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Abstract

In this work, we study theF-implicit generalized variational inequalities in a real normed space setting. Weak solutions and
strong solutions are introduced. Several existence results are derived. As an application, we study theF-implicit generalized
complementarity problems and some existence results are obtained.
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1. Introduction and Preliminaries

Let X be an arbitrary real normed space with dual spaceX∗, and(·, ·) be the dual pair ofX∗ and X . Let X and
X∗ be endowed with their respective norm topologies. LetK be a nonempty closed convex set ofX . The mappings
F : K → R andg : K → K andT : K → 2X∗

are given. TheF-implicit generalized variational inequalities
problem (F-IGVIP) is finding anx̄ ∈ K suchthat

sup
s∈T (x̄)

(s, x − g(x̄)) ≥ F(g(x̄)) − F(x) (1.1)

for all x ∈ K .
A solution of (1.1)will be called aweak solution of the F-implicit generalized variational inequality problem. The

reason for the termweak solution can be seen as follows. Suppose thatT has compact values, that is,T (x) is compact
for all x ∈ K , andx̄ is a solution of(1.1). Then sincethe maximum of the left-hand side of(1.1)is attained, for each
x ∈ K , there is ans ∈ T (x̄) suchthat

(s, x − g(x̄)) ≥ F(g(x̄)) − F(x),
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and such ans usually depends onx . In contrast, we say that̄x is astrong solution of (1.1)if there exists an̄s ∈ T (x̄)

suchthat

(s̄, x − g(x̄)) ≥ F(g(x̄)) − F(x), for all x ∈ K .

We observe thatthe above s̄ does not depend onx ∈ K .
We now consider some special cases of (F-IGVIP).

(1) If T is a single-valuedmapping, then the (F-IGVIP) is equivalentto theF-implicit variational inequality problem
(F-IVIP) which is finding anx̄ ∈ K suchthat

(T (x̄), x − g(x̄)) ≥ F(g(x̄)) − F(x) (1.2)

for all x ∈ K . This problem was introduced and studied by Huang and Li [5] in a Banach space setting.
(2) If T is a single-valued mapping andg is an identity mapping, then the (F-IGVIP) is equivalentto the (F-VIP)

which is to find anx̄ ∈ K suchthat

(T (x̄), x − x̄) ≥ F(x̄) − F(x) (1.3)

for all x ∈ K . This problem was introduced and studied by Stampacchia [7] in aHilbert space setting and also
investigated in [9].

(3) If X = R
n andF ≡ 0, g is an identity mapping, then the (F-IGVIP) is equivalent to finding an̄x ∈ K suchthat

sup
s∈T (x̄)

(s, x − x̄) ≥ 0 (1.4)

for all x ∈ K . This problem was introduced and studied by Fang and Peterson [3], Yao and Guo [8].
(4) If X = R

n and F ≡ 0, T is a single-valued mapping andg is an identity mapping, then the (F-IGVIP) is
equivalent to finding an̄x ∈ K suchthat

(T (x̄), x − x̄) ≥ 0 (1.5)

for all x ∈ K . This problem is known as a classical variational inequality. This problem in finite-dimensional
spaces has been extensively studied in the literature. For example, see [4].

Summing up the above arguments, it has been shown that for a suitable choice of the mappingsF , g, T and the
spaceX , wecan obtain a number of known classes of variational inequalities and generalized variational inequalities,
implicit generalized variational inequalities. It is also well known that the variational inequality and its variants
enable us to study many important problems arising in mathematical, mechanics, operations research and engineering
sciences, etc.

In this work we aim to derive some existenceresults for weak and strong solutions of theF-implicit generalized
variational inequality problem. As an application, we will study theF-implicit generalized complementarity problems
and derive some existence results for such problems. Let us first recall the following results.

Berge Theorem ([1]). Let U, V be two topological spaces, the mapping φ : U ×V → R be an upper semicontinuous
function, T : U → 2V be an upper semicontinuous mapping with nonempty compact values. Then the function
x → maxs∈T (x) φ(s, x) is upper semicontinuous on U.

Fan’s Lemma ([2]). Let K be a nonempty subset of Hausdorff topological vector space X. Let G : K → 2X be a
KKM mapping such that for any y ∈ K , G(y) is closed and G(y∗) is compact for some y∗ ∈ K . Then there exists
x∗ ∈ K such that x∗ ∈ G(y) for all y ∈ K .

2. F -implicit generalized variational inequality problems

Now, we shall state and show our main existence results forF-implicit generalized variational inequality problems.

Theorem 2.1. Let the mappings F : K → R be lower semicontinuous, g : K → K be continuous and T : K → 2X∗

be upper semicontinuous with nonempty compact values, and η : K × K → R. Suppose that

(1) η(x, x) ≥ 0 for all x ∈ K ,
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(2) for each x ∈ K , there is an s ∈ T (x) such that for all y ∈ K ,

η(x, y) − (s, y − g(x)) ≤ F(y) − F(g(x)),

(3) for each x ∈ K , the set {y ∈ K : η(x, y) < 0} is convex,
(4) there is a nonempty compact convex subset C of K , such that for every x ∈ K \ C, there is y ∈ C such that for

some s ∈ T (x),

(s, y − g(x)) < F(g(x)) − F(y).

Then there exists x̄ ∈ K which is a solution of (F-IGVIP). Furthermore, the solution set of (F-IGVIP) is compact.

Proof. DefineΩ : K → 2C by

Ω(y) =
{

x ∈ C : max
s∈T (x)

(s, y − g(x)) ≥ F(g(x)) − F(y)

}

for all y ∈ K . By the Berge Theorem, we know that the function

x → max
s∈T (x)

(s, y − g(x)) − F(g(x))

is upper semicontinuous onK . Hence the set{
x ∈ K : max

s∈T (x)
(s, y − g(x)) ≥ F(g(x)) − F(y)

}

is closed inK and, for eachy ∈ K , the set

Ω(y) =
{

x ∈ C : max
s∈T (x)

(s, y − g(x)) ≥ F(g(x)) − F(y)

}

is compact inC because of the compactness ofC.
Next, we shall claim that the family{Ω(y) : y ∈ K } has the finiteintersection property; then the whole intersection

∩y∈K Ω(y) is nonempty and any element in the intersection∩y∈K Ω(y) is a solution of (F-IGVIP). For any given
nonempty finite subsetN of K , let CN = co{C ∪ N}, the convexhull of C ∪ N . ThenCN is a compact convex subset
of K . Define the mappingsS, T : CN → 2CN , respectively, by

S(y) =
{

x ∈ CN : max
s∈T (x)

(s, y − g(x)) ≥ F(g(x)) − F(y)

}
,

and

T (y) = {x ∈ CN : η(x, y) ≥ 0},
for eachy ∈ CN . From theconditions (1) and (2), we have

η(y, y) ≥ 0 for all y ∈ CN , (2.1)

and for eachy ∈ K , there is ans ∈ T (y) suchthat

η(y, y) − (s, y − g(y)) ≤ F(y) − F(g(y)).

Hencey ∈ S(y) for all y ∈ CN .
We can easily see thatT has closed values inCN . Since, for eachy ∈ CN , Ω(y) = S(y) ∩ C, if we prove that

the whole intersection of the family{S(y) : y ∈ CN } is nonempty, we can deduce that the family{Ω(y) : y ∈ K }
has finite intersection property becauseN ⊂ CN and due to the condition (4). In order to deduce the conclusion of
our theorem, we can apply Fan’s Lemma if we claim thatS is a KKM mapping. Indeed, ifS is not a KKM mapping,
neither is T sinceT (y) ⊂ S(y) for eachy ∈ CN by the condition (2). Then there is a nonempty finite subsetM of
CN suchthat

coM �⊂
⋃

u∈M

T (u).
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Thus there is an elementū ∈ coM ⊂ CN suchthatū �∈ T (u) for all u ∈ M, that is,η(ū, u) < 0 for all u ∈ M. By (3),
we have

ū ∈ coM ⊂ {u ∈ K : η(ū, u) < 0}
and henceη(ū, ū) < 0 which contradicts(2.1). Hence T is a KKM mapping, and so isS. Therefore, there exists
x̄ ∈ K which is a solution of (F-IGVIP).

Finally, to see that the solution set of (F-IGVIP) is compact, it is sufficient to show that the solution set is closed,
dueto the coercivity condition (4). To this end, letS denote the solution set of (F-IGVIP). Suppose that{xn} ⊂ S
which converges to someu. Fix anyx ∈ K . For eachn, there is ansn ∈ T (xn) suchthat

(sn, x − g(xn)) ≥ F(g(xn)) − F(x). (2.2)

SinceT is upper semicontinuous with compact values and the set{xn} ∪ {u} is compact, it follows thatT ({xn} ∪ {u})
is compact [1]. Therefore without loss of generality, we may assume that the sequence{sn} converges to somes. Then
s ∈ T (u) and by taking the limitinf in(2.2), weobtain

(s, x − g(u)) ≥ F(g(u)) − F(x).

Henceu ∈ S andS is closed. This completes the proof. �

When the mappingT is a single-valued mapping andX is a Banach space,Theorem 2.1reduces to [5, Theorem
3.2].

Theorem 2.2. Under the assumptions of Theorem 2.1, if, in addition, F is convex and T (x̄) is convex, then x̄ is a
strong solution of F-IGVIP, that is, there exists s̄ ∈ T (x̄) such that

(s̄, x − g(x̄)) ≥ F(g(x̄)) − F(x)

for all x ∈ K . Furthermore, the set of all strong solutions of (F-IGVIP) is compact.

Proof. From Theorem 2.1, we know that x̄ ∈ K suchthat (1.1) holds for all x ∈ K . SinceT (x̄) is compact, the
supremum is attained. That is,

max
s∈T (x̄)

(s, x − g(x̄)) ≥ F(g(x̄)) − F(x)

for all x ∈ K . SinceT (x̄) is also convex, by Kneser’s minimax theorem [6], we have

max
s∈T (x̄)

inf
x∈K

((s, x − g(x̄)) − F(g(x̄)) + F(x))

= inf
x∈K

max
s∈T (x̄)

((s, x − g(x̄)) − F(g(x̄)) + F(x)) ≥ 0.

Therefore, there exists ans̄ ∈ T (x̄) suchthat

(s̄, x − g(x̄)) ≥ F(g(x̄)) − F(x)

for all x ∈ K . Hence x̄ is a strong solution ofF-IGVIP. By an argument similar to that inTheorem 2.1, wecan show
that the set of all strong solutions of (F-IGVIP) is compact and the corresponding proof will be omitted.�

Theorem 2.3. Let F : K → R be lower semicontinuous on any nonempty compact sets and convex, g : K → K be
continuous and T : K → 2X∗

be upper semicontinuous with nonempty compact values such that

(1) for each x ∈ K , there is s ∈ T (x) such that (s, x − g(x)) + F(x) − F(g(x)) ≥ 0,
(2) there is a nonempty compact convex subset C of K such that for every x ∈ K \ C there is a y ∈ C such that for

some s ∈ T (x),

(s, y − g(x)) < F(g(x)) − F(y).

Then there exists an x̄ ∈ K which is a solution of (F-IGVIP). Furthermore, the solution set of (F-IGVIP) is
compact. If, in addition, T (x̄) is also convex, then x̄ is a strong solution of (F-IGVIP).
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Proof. For any given nonempty finite subsetN of K , let CN = co(C ∪ N); thenCN is a nonempty compact convex
subset ofK . DefineS : CN → 2C

N as in the proof ofTheorem 2.1and for eachy ∈ K , let

Ω(y) =
{

x ∈ C : max
s∈T (x)

(s, y − g(x)) + F(y) − F(g(x)) ≥ 0

}
.

Wenote that for eachx ∈ K , S(x) is nonempty sincex ∈ S(x) by condition (1). By the Berge Theorem, we know that
for eachx ∈ CN , S(x) is closed inCN and, for eachy ∈ K , Ω(y) is compact inC. Next, we claim that the mapping
S is a KKM mapping. Indeed, if not, there is a nonempty finite subsetM of CN suchthatcoM �⊂ ∪x∈M S(x). Then
there is anx∗ ∈ coM ⊂ CN suchthat

max
s∈T (x∗)

(s, x − g(x∗)) < F(g(x∗)) − F(x)

for all x ∈ M. SinceF is convex, the mapping

x → max
s∈T (x∗)

(s, x − g(x∗)) + F(x)

is quasiconvex onCN . Hence we can deduce that

max
s∈T (x∗)

(s, x∗ − g(x∗)) < F(g(x∗)) − F(x∗)

which contradicts condition (1). Therefore,S is a KKM mapping and by Fan’s Lemma we have∩x∈CN S(x) �= ∅.
Note that for anyu ∈ ∩x∈CN S(x), we haveu ∈ C by condition (2). Hence we have⋂

y∈N

Ω(y) =
⋂
y∈N

S(y) ∩ C �= ∅,

for each nonempty finite subsetN of K . Therefore, the whole intersection∩y∈K Ω(y) is nonempty. Letx̄ ∈
∩y∈K Ω(y). Then x̄ is a solution of (F-IGVIP). SinceC is compact, the solution set of (F-IGVIP) is compact.
Finally, if T (x̄) is also convex, then by thesame argument as that inTheorem 2.2, we can prove that̄x is a strong
solution of (F-IGVIP). �

If T is a single-valued mapping andX is a Banach space,Theorem 2.2reduces to [5, Theorem 3.4].

3. F -implicit generalized complementarity problems

Throughout this section, the setK is assumed to be a closed convex cone ofX . We introduce the following
F-implicit generalized complementarity problem (F-IGCP): Findx̄ ∈ K ands̄ ∈ T (x̄) suchthat

(s̄, g(x̄)) + F(g(x̄)) = 0 and (s̄, y) + F(y) ≥ 0, ∀y ∈ K .

We remark that the F-implicit generalized complementarity problem covers the classical nonlinear
complementarity problem and many of its variants as special cases. See, for example, [4,5,9] and the references
therein.

We first establish the following equivalent relation between strong solutions of (F-IGVIP) and solutions of
(F-IGCP).

Theorem 3.1. (i) If x̄ solves (F-IGCP), then x̄ is a strong solution of (F-IGVIP); (ii) if F : K → R is a positive
homogeneous and convex function and x̄ is a strong solution of (F-IGVIP), then x̄ solves (F-IGCP).

Proof. (i) Let x̄ solve (F-IGCP). Then,̄x ∈ K and for somēs ∈ T (x̄) we have

(s̄, g(x̄)) + F(g(x̄)) = 0 and (s̄, x) + F(x) ≥ 0, ∀x ∈ K .

Hence

(s̄, x − g(x̄)) ≥ F(g(x̄)) − F(x)

for all x ∈ K . Thusx̄ is a strong solution of (F-IGVIP).



L.-C. Zeng et al. / Applied Mathematics Letters 19 (2006) 684–689 689

(ii) Let x̄ be a strong solution of (F-IGVIP). Then there exists̄s ∈ T (x̄) suchthat

(s̄, x − g(x̄)) ≥ F(g(x̄)) − F(x) (∗)

for all x ∈ K . SinceF : K → R is a positivehomogeneous and convex function, and the setK is a closed convex
cone ofX , substituting x = 2g(x̄) andx = 1

2g(x̄) in (∗), weobtain

(s̄, g(x̄)) ≥ −F(g(x̄)),

and

(s̄, g(x̄)) ≤ −F(g(x̄)).

This implies that(s̄, g(x̄)) + F(g(x̄)) = 0. Combining this result and(∗), we have

(s̄, x) + F(x) ≥ 0, ∀x ∈ K .

Hencex̄ is a solution of (F-IGCP). �

WhenT is a single-valued mapping andX is a Banach space,Theorem 3.1reduces to [6, Theorem 3.1].

Theorem 3.2. Let the assumptions of Theorem 2.1hold. In addition, if F : K → R is a positive homogeneous and
convex function and T has convex values, then (F-IGCP) has a solution. Furthermore, the solution set is compact.

Proof. ApplyingTheorems 2.2and3.1, weobtain the conclusion. �

Similarly, combiningTheorems 2.3and3.1, we have the following result.

Theorem 3.3. Let the assumptions of Theorem 2.3 hold. In addition, if F : K → R is a positive homogeneous
function and T has convex values, then (F-IGCP) has a solution. Furthermore, the solution set is compact.

If T is a single-valued mapping andX is a Banach space,Theorem 3.3reduces to [5, Theorem 3.5].
We would like to remark that the norm topologies ofX and X∗ considered in this work are in fact not quite

necessary. The consideration of norm topologies is used only to prove that the solution set of (F-IGVIP) and the set
of strong solutions are closed. As a matter of fact, we can considerX to be any topological vector space with a dual
spaceX∗. Theonly assumption that we need to ensure the solution set of (F-IGVIP) and the set of strong solutions to
be closed is that the pairing(·, ·) betweenX∗ andX is continuous.
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