beginning of a partition. Store this value least significant 
word first. 

B-11 



8.2 Logical Disk Layouts FlexOS System Guide 

Field 

NSECTS 

SIGNATURE 

Table 8-3. (Continued) 

Description 

Number of sectors allocated to a partition. Store this four
byte value least significant word first. 

Two-byte field at offset 1 FEH from the beginning of the 
MBR. A value of 55AAH, stored high order byte first, 
indicates a valid partition. 

The BIOS Parameter Block (BPB) is stored at offset 0 in an operating 
system's boot record. Each partition must contain a BPB, even if it is 
not bootable. Figure 8-4 illustrates the format of a BPB. 

8-12 



FlexOS System Guide 8.2 Logical Disk Layouts 

OOH 

04H 

08H 

OCH 

10H 

14H 

18H 

1CH 

20H 

24H 

28H 

2CH 

30H 

34H 

o 2 3 

JUMP I OEM_NAME 

OEM_NAME 

OEM_NAME I BYTESPERSEC 

BYTESPERSEC SEC_CLUSTER RES_SECTORS 

FATNUM NROOTDIR I NSECTORS 

NSECTORS MDB FATSEC 

SECPERTRK NHEADS 

HIDDEN 

EXTENSION 

FIRSTSEC 

CODE_LOAD_BASE 

CODE_LENGTH 

DATA-LOAD_BASE 

DATA-LENGTH 

I 
Remaining Portion of O.S. Boot Record 

+ 

Figure 8-4. BIOS Parameter Block 

8-13 



8.2 Logical Disk Layouts FlexOS System Guide 

Field 

JUMP 

OEM_NAME 

Table 8-4. Fields in BPB 

Description 

A jump instruction to transfer control to an operating 
system's loader. See the chip-specific supplements for a 
description of the jump instruction. 

The OEM name and version number identifying the boot 
record's operating system. 

BYTESPERSEC . 
Number of bytes per sector. 

SEC_CLUSTER 
. Number of sectors per file allocation unit in a partition. 

This value must be a power of two. 

RES_SECTOR 
Number of sectors reserved by the operating system, 
starting at logical sector O. 

FATNUM Number of FATs in a partition. 

NROOTDIR Maximum number of root directory entries in a partition. 

NSECTORS Tota.1 number of sectors in a partition, including boot, 

MDB 

FATSEC 

SECPERTRK 

NHEADS 

HIDDEN 

8-14 

directory, and reserved sectors. If this field value is 0, the 
EXTENSION field contains the total. 

Media Descriptor Byte. Describes disk characteristics; MDB 
values are listed in Table 8-5, below. 

Number of sectors occupied by one FAT. 

Number of sectors per track in a partition. 

Number of heads in partition. 

Total number of sectors preceding a partition, including 
sectors occupied by the MBR. 



FlexOS System Guide 8.2 Logical Disk Layouts 

Table 8-4. (Continued) 

Field Description 

EXTENSION 
If NSECTORS contains zero, EXTENSION contains the total 
number of sectors in a partition. The total is here when the 
partition's size is too big for recording in NSECTORS. 

FIRSTSEC First sector of data area. 

CODE_LOAD_BASE 
Address where the operating system code is to be loaded. 

CODE_LENGTH 
Length, in bytes, of code segment. 

DATA_LOAD_BASE 
Address where the operating system data is to be loaded. 

DATA_LENGTH 
Length, in bytes, of data segment. 

From the EXTENSION field through the end of the BPB is Digital 
Research's extension to the standard DOS BPB. The FORMAT utility 
fills in the fields from BYTESPERSEC through FIRSTSEC. The code and 
data load addresses and segment lengths are filled in by the SYS 
utility. 

8-15 



8.3 Error Handling FlexOS System Guide 

The Media Descriptor Byte have the following values: 

Table 8-5. Media Descriptor Byte Values 

Value Meaning 

F8H Hard disk 
F9H Double-sided, 15 sectors per track 
FCH Single-sided, 9 sec,tors per track 
FDH Double-sided, 9 sectors per track 
FEH Single-sided, 8 sectors per track 
FFH Double-sided, 8 sectors per track 

Values F9H through FFH refer to 5 1/4-inch diskettes. 

8.3 Error Handling 

The method used by Disk RM in handling errors depends on the error 
code returned by the driver unit and the type of media. 

All FlexOS function return codes are 32-bit values. If the value is a 
negative number, it represents an error code. Error codes in the range 
from -64 to -2 gigabytes are driver-specific, error codes. FlexOS 
system-wide error codes are listed in Appendix B of the flexOS 
Programmer's Guide. 

Disk driver functions that return physical errors return the error code 
to the application process, allowing the application to inform the user 
of the problem. 

When liD operations to removable media without open door support 
return a timeout error, the Disk RM automatically sets the open door 
flag and returns the error to the calling process. At the time of the 
next operation, the Disk RM performs a check to ensure that the 
medium has not changed. 

8-16 



FlexOS System Guide 8.4 Disk Driver 1/0 Functions 

8.4 Disk Driver I/O Functions 

The following section describes the functions called by the Disk 
Resource Manager through the entry points contained in the disk 
driver's Driver Header. Of these functions, READ and WRITE are 
expected to be asynchronous; the remammg functions are 
synchronous. The physical 1/0 within the READ and WRITE functions is 
performed by Interrupt Service Routines (ISRs) and Asynchronous 
Service Requests (ASRs). Examples are contained in the source code 
for the sample disk drivers on the FlexOS distribution diskettes. 

8.4.1 SELECT --Initialize driver unit 

Parameter: Address of SELECT parameter block 

Return Code: 

Successful operation E_SUCCESS 

E_UNITNO Drive has been installed to allow partitions (see 
FLAGS field of the INSTALL SVC's parameter block in 
the FlexOS Programmer's Guide) but driver is unable 
to read partition. 

E_READY 

E_CRC 

E_SEEK 

Door open on a removable medium 

Cyclical Redundancy Check error 

Non-existent track or sector 

E_SEC_NOTFOUND 
Sector or record not found 

E_MISADDR Missing address mark 

E_DKATTACH Attachment failed to respond 

E_READFAUL T Read error 

E_GENERAL Undetermined source of failure 

8-17 



8.4 Disk Driver 110 Functions FlexOS System Guide 

o 

o UNIT RESERVED 4 5 

2 Address of Media Descriptor Block 

Figure 8-5. SELECT Parameter Block 

In the figure above, UNIT refers to the driver unit number of a specific 
disk drive. . 

8-18 

o 

4 

8 

12 

16 

20 

24 

o 2 3 

SECTSIZE FIRSTSEC 

NSECTORS 

SECTRK SECBLK 

NFATS I FATID NFSECS 

DIRSIZE NHEADS I FORMAT 

HIDDEN 

SYSSIZE 

Figure 8-6. Media Descriptor Block 



FlexOS System Guide 8.4 Disk Driver liD Functions 

Field 

SECTSIZE 

FIRSTSEC 

NSECTORS 

SECTRK 

SECBLK 

NFATS 

FATID 

NFSECS 

DIRSIZE 

NHEADS 

FORMAT 

Table 8-6. Media Descriptor Block Fields 

Description 

Physical sector size, in bytes. This value is required for a 
partial MOB. 

First physical sector number of FAT on track 0 

Number of sectors in logical disk image. This includes 
boot sector, FATs, directories, and data. The boot sector 
consists of a BIOS Parameter Block and code to load the 
operating system. Figure 8-4 illustrates the format of a 
BIOS Parameter Block. NSECTORS does not include system 
track(s). This value is required for a partial MDB. 

Number of sectors per track 

Number of sectors per block (file allocation unit) 

Number of FATs 

Implementation-dependent value indicating media format 

Number of physical sectors in a single FAT 

Number of directory entries in the root directory 

Number of heads 

FAT format 

o = Raw 
1 = 1 1/2-byte FATs 
2 = 2-byte FATs 

For a partial MOB, FORMAT must be set to zero. 

8-19 



8.4 Disk Driver I/O Functions FlexOS System Guide 

Field 

HIDDEN 

SYSSIZE 

Table 8-6. Continued) 

Description 

Number of hidden sectors, that is, number of sequential 
physical sectors preceding a partition. HIDDEN is used 
only for partitioned disks. See the HIDDEN fields in the 
Partition Table (Figure 8-3) and BIOS Parameter Block 
(Figure 8-4). 

Size of the system area of the disk, in bytes. The system 
area is outside of the disk medium and can be formatted 
independently of, the disk medium. The system area might 
contain code to support an operating system other than 
FlexOS. 

The Disk Resource Manager calls the SELECT function to initialize the 
driver unit for subsequent READ, WRITE, FLUSH and SPECIAL calls on 
the current medium. The Disk RM calls SELECT only once until either 
the "Media Change" error is detected or the drive has been opened 
exclusively. 

SELECT is called with address of the SELECT parameter block. This 
parameter block contains the address of the Media Descriptor Block. 
The Media Descriptor Block determines the type (removable, 
permanent, and so forth) and size of the media as well as the file 
structure to be managed. It is a static structure and can be used for 
multiple units of the same driver if the MDB is identical for those 
units. 

If SELECT is called for a unit containing an unformatted disk or a disk 
whose format is not supported by the Disk RM, the driver should not 
return an error code. Instead, the driver should return a partly filled-in 
MDB. By filling in the SECTSIZE, NHEADS, and FORMAT fields of the 
SELECT parameter block, the driver allows utilities, such as COPYCPM, 
to use the SPECIAL SVCs to initiate raw I/O to non-DOS media. 

8-20 



FlexOS System Guide 8.4 Disk Driver I/O Functions 

8.4.2 FLU5H--Flush intermediate buffers to media 

Parameter: 

Return Code: 

E_SUCCESS 
E_UNITNO 
E_BADPB 
E..;.READY 
E_SEC_NOTFOUND 
E_MISADDR 
E_SEEK 
E_DKATTACH 
E_WPROT 
E_WRITEFAUL T 
E_GENERAL 

o 

o UNIT 

Address of FLUSH parameter block, 

Operation was successful 
Invalid unit number 
Bad parameter block 
Door open on a removable medium 
Sector or record not found 
Missing address mark 
Non-existent track or sector 
Attachment failed to respond 
Disk write-protected 
Write error 
Failure from undetermined source 

2 

RESERVED FLAGS 

3 

Figure 8-7. FLUSH Parameter Block 

The UNIT value indicates the driver unit number of the drive to be 
flushed. The FLAGS field is reserved for future use. 

The Disk Resource Manager calls the FLUSH function to flush any 
intermediate buffers to a medium and to make sure the driver is not in 
any intermediate state. 

The disk drivers provided with FlexOS do not use intermediate 
buffering. When the Disk RM calls FLUSH in a FlexOS disk driver, 
FLUSH returns E_SUCCESS. 

8-21 



8.4 Disk Driver I/O Functions FlexOS System Guide 

8.4.3 READ--Obtain data from disk medium 

Parameter: Address of READ parameter block 

Retu rn Code: 

emask The return code from FLAG EVENT 

The read event's completion code is returned through the FLAGSET 
function and should be one of the following: 

8-22 

E_SUCCESS Successful operation 

E_UNITNO Drive has been installed to allow partitions (see 
FLAGS field of the INSTALL SVC's parameter block in 
the FlexOS Programmer's Guide) but driver is unable 
to read partition. 

E_READY Door open on a removable medium 

E_CRC Cyclical Redundancy Check error 

E_SEEK Non-existent track or sector 

E_SEC_NOTFOUND 
Sector or record not found 

E_MISADDR Missing address mark 

E_DKATTACH Attachment fail~d to respond 

E_READFAULTWrite error 

E_GENERAL Fail·ure from undetermined source 



FlexOS System Guide 

o 

4 

8 

12 

16 

20 

o 

UNIT 

8.4 Disk Driver 1/0 Functions 

2 3 

I RESERVED f FLAGS 

SWI 

PDADDR 

BUFFER 

NRECS 

RECORD 

Figure 8-8. READ Parameter Block 

8-23 



8.4 Disk Driver I/O Functions FlexOS System Guide 

Field 

UNIT 

FLAGS 

8-24 

Table 8-7. READ Parameter Block Fields 

Description 

Driver unit number 

Bit map of flags 
-, 

Bit 0: 1 = Read through 
o = Normal read 

Read through option forces direct read from 
the medium, bypassing intermediate buffers. 
This flag is meaningless for drivers without 
intermediate buffers. 

Bit 1: = RECORD formatted as head, sector, cylinder 
o = RECORD formatted as the logical sector 

number from the beginning of the disk 
medium. 

Bit 2: 1 = Verify medium, do not read 
o = Read 

Bit 8: 1 = Write 
o = Read 

Bits 9-10: 0 = Not Applicable 
1 = FAT 
2 = DIR 
3 = Data 

Bit 11-14: Reserved 

Bit 15: 1 = User Address 
o = System Address 



FlexOS System Guide 8.4 Disk Driver liD Functions 

Table 8-7. (Continued) 

Field Description 

SWI User-supplied software interrupt to be passed as a 
parameter to the FLAG EVENT driver service function. 

PDADDR Process descriptor address of process calling READ SVC. If 
an address is specified and it is a User Address, this is the 
pdaddr you use for the MAPU driver service. This is not 
necessarily the process calling this entry point, and 
therefore not the pdaddr used in the FLAGSET function. 
The pdaddr obtained before calling FLAG EVENT is found via 
the driver header's Ready List Root (RLR) address. 

BUFFER Address of buffer to place information into. 

NRECS Number of physical sectors to READ 

RECORD First sector to READ. This field is either a logical sector 
number or a head, track,sector specification, depending on 
the value in bit 1 of the FLAGS field. A logical sector 
number is the number of physical sectors from the 
beginning of the disk medium, where Sector 0 is Track 0, 
Head 0, Sector o. 
If bit 1 of the FLAGS field is set, the RECORD parameter is 
formatted as follows: 

o 2 3 

o ~I ___ H_EA_D __ ~ __ S_E_C_T_O_R __ ~ _____ C_Y_L_IN_D_E_R ______ ~ 

8-25 



8.4 Disk Driver liD Functions FlexOS System Guide 

The Disk Resource Manager calls the READ function to obtain data 
from the disk medium. The Disk RM assumes this function is 
asynchronous. 

To work asynchronously, the READ driver function must call the 
FLAG EVENT driver service function to receive an event mask, which is 
returned to the Disk Resource Manager. Upon completion of the 
READ, FLAGSET is called by the asynchronous portion of the driver to 
return a completion code. FLAGEVENT and FLAGSET are explained in 
Section 5.1, "Flag System." 

8.4.4 WRITE--Write data to disk medium 

Parameter: Address of WRITE Parameter Block 

Return Code: 

em ask Return code from the FLAGEVENT driver service 

The write events completion code is returned through the FLAGSET 
function and should be one of the following: 

8-26 

E_SUCCESS 
E_UNITNO 
E_BADPB 
E_READY 
E_SEC_NOTFOUND 
E_MISADDR 
E_SEEK 
E_DKATTACH 
E_WPROT 
E_WRITEFAUL T 
E_GENERAL 

Successful operation 
Invalid unit number 
Bad parameter block 
Door open on a removable medium 
Sector or record not found 
Missing address mark 
Non-existent track or sector 
Attachment failed to respond 
Disk write-protected 
Write error 
Failure from undetermined source 



FlexOS'System Guide 

o 

4 

8 

12 

16 

20 

o 
UNIT 

8.4 Disk Driver liD Functions 

2 3 

I RESERVED I FLAGS 

SWI 

PDADDR 

BUFFER 

NRECS 

RECORD 

Figure 8-9. WRITE Parameter Block 

8-27 



8.4 Disk Driver 1/0 Functions FlexOS System Guide 

Field 

UNIT 

FLAGS 

8-28 

Table 8-8. WRITE Parameter Block Fields 

Description 

Driver unit number 

Bit map of flags 

Bit 0: 1 = Write through 
o = normal write 

The write through option forces a direct 
write to the actual media, bypassing any 
intermediate buffers. This flag has no 
meaning for disk drivers not using 
intermediate buffering. 

Bit 1: = RECORD is formatted as head, track, cylinder 
o = RECORD is formatted as the logical sector 

number from the beginning of the disk 
medium. 

Bit 8: 1 = Write 
o = Read 

Bits 9-10: 0 = Not Applicable 
1 = FAT 
2 = DIR 
3 = Data 

Bits 11-14: Reserved 

Bit 15: = User Address 
o = System Address 



FlexOS System Guide 8.4 Disk Driver liD Functions 

Table 8-8. (Continued) 

Field Description 

SWI User-supplied software interrupt to be passed as a 
parameter to the FLAGEVENT driver service function. 

PDADDR Process descriptor address of process initiating the WRITE 
request. If an address is specified and the address is a 
User Addr.ess, this is the pdaddr you use for the MAPU 
driver service function. This is not necessarily the process 
calling this entry point and therefore not the pdaddr used 
in the FLAGSET function. The pdaddr obtained before 
calling FLAG EVENT is found through the Ready List Root 
(RLR) address in the driver header. 

BUFFER Address of buffer to obtain data from 

NRECS Number of physical sectors to WRITE 

RECORD First sector to WRITE. This field is either a logical sector 
number or a head, sector, cylinder specification, depending 
on the value in bit 1 of the FLAGS field. A logical sector 
number is the number of physical sectors from the 
beginning of the disk medium, where sector a is track 0, 
head 0, sector O. 

If bit 1 of the FLAGS field is set, the RECORD parameter is 
formatted as follows: 

a 2 3 

o I~ __ H_E_A_D __ ~ __ S_EC_T_O_R __ ~ ______ C_Y_L_IN_D_E_R ______ ~ 

8-29 



8.4 Disk Driver 1/0 Functions FlexOS System Guide 

The Disk Resource Manager calls WRITE to place data onto the disk 
medium. WRITE is assumed to be asynchronous. 

The WRITE driver function must call the FLAG EVENT driver service to 
receive an event mask, which is returned to the Disk Resource 
Manager. Upon completion of the WRITE, the asynchronous portion of 
the driver calls the FLAGSET driver service to return a co~pletion 

code. WRITE should then call the RETURN SVC through SUPIF to clear 
the event from the system. 

8.4.5 SPECIAL Entry Point 

The Disk Resource Manager calls the SPECIAL entry point to perform 
actions that cannot be performed by other disk driver functions. 
FlexOS defines six SPECIAL disk driver functions, 0 through 3, 8, and 9. 
The Disk RM reserves functions 10-31 for future use. Functions 32-63 
are OEM-dependent and can be used for special activities particular to 
a given hardware implementation. 

8-30 



FlexOS System Guide 8.4 Disk Driver 1/0 Functions 

SPECIAL Function O--Read from System Area of disk 

Parameter: Address of SPECIAL parameter block 

Return Code: 

E_SUCCESS 
E_UNITNO 
E_READY 
E_CRC 
E_SEEK 
E_SEC_NOTFOUND 
E_MISADDR 
E_DKATTACH 
E_READFAUL T 
E_GENERAL 

o 
4 

8 

12 

16 

o 

UNIT 

Successful operation 
Invalid unit number 
Door open on a removable medium 
Cyclical Redundancy Check error 
Non-existent track or sector 
Sector or record not found 
Missing address mark 
Attachment failed to respond 
Write error 
Failure from undetermined source 

2 3 

I 0 I FLAGS 

SBADDR 

PDADDR 

BUFFER 

BUFSIZ 

Figure 8-10. SPECIAL Function 0 Parameter Block 

8-31 



8.4 Disk Driver I/O Functions FlexOS System Guide 

Table 8-9. SPECIAL Function 0 Parameter Block Fields 

Field 

UNIT 

o 
FLAGS 

SBADDR 

PDADDR 

BUFFER 

BUFSIZ 

Description 

Driver unit number 

SPECIAL function number 

Bit map of flags 

Bits 0-13: Driver-type specific 
Bit 14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

System address of special buffer for blocking/deblocking. 
The drivers shipped with FlexOS do not use 
blocking/deblocking. 

Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr you, use for 
the MAPU driver service function. This is not necessarily 
the process calling this entry point and therefore not the 
pdaddr used in the FLAGSET function. The pdaddr obtained 
before calling FLAG EVENT is found through the Ready List 
Root (RLR) address in the driver header. 

Address of buffer where data will be placed. 

Size of buffer, in bytes 

SPECIAL function 0 reads the data in the system area of the disk and 
places the data into the specified buffer. This function is performed 
synchronously and does not return until the read is complete. 

8-32 



FlexOS System Guide 8.4 Disk .Driver I/O Functions 

SPECIAL Function 1--Write to System Area of disk 

Parameter: Address of SPECIAL parameter block 

Return Code: 

E_SUCCESS 
E_UNITNO 
E_BADPB 
E_READY 
E_SEC_NOTFOUND 
E_MISADDR 
E_SEEK 
E_DKATTACH 
E_WPROT 
E_WRITEFAUL T 
E_GENERAL 

o 
4 

8 

12 

16 

o 

UNIT 

Successful operation 
Invalid unit number 
Bad parameter block 
Door open on a removable medium 
Sector or record not found 
Missing address mark 
Non-existent track or sector 
Attachment failed to respond 
Disk write-protected 
Write error 
Failure from undetermined source 

1 2 . 3 

I 1 1 FLAGS 

SBADDR 

PDADDR 

BUFFER 

BUFSIZ 

Figure 8-11. SPECIAL Function 1 Parameter Block 

8-33 



· 8.4 Disk Driver I/O Functions FlexOS System Guide 

Field 

UNIT 

41 

FLAGS 

Table 8-10. SPECIAL Function 1 Parameter Block Fields 

Description 

Driver unit number 

SPECIAL function number (in hex) 

Bit map of flags 

Bits 0-13: Driver-type specific 
Bit 14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

SBADDR System Address of special buffer for blocking/deblocking. 
The disk drivers shipped with FlexOS do not use blocking/ 
deblocking. 

PDADDR Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr you use for 
the MAPU driver service function. This is not necessarily 
the process calling this entry point and therefore not the 
pdaddr used in the FLAGSET function. The pdaddr obtained 
before calling FLAGEVENT is found through the Ready List 
Root (RLR) address in the driver header. 

BUFFER Address of buffer from which data will be written. 

BUFSIZ Size of buffer, in bytes 

SPECIAL function 1 writes the data in the specified buffer to the 
system area of the disk. This function is performed synchronously and 
does not return until the write is complete. 

8-34 



FlexOS System Guide 8.4 Disk Driver 1/0 Functions 

SPECIAL Function 2--Format System Area of disk 

Parameter: Address of SPECIAL parameter block 

Return Code: 

E_SUCCESS 
E_UNITNO 
E_BADPB 
E_READY 
E_SEC_NOTFOUND 
E_MISADDR 
E_SEEK 
E_DKATTACH 
E_WPROT 
E_WRITEFAULT 
E_GENERAL 

o 
4 

8 

o 

UNIT I 

Successful operation 
Invalid unit number 
Bad parameter block 
Door open on a removable medium 
Sector or record not found 
Missing address mark 
Non-existent track or sector 
Attachment failed to respond 
Disk write-protected 
Write error 
Failure from undetermined source 

2 3 

2 I FLAGS 

SBADDR 

PDADDR 

Figure 8-12. SPECIAL Function 2 Parameter Block 

8-35 . 



8.4 Disk Driver liD Functions FlexOS System Guide 

~ Table 8-11. SPECIAL Function 2 Parameter Block Fields 

Field 

UNIT 

2 

FLAGS 

Description 

Driver unit number 

SPECIAL function number 

Bit map of flags 

Bits 0-14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

WSBADDR System address of buffer 

PDADDR Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr you use for 
the MAPU driver service function. This is not necessarily 
the process calling this entry point and therefore not the 
pdaddr used in the FLAGSET function. The pdaddr obtained 
before calling FLAG EVENT is found through the Ready List 
Root (RLR) address in the driver header. 

SPECIAL function 2 formats the system area of the disk managed by 
the specified driver unit. Function 2 only formats the system area if it 
resides in those tracks preceding the data area of the disk. In the 
FlexOS logical disk layout, the system area is not considered part of 
the disk medium and so can be formatted independently of the disk 
medium. This function is performed synchronously and does not 
return until the function is complete. 

8-36 



FlexOS· System Guide 8.4 Disk Driver 1/0 Functions 

SPECIAL Function 3--Format track 

Parameter: 

Return Code: 

E_SUCCESS 
E_UNITNO 
E_BADPB 
E_READY 
E_SEC_NOTFOUND 
E_MISADDR 
E_SEEK 
E_DKATTACH 
E_WPROT 
E_WRITEFAUL T 
E_GENERAL 

o 
4 

8 

12 

16 

20 

24 

o 

UNIT 

Address of SPECIAL parameter block 

.Successful operation 
Invalid unit number 
Bad parameter block 
Door open on a removable medium 
Sector or record not found 
Missing address mark 
Non-existent track or sector 
Attachment failed to respond 
Disk write-protected 
Write error 
Failure from undetermined source 

1 2 3 

I 3 I FLAGS 

SBADDR 

PDADDR 

9 

0 

PARMBUF 

PRSIZE 

. Figure 8-13. SPECIAL Function 3 Parameter Block 



8.4 Disk Driver 1/0 Functions FlexOS System' Guide 

Field 

UNIT 

3 

FLAGS 

.8-38 

Table 8-12. SPECIAL Function 3 Parameter Block Fields 

Description 

Driver unit number 

SPECIAL function number (in hex) 

Bit map of flags: 

Bit 0: Reserved 

Bit 1: 0 = Track map is valid 
1 = Map bad tracks 

Bit 2: 0 = Use HEAD, SECTOR, and BYTESPERSPEC 
fields. 

= Ignore HEAD, SECTOR, and BYTESPERSEC 
fields. Instead, use a table of four-byte C
H-S-N fields as defined in the PARMBUF 
structure in Figure 8-13, below. 

Bit 3: 0 = SECTOR field is the starting sector number. 
This field is the first in variable-length list, 
whose length is the number of sectors per 
track. 

1 = HEAD is the valid head number. 

Bits 4-14: Reserved 

Bit 15: o = System Address 
1 = User Address 



FlexOS System Guide 8.4 Disk Driver I/O Functions 

Table 8-12. (Continued) 

Field Description 

SBADDR System address of special buffer for blocking/deblocking. 
The drivers shipped with FlexOS do not use 
blocking/deblocking. 

PDADDR Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr you use for 
the MAPU driver service function. This is not necessarily 
the process calling this entry point and therefore not the 
pdaddr used in the FLAGSET function. The pdaddr obtained 
before calling FLAG EVENT is found through the Ready List 
Root (RLR) address in the driver header. 

PARMBUF Address of data structure illustrated in Figure 8-13, below. 

PRSIZE 

o 

4 

8 

12 

N 

Length, in bytes, of data buffer. 

o 2 3 

HEAD 0 CYLINDER 
-

DENS FILL BYTESPERSEC 

SECPERTRACK SECTOR 

C H S I N 

C H s N 

Figure 8-14. PARMBUF Structure 

8-39 



8.4 Disk Driver I/O Functions FlexOS System Guide 

Field 

HEAD 

o 

Table 8-13. PARMBUF Structure Fields 

Description 

If FLAGS bit 1 in SPECIAL Function 3 parameter block is 
zero, HEAD is a valid starting .head number. 

One byte set to zero 

CYLINDER Cylinder number 

DENS Density, where: 

o = single density 
1 = double density 

FILL Fill character 

BYTESPERSEC 
If FLAGS bit 2 in SPECIAL Function 3 parameter block is 
zero, BYTESPERSEC is the number of bytes per sector. 

SECPERTRACK 
Number of sectors per track 

SECTOR This field's value depends on the settings for bits 2 and 3 
in the FLAGS field of the SPECIAL Function 3 parameter 
block. If bits 2 and 3 are off, SECTOR contains the starting 
sector number. Use only bytes 0 through 11 of the 
PARMBUF Structure. If bit 2 is on and bit 3 is off, ignore 
SECTOR and use list starting with byte 12 in the PARMBUF 
Structure, as shown in Figure 8-13. If bit 2 is off and bit 3 
is on, SECTOR is the first in variable-length list of sectors 
whose length is the number of sectors per track. 

C-H-S-N If FLAGS bit 2 in SPECIAL Function 3 parameter block is 
one, this is a variable-length list of four-byte fields, where 
C is cylinder, H is head, S is sector, and N is bytes per 
sector. 

8-40 



FlexOS System Guide 8.4 Disk Driver liD Functions 

SPECIAL function 3 is used to format the disk medium and to map bad 
tracks out of the data area of a disk. SPECIAL function 3 maps bad 
~racks by marking a track in the FAT Table as allocated and without an 
owner. This function does not deal with the system area of a disk. 

SPECIAL function 3 is called by the FORMAT utility. 

SPECIAL Function 8--lnitialize format 

Parameter: Address of SPECIAL parameter block 

Return Code: 

E_SUCCESS 
E_BADPB 

o 

Successful operation 
Bad MDB parameters 

1 

o 

4 

8 

UNIT I 8 I 

12 

16 

SBADDR 

PDADDR 

DATBUF 

BFSIZE 

2 

FLAGS 

3 

Figure 8-15. SPECIAL Function 8 Parameter Block 

8-41 



8.4 Disk Driver liD Functions FlexOS System Guide 

Table 8-14. SPECIAL Function 8 Parameter Block Fields 

Field Description 

UNIT Driver unit number 

8 SPECIAL function number (in hex) 

FLAGS Bits 0-15 are reserved 

SBADDR System Address of special buffer 

PDADDR Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr that must be 
used for the MAPU driver service function. This is not 
necessarily the process calling this entry point and 
therefore not the pdaddr used in the FLAGSET function. 
The pdaddr obtained before calling FLAGEVENT is found 
through the Ready List Root (RLR) address in the driver 
header. The RLR address is explained in Section 4, "Driver 
Interface." 

DATBUF Address of buffer containing Media Descriptor Block (MDB). 
The MDB is described under the SELECT function, in Figure 
8-6 and Table 8-6, above. 

BFSIZE Size, in bytes, of DATBUF 

SPECIAL function 8 resets the Media Descriptor Block in system and 
driver memory, but does not transfer the MDB information to the disk. 
This function enables a user program to begin formatting a disk by 
establishing a new set of guidelines for the disk. When formatting is 
complete, the MDB is written to the disk's system area. 

8-42 



FlexOS System Guide 8.4 Disk Driver liD Functions 

SPECIAL Function 9--Get Drive Information 

Parameter: Address of SPECIAL parameter block 

Return Code: 

E_SUCCESS 
E-UNITNO 
E_BADPB 

o 

Successful operation 
Invalid unit number 
Bad parameter block 

o UNIT 
I· 

9 I 
4 

8 

12 

16 

0 

PDADDR 

DATBUF 

BFSIZE 

2 

FLAGS 

3 

Figure 8-16. SPECIAL Function 9 Parameter Block 

8-43 



8.4 Disk Driver 1/0 Functions FlexOS System Guide 

Table 8-15. SPECIAL Function 9 Parameter Block Fields 

Field Description 

UNIT Driver unit number 

9 SPECIAL function number (in hex) 

FLAGS Bits 0-15 are reserved 

PDADDR Process descriptor address of process initiating the 
SPECIAL request. If an address is specified and the 
address is a User Address, this is the pdaddr that must be 
used for the MAPU driver service function. This is not 
necessarily the process calling this entry point and 
therefore not the pdaddr used in the FLAG SET function. 
The pdaddr obtained before calling FLAG EVENT is found 
through the Ready List Root (RLR) address in the driver 
header. The RLR address is explained in Section 4, "Driver 
Interface." 

DATBUF Address of buffer for Physical Unit Descriptor. (see Listing 
8-1). 

BFSIZE Size, in bytes, of DATBUF 

SPECIAL Function 9 requests disk-dependent information. You return 
the data in the buffer provided in the parameter block. Listing 8-1 
describes the buffer contents. 

8-44 



FlexOS System Guide 8.4 Disk Driver liD Functions 

Listing 8-1. SPECIAL Function 9 Physical Unit Descriptor 

/* PUD - Physical Unit Descriptor */ 

PUD 
{ 

UWORD 
UWORD 
UWORD 
UBYTE 
UBYTE 
UBYTE 
UBYTE 

pu_maxcy I ; 
pu precomp : 
pu-crashpad ; 
pu-nheads ; 
pu-sectors 
pu-step : 
pu=eat 

/* max cyl number for i/o */ 
/* precompensation cyl number */ 
/* landing zone cyl number */ 
/* no of heads */ 
/* no sectors/track */ 
/* step rate */ 
/*. even (unused) */ 

8.4.6 GET --Provide unit-specific information 

Parameter: Address of GET parameter block 

Return Code: 

E_SUCCESS 
E_BADPB 

Successful operation 
Bad parameter block 

o 1 2 

o 

4 

UNIT I FLAGS 

DTYPE MAXRS 

8 ADDR 

12 MAXFATRECS MAXFATSIZ 

16 MAXDIRSIZ 

Figure 8-17. GET Parameter Block 

3 

8-45 



8.4 Disk Driver I/O Functions FlexOS System Guide 

Field 

UNIT 

FLAGS 

DTYPE 

MAXRS 

ADDR 

Table 8-16. GET Parameter Block Fields 

Description 

Driver unit number 

Reserved 

Type of disk medium 

Bit 0: 1 = Removable media 
o = Permanent media 

Bit 1: 1 = Open door support 
o = No open door support 

Bit 2: Reserved 

Maximum Record Size. This is the maximum physical 
sector size of all media types supported through this disk 
driver unit. For example, if this unit supports both single
and double-density diskettes, the larger of the physical 
sector sizes should be stated here. This field determines 
the size of the buffers the Disk, Resource Manager 
maintains for the unit. 

Address of the open door byte if this is a disk drive with 
open-door-interrupt support. 

MAXFATRCS 
Maximum number of FAT records in a single FAT for all 
media types supported through this driver unit. 

MAXFATSIZE 
Maximum size of FAT, in bytes. 

MAXDIRSIZE 
Maximum number of root directory entries. 

8-46 



FlexOS System Guide 8.4 Disk Driver liD Functions 

The Disk Resource Manager calls the GET function during the 
installation of the driver unit. GET is responsible for passing 
information to the Disk Resource Manager that is unit-specific, but 
does not pass the current disk medium-specific information. 

The GET function passes the address of the GET parameter block to 
the driver unit and expects all of the fields of the parameter block 
exc~pt the UNIT and FLAGS fields to be filled in before returning. 

8.4.7 SET --Change unit-specific information 

Parameter: None 

Return Code: E-,MPLEMENT Not Implemented 

The Disk Resource Manager never calls the SET disk driver entry point. 
SET should return the "Not Implemented" error code. 

End of Section 8 

8-47 



FlexOS System Guide 

8-48 



SECTION 9 

Port Drivers 

This section describes the driver interface for interrupt-driven serial 
port drivers. All port drivers fall under the category of special drivers 

. and are managed by the Miscellaneous Resource Manager. 

Many serial interfaces generate interrupts only when a character is 
received, not when the port is ready to transmit a character. To 
account for this situation, the READ function in the sample port driver 
uses an ISR-ASR method of receiving characters, while the WRITE 
function uses the POLLEVENT driver service (see Section 5.3) to poll 
the selected port. Section 5, "Driver Services," discusses methods for 
responding to interrupts. 

9.1 Port Driver Overview 

A single port driver can control multiple units of the same type of 
port. FlexOS does not have a theoretical limit to the number of ports 
that are part of a system. 

To allow multiple processes to perform serial 110, the port driver 
should be 1/0 re-entrant at the driver and Resource Manager levels, 
and synchronized at the unit level. This means that bit 1 in the flags 
field bf the port's Driver Header should be set. See Section 4.2, 
"Driver Header," for a definition of the Driver Header. See Section 11.1 
for a discussion of how the Miscellaneous Resource Manager protects 
its drivers from user processes. 

9.2 Port Driver I/O Functions 

This section describes the port 1/0 functions accessed by the 
Miscellaneous Resource Manager through entry points in the port 
driver's Driver Header. 

9-1 



9.2 Port Driver liD Functions FlexOS System Guide 

The port driver contains the SELECT, FLUSH, READ, WRITE, GET, and 
SET functions. The SPECIAL function is not required by the port driver 
and should return E_IMPLEMENT unless you provide support for 
SPECIAL calls. 

See Section 4.4, "Driver Installation Functions," for a description of the 
INIT, SUBDRIVE, and UNINIT driver installation functions. 

9.2.1 SELECT--Enable the specified unit 

Parameter: Address of SELECT parameter block 

Return Code: 

E_SUCCESS Port is enabled 

IO_ERROR Port not enabled 

o 

UNIT I OPTION I 
SWI 

o 
4 

8 PDADDR 

2 

FLAGS 

3 

Figure 9-1. Port Driver SELECT Parameter Block 

9-2 



FlexOS System Guide 9.2 Port Driver 1/0 Functions 

Table 9-1. Port Driver SELECT Parameter Block Fields 

Field Description 

UNIT Unit number of port being enabled 

OPTION User-defined option 

FLAGS User flags field 

SWI Address of optional Software Interrupt Routine. 0 if there 
is no SWI 

PDADDR Process descriptor address of process attempting to open 
this device (via the OPEN SVC) 

The Miscellaneous RM calls SELECT to enable a specific port unit for 
1/0. SELECT clears all buffers for the selected unit, excluding the 
Interrupt Service Routine {ISR) buffer and then enables serial interrupts. 

9.2.2 FLUSH--Disable port 

Parameter: Address of FLUSH parameter block 

Return Code: 

E_SUCCESS Port is deselected 
10_ERROR Port not deselected 

o 1 2 3 

o UNIT I OPTION I FLAGS 

4 SWI 

8 PDADDR 

Figure 9-2. Port Driver FLUSH Parameter Block 

9-3 



9.2 Port Driver I/O Functions FlexOS System Guide 

Table 9-2. Port Driver in FLUSH Parameter Block Fields 

Field Description 

UNIT Unit number of port to be disabled 

OPTION User-defined option 

FLAGS User flags field 

SWI Address of optional Software Interrupt Routine. 0 if there 
is no SWI 

PDADDR Process descriptor address of process attempting to close 
this device (via the CLOSE SVC) 

The Miscellaneous Resource Manager calls FLUSH before writing to 
another unit connected to the same driver or before uninstalling the 
driver. 

I/O is not allowed past the point of invoking FLUSH witho'ut first 
calling SELECT. Because of this, FLUSH should clear any buffers not 
yet sent to the port, including the ISR buffer, before disabling serial 
interrupts. 

9.2.3 READ--Read data from port 

Parameter: 

Return Code: 

emask 

9-4 

Address of READ parameter block 

Event mask used by the calling process to wait for 
port to finish reading the character or characters 
into buffer 

Unable to re,ad from port 



FlexOS System Guide 9.2 Port Driver I/O Functions 

o 
4 

8 

12 

16 

o 2 3 

UNIT I OPTION I FLAGS 

SWI 

PDADDR 

BUFFER 

BUFSIZ 

Figure 9-3. Port Driver READ Parameter Block 

Table 9-3. Port Driver READ Parameter Block Fields 

Field Description 

UNIT Unit number of port being read 

OPTION User-defined option 

FLAGS User flags field 

SWI Address of optional Software Interrupt Routine; the value is 
o if there is no SWI 

PDADDR Process descriptor address of process attempting the read. 
This is not necessarily the process calling this entry point 
and therefore not the PDADDR used with FLAG EVENT and 
FLAGSET. Find the PDADDR of the process calling 
FLAG EVENT through the RLR field of the Driver Header. If 
an address is specified and it is a User Address~ this is the 
PDADDR you use with MAPU. 

BUFFER Pointer to user's buffer 

BUFSIZ Size of buffer indicated in BUFFER 

9-5 



9.2 Port Driver 1/0 Functions FlexOS System Guide 

The Miscellaneous RM calls READ to read characters from a selected 
port. FlexOS assumes that the serial interface produces an interrupt 
when a character arrives. For those ports not interrupt-driven, see 
Section 5.3, "Device Polling." 

READ must be able to buffer characters arriving at the port when the 
user process is not ready to read them. The READ function in 
FlexOS's sample serial driver works in the following sequence: 

1. A. character arrives at the serial port, causing an interrupt. 

2. The operating system receives the interrupt via the exception 
vector established by the SETVEC driver service in the serial 
driver's INIT code. FlexOS passes control to the driver's Interrupt 
Service Routine (ISR). 

3. The ISR reads the character from the serial port and calls the 
DOASR driver service to queue an ASR, passing DOASR the 
character as an argument. 

4. The ASR puts the character into a buffer, then exits. 

READ must transfer the characters from the ISR buffer into the user 
buffer. To do this, READ calls FLAG EVENT with the number of a clear 
flag and the address of the SWI in the READ parameter block. 
FLAG EVENT returns an event mask, which the driver saves. 

The driver then calls DOASR with the address of the READ parameter 
block and the address of an ASR that performs the actual reading from 
ISR buffer to user buffer. When the READ ASR has completed, the 
driver calls FLAGSET to note the completion of the read. 

9-6 



FlexOS System Guide 9.2 Port Driver I/O Functions 

9.2.4 WRITE--Send data to port 

Parameter: 

Return Code: 

emask 

Unsigned word (UWORD) with the unit number in 
the high order byte and the character in the low 
order word 

Event mask use by calling process to wait for port 
to be ready for more characters 

Unable to write to port 

The Miscellaneous RM calls WRITE to write the character provided to 
the specified unit. 

If a port does not generate an interrupt when it is ready to transmit a 
character, WRITE can use the POLLEVENT driver service to poll. 
Alternatively, if the amount of data to write is small and/or the serial 
baud rate is fast, the driver can keep reading the status port until it 
becomes ready. 

9-7 



9.2 Port Driver 1/0 Functions FlexOS System Guide 

9.2.5 GET --Provide unit-specific information 

Parameter: Address of GET parameter block 

Return Code: 

E_SUCCESS Write to buffer completed - no error 
E_xxx Driver-specific error code 

o 

4 

8 

12 

16 

o 

UNIT 

2 

I RESERVED I 
0 

PDADDR 

BUFFER 

BUFSIZ 

FLAGS 

3 

Figure 9-4. Port Driver GET Parameter Block 

9-8 



FlexOS System Guide 9.2 Port Driver I/O Functions 

Field 

UNIT 

FLAGS 

Table 9-4. Port Driver GET Parameter Block Fields 

Description 

Port driver unit number 

Bit map of flags 

Bits 0-7: Defined by driver 
Bits 8-14: Reserved 
Bit 15: 0 = System Address 

1 = User Address 

PDADDR Process descriptor address of the process that initiated the 
GET request. If the buffer address is a User Address, and 
the asynchronous portion of the driver is required to 
access the buffer, this parameter is used to call the, MAPU 
driver service. 

BUFFER Address of buffer in which to write information from the 
driver's GET/SET Table; see Figure 9-5 below. 

BUFSIZ Size of buffer. This field determines the amount of 
information returned from the driver's GET/SET Table. 

The Miscellaneous Resource Manager calls the GET entry point to 
place information from the port driver's GET/SET Table into a buffer 
whose address is specified as a parameter. The BUFSIZ parameter is 
passed to determine the amount of information to be obtained. If the 
buffer's size is less than the size of the table, only those fields that fit 
into the buffer are written there. 

The GET and SET routines are not expected to return an event mask. 
The calling process should not return until the operation is complete. 
If the asynchronous portion of the driver is required to initiate an I/O 

'event to obtain the information, the GET and SET routines must 
perform their own WAIT and RETURN SVCs through the Supervisor 
interface described in Section 6. ' 

9-9 



9.2 Port Driver 1/0 Functions FlexOS System Guide 

Many of the GET ISET Table values cannot be determined until they are 
placed in the table by SET. GET/SET Table values are set by one 
process for use by another. 

The port driver GET ISET Table format is shown in Figure 9-5. Table 
9-5 describes the GET/SET Table fields. 

o 1 2 3 

o TYPE STATE 

4 BAUD I MODE CONTROL I RESERVED 

Figure 9-5. Port Driver GET/SET Table 

9-10 



FlexOS System Guide 9.2 Port Driver liD Functions 

Table 9-5. Port Driver GET/SET Table Fields 

Field Description 

TYPE Type of port, where: 

STATE 

BAUD 

o = Undefined 
1 = Standard serial driver 
2 = Character I/O device 
3 = Standard parallel driver 

Bit map of port's state including error conditions. A bit set 
to 1 indicates the following conditions: 

Bit Condition 

o Ready to send a character (RTS) 
1 Character has been received 
2 Change in DSR or CD 
3 Parity error 
4 Overrun error 
5 Framing error 
6 Carrier present (CD) 
7 DSR 

Baud rate, as indicated by the following values: 

Value Rate Value Rate 

0 50 8 1800 
1 75 9 2000 
2 110 10 2400 
3 134.5 11 3600 
4 150 12 4800 
5 300 13 7200 
6 600 14 9600 
7 1200 15 19200 

9-11 



9.2 Port Driver I/O Functions FlexOS System Guide 

Field 

MODE 

Table 9-5. (Continued) 

Description 

Bit map indicating word length, parity, and stop bits as 
follows: 

yalue Mode 

0-1 0 5 bits/word 
1 6 bits/word 
2 7 bits/word 
3 8 bits/word 

2-3 0 o stop bits 
1 1 stop bit 
2 1.5 stop bits 
3 2 stop bits 

4-5 0 no parity 
1 odd parity 
3 even parity 

CONTROL Bit map describing serial port control parameters. This field 
is intended for the use of the driver's SET function. A bit 
set to 1 indicates the following conditions: 

Bit Condition 

o Enable character transmission 
1 Force DTR low 
2 Enable character reception 
3 Force break signal 
4 Reset error 
5 Force RTS low 

9-12 



FlexOS System Guide 9.2 Port Driver liD Functions 

9.2.6 SET --Change unit-specific information 

Parameter: Address of SET parameter block. 

Return Code: 

E_SUCCESS Write completed - no error 
E_xxx Driver specific er~or code 

o 

4 

8 

12 

16 

o 

UNIT 

2 

I RESERVED I 
0 

PDADDR 

BUFFER 

BUFSIZ 

FLAGS 

3 

Figure 9-6. Port Driver SET Parameter Block 

9-13 



9.2 Port Driver liD Functions FlexOS System Guide 

Table 9-6. Port Driver SET Parameter Block Fields 

Field Description 

UNIT 

FLAGS 

Port driver unit number 

Bit map of flags: 

Bits 0-14: Reserved 
Bit 15: 0 = System Address 

1 = User Address 

PDADDR Process descriptor address of the process that initiated the 
SET call. This parameter is used to call the MAPU driver 
service if the buffer address is a User Address and the 
asynchronous portion of the driver is required to access 
the buffer. 

BUFFER 

BUFSIZ 

Address of buffer containing information to be written to 
the driver's GET ISET Table. See Figure 9-5. 

Size of buffer. This field determines the amount of 
information returned from the driver's GET ISET Table. 

The Miscellaneous Resource Manager calls the SET entry point to set 
or mosfify unit-specific information in the port driver's GET ISET Table. 
The buffer indicated in the SET parameter block contains the 
information to be set. A buffer size parameter is passed by the calling 
process to determine the amount of information to be written to the 
driver's GET ISET Table. 

See the explanation of the port driver's GET function for ~the 
description of the GET ISET Table. 

End of Section 9 

9-14 



SECTION 10 

Printer Drivers 

This section describes the driver interface for printer drivers. Printer 
drivers fall under the category of special drivers and are managed by 
the Miscellaneous Resource Manager. 

10.1 Support for Printers 

FlexOS supports multiple parallel and serial printers. Printers can be 
interrupt-driven or polled. The printer driver shipped with FlexOS is 
for a non-interrupt-driven parallel printer. You can implement a serial 
printer driver by installing a new unit to a serial driver or defining a 
new name (such as PRN: or LST:) for an existing serial unit. 

A single printer driver can control multiple units of the same type of 
printer. The example driver supports up to four printers. FlexOS does 
not have a theoretical limit to the number of printing devices 
connected to a system. 

The example printer driver uses the POLLEVENT driver service to 
emulate interrupts and maximize operating speed in a multitasking 
environment. POLLEVENT is described in Section 5.3, "Device Polling." 

To allow multiple print jobs, the printer driver should be I/O reentrant 
at the driver and Resource Manager levels, 'and synchronized at the 
unit level. This means that bit 1 in the flags field of the printer's 
Driver Header should be set. See Section 4.2, "Driver Header" for a 
definition of the Driver Header. See Section 11.1 for a discussion of 
how the Miscellaneous Resource Manager protects drivers from user 
processes. 

10-1 



10.2 Printer Driver I/O Functions FlexOS System Guide 

10.2 Printer Driver 1/0 Functions 

This section describes the printer liD functions accessed by the 
Miscellaneous Resource Manager through entry points in the printer 
driver's Driver Header. 

The printer driver contains the SELECT, FLUSH, WRITE, GET, and SET 
functions. "T:he READ function is meaningless for printers; it should 
return EJMPLEMENT. The SPECIAL function is also not required by the 
printer driver and should return EJMPLEMENT unless you support this 
SPECIAL functions in your driver. 

See Section 4.4 for a description of the INIT, SUBDRIVE, and UNINIT 
driver installation functions. 

10.2.1 SELECT --Enable the specified unit 

Parameter: Address of SELECT parameter block 

Return Code: 

E_SUCCESS Printer is enabled 
10_ERROR Printer not enabled 

o 
4 

8 

o 
UNIT I OPTION I 

SWI 

PDADDR 

2 

FLAGS 

3 

Figure 10-1. Printer Driver SELECT Parameter Block 

10-2 



FlexOS System Guide 10.2 Printer Driver 1/0 Functions 

Table 10-1. Printer Driver SELECT Parameter Block Fields 

Field Description 

UNIT Unit number of printer being enabled 

OPTION User-defined option 

FLAGS User flags field 

SWI Address of optional Software Interrupt Routine; this value 
is 0 if there is no SWI. 

PDADDR Process descriptor address of process attempting to open 
this device. This is not necessarily the process calling this 
entry point and therefore not the PDADDR used with the 
FLAG EVENT and FLAGSET driver services. Find the PDADDR 
of the process calling FLAG EVENT in the RLR field of the 
Driver Header. If an address is specified and it is a User 
Address, this is the PDADDR that must be used with the 
MAPU driver service. 

The Miscellaneous RM calls SELECT to enable a specific printer unit for 
printing. A printer is selected before writing to it (if not previously 
selected), or if another unit was selected since last writing to this 
printer. 

10.2.2 FLUSH--Disable Printer 

Parameter: Address of FLUSH parameter block 

Return Code: 

E_SUCCESS Printer is deselected 
10_ERROR Printer not deselected 

10-3 



10.2 Printer Driver I/O Functions 

o 

4 

8 

o 

UNIT I 
1 

OPTION I 
SWI 

PDADDR 

FlexOS System Guide 

2 3 

FLAGS 

Figure 10-2. Printer Driver FLUSH Parameter Block 

Table 10-2. Printer Driver in FLUSH Parameter Block Fields 

Field Description 

UNIT Unit number of printer to be disabled 

OPTION User-defined option 

FLAGS User flags field 

SWI Address of optional Software Interrupt Routine; this value 
is 0 if there is no SWI. 

PDADDR Process descriptor address of process attempting to write 
to this device. This is not necessarily the process calling 
this entry point and therefore not the PDADDR used with 
the FLAG EVENT and FLAGSET driver services. Find the 
PDADDR of the process calling FLAG EVENT in the RLR field 
of the Driver Header. If a User Address is specified, this is 
the PDADDR that must be used with the MAPU driver 
service. 

The Miscellaneous Resource Manager calls FLUSH before writing to 
another unit connected to the same driver or before uninstalling the 
driver. If you are using a port driver to perform the actual printer 1/0, 
the printer driver must call the FLUSH function in the sub-driver (port 
driver) to place it in a quiescent state. 

10-4 



FlexOS System Guide 10.2 Printer Driver liD Functions 

Because writes are not allowed past the point of invoking FLUSH 
without first calling SELECT, any buffers not yet sent to the printer 
should be sent before FLUSH actually disables the unit. 

10.2.3 WRITE--Write data to printer 

Parameter: 

Return Code: 

emask 

o 
4 

8 

12 

16 

o 

Address of WRITE parameter block 

Event mask for calling process to wait for printer to 
be ready for more characters 

Unable to write to printer 

1 2 3 

UNIT I OPTION I FLAGS 

SWI 

PDADDR 

PBUF 

BUFSIZE 

Figure 10-3. Printer Driver WRITE Parameter Block 

10-5 



10.2 Printer Driver 1/0 Functions FlexOS System Guide 

Table 10-3. Printer Driver WRITE Parameter Block Fields 

Field 

UNIT 

OPTION 

FLAGS 

SWI 

PDADDR 

PBUF 

BUFSIZE 

Description 

Unit number of printer being written to 

User-defined option 

User flags field 

Address of optional Software Interrupt Routine; this value 
is 0 if there is no SWI. 

Process descriptor address of process attempting to write 
to this device. This is not necessarily the process calling 
this entry point and therefore not the PDADDR used with 
the FLAG EVENT and FLAGSET driver services. Find the 
PDADDR of the process calling FLAG EVENT in the RLR field 
of the Driver Header. If an address is specified and it is a 
User Address, this is the PDADDR that must be used with 
the MAPU driver service. 

Pointer to buffer that holds characters to be written 

Size of buffer indicated in PBUF 

The Miscellaneous RM calls WRITE to output characters to a selected 
printer. As implemented in the FlexOS example driver, WRITE uses the 
POLLEVENT driver service to wait until the printer is ready, then 
outputs the character. The printer driver checks the status of the 
selected unit before calling POLLEVENT. 

WRITE should first call FLAGCLR to make certain that the flag the 
driver obtained during its initialization is clear. It should pass the flag 
and the address of any SWls to the FLAG EVENT driver service. 
FLAGEVENT returns an event mask that WRITE eventually passes back 
to the calling process on completion of the event. 

10-6 



FlexOS System Guide 10.2 Printer Driver I/O Functions 

WRITE latches a character to the output port for transmission to the 
printer. WRITE then calls POLLEVENT for an event mask with which to 
WAIT for the printer to become ready. POLLEVENT requires the 
address of status routine as a parameter. The status routine should 
return a non-zero WORD value if the unit is ready to receive a 
character; zero indicates that the unit is not ready. Your status 
routine should contain any delays required for carriage returns, form 
feeds, and any other device-related operations. 

After all the characters have been written, WRITE must call FLAGSET 
and then return to the calling process the event mask obtained from 
FLAGVENT. Even though the event has already been completed (as 
signaled by FLAGSET), the call cannot be synchronous because 
POLLEVENT permits other tasks to run while the printer is busy. 

See Section 5.1 for a description of the FlexOS flag system driver 
services. POLLEVENT is described in Section 5.3. 

For an interrupt-driven printer, use the SETVEC driver service to 
establish an Interrupt Service Routine (ISR). Guidelines for using ISRs 
are presented in Section 5.7. 

10-7 



10.2 Printer Driver I/O Functions FlexOS System Guide 

10.2.4 GET --Provide unit-specific information 

Parameter: Address of GET parameter block 

Return Code: 

E_SUCCESS Write to buffer completed - no error 
E_xxx Driver specific ~rror code 

o 

4 

8 

12 

16 

o 

UNIT 

1 

I RESERVED I 
0 

PDADDR 

BUFFER 

BUFSIZE 

2 

FLAGS 

3 

Figure 10-4. Printer Driver GET Parameter Block 

10-8 



FlexOS System Guide 10.2 Printer Driver liD Functions 

Field 

UNIT 

FLAGS 

Table 10-4. Printer Driver GET Parameter Block Fields 

Description 

Printer driver unit number 

Bit map of flags: 

Bits 0-7: Can be defined by driver 
Bits 8-14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

PDADDR Process descriptor address of the process that initiated the 
GET request. If the buffer address is a User Address and 
the asynchronous portion of the driver is required to 
access the buffer, this parameter is used to call the MAPU 
driver service. 

BUFFER Address of buffer in which to write information from the 
driver's GET ISET Table. See Figure 10-5, below. 

BUFSIZ Size of buffer. This field determines the amount of 
information returned from the driver's GET ISET Table. 

The Miscellaneous Resource Manager calls the GET entry point to 
place information from the printer driver's GET ISET Table into the 
buffer at the address specified. The BUFSIZ parameter is passed to 
limit the amount of information to be obtained. If the buffer's size is 
less than the size of the table, only those fields that fit into the buffer 
are written there. 

The GET and SET routines are not expected to return an event mask. 
The calling process should not return until the operation is complete. 
If the asynchronous portion of the driver is required to fulfill an liD 
event in order to obtain the information, the GET and SET routines 
must perform their own WAIT and RETURN SVCs through the 
Supervisor interface described in Section 6. 

10-9 



10.2 Printer Driver I/O Functions FlexOS System Guide 

Many of the GET/SET Table values cannot be determined until they are 
placed in the table by SET. GET/SET Table values are set by one 
process for use by another. For example, a parent process can 
configure a unit to print labels and then pass information about the 
width and length of the labels to its subprocesses through the 
appropriate table entries. The GET and SET SVCs can only be called if 
the printer qriver unit is OPEN. 

The format of the printer driver GET/SET Table is shown in Figure 
10-5. 

10-10 

o 
4 

8 

12 

16 

20 

24 

o 2 3 

STATUS 

MODE PAPERTYP WIDTH 

LEG.MODE SING.PAG LPI I LENGTH 

PRINTER NAME (0-3) 

PRINTER NAME (4-7) 

PRINTER NAME (8-11) 

PRINTER NAME (12-15) 

Figure 10-5. Printer Driver GET/SET Table 



FlexOS System Guide 10.2 Printer Driver liD Functions 

Field 

STATUS 

MODE 

Table 10-5. Printer Driver GET ISET Table Fields 

Description 

Bit map of printer error codes--see Table 10-6 

Current printer mode. This field specifies the printer 
typeface. This code may be replaced for other. printer 
types, indicating the wheel-type on letter-quality printers, 
for example. The bit map for this field is the same for the 
LEG.MODE field (least significant bit is right-most): 

o boldface 
1 graphics 
2 italic 
3 subscript 
4 superscript 
5 condensed 
6 elongated 
7 letter quality 

PAPERTYP This field indicates the type of paper currenly in use on the 
printer: 

o wide paper 
1 letterhead 
2 labels 

WIDTH Paper width, in columns, or dots if in graphics mode 

LENGTH Paper length, in lines 

LEG.MODE Printing modes supported by this printer (see MODE) 

SING.PAGE Set to non-zero if using a single-page-feed mechanism 

LPI Number of lines-per-inch 

PRINTER NAME 
This J 6-bit field contains the printer's bra nd and model in 
ASCII." 

10-11 



10.2 Printer Driver 1/0 Functions FlexOS System Guide 

Table 10-6 lists the Printer Status flag bits (least significant bit right
most) and their meanings when set. 

Table 10-6. Printer Status Bit Map 

Flag Bit Meaning 

o Printer unit off line 
1 Out of paper 
2 Select error 
3 Initialization error 
4 Illegal mode requested 
5 Framing error 
6 Internal buffer full 
7 Waiting for XON 

10-12 



FlexOS System Guide 10.2 Printer Driver liD Functions 

10.2.5 SET--Change unit-specific information 

Parameter: Address of SET parameter block 

Return Code: 

E_SUCCESS Write completed - no error 
E_xxx Oriver specific error code 

o 

4 

8 

12 

16 

o 

UNIT 1 RESERVED 1 
0 

PDADDR 

BUFFER 

BUFSIZE 

2 

FLAGS 

3 

Figure 10-6. Printer Driver SET Parameter Block 

10-13 



10.2 Printer Driver I/O Functions FlexOS System Guide 

Field 

UNIT 

FLAGS 

Table 10-7. Printer Driver SET Parameter Block Fields 

Description 

Printer driver unit number 

Bit map of flags 

Bits 0-14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

PDADDR Process des,criptor address of the process that initiated the 
SET call. This param-eter is used to call the MAPU driver 
service if the buffer address is a User Address and the 
asynchronous portion of the driver is required to access 
the buffer. 

BUFFER Address of buffer containing information to be written to 
the driver's GET/SET Table. See Figure 10-5 above. 

BUFSIZ Size of buffer. This field determines the amount of 
information returned from the driver's GET/SET Table. 

The Miscellaneous Resource Manager calls the SET entry point to set 
or modify unit-specific information in the printer driver's GET/SET 
Table. The buffer indicated in the SET parameter block contains the 
information to be set. A buffer size parameter is passed by the calling 
process to limit the amount of information to be written to the driver's 
GET/SET Table. 

See the explanation of the printer driver's GET function for the 
description of the GET/SET Table. 

End of Section 10 

10-14 



SECTION 11 

Special Drivers 

This section describes the interface to special drivers. Special drivers 
interface to printers, plotters, ports and other devices not defined by 
FlexOS. Special drivers are managed by the Miscellaneous Resource 
Manager. 

Special driver functions are available to application programs through 
standard Supervisor calls. The OPEN and CLOSE SVCs are mapped 
directly to the special driver's SELECT and FLUSH 1/0 functions. The 
READ, WRITE, GET, SET, and SPECIAL SVCs map directly to the 
corresponding entry points in the special driver's Driver Header. 

In most cases, the Supervisor copies the user's parameter block into 
the System Area. The Supervisor and Miscellaneous Resource 
Manager then modify this copy of the user's parameter block before 
the special driver units are called with the address of the parameter 
block. 

11.1 Special Driver Access 

The Miscellaneous Resource Manager protects special drivers from 
user processes according to the level of access specified in the 
access flags parameter of the INSTALL SVC. INSTALL is described in 
the FlexOS Programmer's Guide. INSTALL's access flags are defined in 
the following table: 

11-1 



11.1 Special Driver Access FlexOS System Guide 

Table 11-1. Driver Access Flags 

Flag Description 

Bit 0: 1 = SET allowed 
o = SET not allowed 

If flag bit 0 is 1, users can get the SET privilege to modify 
the driver's GET/SET table. If this bit is 0, the resource 
manager returns an error to users requesting the SET 
privilege at OPEN (the driver's SELECT function is not 
called). 

Bit 1: Reserved (must be set to 0) 

Bit 2: 1 = WRITE allowed 
o = WRITE not allowed 

If flag bit 2 is 1, users can get the WRITE privilege to the 
device. If bit 2 is 0, the resource manager returns an error 
to users requesting the WRITE privilege at OPEN (the 
driver's SELECT function is not called). 

Bit 3: 1 = READ allowed 

11-2 

o = READ not allowed 

If flag bit 3 is 1, user can get the READ privilege to the 
device. If bit 3 is 0, the resource manager returns an error 
to users requesting the READ privilege at OPEN (the 
driver's SELECT function is not called). 



FlexOS System Guide 11.1 Special Driver Access 

Table 11-1. (Continued) 

Flag Description 

Bit 4: 1 = Shared access allowed 
o = Exclusive access only 

If flag bit 4 is 1, multiple processes may have the same 
unit of the special driver OPEN at the same time. If bit 4 is 
0, only one process may have the unit OPEN at any 
particular time. To enforce exclusive access, and indicate 
that the driver is synchronized at the unit level, you should 
set the Unit Level Interface Flag in the Driver Header (Bit 1) 
to 1. See Section 4.2, "Driver Header." 

Bit 5: 1 = Removable driver 
o = Permanent driver 

If flag bit 5 is 1, the INSTALL SVC is allowed to remove the 
driver unit. The Miscellaneous Resource Manager does not 
allow the unit to be removed if it is currently OPEN or if 
another driver is using the unit as a sub-driver. 

Bit 6: 1 = DEVLOCKs allowed 
o = DEVLOCKs not allowed 

The DEVLOCK SVC allows a process to temporarily restrict 
access to a driver it has opened. The process can restrict 
access to itself or processes within the same process 
family. DEVLOCK also allows the process to prevent the 
driver from being locked by other processes. This option 
is effective only if flag bit 4 is 1 (shared access allowed). 

11-3 



11.1 Special Driver Access FlexOS System Guide 

Table 11-1. (Continued) 

Flag Description 

Bit 7: 1 = Shared access only 
o = Exclusive access allowed 

If flag bit 7 is 1, the Miscellaneous Resource Manager does 
not allow an exclusive OPEN of this device. 

Bits 8-12: Reserved 

Bit 13: 1 = Force case to media default 
o = Do not force case to media default 

Bit 14: Used in interpreting the driver load file name given in the 
INSTALL SVC. 

Bit 15: Reserved 

The Miscellaneous Resource Manager also restricts special driver 
access according to the OPEN SVC flags specified by the current 
process. For example, if a process opens the driver for exclusive 
access (OPEN flag bit 4 = 0), the Miscellaneous Resource Manager 
does not allow any other process to open the driver unless the driver 
has been INSTALLed for shared access (INSTALL flag bit 7 set to 1). 

When a unit of a special driver is installed as a sub-driver, its higher
level driver can access any of its entry points. The higher-level driver 
must assume the responsiblities of controlling access to the special 
driver unit, acting, in effect, as the sub-driver's Resource Manager. 

A controlling driver has the option of accepting or not accepting a 
special sub-driver's.INSTALL options. The special driver unit attached 
as a sub-driver responds at its discretion to calls from the controlling 
driver. 

11-4 



FlexOS System Guide 11.2 Special Driver I/O Functions 

11.2 Special Driver I/O Functions 

This section describes the special driver liD functions available to the 
Miscellaneous Resource Manager through entry points in the special 
driver's Driver Header. See 4.4 for a description of the INIT, SUBDRIVE, 
and UNINIT driver installation functions. 

The READ and WRITE entry points are responsible for initiating the 
appropriate liD request and calling the FLAGEVENT driver service to 
return an event mask (emask) to the calling process. ~he 

asynchronous portion of the special driver must complete the request 
by moving the appropriate data to or from the specified buffer. The 
asynchronous portion of the driver must then call the FLAGSET driver 
service to satisfy the outstanding request and return a completion 
code. See Section 5.1, "Flag System." 

Each special driver is responsible for a single, well-defined table of 
information, the GET/SET Table. The GET and SET entry points read 
and write information in the table. The format of the GET/SET Table is 
dependent upon the special driver type. Any process can call a 
special driver's GET function at any time (through the LOOKUP SVC) 
without opening the driver. A user process can only call a special 
driver's SET function when the driver unit is open. 

11-5 



11.2 Special Driver I/O Functions FlexOS System Guide 

11.2.1 SELECT --Open a special driver unit for I/O 

Parameter: Address of SELECT Parameter Block 

Return Code: 

E_SUCCESS Successful operation 

E_xxxxxxx Special driver-specific error code. The OPEN is 
denied and this error code is returned to the user. 

11-6 

a 
4 

8 

12 

a 2 3 

UNIT I INFO I FLAGS 

a 

PDADDR 

OPTION 

Figure 11-1. SELECT Parameter Block 



FlexOS System Guide 11.2 Special Driver 1/0 Functions 

Table 11-2. SELECT Parameter Block Fields 

Field Description 

UNIT Driver unit number 

INFO Unit information provided to the special driver by the 
Miscellaneous RM. 

o - This is the first OPEN 
1 - This is a subsequent OPEN 

The Miscellaneous Resource Manager indicates if another 
process has the driver unit open (1) or if this is the first 
open (0) since either INSTALL or CLOSE (FLUSH). 

FLAGS OPEN call's flag field contents 

PDADDR Process descriptor address of process making OPEN call 

OPTION Contains the OPEN call's option field value in low 8 bits. 

The SELECT function is called by the Miscellaneous RM to open the 
specified· unit. The name field in the OPEN parameter block is 
translated by the Supervisor to identify which driver unit to open. The 
information passed to your SELECT function is the OPEN call's flags 
and option fields. These fields are passed unmodified. The flag's field 
options are listed in Table 11-3. 

11-7 



11.2 Special Driver I/O Functions FlexOS System Guide 

Flag 

Bit 0: 

Bit 1: 

Bit 2: 

Bit 3: 

Bit 4: 

Bit 5: 

Bit 6: 

Bit 7: 

Table 11-3. SELECT Flags 

Description 

1 = Delete file/set attributes 
o = No delete/set 

1 = Execute access 
o = No execute access 

1 = Write access 
o = No write access 

1 = Read access 
o .= No read access 

1 = Shared access 
o = Exclusive access 

1 = Allow shared reads if shared 
o = Allow shared RIW if shared 

1 = Shared file pointer 
o = Unique file pointer 

1 = Reduced access accepted 
o = Return error on reduced access 

Bits 8-12: Reserved, must be 0 

Bit 13: 

Bit 14: 

Bit 15: 

11-8 

1 = Force case to media default 
o = Do not affect name case 

1 = Literal name 
o = Prefix substitution allowed 

Reserved, must be 0 



FlexOS System Guide 11.2 Special Driver liD Functions 

11.2.2 FLUSH--Close the specified special driver unit 

Parameter: Address of FLUSH parameter block 

Return Code: 

E_SUCCESS No hardware errors 
E_xxxxxxx Special driver specific error code 

o 

4 

8 

12 

o 2 

UNIT I INFO I FLAGS 

0 

PDADDR 

OPTION 

Figure 11-2. FLUSH Parameter Block 

3 

11-9 



11.2 Special Driver I/O Functions FlexOS System Guide 

Table 11-4. FLUSH Parameter Block Fields 

Field Description 

UNIT Driver unit number 

INFO Close information provided by the Miscellaneous RM: 

FLAGS 

PDADDR 

OPTION 

o - This is the last CLOSE 
1 - This is not the last CLOSE 

The Miscellaneous RM indicates if another process has the 
driver unit open (1) or if this is the last CLOSE. When last 
CLOSE is indica~ed, the driver unit is required to make 
itself quiescent. 

Contents of CLOSE call's flag field: 

Bit 0: 1 = Partial close (flush only) 
o = Full close 

Bit 1: 1 = Do not close on error 
o = Close on error 

Bits 2-15 can be user parameters to the special driver's 
FLUSH function. 

Process descriptor address of process making CLOSE call 

Contents of option field in the CLOSE parameter block 

The Miscellaneous Resource Manager calls the FLUSH entry point when 
a process attempts to CLOSE a special driver unit it had previously 
opened. When the last CLOSE is indicated, the FLUSH routine must 
make the device quiescent. If your driver called has a sub-driver, you 
must call the sub-driver's FLUSH function. 

The Miscellaneous Resource Manager passes the flags and option 
fields to FLUSH unmodified from the CLOSE SVC parameter block. 
When the partial close option is specified, the FLUSH' function should 
only flush any buffers, but not actually close, the unit. 

11-10 



FlexOS System Guide 11.2 Special Driver liD Functions 

11.2.3 READ--Initiate request for data 

Parameter: 

Return Code: 

emask 

o 

4 

8 

12 

16 

20 

o 

UNIT 

Address of READ Parameter Block 

Event mask as returned by FLAG EVENT. If an error 
occurs before the READ function can call 
FLAGEVENT to return the event mask, READ must 
call FLAGEVENT and then FLAGSET to return the 
error code. The error code must be returned to the 
calling process before READ returns to the 
Miscellaneous Resource Manager with an event 
mask. 

2 3 

I OPTION I FLAGS 

SWI 

PDADDR 

BUFFER 

BUFSIZE 

OFFSET 

Figure 11-3. READ Parameter Block 

11-11 



11.2 Special Driver 1/0 Functions FlexOS System Guide 

Table 11-5. READ Parameter Block Fields 

Field Description 

UNIT Driver unit number 

OPTION Option field from the READ SVC 

FLAGS Flags field from the READ SVC. Bit 15 is turned on by the 
Miscellaneous Resource Manager if the buffer field is a 
User Address. All other flag bits are passed unchanged. 

Bit 15: 1 = Buffer is User Address 
o = Buffer is System Address 

SWI User-supplied software interrupt. The SWI is passed as a 
parameter to the FLAGEVENT driver service. 

PDADDR Process descriptor address of process that initiated the 
READ request. If the specified address is a User Address, 
this is the PDADDR that must be used for the MAPU 
function. 

BUFFER 

BUFSIZE 

OFFSET 

Data buffer address specified in READ call; the Supervisor 
checks the range before calling the READ function. 

Size of buffer passed from READ SVC 

Position in file relative to point indicated by value of bits 8 
and 9 in READ SVC's flags field 

The Miscellaneous Resource Manager calls the READ entry point when 
a process performs the READ SVC on a SELECTed special driver unit. 
The resource manager converts the READ SVC's file number into the 
READ parameter block's UNIT and PDADDR values. Most of the 
remaining parameter block contents are direct copies from the READ 
call's entries. The exception is flag bit 15, which the Miscellaneous RM 
sets to indicate whether the buffer provided is in User (1) or System 
(O) space. The buffer can be fn System space when another driver calls 
the special driver unit with local buffers. 

11-12 



FlexOS System Guide 11.2 Special Driver I/O Functions 

The offset field is used at the discretion of the special driver. 

READ must initiate an I/O request, call the FLAG EVENT driver service, 
and return with an event mask. The special driver's asynchronous 
portion must complete the request by placing the appropriate data into 
the specified buffer. The driver then calls FLAGSET to clear the event 
from the system and return a completion code. \ 

If an error occurs before READ can call FLAGEVENT, READ must call 
FLAGEVENT and then call the FLAGSET driver service to return the 
error code to the original calling process before returning to the· 
Miscellaneous Resource Manager with the event mask. FLAGSET can 
be called from the synchronous portion of the driver's code. 

11-13 



11.2 Special Driver I/O Functions FlexOS System Guide 

11.2.4 WRITE--Initiate output of data 

Parameter: 

Return Code: 

emask 

11-14 

o 
4 

8 

12 

16 

20 

o 

UNIT 

Address of WRITE parameter block 

Event mask returned by the FLAGEVENT driver 
service. If an error occurs before FLAG EVENT is 
called, WRITE must first call FLAGEVENT and then 
call the FLAGSET driver service to return the error 
code before returning to the Miscellaneous 
Resource Manager with the event mask. 

2 3 

I OPTION I FLAGS 

SWI 

PDADDR 

BUFFER 

. BUFSIZE 

OFFSET 

Figure 11-4. WRITE Parameter Block 



FlexOS System Guide 11.2 Special Driver liD Functions 

Field 

UNIT 

OPTION 

FLAGS 

Table 11-6. WRITE Parameter Block Fields 

Description 

Driver unit number 

User option field 

Flags field as passed from WRITE SVC. The Miscellaneous 
Resource Manager turns on bit 15 if the buffer field is a 
User Address. 

Bit 15: 1 = Buffer is User Address 
o = Buffer is System Address 

SWI User-supplied software interrupt to be passed as a 
parameter to the FLAG EVENT driver service 

PDADDR Process descriptor address of process that initiated the 
WRITE request. If the specified address is a User Address, 
this is the PDADDR that must be used for the MAPU driver 
service. 

BUFFER 

BUFSIZE 

OFFSET 

Data buffer address specified in WRITE call; the Supervisor 
checks the range before calling the WRITE function. 

Bufsiz field as passed from WRITE call; indicates number of 
bytes to write. 

Position in file relative to point indicated by value of bits 8 
and 9 in the flags field 

The Miscellaneous Resource Manager calls the WRITE entry point when 
a process performs the WRITE SVC on a SELECTed special driver unit. 
The resource manager converts the WRITE SVC's file number into the 
WRITE parameter block's UNIT and PDADDR values. Most of the 
remaining parameter block contents are direct copies from the WRITE 
call's entries. The exception is flag bit 15, which the Miscellaneous RM 
sets to indicate whether the buffer· provided is in User (1) or System 
(O) space. The buffer can be in System space when another driver calls 
the special driver unit with local buffers. 

11-15 



11.2 Special Driver 1/0 Functions FlexOS System Guide 

The offset field is used at the discretion of the special driver. WRITE 
must call the FLAGSET driver service upon completion to satisfy the 
outstanding event and return a completion code. 

11.2.5 SPECIAL Entry Point 

Parameter: 

Return Code: 

emask 

11-16 

o 

4 

8 

12 

16 

20 

24 

Address of SPECIAL Parameter Block 

Event mask returned by the FLAG EVENT driver service 

o 2 3 

UNIT I OPTION I FLAGS 

SWI 

PDADDR 

DATABUF 

DBUFSIZ 

PARMBUF 

PBUFSIZ 

Figure 11-5. SPECIAL Parameter Block 



FlexOS System Guide 11.2 Special Driver liD Functions 

Field 

UNIT 

OPTION 

Table 11-7. SPECIAL Parameter Block Fields 

Description 

Driver unit number 

Contents of the SPECIAL SVC's func field. The value of bits 
7 and 6 indicate the data flow direction of the data and 
parameter buffers as follows: 

bit 7--parmbuf 
1 = write buffer 
o = read buffer 

bit 6--databuf 
1 = write buffer 
o = read buffer 

If no data or parameters are being provided, the 
corresponding bit is set to O. The remainder of the bits 
indicate the SPECIAL function number. 

FLAGS Flags field as passed from the SPECIAL SVC. The 
Miscellaneous Resource Manager sets bit 15 if parameters 
came directly from User Memory. 

Bits 0-14: special driver-type specific 
Bit 15: 1 = User Address 

o = System Address 

SWI User-supplied software interrupt, passed as a parameter to 
the FLAGEVENT driver service. 

PDADDR Process descriptor address of process that initiated the 
SPECIAL request. If the" specified address is a User 
Address, this is the PDADDR that must be used for the 
MAPU driver service. 

11-17 



11.2 Special Driver'I/O Functions FlexOS System Guide 

Table 11-7. (Continued) 

Field Description 

DATABUF Value from SPECIAL call's databuf parameter. If DBUFSIZ is 
zero, this value is data; if DBUFSIZ is non-zero, this value 
is an address of a data buffer. The FlexOS Programmer's 
GulPe instructs the programmer never to put an address in 
the data buffer. 

DBUFSIZ Size in bytes of data buffer; if zero, the DATABUF value is 
data rather than an address. 

PARMBUF Value from SPECIAL call's parmbuf parameter. If PBUFSIZ is 
zero, this value is data; if PBUFSIZ is non-zero, this value is 
an address of a data buffer. The FlexOS Programmer's 
Guide instructs the programmer never to put an address in 
the parameter buffer. 

PBUFSIZ Size in bytes of parameter buffer; if zero, the PARMBUF is 
data rather than an address. 

The Miscellaneous Resource Manager calls the SPECIAL entry point 
when a user process calls the SPECIAL SVC on a previously SELECTed 
special driver unit. 

If an error occurs before FLAGEVENT is called, the SPECIAL· function 
must call FLAG EVENT and then call FLAGSET to return the error code 
to the original calling process before returning to the Miscellaneous 
Resource Manager with the event mask. FLAGSET can be called from 
the synchronous portion of the special driver. 

11-18 



FlexOS System Guide 11.2 Special Driver liD Functions 

See the description of the SPECIAL SVC in the FlexOS Programmer's 
Guide for rules on defining the SPECIAL driver function parameter 
block. 

11.2.6 GET --Provide unit-specific information 

Parameter: Address of GET parameter block 

Return Code: 

E_SUCCESS Operation completed - no error 
E_xxxxxxx Driver type-specific error code 

o 

4 

8 

12 

16 

o 2 

UNIT I RESERVED I FLAGS 

0 

PDADDR 

BUFFER 

BUFSIZ 

Figure 11-6. GET Parameter Block 

3 

11-19 



11.2 Special Driver I/O Functions FlexOS System Guide 

Table 11-8. GET Parameter Block Fields 

Field Description 

UNIT Driver unit number 

FLAGS Bit map of flags 

Bits 0-7: Defined by driver 
Bits 8-14: Reserved 
Bit 15: . 1 = User Address 

o = System Address 

PDADDR Process descriptor address of the process that initiated the 
GET request. If the buffer address is a User Address and 
the asynchronous portion of the driver is required to 
access the buffer, use this as the pdaddr value in your 
MAPU driver service call 

BUFFER Address of buffer 

BUFSIZE Size of buffer. This field determines the amount of 
information wanted. 

11-20 



FlexOS System Guide 11.2 Special Driver liD Functions 

You must define a single table structure for each type of special 
driver. The first field of this structure must be a 32-bit value that 
indicates the structure's size. When a user process calls the GET SVC, 
the special driver must return the requested information in a specified 
buffer in the defined table format. The GET and SET SVCs can be 
called only if the special driver unit is OPEN. 

The Miscellaneous Resource Manager calls the GET entry point to 
place information from the special driver's GET/SET Table into the 
buffer at the address specified. The buffer size parameter is passed to 
indicate the amount of information requested. If the buffer size is less 
than the table size, fill in only those fields that fit completely. 

The GET entry point is not expected to return an event mask. The 
calling process should not return until the operation is complete. If 
the asynchronous portion of the driver is required to fulfill an I/O 
event in order to obtain the information, the GET routine must perform 
its own WAIT and RETURN SVCs to complete the event. Drivers 
access SVCs through the Supervisor interface defined in Section 6, 
"Supervisor Interface." 

11.2.7 SET --Change unit-specific information 

Parameter: Address of SET Parameter Block 

Return Code: 

E_SUCCESS Operation completed 
E_xxx Driver type-specific error code 

11-21 



11.2 Special Driver liD Functions FlexOS System Guide 

Field 

UNIT 

FLAGS 

o 
4 

8 

12 

16 

, 0 1 2 3 

UNIT I RESERVED I FLAGS 

0 

PDADDR 

BUFFER 

BUFSIZ 

Figure 11-7. SET Parameter Block 

Table 11-9. SET Parameter Block Fields 

Description 

Driver unit number 

Bit map of flags 

Bits 0-7: Defined by driver 
Bits 8-14: Reserved 
Bit 15: 1 = User Address 

o = System Address 

PDADDR Process descriptor address of the process that initiated the 
SET SVC. If the buffer address is a User Address and the 
asynchronous portion of the driver is required to access 
the buffer, use this as the pdaddr value in your MAPU 
driver service call. 

BUFFER 

BUFSIZ 

11-22 

Address of buffer 

Size of buffer; indicates the amount of information to set. 



FlexOS System Guide 11.2 Special Driver I/O Functions 

You must define a single table structure for each type of special 
driver. The first field of this structure must be a 32-bit value that 
indic,ates the structure's size. The GET and SET SVCs can be called 
only if the special driver unit is OPEN. 

The Miscellaneous Resource Manager calls the SET entry point to 
modify information in the special driver's GET ISET table. The format of 
the table is specific to the type of special driver. The buffer indicated 
in the SET parameter block contains the information to be set. A buffer 
size parameter is passed to limit the amount of information being SET. 
If the size of the buffer is less than the size of the table, only those 
fields that fit within the buffer are SET. 

SET is not expected to return an event mask. The calling process 
should not return until the operation is complete. If the asynchronous 
portion of the driver is required to fulfill an liD event in order to 
change the state of the information, SET must perform its own WAIT 
and RETURN SVCs to complete the event. 

End of Section 11 

11-23 



FlexOS System Guide 

11-24 



SECTION 12 

System Boot 

This section outlines the steps required to cold boot a system. It 
describes boot and data disk formats and the FlexOS' layout in 
memory. The section explains how to construct a loader and 
concludes with a description of the SYS utility, which transfers the 
loader to a disk's boot track. 

Utilities used to generate a system that are specific to· a given 
microprocessor are described in chip-specific supplements. These 
supplements are distributed with FlexOS. 

12.1 Boot Overview 

The boot procedure usually involves the following three steps: 

1. A ROM reads the disk boot loader contained in the boot record, 
starting at track 0, sector 0 of the boot drive, then transfers 
control to it. 

2. The disk boot loader reads the system image into memory 
starting at the first data cluster and continuing for n clusters, 
where n is the size of the operating system in clusters. 

3. The disk boot loader then transfers control to the initialization 
routine in the operating system. 

The boot loader reads the code into memory at the address specified 
by the code-load base address. The loader reads operating system 
data into memory at the address specified by the data-load base 
address. The loader then transfers control to the code-load base 
address, which should be the address of or a jump to the operating 
system initialization routines. Code-load and data-load base 
addresses are defined in Table 12-1, below. 

The operating system initialization routines must perform any 
hardware and software initialization required by the operating system. 

12-1 



12.1 Boot Overview FlexOS System Guide 

12.1.1 Data Disk Layout 

The FlexOS disk layout is identical to the PC DOS disk layout, 
illustrated in Figure 12-1, below. The boot record, FAT, and root 
directory are all of variable size. 

12-2 

boot record 
minimum size, 1 sector 

N (usually 2) copies of the FAT 

root directory 

Data Area 

Figure 12-1. FlexOS Disk Layout 



FlexOS System Guide 12.2 Boot Record Format 

12.1.2 Boot Disk Layout 

The FlexOS boot disk is a data disk which contains the operating 
system as illustrated above. The system file must be recorded under 
the file name FLEXOS.SYS, beginning at the disk's first data cluster and 
continuing for as many consecutive clusters as are required to store 
the complete operating system. Recprd the FLEXOS.SYS file with the 
System, Hidden, and Read-Only attributes. 

12.2 Boot Record Format 

The boot record (see Figure 12-2 below) contains the code needed to 
load FlexOS from disk into memory. It is a minimum of one physical 
sector in length. The boot record also contains information about. 
where to load the various parts of the operating system and the sizes 
of each part. Table 12-1 defines the fields in the boot record. 

12-3 



12.2 Boot Record Format FlexOS System Guide 

OOH 

04H 

08H 

OCH 

10H 

14H 

18H 

1CH 

20H 

24H 

28H 

2CH 

30H 

34H 

12-4 

o 2 3 

JUMP I OEM_NAME 

OEM_NAME 

OEM_NAME I BYTESPERSEC 

BYTESPERSEC SEC_CLUSTER RES_SECTORS 

FATNUM NROOTDIR I NSECTORS 

NSECTORS MDB FATSEC 

SECPERTRK NHEADS 

HIDDEN 

EXTENSION 

FIRSTSEC 

CODE_LOAD_BASE 

CODE_LENGTH 

DATA-LOAD_BASE 

DATA-LENGTH 

I 
Remaining Portion of O.S. Boot Record 

~ 

Figure 12-2. Boot Record 



FlexOS System Guide 12.2 Boot Record Format 

Field 

JUMP 

OEM_NAME 

Table 12-1. Boot Record Fields 

Description 

A jump instruction to transfer control to an operating 
system's loader. See your chip-specific supplement for the 
description of the jump instruction. 

The ·OEM name and version number identifying the boot 
record's operating system 

BYTESPERSEC 
Number of bytes per sector 

SEC_CLUSTER 
Number of sectors per file allocation unit (cluster) in a 
partition. This value must be a power of two. 

RES_SECTOR 
Number of sectors reserved by the operating system, 
starting at logical sector 0 

FATNUM Number of FATs in a partition 

NROOTDIR Maximum number of root directory entries in a partition 

NSECTORS Total number of sectors in a partition, including boot 

MOB 

FATSEC 

SECPERTRK 

NHEADS 

sector, directories, and reserved sectors. If this field 
contains zero, the EXTENSION field (see below) contains 
the total number of sectors. 

Media Descriptor Byte. Describes the disk medium in 
terms of number of sides, number of sectors per track, and 
whether the medium is fixed or removable. Possible values 
for the MOB are defined in Table 8-5. 

Number of sectors occupied by one FAT 

Number of sectors per track in a partition 

Number of heads in partition 

12-5 



12.2 Boot Record Format FlexOS System Guide 

Field 

HIDDEN 

EXTENSION 

Table 12-1. (Continued) 

Description 

Total number of sectors preceding a partition, including 
sectors occupied by the Master Boot Record. 

If NSECTORS contains zero, EXTENSION contains the total 
number of sectors in a partition. The EXTENSION field is 
used for partitions whose number of sectors is greater 
than can be stored in the one-word NSECTORS field. 

FIRSTSEC First sector of data area 

CODE_LOAD_BASE 
Address at which operating system code is to be loaded 

CODE_LENGTH 
Length, in bytes, of code segment 

DATA_LOAD_BASE 
Address at which operating system data is to be loaded 

DATA_LENGTH 
Length, in bytes, of data segment 

The FORMAT utility fills in the fields from BYTESPERSEC through 
FIRSTSEC. The SYS utility (see Section 12.5) fills in the code and data 
load addresses and segment lengths. 

12-6 



FlexOS System Guide 12.3 Boot Loader Outline 

12.3 Boot Loader Outline 

Take the following steps in constructing a boot loader. The field names 
referenced below are defined in Table 12-1 above. 

1. Calculate the number of physical sectors of code to read by 
dividing the value in the CODE_LENGTH field by the number of 
bytes in a physical sector. Add one physical sector if the division 
produces a remainder. 

2. Read the operating system code into memory at the location 
specified by the CODE_LOAD_BASE field. The read always begins 
at the first sector of the first data cluster on the disk. 

3. If the operating system code does not end on a physical sector 
boundary, the remainder of the sector is data. The data portion of 
the sector needs to be moved to the location in memory specified 
by the DATA_LOAD_BASE field. 

4. Calculate the number of physical sectors of data to read by 
dividing the value in DATA_LENGTH, minus any data already read, 
by the number of bytes in a physical sector. Add one physical 
sector if the division produces a remainder. 

5. Read the operating system data into memory at the location 
specified by the DATA_LOAD_BASE field plus the length of the 
data already read. The read begins at the next sector following 
the code reads. 

If the operating system code and data are to be contiguous in 
memory, you can optimize the boot loader so that it performs one 
read that includes both the code and the data sectors. 

12-7 



12.4 The FlexOS Memory Image FlexOS System Guide 

12.4 The FlexOS Memory Image 

Figure 12-3 shows .the FlexOS memory image. 

Code Load Base 

Code 

Data Load Base 

Initialized Data 

Uninitialized Data 

Figure 12-3. The FlexOS Memory Image 

12-8 



FlexOS System Guide 12.5 The SYS Utility 

12.5 The SYS Utility 

SYS transfers the operating system from the default to the specified 
drive or places the operating system onto the specified drive from a 
file. SYS modifies the destination drive's boot record to reflect the 
correct operating system Code Load Base, Code Length, Data Load 
Base, and Data Length fields. 

SYS has the following syntax: 

SYS d: 

or 

SYS d: d:filename.ext 

The operating system image is placed in contiguous data clusters 
beginning at the first data cluster, Cluster 2. The first directory entry 
on the boot disk is FLEXOS.SYS. This file is recorded with the System, 
Hidden, and Read-Only attributes. 

The header record on the specified input file is removed by SYS prior 
to placing the image on the disk. The information contained in the 
header record is used to update the proper fields in the disk's boot 
record. 

End of Section 12 

12-9 



FlexOS System Guide 

12-10 



Appendix A 

The FlexOS Standard Input and Output Character Sets 

This appendix presents the characters sets supported by the FlexOS 
standard keyboard and standard console. The character sets are 
presented in the following order: 

• 16-bit input characters (A.l) 
• a-bit input characters (A.2) 
• 16-bit output characters (A.3) 
• a-bit output characters (A.4) 

A.1 16-bit Input Character Set 

This section defines the 16-bit character set supported by the FlexOS 
standard keyboard. The low order byte of a 16-bit input character is 
reserved for data. The high order byte can have the following values: 

Table A-1. High-order Byte Values 

Byte Value Character Set 

OOH ASCII character set. Includes DRI-standard US, Japanese, 
and European a-bit character sets. 

01 H-7FH Defined in Figure A-l, below. 

80H-FCH 15-bit foreign language character sets, including KANJI. 

When the high order byte of a 16-bit character is in the range from 
01 H to 7FH, the byte is defined as follows. 

A-l 



A 16-bit Input Character Set FlexOS System Guide 

bit 15 14 13 12 11 10 9 8 7 6 

Data (D) 

I (0100) Ctrl Key 
-----~e. (0200) Alt Key 

1....----.. (0400) Shift Key 
(0800) Reserved 

(1 Sxx) Func Keys E 
(2Sxx) Special Chars 
(3xxx) Toggle Chars 
(4xxx) Reserved 
(5xxx)Reserved 
(6xxx) Reserved 
(7xxx) Reserved 

1....-----------. Foreign 15-bit char set 

Figure A-1. High-order Byte Definitions for 01 H to 7FH 

Each defined bit field is described below. In the explanations, S refers 
to the state bits, bits 8-11 . 

• STATE Bits: The state bits indicate the status of the Ctrl, Alt, and 
Shift keys. When a state key is pressed along with another key, 
set the corresponding state bit or bits. If the ASCII standard 
specifies a code for the state and character key combination, the 
standard ASCII code should be generated without the state 
information. Examples of state bit use are: 

CTRL-C ==> 0003H 
SHIFT -p == > P or 0050H 
CTRL-5 ==> 0135H 
CTRL-SHIFT-ALT-5 ==> 0735H 

• Func Keys: Function key codes where you indicate the function 
key number in xx. Examples of function key codes are: 

A-2 

FUNC 1 ==> 1001H 
CTRL-FUNC 1 ==> 1101H 



FlexOS System Guide A 16-bit Input Character Set 

• Special Characters: Special keys where the xx value should be 
generated for the key as follows: 

Special Function Cursor Movement Numeric Keypad 

2S00 HELP 2S10 UP 2S30 ZERO 
2S01 WINDOW 2S11 DOWN 2S31 ONE 
2S02 NEXT 2S12 LEFT 2S32 TWO 
2S03 PREVIOUS 2S13 RIGHT 2S33 THREE 
2S04 PRINT SCREEN 2S14 PAGE UP 2S34 FOUR 
2S05 BREAK 2S15 PAGE DOWN 2S35 FIVE 
2S06 REDRAW (screen) 2S16 PAGE LEFT 2S36 SIX 
2S07 BEGIN 2S17 PAGE RIGHT 2S37 SEVEN 
2S08 END 2S18 HOME 2S38 EIGHT 
2S09 INSERT 2S19 REVERSE TAB 2S39 NINE 
2S0A DELETE 2S3A A 
2S0B SYSREQ 2S38 8 

2S3C C 
2S3D D 
2S3E E 
2S3F F 
2S40 ENTER 
2S41 COMMA 
2S42 MINUS 
2S43 PERIOD 
2S44 PLUS 
2S45 DIVIDE 
2S46 MULTIPLY 
2S47 EQUAL 

• Toggle Characters: Where your hardware supports toggle 
characters, generate the values for 3xxx according to the scheme: 

bit: 15 11 7 o 
key 

A-3 



A 8-bit Input Character Set FlexOS System Guide 

where the fields are defined as follows: 

A - action 

key 

o - OFF 
1 - ON 

OxO - Caps Lock 
Ox1 - Shift Lock 
Ox2 - Scroll Lock 
Ox3 - Num Lock 

Oxl0 - Right Shift 
Ox1l - Left Shift 
Ox12 - Insert 
Ox13 - Control 
Ox14 - Alternate 

Keys 0-3 should generate a character each time the user presses 
and releases the key. 

Keys 10H-14H should generate a character when the user releases 
the key after pressing it along with another character 

A.2 a-bit Input Character Set 

The Console Resource Manager expects l6-bit keyboard input from 
the console driver. When the application specifies 8-bit character 
mode, the Console RM translates the l6-bit characters to 8-bit 
characters. The translation process may generate more characters than 
the console driver actually sends to the Console Resource Manager, as 
illustrated in Table A-2, below. 

FlexOS supports the set of escape sequences only when the 
application is in 8-bit keyboard mode. Table A-4 lists the escape 
sequences supported. 

A-4 



FlexOS System Guide A 8-bit Input Character Set 

Table A-2. Results of 16- to 8-bit Translation 

16-bit Code Result Characters 

OOxxH xxH 

0100H-7FFFH Converts to escape n 
sequence except as follows 
(S=STATE bit values): 

2S30 Ox30H 0 1 
2S31 Ox31H 1 1 
2S32 Ox32H 2 1 
2S33 Ox33H 3 1 
2S34 Ox34H 4 1 
2S35 Ox35H 5 1 
2S36 Ox36H 6 1 
2S37 Ox37H 7 1 
2S38 Ox38H 8 1 
2S39 Ox39H 9 1 
2S3A Ox41H A 1 
2S38 Ox42H 8 1 
2S3C Ox43H C 1 
2S3D Ox44H D 1 
2S3E Ox45H E 1 
2S3F Ox46H F 1 
2S40 OxODH RETURN or ENTER 1 
2S41 Ox2CH , (comma) 1 
2S42 Ox2DH - (minus) 1 
2S43 Ox2EH . (period) 1 
2S44 Ox28H + (plus) 1 
2S45 Ox2FH / (divide) 1 
2S46 Ox2AH * (multiply) 1 
2S47 Ox3DH = (equal) 1 

8000H-FCFCH High byte, low byte 2 

A-5 



A 16-bit Output Character Set FlexOS System Guide 

A.3 16-bit Output Character Set 

The Console Resource Manager accepts 16-bit output characters 
through the WRITE SVC when in 16-bit screen mode. The 16-bit 
character codes provided are defined in Table A-3. 

Table' A-3. 16-bit Output Character Set 

16-bit Value Definition 

OOxxH Same as a-bit. Give these characters one character 
position on the screen. Characters in the range aOH
FFH are defined on a per-country basis. 

aOOOH-FCFCH 16-bit language, such as KANJI. Give these characters 
two character positions on the screen. When 
modifying the FRAME, set the two character plane 
cells according to the key value and set the extension 
plane to indicate a two-cell character; that is, set bit 0 
of both extension plane bytes to 1, set bit 1 of the 
first extention plane byte to 0, and set bit 1 of the 
second byte to 1. 

01xxH-OFxxH Alternate character sets. Implement these codes 
according to the following rules. Each character takes 
one character position. Typically, these characters are 
defined by the OEM extension field in a byte in a 
FRAME's extension plane. If an extension plane exists, 
the low byte is placed into the character plane while 
the low nibble of the high byte is placed into the low 
nibble of the extension plane. 

1xxxH Non-visible characters which take no space on the 
screen. 

2xxxH Editing functions. These functions are the equivalent 
of the escape sequences: 



FlexOS System Guide A 16-bit Output Character Set 

16-bit Value 

2040 
2041 
2042 
2043 
2044 
2045 
2048 
2049 
204A 
204B 
204C 
2040 
204E 
204F 
2064 
2065 
2066 
206A 
206B 
206C 
206F 
2070 
2071 
2072 
2073-
2074 
2075 
2076 
2077 

Table A-3. (Continued) 

Definition 

Enter Insert Character Mode 
Cursor Up 
Cursor Down 
Cursor Right 
Cursor Left 
Clear Display 
Cursor Home 
Reverse Index 
Erase to End of Page 
Erase to End of Line 
Insert Blank Line 
Delete Line 
Delete Character 
Exit Insert Character Mode 
Erase Beginning of Display 
Enable Cursor 
Disable Cursor 
Save Cursor Position 
Restore Cursor Position 
Erase Entire Line 
Erase Beginning of Line 
Enter Reverse Video Mode 
Exit Reverse Video Mode 
Enter Intensify Mode 
Enter Blink Mode 
Exit Blink Mode 
Exit Intensify Mode 
Wrap at End of Line 
Discard at End of Line 

A-7 



A 16-bit Output Character Set FlexOS System Guide 

Table A-3. (Continued) 

16-bit Value Definition 

3xxxH Set cursor to xxx row (0 origin) 

4xxxH Set cursor to xxx column (0 origin) 

50xxH Set foreground color to color xx. Color codes are 
documented in the A.4, below. 

51xxH Set background color to color xx. Color codes are 
documented in the A.4, below. 

52xxH-7xxxH Non-visible characters. Take no space on screen. 

A-8 



FlexOS System Guide A 8-bit Output Character Set 

A.4 8-bit Output Character Set 

The Console Resource Manager converts the application's 8-bit output 
characters and escape sequences to 16-bit characters internally before 
calling the driver's WRITE function. The escape sequences are 
supported independently of the physical terminal type. 

You can provide your own 8-to-16 bit conversion routine, accessible 
through the GET entry point in a console driver's Driver Header, to 
extend the character set. The extendability of the character set allows 
the implementation of SHIFT-JIS KANJI through the 8-bit character set 
in Japan. You might also modify the conversion routine to add escape 
sequences that switch to another character set. 

You can support multiple country codes in the console driver. If you 
do, implement your selection routine in the driver's SET entry point 
using the value in the PCONSOLE table's COUNTRY field. 

In the United States, FlexOS supports the IBM PC character set. In 
Japan, FlexOS uses the SHIFT -JIS character set. In Europe, the ISO 
standard ASCII character set is used. 

While in 8-bit mode, the console:s video attributes, such as cursor 
control, video blink, video intensity, and reverse video can be 
controlled through escape sequences sent through the WRITE SVC. 
The first character of an escape sequence is always the Escape 
character (ASCII character 27 or 1 BH). 

Table A-4, below, lists the escape sequences defined for FlexOS. This 
set of escape sequences is, with some exceptions, a superset of the 
set required by a VT-52 terminal. In the description below, < ESC> is 
followed by the function character. Blanks are used for clarity of 
presentation only. 

A-9 



( 

A 8-bit Output Character Set FlexOS System Guide 

A-l0 

Table A-4. FlexOS Escape Sequences for 8-bit Output 

Function Escape Sequence 

Cursor Up 
Cursor Down 
Cursor Right 
Cursor Left 
Cursor Home 
Reverse Index 
Save Cursor Position 
Restore Cursor Position 
Set Cursor Position 

Clear Display 
Erase to End of Page 
Erase to End of Line 
Erase Entire Line 
Erase Beginning of Display 
Erase Beginning of Line 
Insert Blank Line 
Delete Line 
Delete Character 

<ESC> A 
<ESC> B 
<ESC> C 
<ESC> D 
<ESC> H 
< ESC> I (upper case i) 
<ESC> j 
<ESC> k 
<ESC> Y (r) (c) 

(r) = row + 32 (one character) 
(c) = col + 32 (one character) 
home = 0,0 

<ESC> E 
<ESC> J 
<ESC> K 
< ESC> I (lower case L) 
<ESC> d 
<ESC> 0 

<ESC> L 
<ESC> M 
<ESC> N 



FlexOS System Guide A 8-bit Output Character Set 

Table A-4. (Continued) 

Function 

Set Foreground Color 

Set Background Color 

Escape Sequence 

<ESC> b (c) 

where (c) = color (one character) 

o - Black 
1 - Blue 
2 - Green 
3 - Cyan 
4 - Red 

8 - Dark Gray 
9 - Light Blue 
10 - Light Green 
11 - Light Cyan 
12 - Light Red 

5 - Magenta 
6 - Brown 

13 - Light Magenta 
14 - Yellow 

7 - Light Gray 15 - White 

<ESC> c (c) 

where (c) = color (one character) 

o - Black 
1 - Blue 
2 - Green 
3 - Cyan 
4 - Red 
5 - Magenta 
6 - Brown 
7 - Light Gray 

8-15 are the same as 0-7 except 
the foreground blinks 

A-ll 



A 8-bit Output Character Set FlexOS System Guide 

Table A-4. (Continued) 

Function Escape Sequence 

A-12 

Enable 'Cursor 
Disable Cursor 
Enter Reverse Video Mode 
Exit Reverse Video Mode 
Enter Intensify Mode 
Exit Intensify Mode 
Enter Blink Mode 
Exit Blink Mode 
Enter Insert Mode 
Exit Insert Mode 
Wrap at End of Line 
Discard at End of Line 

<ESC> e 
<ESC> f 
<ESC> p 
<ESC> q 
<ESC> r 
<ESC> u 
<ESC> s 
<ESC> t 
<ESC> @ 
<ESC> 0 
<ESC> v 
<ESC> w 

End of Appendix A 



Appendix B 

Foreign Language Support 

This appendix describes the FlexOS support for languages other than 
American English. FlexOS defines a console driver so an OEM can 
provide translation routines. In addition to this driver-level support, an 
OEM can translate or modify all messages displayed by FlexOS utilities. 

Section B.l describes provisions for foreign language support in a 
console driver. Section 8.2 explains how to edit, recompile, and relink 
utility messages. 

B.1 Console Driver Support 

Support for foreign character sets exists in the console driver's SET 
and GET functions and in the extension plane of a FRAME. See 
Section 7, "Console Drivers," for a description of SET and GET and the 
FRAME data structure. 

Through the SET function, a console driver can change the COUNTRY 
field in the PCONSOLE Table. The COUNTRY field contains a country 
code that determines which character set is being used. Applications 
can, through the GET and LOOKUP SVCs, obtain the country code from 
the PCONSOLE Table. Country codes are listed in Appendix C of the 
FlexOS Programmer's Guide. 

Through the GET function, a console driver can provide the addresses 
of OEM-written character translation routines. The Console Resource 
Manager passes the address of the PCONSOLE Table to the GET 
function. The PCONSOLE Table has two 32-bit fields, CONVERT8 and 
CONVERT16, that can store pointers to translation routines. CONVERT8 
can point to an 8-bit to 16-bit output translation routine. CONVERT16 
can point to a 16-bit to 8-bit input translation routine. If these fields 
contain NULLPTR, the FlexOS standard conversion routines are called. 

·B-l 



8 Console Driver Support FlexOS System Guide 

To support foreign language character sets, the console driver writer 
must implement an extension plane in his PFRAME. If the console 
driver supports virtual consoles, the extension plane must exist in the 
VFRAME also. FlexOS defines a byte in the extension plane to allow 
support for one-byte characters, two-byte characters, such as KANJI, 
or alternate character sets. See Section 7.2.1 for details. 

B.2 Modifying Messages 

Modifying the FlexOS messages consists of editing source message 
files, compiling those files, and linking the new object modules with a 
utility's code. The FlexOS utilities are written so code modules contain 
n.o messages and message modules contain only global symbols and 
messages. 

The following message files are distributed with FlexOS: 

• STDMSGS.C - contains all public messages, that is, all messages 
used by more than one utility. This file is provided as reference 
and is not used in the process of modifying messages. 

• Set of files consisting of each message in STDMSGS.C in a 
separate- file 

• < utilityname >MSG.C - contains specific messages for a utility 

Perform the following steps to create utilities that display modified 
messages. 

1. Print STDMSGS.C, to use as a guide when editing individual 
message files. 

2. Edit each of the public message files. 

3. Edit the message file for each utility. 

8-2 



FlexOS System Guide B Modifying Messages 

4. Run the batch file, CCMSGS.BAT. This file contains commands 
that do the following: 

• Compiles all public messages 

• For object files created by the Lattice C compiler, executes 
the COMB utility to change object files from Lattice format to 
a format usable by LlNK-86 and LlB-86. 

• Runs LIB with the input file CCMSGS.INP using the I option. 
CCMSGS.lNP contains a list of public symbols that LIB 
matches with corresponding message files to create a 
CCMSGS.L86 (CCMSGS.L68 for 68000-based systems), a 
library of standard object modules. 

5. Run batch file, < utilityname >.BAT, for each utility. These files 
contain commands that do the following: 

• Compiles the <utility>MSG.C file containing a utility's 
messages 

• Runs LINK with a utility-specific input file, < utilityname >.INP. 
These input files contain a list of which code and message 
modules to link and a list of public symbols that LINK uses to 
extract appropriate messages from the CCMSGS file. LINK 
produces an executable file. 

For 68000-based implementations that use SUBMIT rather than BATCH, 
SUBMIT files (file extension SUB) are provided. 

The Window Manager and FORMAT utility distributed with FlexOS 
display text not contained in STDMSGS.C. Text strings for the Window 
Manager are stored in WMEXDATA.C (see Appendix C). Messages for 
FORMAT are stored in BOOT.A86 and HDBOOT.A86. 

End of Appendix B 

B-3 



FlexOS System Guide 

8-4 



Appendix C 

Modifying Windows 

This appendix explains how you modify screen windows (virtual 
consoles) as set up by the FlexOS Window Manager. 

You can modify the following window characteristics: 

• size 
• location on the screen 
• attributes of windows, including borders 
• fill characters 
• number of windows to bring up at boot time 
• startup command for each window 
• text strings in window headers 

A window can be as large as the limits of your physical console allow. 

Distributed with FlexOS is the source code to the Window Manager, 
including two data files, WMEX.H and WMEXDATA.C. 

WMEX.H contains the WNDWDESC structure, which describes a user 
window, and the WNDWSPEC structure, which describes a special 
window. A special window is a message or a status window. 
WMEXDATA.C contains data for both structures. WNDWDESC and 
WNDWSPEC are the only configurable window structures. 

WNDWDESC describes a window's size, location, attributes, and fill 
characters. It also contains pOinters to a text string for the window 
header and a pointer to the startup command line. WNDWSPEC 
contains pointers to text displayed in the message and status windows 
and stores the number of elements in a variety of different arrays of 
text strings. 

In addition to configuration data, WMEXDATA.C contains the text 
strings pointed to in WNDWDESC and WNDWSPEC. You can trans'late, 
or otherwise modify these strings. 

C-l 



C FlexOS System Guide 

WMEX.H sets eight as the maximum number of user and special 
windows per physical console. Changing this number requires 
changing code in WMEX.H. 

WMEXDATA.C defines eight windows: six user windows, a status 
window, and a message window. 

In WMEXDATA.C, the variable WM0010, which stores the number of 
user windows at startup, is initialized to one. You can change this 
value to as many user windows as are defined in WMEX.H. 

The variables WM0100, WM0110, and WM0120 in WMEXDATA.C define 
attributes and fill characters for the Desk Window. The Desk Window 
is the parent console for all user and special windows. Desk Window 
variables can also be modified. 

In WNDWDESC, if you place a zero in the WD_RMAX (maximum number 
of rows) and WD_CMAX (maximum number of columns) fields, the 
Window Manager makes the window the size of the screen the 
Window Manager is running in. This is usually the size of the physical 
console. 

In the WD_FLAGS field in WNDWDESC, you can change bits 0 
(borders/no borders) and 1 (attributes/no attributes). Do not change 
bits 6 and 7. 

End of Appendix C 

C-2 



Index 

A 

ABORT SVC, 5-38 
ASR 
ASR, 5-19, 5-32, 5-40 

blocking, 5-11 
scheduling, 5-12 

ASR priority, 5-13 
ASRMX,5-32 
ASRWAIT, 5-11 
Asynchronous 1/0, 2-5 
Asynchronous interface, 2-6 
Asynchronous Service Routines 

(ASRs), 2-5 
Asynchronous Service Routines, 

5-9 

B 

Bgprn:, 1-8 
BIOS Parameter Block, 8-12 
Boot disk layout, 12-3 
Boot loader 

constructing, 12-7 
Boot procedure, 12-1 
Boot record 

Master, 12-6 
Boot record format, 12-3 
Boot script, 3-3, 3-8 
Boot script commands, 3-4 
BOOTINIT, 3-3 

c 

Character set 
16-bit input, A-1 
16-bit output, A-6 
8-bit input, A-4 
8-bit output, A-9 

Character set, alternate, 7-6 
Character sets, A-1 
Character translation, 7-34 
CLOSE SVC, 11-1 
Cold boot, 12-1 
CONFIG.OBJ, 3-3 
Console driver, 7-1 
Console driver 
Console driver, B-1 

ALTER, 7-13 
COPY, 7-13 
FLUSH, 7-12 
GET,7-30 
SELECT, 7-9 
SET, 7-34 
SPECIAL, 7-24 
SPECIAL function 1, 7-26 
SPECIAL function 2, 7-27 
SPECIAL function 3, 7-28 
SPECIAL functioon 0, 7-25 
WRITE, 7-20 

Country code, A-9, B-1 
Critical regions, 5-30 

Index-l 



o 

DEFINE SVC, 3-8 
Device driver, 2-2 
Device drivers, 1-5 
Device. polling, 5-16 
Dirty region, 7-22 
Disk driver, 8-1 
Disk driver 

error handling, 8-16 
FLUSH, 8-21 
GET, 8-45 
READ,8-22 
reentrancy, 8-1 
SELECT, 8-17 
SET, 8-47 
SPECIAL, 8-30 
SPECIAL function 0, 8-31 
SPECIAL function 1, 8-33 
SPECIAL function 2, 8-35 
SPECIAL function 3, 8-37 
SPECIAL function 8, 8-41 
SPECIAL function 9, 8-43 
WRITE,8-26 

DOASR, 5-12, 5-39 
Driver Header, 2-2, 4-1, 4-2 
Driver liD functions, 4-5 
Driver installation functions, 

4-5, 4-8 
Driver interface, 4-7 
Driver load access levels, 3-4 
Driver load format, 4-1 
Driver Run-time Library, 3-3, 

5-1 
Driver services, 5-1 
Driver services 

accessing, 5-1 

Index-2 

Driver Services Table, 4-5 
Driver type values, 4-9 
Drivers 

installing, 2-10 
loading, 2-11 
run-time installation, 3-8 

DSPTCH, 5-13 
DVRLlNK, 3-5 
DVRLOAD, 3-4 
DVRUNIT, 3-5 
DVRUNLK, 3-6 

E 

Error code values, 4-7 
EVASR, 5-14 
Event 

clearing, 5-17 
Event mask, 5-9 
Event number, 5-9, 5-16 
Events 

clearing, 5-10 
emulating, 5-16 

Extension plane, 7-6 

F 

File names, 2-4 
File number, 2-1 
Flag states, 5-5 
Flag system, 5-2 
FLAGCLR, 5-5 
FLAG EVENT, 2-8, 5-6 
FLAGGET, 5-7 
FLAGREL, 5-7 



FLAGSET, 2-8, 5-8 
FlexOS memory model, 5-18 
Foreign language support, 7-6, 

7-32, B-1 
FORMAT utility, 8-15, 12-6 
Formatting 

information, 8-43 
initializing for, 8-41 

Formatting tracKS, 8-37 
FRAME 
FRAME, B-1 

dirty region, 7-22 
FRAME structure, 7-3, 7-17 
FRAME types, 7-7 

G 

H 

Hard disK layout, 8-8 
Hard disK support, 8-4 

IBM PC video map, 7-27 
INIT driver function, 4-8, 5-34 
INSTALL access flags, 11-1 
INSTALL flags, 4-10 
INSTALL SVC, 2-3 
Interrupt handling, 5-~9 
Interrupt Service Routine, 5-39 
Interrupt Service Routines 

(ISRs), 2-5 
Interrupt Services Routines, 5-9 

Interrupt vector 
setting, 5-40 

ISR, 5-13 

J 

K 

KANJI, 7-32, B-2 
Kernel, 1-4 
Keyboard 

L 

deactivating, 7-12 
initializing, 7-9 

Logical disK layout, 8-5 
Logical name definitions, 3-8 
LOOKUP SVC, B-1 

M 

MAPPHYS, 5-23 
MAPU,5-22 
Master boot record, 12-6 
Media 

permanent, 8-4 
removable, 8-3 

Media Descriptor BlocK, 8-18 
Media Descriptor Byte, 8-16 
Memory 

locKing,· 5-21 
moving, 5-21 
unlocking, 5-26 

Index-3 



Memory image, 12-8 
Memory management services, 

. 5-20 
Memory range checking, 5-25 
Message translating, B-2 
Miscellaneous Resource 

Manager, 11-1 
MLOCK, 5-24 
MRANGE, 5-25 
MUNLOCK, 5-25 
Mutual exclusion region, 5-30 
MX Parameter Block, 5-31 
MXEVENT, 5-31, 5-33 
MXINIT, 5-31, 5-33 
MXPB 

creating, 5-33 
obtaining ownership, 5-31, 

5-32, 5-33 
releasing, 5-34 
removing, 5-34 

MXREL, 5-34 
MXUNINIT, 5-34 

N 

NEXTASR, 5-15 
No abort regions, 5-30 
No dispatch region, 5-30 
NOABORT, 5-35 
NODISP, 5-11, 5-35 

o 

OKABORT, 5-36 
OKDISP, 5-36 

Index-4 

Open door interrupt, 8-3 
Open door support, 8-3 
OPEN SVC, 11-1 

p 

PADDR,5-26 
Partition Table, 8-10 
PCFRAME 

converting to PCFRAME, 7-28 
creating, 7-27 

PCONSOLE Table, 7-30, B-1 
PCREATE, 5-37 
Permanent media, 8-4 
PFRAME,7-8 
Physical Memory, 5-18 
Physical Space, 5-18 
Plane, character, 7-3 
Planes, 7-3 
Planes 

attributes, 7-3 
POLLEVENT, 5-16 
Polling devices, 5-16 
Port driver, 9-1 
Port driver 

FLUSH, 9-3 
GET, 9-8 
READ, 9-4 
SELECT, 9-2 
SET, 9-13 
WRITE, 9-7 

Port driver GET/SET Table, 9-10 
Port drivers 

interrupt-driven, 9-1 
Port mode status bit map, 9-12 
Print spooler, 1-7 



Printer 
enabling, 10-3 

Printer driver, 10-1 
Printer driver 

FLUSH, 10-3 
GET, 10-8 _ 
SELECT, 10-2 
SET, 10-13 
WRITE. 10-5 

Printer driver GET/SET Table, 
10-10 

Prn:, 1-7 
PROCDEF Table, 3-6 

. Process 
setting priority, 5-38 

Q 

R 

Range checking, 5-22 
Ready List Root, 4-5 
RECT, 7-18 
RECT structure, 7-3 
Reentrancy, 8-1 
Regions 

critical, 5-30 
mutual exclusion, 5-30 
no abort, 5-30 
no dispatch, 5-30 

Removable media, 8-3 
Required modules, 3-2 
Resource Managers, 1-4, -2-3 
RETURN SVC, 2-5, 5-10, 5-15, 

5-31, 5-38 

5 

SADDR,5-27 
SALLOC, 5-27 
Semaphore 

waiting on, 5-31 
Serial interrupts 

enabling, 9-3 
SETVEC, 5-39, 5-40 
SFREE, 5-28 
Special driver. 

accessing, 11-1 
FLUSH, 11-9 
GET, 11-19 
READ, 11-11 
SELECT, 11-6 
SET, 11-21 
SPECIAL, 11-16 
WRITE, 11-14 

Special drivers, 11-1 
SPLDVR, 1-7 

. STATUS SVC, 5-10 
Sub-driver, 2-8, 4-12 
SUBDRIVE driver function, 4-12 
Supervisor, 1-4 
Supervisor entry point, 6-1 
Supervisor interface, 6-1 
SUPIF, 6-1 
Synchronous interface, 2-6 
SYS utility, 8-15, 12-6, 12-9 
SYSDEF Table, 3-6 
System Address, 5-19 
System Address 

converting, 5-26, 5-28 
System area, 8-31 
System area 

formatting, 8-35 

Index-5 



reading, 8-31 
writing, 8-33 

System configuration, 3-1, 3-3 
System creation procedures, 

3-2 
System Memory, 5-18 
System Memory 

allocating, 5-27 
freeing, 5-28 

System memory management, 
5-18 

System process, 5-18 
System Process 

creating, 5-36 
System Space, 5-18 

T 

Tempdir:, 1-7 
Transient Program Area, 5-22 

u 

UADDR,5-28 
UFRAME,7-7 
UNINIT driver function, 4-14, 

5-35 
Unit, 2-3 
UNMAPU, 5-29 
User Address, 5-19 
User Address 

converting, 5-27 
User Memory, 5-18 
User Memory 

addressing, 5-19 

Index-6 j. l).? l~ l' J; 0 ? I ~,"",'''_ J "-

locking, 5-24 
restoring, 5-29 

User Space, 5-18 

v 

VFRAME,7':'7 
VFRAME 

converting to PCFRAME, 7-27 
Virtual console 
Virtual console, C-1 

creating, 7-25 
removing, 7-26 

w 

WAIT SVC, 2-5, 5-10, 5-33, 
5-38 

Window Manager, C-1 
Windows, C-1 

x 

y 

z 


