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Abstract

In this work, we study thd=-implicit generalized variational inequalities in a real normed space setting. Weak solutions and
strong solutions are introduced. Several existence results are derived. As an application, we stdmplieit generalized
complementarity problems and some existence results are obtained.
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1. Introduction and Preliminaries

Let X be an arbitrary real normed space with dual spgteand(-, -) be the dual pair o)K* and X. Let X and
X* be endowed with their respective norm topologies. Kelbe a nonempty closed convex setXf The mapings
F:K —> Randg: K - K andT : K — 2X" are given. TheF-implicit generalized variational inequalities
problem E-1GVIP) is finding anX € K suchthat

sup (s, x — g(x)) = F(g(X)) — F(x) (1.1)
seT (%)
forall x € K.
A solution of (1.1)will be called aweak solution of the F-implicit generalized variational inequality problem. The
reason for the terrweak solution can be seen as follows. Suppose fhdtas compact values, that 1B(x) is compact

forall x € K, andX is a solution of(1.1). Then sincehe maximum of thedft-hand side of1.1)is attained, for each
x € K, there is ars € T (X) suchthat

(s, X —g(X)) = F(g(X)) — F(x),
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and sub ans usually depends or. In contrast, we say tha&tis astrong solution of (1.1)if there exists ars € T (X)
suchthat

S, x—gX)) > F(g(X)) — F(x), forall x € K.

We observe thathe d@oves does not depend ane K.
We now onsider some special cases BF(GVIP).

(1) If T is a single-valuedhapping, then theR-IGVIP) is equialentto the F-implicit variational inequality problem
(F-IVIP) which is finding anx € K suchthat

(TX), x —g(X) = F(9(X)) — F(X) 1.2)

for all x € K. This problem was introduced and studied by Huang andblifj a Barach space setting.
(2) If T is a single-valed mapping and is an identity mapping, then thé&({IGVIP) is equvalentto the (F-VIP)
which is to find arx € K suchthat

(TX), x =X%) = F(X) — F(x) (1.3)

for all x € K. This problem was introduced drgudied by Stampacchi&] in aHilbert space setting and also
investigated in9).

(3) If X =R"andF = 0, g is an identity mapping, then th&¢IGVIP) is equivalent to finding ak € K suchthat

sup (8, Xx—X) >0 (1.4)
seT (X)

for all x € K. This problem was introduced and studied by Fang and PeteBjp¥do and Guo B].

(4) If X = R"andF = 0, T is a single-valed mapping andj is an identity mapping, then the={IGVIP) is
equivalent to finding ai € K suchthat

(T(X),Xx —%X) >0 (1.5)

for all x € K. This problem is known as a classical variational inequality. This problem in finite-dimensional
spaces has been extensively studied in the literature. For exampld].see [

Sunming up the above arguments, it has been shown that for a suitable choice of the m&pmngsand the
spaceX, we can obtain a number of known classes of variational inequalities and generalized variational inequalities,
implicit generalized variational inequalities. It is also well known that the variational inequality and its variants
enable us to study many important problems arising in mathematical, mechanics, operations research and engineeril
sciences, etc.

In this work we aim to derive some existermasults for weak and sing solutions of thd=-implicit generalized
variational inequality problem. As an application, we will study thémplicit generalized complementarity problems
and derive some existence results for suabjpems. Let us first recall the following results.

Berge Theorem ([1]). Let U, V betwo topological spaces, themapping¢ : U xV — R bean upper semicontinuous
function, T : U — 2V be an upper semicontinuous mapping with nonempty compact values. Then the function
X — MaXeT(x) (S, X) isupper semicontinuouson U.

Fan'sLemma ([2]). Let K be a nonempty subset of Hausdorff topological vector space X. Let G : K — 2X bea
KKM mapping such that for any y € K, G(y) is closed and G(y*) is compact for some y* € K. Then there exists
x* € K suchthat x* € G(y) for all y € K.

2. F-implicit generalized variational inequality problems
Now, we shall state and show our main existence results fionplicit generalized variational inequality problems.

Theorem 2.1. Let themappings F : K — R belower semicontinuous, g : K — K becontinuousand T : K — 2X*
be upper semicontinuous with nonempty compact values, and n : K x K — R. Suppose that

(1) n(x,x) > Ofor all x € K,
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(2) for each x € K, thereisans € T(x) suchthat for all y € K,
nXx,y) —(s,y —gx)) < F(y) — F(g(x)),

(3) for each x € K, theset {y € K : n(x, y) < 0} isconvex,
(4) there is a nonempty compact convex subset C of K, such that for every x € K \ C, thereisy € C such that for
somes € T(X),

(s, y —9(x) < F(g(x)) = F(y).
Then there exists X € K whichis a solution of (F-1GVIP). Furthermore, the solution set of (F-1GVIP) is compact.
Proof. Definef2 : K — 2C by

2(y) = {X € C: max(s,y — g(x)) = F(g(x)) — F(Y)}
seT(X)
forall y € K. By the Berg Theorem, we know that the function
X — max(s,y — g(x)) — F(g(x))
seT(X)

is upper semicontinuous di. Herce the set

{x e K: max(s,y — gx)) > F(g(x)) — F(Y)}
seT(x)

is closed inK and, for eacly € K, the set

2(y) = {X € C: max(s,y — g(x)) = F(g(x)) — F(y)}
seT(X)

is compact inC because of the compactnes<of

Next, we $all claim that the family{£2(y) : y € K} has the finiténtersection property; then the whole intersection
Nyek £2(y) is nonempty and any element in the intersectigrk (2(y) is a solution of E-IGVIP). For any given
nonempty finite subsdt of K, let Cy = co{C U N}, the conexhull of C U N. ThenCy is a compact convex subset
of K. Define the magpingsS, T : Cy — 2°V, resgectively, by

Sy) = {X €Cn: SQWT&(I)%)(S, y—9() = F(g(x)) — F(y)} ,
and

T(y) ={xeCn:n(x,y) =0},
for eachy € Cyn. From theconditions (1) and (2), we have

ny,y) >0 forally € Cy, (2.1)
and for eacly € K, there is ars € T (y) suchthat

n(y,y) —(s,y —g(y) = F(y) — F(@(y)).

Hencey € S(y) forall y € Cy.

We can easily see that has closed values i@y. Since, for eachy € Cn, 2(y) = S(y) N C, if we prove that
the whole intersection of the familyS(y) : y € Cn} is nonempty, we can deduce that the fan{ify(y) : y € K}
has finite intersection property becaudec Cy and due to the condition (4). In order to deduce the conclusion of
our theorem, we can apply Fan’s Lemma if we claim tBé& a KKM mapping. Indeed, ifSis not a KKM mapping,
nather isT sinceT (y) C S(y) for eachy € Cy by the condition (2). Then there is a nonempty finite sulbddeif
Cn suchthat

coM ¢ ] T).

ueM
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Thus there is an elemeate coM c Cy suchthatd ¢ T (u) forall u € M, thatis,n(0, u) < O forallu € M. By (3),
we have

UecoM C {ueK:n@,u) <0}

and hence)(, 0) < 0 which contradicts(2.1). Herce T is a KKM mappng, and so isS. Therdore, there exists
X € K which is a solution of E-IGVIP).

Finally, to see that the solution set d¥{{GVIP) is compact, it is sdicient to show that the solution set is closed,
dueto the coercivity condition (4). To this end, I&tdenote the solution set ofF¢IGVIP). Suppose thaxy} € S
which converges to some Fix anyx € K. For eachn, there is ars, € T (Xn) suchthat

(S0, X — g(xn)) = F(g(xn)) — F(x). (2.2)

SinceT is upper semicontinuous with compact values and th@getU {u} is compact, it follows thal ({x,} U {u})
is compact]]. Therefore without loss of generality, we may assume that the seq{®p@®nverges to some Then
s € T (u) and by taking the limitinf in(2.2), we obtain

(s, x —g() > F(g) — F(x).
Henceu € SandSis closed. Thé conpletes the proof. O

When the nappingT is a single-valed mapping and is a Banach spac&heorem 2.ITeduces to%, Theorem
3.2].

Theorem 2.2. Under the assumptions of Theorem 2.1, if, in addition, F is convex and T (X) is convex, then X is a
strong solution of F-IGVIP, that is, thereexists S € T (X) such that

(5, x=9g(X) > F(g(x)) — F(x)
for all x € K. Furthermore, the set of all strong solutions of (F-1GVIP) is compact.

Proof. From Theorem 2.1we know thatX € K suchthat(1.1) holds for allx € K. SinceT (X) is compact, the
supremum is attained. That is,

max (s, X — g(X)) > F(g(X)) — F(x)
seT(X)

for all x € K. SinceT (X) is also convex, by Kneser’'s minimax theoreh e have

max inf ((s, X — g(X)) — F(g(X)) + F(x))

seT(X) xeK

= inf ma )((s, X —g(X)) — F(g(X)) + F(x)) > 0.

xeK seT (X
Therefore, there exists @ T (X) suchthat
(5, x —g(X)) = F(g(X)) — F(x)
for all x € K. Hercex is a strong solution oF-IGVIP. By an argument similar to that ifheorem 2.1we can show
that the set of all strong solutions d&F{IGVIP) is compact and the corresponding proof will be omitted

Theorem 2.3. Let F : K — R belower semicontinuous on any nonempty compact sets and convex, g : K — K be
continuousand T : K — 2X" be upper semicontinuouswith nonempty compact values such that
(1) for each x € K, thereiss € T(x) suchthat (s, x — g(x)) + F(x) — F(g(x)) > 0,
(2) there is a nonempty compact convex subset C of K such that for every x € K \ C thereisa y € C such that for
somes € T(x),
(s.y —9(x) < F((x)) — F(y).

Then there exists an X € K which is a solution of (F-IGVIP). Furthermore, the solution set of (F-IGVIP) is
compact. If, in addition, T (X) is also convex, then X is a strong solution of (F-IGVIP).
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Proof. For any given nonempty finite subsét of K, let Cy = co(C U N); thenCy is anonempty compact convex
subset ofK . DefineS: Cn — Zﬁ as in the proof offheorem 2.%and for eacly € K, let

2(y) = {X € C: max(s,y —g(x)) + F(y) — F(g(x)) > 0} .
seT(X)

We note that for eack € K, S(x) is nonempty since € S(x) by condition (1). By the Berge Theorem, we know that
for eachx € Cy, S(x) is closed inCy and, for eacly € K, £2(y) is compact inC. Next, we chim that the mapping
SisaKKM mapping. Indeed, if not, there is a nonempty finite subddeaif Cy suchthatcoM ¢ Uyxem S(X). Then
there is arx* € coM C Cy suchthat

max (s, X — g(x™)) < F(g(x*)) — F(x)

seT(x*)
for all x € M. SinceF is convex, he mapping

X = max (s, X — g(x*)) + F(x)
seT (x*)

is quasiconvex o€y . Herce we can deduce that

max (s, x* — g(x*)) < F(g(x")) — F(x*)

seT (x*)

which contradicts condition (1). Therefor8,is a KKM mgpping and by Fan’s Lemma we haWgec, S(X) # 0.
Note that for anyu € Nyecy S(X), we haveu € C by condition (2). Hence we have

2y =[)synC#y,

yeN yeN

for each nonempty finite subsét of K. Therdore, the whole intersectiomyek f2(y) is nonempty. LetX e
Nyek £2(y). ThenX is a solution of F-IGVIP). SinceC is compact, the solution set of(IGVIP) is compact.
Finally, if T (X) is also convex, then by theame agument as that iTheorem 2.2we can prove thak is a strong
solution of F-IGVIP). O

If T is a single-valed mapping an& is a Banach spac&heorem 2.2educes to%, Theorem 3.4].
3. F-implicit generalized complementarity problems

Throughout this section, the sé&t is assumeda be a closed anvex cone ofX. We introduce the following
F-implicit generalized complementarity problef@{GCP): Findx € K ands € T (X) suchthat

G 9(X)+F@x)=0 and (5 y)+F(y) =0, vy e K.

We remak that the F-implicit generalized complementarity problem covers the classical nonlinear
complementarity problem and many of itsrigats as special cases. See, for exampl®,9] and the eferences
therein.

We first estalish the following equivalent relation between strong solutions BfIGVIP) and solutions of
(F-IGCP).

Theorem 3.1. (i) If X solves (F-IGCP), then X is a strong solution of (F-IGVIP); (i) if F : K — R isa positive
homogeneous and convex function and X is a strong solution of (F-IGVIP), then X solves (F-1GCP).

Proof. (i) Let X solve F-IGCP). ThenX € K and for somé e T (X) we have
G, 9X) + F@x) =0 and G x)+FXx) =0, vx € K.
Hence
(8, X —g(X)) = F(g(X)) — F(x)

for all x € K. ThusX is a strong solution off-IGVIP).



L.-C. Zeng et al. / Applied Mathematics Letters 19 (2006) 684-689 689

(ii) Let x be a strong dation of (F-IGVIP). Then there exists € T (X) suchthat

(38, x—g(X)) = F(g(X)) — F(x) (%)

for all x € K. SinceF : K — R is a positivehomogeneous and convex function, and theksé$ a closed convex
cone ofX, subdituting x = 2g(X) andx = %g()‘() in (x), we obtain

(5, 9(X)) = —F(g(X)),

and
(5, 9(X)) = —F(g(X)).

This implies thats, g(x)) + F(g(x)) = 0. Combining this result an@), we have
(3,x) + F(x) >0, VX € K.

HenceX is a solution of E-IGCP). O

WhenT is a single-valed mapping an& is a Banach spac&heorem 3.¥educes to, Theorem 3.1].

Theorem 3.2. Let the assumptions of Theorem 2.1 hold. In addition, if F : K — R is a positive homogeneous and
convex function and T has convex values, then (F-1GCP) has a solution. Furthermore, the solution set is compact.

Proof. Applying Theorems 2.2nd3.1, we obtain the conclusion. O

Similarly, combiningTheorems 2.2ind3.1, we have the fibowing result.

Theorem 3.3. Let the assumptions of Theorem 2.3 hold. In addition, if F : K — R is a positive homogeneous
function and T has convex values, then (F-1GCP) has a solution. Furthermore, the solution set is compact.

If T is a single-valed mapping an& is a Banach spac&@heorem 3.3educes to%, Theorem 3.5].

We would like to remark that the norm topologies ¥fand X* considered in this work are in fact not quite
necessary. The consideration of norm topologies is used only to prove that the solutionFs¢éGoflP) and the set
of strong solutions are closed. As a matter of fact, we can con¥iderbe any topological vector space with a dual
spaceX*. Theonly assumption that we need toseme the solution set oF-IGVIP) and the set of strong solutions to
be closed is that the pairing, -) betweenxX* and X is continuous.
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