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Abstract 

Aharoni, R., Infinite matching theory, Discrete Mathematics 95 (1991) 5-22. 

We survey the existing theory of matchings in infinite graphs and hypergraphs, with special 
attention to the duality between matchings and covers. Some results are presented which have 
not appeared elsewhere, mainly concerning Menger’s theorem for infinite graphs. 

1. Introduction 

The study of a theory which encompasses, among other concepts, such a basic 
notion as that of injections between infinite sets, hardly needs further advocacy. 
But if one is required, an interesting observation is that infinite matching theory 
can boast a result which is probably as early as any result in finite matching 
theory, if not earlier. 

Theorem 1.1. If A and B are subsets of the two respective sides of a bipartite 
graph, and if there exist two matchings covering A and B respectively, then there is 
a matching covering A Ll B. 

This is a re-formulation of the famous Cantor-Bernstein Theorem (see, e.g. 

[20, pa 231). 
There is also no doubt that infinite matching theory, besides its inherent 

interest, can illuminate some points in finite matching theory. For example, a 
result saying that the infinite version of a theorem is ‘hard’ to prove (see [9]) 
probably reflects on the complexity of the finite problem, although no expiicit 
connection has been established as yet. 

Matching theory can be divided very roughly, but usefully, into two parts, 
circling around two themes: criteria for matchability (exemplified by the theorems 
of Hall and Tutte) and the duality between matchings and covers (the outstanding 
results here are the theorems of Wnig and Menger). The two themes are very 
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closely knit together, and an important fact on the link between them should be 
mentioned here: whereas in the finite case duality results can be proved directly, 
it seems that in the infinite case they have to be proved via their counterparts on 
criteria for matchability. The reason is that in the finite case one can start from a 
maximal matching and produce the dual cover from it, an endeavour which is 
pretty meaningless in the infinite case (maximal matchings exist with respect to 
containment, but a stronger notion of maximality is needed here, see Theorem 
5.3.) 

Here is a somewhat brief historical survey. The first modern treatment of 
infinite matching theory is in the book of Kiinig [21]. It contains an extension due 
to Erdds of Menger’s theorem to the infinite case. In 1935, P. Hall published his 
theorem [17] which quickly became famous, a fate which befell its predecessors, 
the theorems of Kiinig and Menger (of which it is an easy consequence) only 

much later. 

Theorem 1.2 (P. Hall’s Theorem). In a 
(M, W) there exists a matching of 19-4 if 
connected to at least IAl vertices in W. 

finite bipartite graph with bipartition 
and only if every subset A of M is 

It was well known that the theorem fails in the infinite case. There is a basic 
example showing this: a bipartite graph whose vertex set is {mi: 0 d i < o} U 
{wi: 1 d i < O} and edge set {(mi, Wi): 1 d i < CO} U {(mo, Wi): 1 s i < O} (mO is 
sometimes called the ‘playboy’). Every set A of mi’s is connected to at least (A 1 

elements wi, but there is no matching of the mi’s. It was felt that the example is 
cannonical in some sense for the countable case. This was confirmed in the early 
1970’s on apparently two different lines of ideas. One was due to Nash-Williams, 
who proposed a somewhat complicated function which counts the difference 
between the size of a set of women (elements of W) and the number of men 
(elements of M) who must be married (matched) into this set. Damerell and 
Milner [13] proved a conjecture of Nash-Williams that, in the countable case, 
there is a marriage of all men if and only if this function is always nonnegative. 
Later [22] Nash-Williams simplified his own criterion. But there was another line 
of ideas, which culminated in Podewski and Steffens’ criterion on ‘critical sets’ 
([24], see Section 3). In [ 101 the two criteria were shown to be equivalent. In 
hindsight it seems that, because of its simplicity, the ‘critical sets’ criterion is the 
more useful one, in spite of its apparent circular requirement that the critical set 
itself should be matchable. For example, Podewski and Steffens were able to 
prove, using it, the countable case of Erdiis’ conjecture on the extension of 
Kiinig’s theorem to the infinite case. 

The general problem was settled in 1983, when a criterion for matchability was 
proved for general bipartite graphs [lo]. Basically, it confirmed a feeling that the 
most general obstacle for the existence of an injective choice function in the 
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uncountable case is one which forces it to be regressive on a stationary set. This 
criterion was used to prove Kiinig’s theorem for general graphs in [3]. 

As for general graphs, the finite criterion for matchability was found by Tutte 
[27]. Later he proved that his criterion is valid also for locally finite graphs 1281. 
(The corresponding extension of P. Hall’s theorem, namely that P. Hall’s 
condition is sufficient if the degree of every vertex in the set of ‘men’ is finite, 
was proved by M. Hall [18]. But this is nowadays an easy exercise in 
compactness.) Steffens [26] gave a criterion for matchability in countable graphs, 
which was later used to prove a Tutte-like result for countable graphs [4]. The 
general problem was solved in [6]. 

Although this is a survey paper, we have included a few new results. The 
survey is not intended in any way to be comprehensive. There is an excellent 
book on the bipartite case [19] which is much more detailed on this subject. 

2. Definitions 

A graph will be usually denoted by G = (V, E), where V is the set of vertices 
and E the set of edges (i.e. E c [V12). If G is bipartite with bipartition 
V = MU W, it will be denoted also by (M, W, E). We then write: M = MC, 
W = WG, E = EG. If X is a subset of V we write G[X] for the subgraph of G 
induced by X. The graph G[V\x] is denoted by G - X. If r = (M, W, E) is 
bipartite and X E V, we assume that r[X] has the bipartition (M n X, W n X). 
A matching in a graph is a set of disjoint edges. A cover is a set of vertices 
meeting all edges. For a given subset F of E, a vertex a and a subset A of V, we 
write 

F(a) = (v E V: {a, IJ) E F}, F[A]=U{F(a):aEA} and 

F [A={fEF:fnA#fl}. 

If IF(a) I= 1 we write F(a) for the single element of F(a). A matching F is said 
to cover a set A if A c F[V]. If such F exists, then A is said to be matchable and 
if, in such a case, F[A] c B, we say that A is matchable into B. For any subset X 
of V we write D(X) = {V E V : E ( v ) c X) . An espousal in a bipartite graph r is a 
matching covering Mp If such a matching exists, then r is said to be espousabfe. 

We need some terminology concerning paths. The vertex set of a path P is 
denoted by V(P), and its edge set by E(P). If P has a first vertex, it is denoted bv 
in(P), and if it has a last vertex, it is denoted by ter(P). If P is a family of paths, 
we write pf for the set of finite paths in P. We also write 

V[P] = lJ (V(P): P E P}, E[P] = U {E(P): PEP}, 

in[P] = {in(P): P E P has a vertex) and 

ter[P] = (ter(P): P E has a last vertex}. 
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If P and Q are paths such that V(Q) n V(P) = {in(Q)} = {ter(P)} then P * Q 
denotes the concatenation of P and Q. If P and Q are two families of disjoint 
paths and V[Q] I? vfp] = in[Q] c ter[P] then P * Q denotes the family 

{P * Q: PEP, Q E Q and ter(P) = in(Q)}. 

3. Bipartite graphs 

Some people regard Hall’s Theorem as the cornerstone of finite matching 
theory, but others, the author included, feel that this title is due to the closely 
related Theorem of Ktinig (which has the advantages of being more symmetrical, 
of implying Hall’s Theorem more easily than the other way round, and also of 
historical precedence!). Here it is, in a form which is true also in the infinite case: 

Theorem 3.1 [3]. In any bipartite graph there exist a matching F and a cover C 
such that C consists of the choice of precisely one vertex from each edge in F. 

A pair (F, C) as in the theorem is called orthogonal. 
Let P = (M, IV, K) be a bipartite graph, and let F and C be as in the theorem. 

Let X = C n W and D = M\C. Since C is a cover, there is no edge from D to 
W\C, which means that K[D] c X. Since obviously X = F[ D] s K[D] we have 
X = K[D]. Now assume that P is inespousable. Then D is unmatchable, for if I 
were a matching of D, then I U (F [ (M n C)) would be an espousal, since 
I[D] cX c W\F[M n C]. Hence we have the following, which should be 
considered as the infinite version of the marriage theorem: 

Theorem 3.2. P is inespousable if and only if there exists an unmatchable subset D 
of M such that KID] is matchable into D. 

Note that in the finite case the conditions on D imply jK[D]l < 1 D I, and thus 
Hall’s Theorem is a particular case of Theorem 3.2. 

How does one go about proving Theorem 3.1? Here we are about to present 
one of the protagonists of the play: the wave. A wave W is a set of vertex 
disjoint paths such that in[FV] c M, and ter[IV] is a cover. Note that although 
Theorem 3.1 is symmetrical in M and W, the notion of a ‘wave’ is not. In fact, 
we shall introdu *ce an even greater a-symmetry-we are considering here P as a 
directed graph, in which the edges are directed from M to W. Thus the paths in W 
consist of either one edge or just one vertex. There exists at least one wave: 
((m): m E M}. This is called the trivial wave. We define an order < on the waves: 
W 6 U if in[U] c in[ W] and every path in U is an extension of some path in IV. 
The trivial wave is minimal in this order. A wave W is cal!ed tight if there does 
not exist a set V of vertex disjoint paths such that in[ V] = in[IV] and 
ter[ V] s ter[IV]. A wave W is called full if in[IV] = M. Otherwise it is called a 
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hindrance. A tight hindrance is called a l+bstruction (a slightly different 
definition is given in Section 4). If r contains a hindrance, it is called hindered, 
and if it contains a l-obstruction, it is called l-obstructed. For a given wave W we 
denote by ess( W) the set W\{P E W: ter[w\{P}] is a cover}. It is easy to show 
that ess(W) is a wave. If ( Wcy: a C 0) is a s -ascending sequence of full waves, 
then t crCBWm denotes the family of paths 

{(m, w): m E in[ W&l for all cy. and (m, w) E Wa for some a> 

U {(m): (m) E WLy for all (u}. 

(This is just the result of ‘growing’ the waves along the sequence. The reason for 
the restriction of < to full waves is that for general waves Lemma 3.3 is false. 
Another way of overcoming this difficulty is the introduction of “billows”, as is 
done in Section 4.) 

Lemma 3.3. t (y<OWa is a wave. Moreover, if each Wm is tight, then so is laceWa. 

For the proof of the first part, note that if 8 = c + 1, then TacoWP = WC, which 

is, of course, a wave. If 0 is a limit ordinal, then S = ter[r(l<eWa] is a cover, since 
if (m, w) E K and m $ ter[ Wm] for some a, then w E ter[ We] for all p > cy (because 
Ws is a wave and m $ ter[ Ws]) and hence w E S. The second part is left as an 
exercise. 

By Lemma 3.3 there exists a s-maximal full wave U. Let W = ess(U). The set 
ter[ W] will serve as the set C of Theorem 3.1. (Note how easy it is to find C in 
comparison to the construction of F!) We also have at hand one part of F: the set 
of paths in W consisting of an edge. Let 

A = ter[W] n M, B = ter[W] n IV, and r’ = T[A U W\B]. 

Since C = A Ll B = ter[W] is a cover, it suffices to show that r’ is espousable in 
order to conclude the proof. For if H is an espousal of r’, then the matching 
(W [ B) Ll H is obviously orthogonal to C. Now, the maximality of U implies that 
r’ contains no nontrivial wave. Hence it suffices to show that if a bipartite graph 
contains no nontrivial wave, then it is espousable. In fact, the following somewhat 
stronger theorem is true. 

Theorem 3.4. An unhindered graph is espousable. 

Note that this theorem looks like a much weaker version of Theorem 3.? (to 
see this assume that a graph r is inespousable. By Theorem 3.2 there exists ah 
unmatchable subset D of M such that K[D] has a matching I into D. Then 
I U {(m): m E M\D} is a hindrance in K) But in fact, by the preceding argument, 
it carries the whole weight of Theorem 3.2. 

The proof of Theorem 3.4 depends on a criterion for espousability proved by 
Podewski and St&ens [24] in the countable case, and by Aharoni, Nash-Williams 
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and Shelah [lo] in the uncountable case. Podewski and Steffens proved the 

following stronger result in the countable case. 

Theorem 3.5. A countable bipartite graph is espousable if and only if it is not 
1 -obstructed. 

(In [9] Theorem 3.4 is given, in the countable case, a more direct proof, 
although the two proofs are, at base, the same. They both have an alternating 
paths argument at their core.) 

Here is a nice corollary of this theorem, which extends to the infinite case a 
well-known result of Birkhoff [12].’ 

Corollary 3.5a. An infinite doubly-stochastic matrix contains a nonzero general- 
ized diagonal. 

in terms of bipartite graphs, what the corollary says is this: if F is a bipartite 
graph and f a nonnegative real valued function on E = Er such that C,X,, f (e) = 1 
for every x E V, then r has a perfect matching on which f is positive. 

Outline of proof. Let H = (e E E: f (e) > 0} and let r’ = (V, H). Every vertex in 
r’ has a countable degree, and hence every connected component of r’ is 
countable. It suffices to show that every component A of r’ is matchable, and by 
Theorem 1.1 one has to prove only that Md is matchable. If not then, by the 
theorem, there exists in A a tight wave W and a vertex a E M,\in[W]. Let 
F = E[W] and let U = F[W,] U {a} ( i.e. U consists of a, together with the set of 
initial vertices of paths in W consisting of an edge.) Define a weight function w on 
the edges of the complete directed graph Du on U by: w(u. e) = f (u, F(v)) 

(u E U, v E U\{a}, u #v) and w(u, a) = 0 for u #a. Then, for every vertex 
ZJ E U\(a) there holds 

c w(u, v) s c w(u, v) 
UEcA{U} UELA{U} 

(the right-hand side is equal to 1 -f (v, F(v))), while 

UEj& w(a, u) = 1, C w(a, u) = 0 
uEcA{a} 

(**I 

This is easily seen to imply the existence of an infinite path a, ul, u2, . . . in Du on 
whose edges w is positive. (A first step towards a proof of this is removing all 
positive circuits in D u. This keeps both (*) and (**), and for acyclic graphs the 
claim is easy.) But then there exists in A an infinite F-alternating path starting at 
a, which contradicts the tightness of W (one sees this by replacing, in W, the 
edges {(Ui, F(y)): i <. O} by {(Ui, F(Ui+,)): i C o}. The resulting matching misses 

~W*) 

’ Note added in proof: the result was proved by a different method by J.R. Isbell, Birbhoff’s 
problem 111, Proc. Amer. Math. Sot. 6 (1955) 217-218. 
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In the uncountable case there exist more complicated possible obstacles for 
espousability. Let Y be the set of all regular uncountable cardinals, together with 
1. We define the notion of a K-obstruction for ali K E Y by induction on K. The 
notion of a l-obstruction is already defined. If W is a l-obstruction and 
a E M\in[W] then, denoting F = K f7 W, we call (by an abuse of language) also the 
graph r[{a} U F[V]] a l-obstruction in Z For K > 1, a K-obstructive sequence is a 
sequence ((A&, W,): LY< K) of pairs of sets, such that M, c M, W& c W, 
M,nMp=W,nWp=$ for a#/?, K[M,]~U{Wp:/%~}; for each a<~, 

either: 
(i) M, = # and IW,l = 1, or, 
(ii) r[My, Wa] is a p-obstruction (in itself) for some p < K, 

and the set {a: (ii) occurs at a} is stationary. 

The graph 0 = ~[U,-dk u l_L, Wn] is then called a K-obstruction in K 
(This can also be taken as a special case of a definition in Section 4.) r is called 
obstructed if it contains a K-obstruction for some K E Y. 

Theorem 3.6 [lo]. A graph is espousable if and only if it is unobstructed. 

The ‘only if’ part follows quite easily from Fodor’s Lemma. The ‘if part is 
harder. 

It is also not easy to derive Theorem 3.4 from Theorem 3.6. But we can exhibit 
one main idea in a simple case. Our aim is to show that if Tis inespousable, then 
it contains a hindrance. By Theorem 3.6, r contains some K-obstruction T. If 
K = 1, then T is a hindrance, and we are done. So, assume that K is regular and 
uncountable. Let Y be the set of ordinals cy of type (ii) in T. Here we shall 
greatly simplify matters and assume that, for each a E !P, the obstruction 
r[M, i__l Wa] is of a particularly simple type: W& = (p (i.e. K[M,] c_ U (Wp: p < a}) 
and /MJ = 1. Let MLy = {m,} whenever cy E Y and Wm = (wLI) for cy $ Y. For 
a $ Y define 

e&=(/k Y$>a and (ms, w&K} 
Let 

X = {w,: e, is stationary}, Y = WJX, 

A=K[Y]nM, and D = MJA. 

(The set X consists of those w, connected to ‘many’ m,‘s, and D is the set of 
m,‘s connected only to X.) 

Assertion 3.7. & : = { /3 E Y: ms E A} is nonstatioroary. 

Proof. For each mS E A choose cu = f (/3) such that (ms, We) E K and w, E Y. 
Then f (/3) < #!I for all @ E &, and hence if ey is stationary, then by Fodor’s lemma 
there exists some w, E Y such thai #f(p)) is stationary. But then eP is 
stationary, contradicting the fact that w, E Y. l2 
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By Assertion 3.7, 8,\By is stationary for all w, E X. Hence IK(w,) n 01 = K 
whenever w, E X. Since 1x1 s K, this easily implies that there exists a matching of 
X into D. The definitions imply that KID] E X, and since K(x) n D # # for all 
x E X, we have K[D] = X. Since !I!& is stationary, r[D Ll X] is a &obstruction, 
and thus D is unmatchable. Hence D satisfies the conditions in Theorem 3.2. As 
already noted, this proves also Theorem 3.4. 

4. Webs 

A web is a triple r = (G, A, B) where G = (V, E) is a directed graph, and 
A, B c V(G). We write Sr for A (the S stands for ‘source’). A finite path P is an 
A-B path if V(P) 17A = (in(P)}, V(P) n B = {ter(P)}. A subset S of V is called 
A-B separating if V(P) n S # @ for all A-B paths P. Since we shall be mainly 
concerned with A-B paths and A-B separating sets, we may assume that there 
are no edges in rwhich go out of B or go into A, since the deletion of such edges 
does not alter the above mentioned objects. A web is called bounded if it contains 
no infinite paths. 

A ripple in r is a set of vertex-disjoint paths, each starting at a vertex from A 
(in [5] this was called a ‘warp’). A ripple R is called an A-B ripple if all paths in 
it are A-B paths. If, in addition, in[R] = A, then R is called a linkage. If r 
contains a linkage, it is called linkable. A ripple W is called a wave if ter[ W] is 
A-B separating. (Note that here we do not require finiteness of the paths-they 
may be unending. This is different from the terminology of [S]). A wave W is 
called tight if there does not exist a ripple R such that in[R] = in[W] and 
ter[R] 5 ter[ W]. 

Given a wave W we write r[W] for the web (G, A, ter[W]). If T[W] is not 
linkable, then W is called an impediment, and if F contains an impediment it is 
called impeded. Clearly, an impeded web is not linkable. If in[ W] #A then W is 
called a hindrance, and if a hindrance exists r is called hindered. 

The notions of ‘linkage’ and ‘A-B separating set’ generalize, respectively, 
the notions of ‘espousal’ and ‘cover’ in the bipartite case. Thus, a linkage is an 
espousal through a “medium” of vertices in V\(A U B). So, it is natural to ask for 
the generalizations of the main theorems of Section 3 to webs. The generalization 
of Theorem 3.1 corresponds to Menger’s theorem in the finite case, a:rd is the 
subject of a famous conjecture of Erdiis: 

Conjecture 4.1. In any web there exists an A-B ripple R and an A-B separating 
set S such that S consists of the choice of precisely one vertex from each path 
in R. 

As in the bipartite case, the first breakthrough was made by Podewski and 
Steffens 1251. They proved the conjecture for countable bounded webs. Since 
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then it has become clear that the main obstacle for the proof of Conjecture 4.1, 
or rather, what makes the conjecture harder than Theorem 3.1, is the possible 
existence of infinite paths. The difficulty is that trying to ‘grow’ A-3 paths 
starting from A, one may end up with unending paths, rather than A-3 
paths. In fact, in [2] it was noted that in the absence of infinite paths, Conjecture 
4.1 follows easily from Theorem 3.1 (so, the conjecture is now known for all 
bounded webs). The way to see this is to assign to r a bipartite graph f in the 
following way. To each vertex Q E A assign a vertex a’ of f, to each b E I3 a 
vertex 6; and to each v E V\(A LJ 3) two vertices, V’ and v”. Let 

and 
V’ = {v’: v EA LI (V\B)}, V” = (v”: v E 3 Ll (VM)}, 

E = {(x’, y”): (x, y) E E} LIJ, where J = {(xl, x”): x E V\(A LIB)}. 

Let f = (V’, V”, l?‘). Choose F and C, a matching and a cover in p, as in 

Theorem 3.1. Let 

S={VEV\(AUB):{ v’, u”} c C} Ll {a EA: a’ E C} U (6 E 3: b” E C}, 

and let R be the set of maximal paths P in r satisfying (x’, y”) E F whenever 
(x, y) E E(P), and P contains a vertex from S. It is not hard to show that S is 
A-3 separating; that every s E S is contained in a path Q E R such that ter(Q) E B 
if ter(Q) exists and in(Q) E A if in(Q) exists; and that every path in R contains 
precisely one vertex from S. If r is bounded, then all paths in R must be A-3 
paths, and thus R is an A-3 ripple which satisfies, together with S, the conditions 
of Conjecture 4.1. 

Things are even simpler, in the bounded case, with regard to criteria for 
linkability (the analogues of Theorems 3.2 and 3.6). For, the web r is linkable if 
and only if i’ is espousable. To see this, assume that r is linkable, and let L be a 
linkage of K Then the set 

((x’, y”): (x, y) E E[L]} U {(I?, v”): IJ E V\V[L])} 

is an espousal in p. Conversely, assume that F is an espousal of f. Given any 
a EA, let v1 be such that (a’, v’;) E F. If v1 $3 then v; exists, and (vi, v’;) $ F 
(since (a ‘, v’;) E F). Hence (vi, v’;) E F for some v2. If v2 $3 then (vi, v’;) E F for 
some vertex v3. Continuing this way, since r is bounded, vk E 3 for some k. 
Connect then a to 3 by the path Pa = (a, vl, . . . , vk). Since F is a matching, 
V(P,,) n V(P,,) = c#~ whenever al #a2, and thus we have constructed a linkage in 
E (Note that we have used only the absence of unending paths!) 

In order to formulate the criterion for linkability which the above observations 
yield (together with Theorems 3.2 and 3.6) we have to define “K-obstructions” 
for webs, for K E X The definition is more involved here than in the special case 
of bipartite webs, discussed in Section 3. We really have to go into the inner 
structure of the obstructions. 

First, we have to introduce a slight modification of the notion of a wave. A 

billow is a pair B = ( W, U = )) of waves where in[ (the 
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set of finite paths in W). If C = (2, Y) is another billow, we write C s 
in[Y] E in[U] and every path in 2 is an extension of some path in W. (The idea in 
these definitions is that although the part W\ E (B) is ‘redundant’ in terms of 
A-B separation, it is necessary for the definition of the relation Q , since it keeps 
a path P in 2 from intersecting the ‘redundant’ part of W, except for the initial 
part of P which belongs to W). We write T/B for the web (G - (V[W]\ 
ter[U]), ter[U], B). If Bcy = ( Wm, U,) (cy c 0) is a s-ascending sequence of 
billows, we write to<& for the pair ( W, U), where W is the ripple defined by 
E[W] = Ll {E[W,]: au< e} and U the sub-ripple defined by in[U] = 
n {in[UJ: CY < 0) n in[wf]. 

Lemma 4.2. 7 (y<OBo. is a billow. 

The trivial billow, denoted by 0 = Or, is the pair (W, W), where W = {(a): a E A}. 
We next define the concatenation of billows. Let B = (W, U) be a billow in I’, 

and let C = (2, Y) be a billow in T/B. Then B * C is the pair (R, S), where 
R = {P * Q: P E U, Q r= 2 and in(Q) = ter(P)) and S = {R E R: ter(R) E ter[Y]}. 

Lemma 4.3. B * C is a billow. 

We can now define inductively the concatentation *(B,: Q < 0) of a sequence 
& = ( Wa, U,), ( LY < 0) where eacir B, is a billow in F/*(Bg p < a). (So, we are 
already assuming that *(BP: /3 < a) is defined for all & < 0.) If 8 = y + 1 then 
*(B,: CY< 0) is defined as (*(BP: ar< O))*B,,. If 0 is a limit ordinal, then 
*(&: cuc 0) = tp_&(Ba: a< /I)). By Lemmas 4.2 and 4.3, *(B,: cw< 0) is a 
billow. If *(B,: LY < 0) is defined, we say that the sequence (BP: QC < 0) is a 
ladder. 

Some definitions needed at this point are the following: For any vertex v we 
write C(TJ) for the set of edges going into V. If F is a set of vertices, we write 
e-[F] = U(e-(v): TJ E F}. 

If F E VL4 then r+ (s)F denotes the web (G, A U F, B), r+ (d)F denotes 
the web (G, A, B U F), and P- (d)F denotes the web (G’, A, B) where 
G’ = (V, E\e-[F]) (h ere (s) stands for ‘source’ and (d) for ‘destination’. In 
P - (d)F the vertices of F cannot be reached.) We also write re F for 
P - (d)F + (s)F. 

In our new terminology, a l-obstruction is a pair (B, $), where B = (W, U) is a 
billow, W is tight and U 5 W. Assume now that K E Y and that the notion of 
p-obstruction is defined for all p E Y n K. A pair (B, F) is said to be a 
K-obstruction if there exists a sequence ((B,, F,): a < K) of pairs, such that Ba is 

billow in Pa = &)/& (where & = u {Fs: /3 < a} and &. = *(BP: p < LY)); 
= *(B,: cU< K = u {F&: QI C K}, and for each 1y C K either: 

Fm) is a p-obstruction in Pa for some 1_1< K, or, 
Cl,, IF&I = 1, Fm = (x} for some x c: V(c) - Sr,, 

and the set ( cv C K: (i) occurs at LY) is stationary. We say that P is obstructed (or 
specifically K-obstructed), if it contains a K-obstruction for some K E Y. 
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Theorem 4.4. A web containing no unending path is linkable if and only if it is 

unobstructed. 

Conjecture 4.5. The same is true for all webs. 

For countable graphs the following weaker version of the conjecture is known. 

Theorem 4.6. A countable unhindered web is linkable. 

The main step in the proof of Theorem 4.6 is the following. 

Theorem 4.7. If r is countable and unhindered, then for every a E A there exists 
an a-B path P such that P - V(P) is unhindered. 

This theorem should be true also for uncountable webs, but countability is so 
far used very essentially in the proof. Its proof in the uncountable case would 
probably clear the way to the proof of Conjecture 4.1. On the other hand, if the 
term ‘unhindered’ could be replaced in the theorem by ‘not l-obstructed’ then 
Conjecture 4.5 would follow for countable webs. 

Proof of Conjecture 4.1 for countable webs. Let; B = (W, U) be a G-maximal 
billow in r By Lemma 4.3, T/B contains no nontrivial billow, and hence, by 
Theorem 4.6, it is linkable. Let L be a linkage in r/B. Then the ripple U * L and 
the A-B separating set ter[U] satisfy the conditions of Conjecture 4.1. Cl 

5. General graphs 

A matching F in a graph G = (V, E) is called perfect if F[ V] = V. If G contains 
a perfect matching it is called matchable. In 1947 Tutte proved his celebrated 
theorem on a necessary and sufficient condition for matchability [27]. We shall 
bring it here in a stronger form, proved by Gallai [ 151. 

A graph P is called factor-critical if it is unmatchable, but P -x is matchable 
for every x E V(P). Clearly, a finite factor critical graph is of odd cardinality (for 
which reason it is called in [6] “peculiar”). Given a graph G = (V, E) and a 
subset S of V, we write P(S) = P(G, S) for the set of factor-critical connected 
components in G - S. We associate with S a bipartite graph n = n(G, S) = 
(P(G, S), S, H), where (P, s) E H (here P EP(S) and s E S) if (v, s) E E for some 
v E V(P). We can now state Gallai’s theorem in a form which is true also for 
infinite graphs. 

Theorem 5.1 [6]. A graph G is matchable if and only if l7(G, S) is espousable for 
every set of vertices S. 

If G is finite and unmatchable, then, by Theorem 5.1 and Hall’~; theorem, there 
exists a s;lbset (S) connected in I S) to a subset S’ of S containing 
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fewer than IP’l vertices. Then P’ s P(S’), and hence IP( > IS’(. This, in 
particular, implies Tutte’s theorem, which states that if G is unmatchable, then it 
contains a set S’ of vertices such that the number of odd components in G - S’ is 
larger than IS’]. It is also worth while noting that a locally finite factor-critical 
graph P is finite (this is proved by the use of Konig’s Lemma and the fact that if I 
is a matching of P -x for some vertex x, then there is no infinite I-alternating 
path.) This proves the result first proved by Tutte himself [28], that his theorem 
holds also for locally finite graphs. 

We shall not attempt any description of the proof of this theorem. Instead, we 
give a structure theorem for graphs, which follows easily from it. (In the finite 
case this is the Gallai-Edmonds decomposition theorem.) 

Theorem 5.2 [ll]. The vertex set V of any graph G = (V, E) can be decomposed 
as a disjoint union V = A U B Ll T, where: 

(i) G[B] i+s matchable; 
(ii) A = u{ V[P]: P E P} where P = P(G, T); and 

(iii) T is matchable into P in n(G, T). 

Proof. Let 2 be the set of pairs (Y, I), where Y s V and I is a matching of S into 
P(G, Y) in n(G, Y). Define an order < on 2 by (Y, I) < (2, H) if (1) Y s 2 E 
V\V[P(G, Y)] and (2) I c H (note that (1) implies that P(G, Y) E P(G, 2)). 
Applying Zorn’s Lemma, it is not hard to see that 2 contains a maximal element 
(T, I). Let A = V[P(G, T)] and let B = V\(A U T). If G’ = G[B] were not 
matchable, then, by Theorem 5.1 there exists a subset S of B such that 
n = 17(G’, S) is inespousable. By Theorem 3.2 there exists X c S which has a 
matching J into &(X), and &(X) is unmatchable. Since &(X) is unmatch- 
able and &(@) = @, it follows that X # @. Then T Ll X is matchable into 
P(G, T U X) = P(G, T) U L&(X) by the matching I U J, contradicting the maxi- 
mality of the pair (T, I). We have thus shown that G[B] is matchable, as required 
in the theorem. Cl 

In [ll] Theorem 5.2 was used to prove a duality result on fractional covers and 
matchings in graphs (see Section 6). Here we shall use it to prove another result. 
A matching F is called strongly maximal if there does not exist a matching H such 
that IH\FJ > JF\MI. Since for any matching H the set of edges in F AH forms a 
set of disjoint alternating paths and cycles, it is clear that F is strongly maximal if 
and only if there does not exist a finite improving F-alternating path, i.e. one 
starting and ending at V\F[V]. 

Theorem 5.3. Every graph contains a strongly maximal matching. 

roof. Let A, B, T and be as in Theorem 5.2, let J be a perfect matching in 
G[B], and let I be a matching of T into P in n(G, T). For each t E T choose a 
vertex f(t) E E(t) n V(I(t)), and a matching Kt of I(t) -f(t). For each P E 
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P\I[T] choose a vertex x = x(P) E V(P), and a matching Lp of P -xx. Let 

F=JLJ{(~,~(~)):~ET}UU(K,:~ET}U~ {Lp: PEP’}. 

Then the set V\F[V] of vertices not covered by F is (x(P): P E P’}. Suppose that 

(Yl9 Y2, l l 
. , yn) is an improving F-alternating path. Then y, = x(P,) for some 

PI E P. Since E[V(PJ] c V(PJ U T, there exists kl such that Yi E V(P,) for i < kl 

and yk, E T. Then Y~+I =f(yk) E VW, where P2 E PW’. Then there exists 
k2 > kI + 1 such that Yi E V(P2) for kI < i < k2. and ykz E T. Continuing this way we 
see that for no i > 1 does there hold Yi E V[P’]. Hence y, cannot belong to V[P’], 
a contradiction. Cl 

Problem 5.4. For which finite graphs H is it true that every infinite graph G 
contains a strongly maximal set of edges not spanning H? (In Theorem 5.3 H is a 
path of length 2.) 

Problem 5.5. Does every hypergraph with finite edges contain a strongly maximal 
matching? 

6. Hypergrapbs and linear programming duality 

So far there have been two (very closely related) main themes in our survey: 
conditions for matchability, and the duality between matchings and covers; all, of 
course, in graphs. When we turn to hypergraphs, we see that very little has been 
done on these two themes, even in the finite case. As is well known, one cannot 
expect a ‘good characterization’ of matchability in hypergraphs (which means 
that it is probably not a CO-NP problem). Yet it is quite possible that the 
theorems of K&rig, Hall and Tutte can be subsumed in a more comprehensive 
theory on matchings in hypergraphs. Better understood in the finite case are 
fractional matchings and covers, and perhaps this is the first direction which 
should be investigated in the infinite case. 

First let us define the above concepts. A hypergraph will mean here a pair 
H = (V, E), where E is a set of subsets of V, called ‘edges’. A matching in H is a 
set of disjoint edges, and a cover is a set of vertices (elements of V) which meets 
all edges. The subjects of investigation in matching theory are maximal matchings 
and minimal covers (it is easy to find large covers and small matchings--for 
example, the empty set of edges is a matching (see Fig. 1)). 

Fig. 1. The empty matching. 
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In the finite case ‘maximal’ is with respect to cardinality. In the infinite case 
stronger notions are needed, which are given by the duality between matchings 
and covers. In this section we give another direction from which this duality can 
be viewed. 

A @actional matching is a function f : E + iR+ such that C {f(e): v E e} s 1 for 
every v E V. A fractionaE cover is a function g : V-, II%+, such that z {g(v): v E 
e} 2% 1 for every e E E. For any function h : X-, R $- write (h I= c {h(x): n E X} 
((h 1 may be an infinite cardinality). If f and g are a fractional matching and a 
fractional cover, respectively, then, by the definition of these objects, 

Id 3 c g(v) c f(e) = c f(e) c g(v) ,5 VI- 
UEV e3v eeE vase 

(1) 

Thus, if we write 

Y* = V*(H) = sup(lf 1: f is a fractional matching in H} 
and 

r* = z*(H) = inf{ lgl: g is a fractional cover}, 

there holds Y * s r* The duality theorem of linear ‘programming implies the . 
following. 

Theorem 6.1. In a finite hypergraph Y* = z*. 

Of course, in a finite hypergraph v* and t* are attained, that is, there exist a 
fractional matching f and a fractional cover g such that IfI = lg I= Y* = z”. By (1) 
it follows that: 

(a) C {f(e): v E e} = 1 whenever g(v) > 0; and 
(b) z {g(v): v E e} = 1 whenever f(e) > 0. 
These are the so-called ‘complementary slackness conditions’ of linear 

programming. In the infinite case (a) and (b) are strictly stronger than the 
condition Y* = r”. We say that a hypergraph H has the strong duality property if 
it has a fractional matching f and a fractional cover g satisfying (a) and (b), and 
that Zf has the weak duality property if V*(H) = r*(H). We say that H has 
Kiinig’s Property (or integral strong duaZity) if it has a matching F and a cover G 
such that G consists of the choice of precisely one vertex from each edge in F. 
Clearly, this means that H satisfies the strong duality property, with f and g being 
(0,l) functions. 

The question now arises- which hypergraphs satisfy the weak, strong and 
integral strong duality properties? As usual, the situation is much more pleasant 
in the case of graphs. 

eorem 6.2 [ 111. Every graph has the strong duality property, with f and g taking 
0, $, 1 values. 

The proof uses Theorem 5.2. 
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A hypergraph H = (V, E) is said to be of finite character if each of its edges is 
finite. It is said to be locally finite if every vertex beiongs to finitely many edges. 
Easy compactness arguments yield the following. 

Theorem 6.3. (i) If H is of finite character, then there exists a fractional cover g 
with lgl = z*, and Y* = z*. 

(ii) If H is of finite character and locally finite, then it has the strong duality 
property. 

Here is an examp!e (taken from [7]) of a hypergraph of finite character, which 
does not have the strong duality property. 

Let V={a,:O~iCo}Ll(b,:O~i<o}, and for each l~k<o let ek= 

( aO, al,. . . 9 ak9 bk} and dk = {b,, bI, . . . ,bk,ak}. kt E=(e,:1~k<@}~ 

{dk: 1 Sk < w}, and let H = (V, E). 

Assertion 6.4. Every fractional matching f in H satisfies 1 f 1 c 2. 

Proof. ht m = min{k: f (ek) > 0 or f (dk) >O}, say a = f (em) > 0. Then each di 
for which f (di) > 0 contains b,, and hence C f (di) s 1 - cy. Since each ei contains 
al, we have xf(ei)Gl. Thus Ifl<2-a. Cl 

Assertion 6.5. Y* = 2. 

Proof. For each 1 G n < o let f = fn be defined by: f (ek) = f (dk) = ($)“-k for 
k en, f (ek) = f (dk) = 0 for k 3 n. Then fn is a fractional matching with lfn[ = 
2 - (4)“~l. The assertion now follows from Assertion 6.4. 0 

By Theorem 6.3(i) z*(H) = y*(H) = 2. Since, by Assertion 6.4, Y* is not 
attained, we see by (1) that H does not have the strong duality property. 

This example can be adapted to yield also a locally finite hypergrapk without 
the strong duality property (and in which Y* is not attained). However, the 
following problem is as yet unsettled. 

Problem 6.6. Does the strong duality property hold for kypergrapks whose edges 
are of bounded size (i.e., le] < k for all e E E for some k E N)? Or does it hold for 
kypergrapks with bounded vertex valencies? 

In [7] this was settled in the affirmative for the case that v* is finite. 
Let us conclude this section with a basic open problem concerning Konig’s 

Property. 

Problem 6.7. Suppose that every finite subkypergrapk of H (i.e. H’ = (V, E’), 
where E’ is a finite subset of E) satisfies Konig’s Property. Does it necessarily 
follow that H satisties Konig’s Property? 
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It was probably Fulkerson who first used the trick of replacing a partially 
ordered set (or, for that matter, any directed graph) by a bipartite graph by 
splitting its vertices. The splitting is similar to that in Section 4, the difference 
being that you do not add the edges (x’, x”). Thus the bipartite graph attained 
from a poset P is r = (V’, V”, E) where V = V(P) and (x’, y”) E E if and only if 
x > y in P. A matching F in r corresponds in a natural way to a decomposition CF 
of P into paths: an edge (x, y) will appear in some path in CF if and only if 
(x’, y”) E F. (Th u s, f { i x ’ , x”} fl U F = P) then (x) is a single vertex path in C,). 
Fulkerson used this to derive Dilworth’s theorem from K6nig’s theorem [14]. 
Oelh-ich and Steffens used the same method to prove a ‘strong duality’ version of 
Dilworth’s theorem for posets containing no infinite chains. 

Theorem 7.1 [23]. If a poset P does not contain infinte chains then there exist a 
decomposition C of P into disjoint chains ( = paths) and an independent set A such 
that A n V(Q) + p) for every Q E C. 

In [23] this was proved for countable pcJ%ts, using the countable version of 
Theorem 3.1, but their proof applies also to the general case. The elegant proof is 
worth repeating. 

Proof. Let F and C be a matching and a cover in r, as in Theorem 3.1. Let 
CF = (Qi: i E I) and let A = {X E V(P): { n ‘, x”} n C = O}. Then A is independent 
since if, say, x >y for X, y E A then (x’, y’) E E(r), contradicting the fact that 
x’, y’ do not belong to the cover C. 

Let Q E C, and suppose that Q and k edges, hence k + 1 vertices. By the 
properties of C and F, the set {x’, x’: x E V(Q)} contains k elements from C (one 
for each edge in E(Q).) Hence there is a vertex x E V(Q) such that {x’, x”} n C 
= 0, proving that A n V(Q) # 0. Cl 

In [S] the splitting trick was used to prove an infinite analogue of Greene- 
Kleitman’s theorem, which, in the finite case, is a generalization of Dilworth’s 
theorem. t 

Theorem 7.2 [8]. If a poset P does not contain infinite chains and k is a positive 
integer, then there exist a decomposition C of P into chains and disjoint antichains 

AI,. . . , Ak such that each path Q E C meets min(l V(Q)I, k) antichains Ai. 

In the finite case Theorem 7.2 remains true if we replace everywhere the word 
‘chain’ by ‘antichain’ and vice versa (this is a theorem of Greene [16]). We 
conjecture that this is true for Theorem 7.2 also in the infinite case, but this seems 
to be much harder to prove than Theorem 7.2. Even the case k = 1 which is 
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trivial for finite posets (and, in fact, for all well-founded posets) is unknown, and 
we state it here as follows. 

Conjecture 7.3. If a poset P contains no infinite antichain then there exist a chain 
C and a decomposition of P into disjoint antichains (Ai: i E I) such that 
AinC#@ for all i. 

In [8] this was proved for posets containing no antichain of size larger than 2. 
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