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Abstract

Let f:C+> C be a transcendental meromorphic function with at most finitely many poles. We
mainly investigated the existence of the Baker wandering domaifi&gfand proved, among others,
thatif f(z) has a Baker wandering domdih then for all sufficiently large, /" (U) contains a round
annulus whose module tends to infinityras> oo and so for some & d < 1,

Mc(r,a,f)d <me(rya, f), reaq,

whereG is a set of positive numbers with infinite logarithmic measure. Therefore, we give out several
criterion conditions for non-existence of the Baker wandering domains.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let f:C > C be a transcendental meromorphic function, gidn € N, denote the
nth iterate of /. Then f"(z) is defined for alk; € C except for a countable set of the poles
of £, f2,..., f"~1. Define the Fatou set of by

Fy={zeC: {f"} is defined and normal in some neighbourhood jof
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and the Julia set of by J; = c\ Fy. Itis well known thatF is open and completely
invariant underf, i.e.,z € Fy ifand only if f(z) € Fy. LetU be a connected component
of F¢, then f*(U) is contained in a component &f;, denoted byl,,. If for some integer
p=1,U,=U,thatis, fP(U) C U, thenU is called a periodic domain and the smallest
integer p such thatU, = U is the period ofU; if for some pair ofn # m, U, = Uy,
but U is not periodic, therUU is called preperiodic; if fom # m, U, # U,,, thenU is
called a wandering domain gf. And U is called the Baker wandering domaintf is
wandering and alU,, are multiply-connected and surround O and the Euclidean distance
dist(0, U,) — 400 asn — +o0.

It was proved in [2] that for a transcendental entire functift), every multiply-
connected component of its Fatou set must be Baker wandering and in thig gasel J ¢
both have only bounded components. Ah¢) has only simply connected Fatou compo-
nents if it has a finite asymptotic value. The same result was proved in [18] if it has a finite
Nevanlinna deficient value (for the definition of Nevanlinna deficient value, please see the
statement before Corollary 2). This result is interesting, because we can distinguish non-
existence of multiply-connected Fatou components by the quantity, Nevanlinna deficiency,
in theory of value distribution, and thus we establish some relationship between theory of
complex dynamics and value distribution of meromorphic functions. In this paper, we in-
vestigate the necessary condition under which a transcendental meromorphic function has
multiply-connected Fatou components.

Theorem. Let f(z) be a transcendental meromorphic function with at most finitely many
poles. If f (z) has a Baker wandering domali, then for a multiply-connected domain

in U such thatf"(A) contains a closed curve which is not null-homotopidip, there
exists a positive numbery such that for eactk > ng, we have a round annulud,, =

{rn < |zl < R,}in f"(A) anddist(0, D,) — oo andmod(D,,) — oo asn — oc.

Remark.

(A) It was proved in Theorem 1 of Zheng [18] that the Julia set of a transcendental mero-
morphic function with at most finitely many poles has only bounded components if
and only if it has a Baker wandering domain.

(B) From the proof of Theorem (see also [9] and result (Il) in Theorem 1 of Zheng [18]),
there exists & > 0 such that for any closed curyein {|z| > R} surrounding O (y)
and sof”(y) contains a closed curvg, with n(I',,0) =1, wheren(I',, 0) is the
winding number ofl", with respect to 0. Therefore, a Baker wandering dondaiim
Theorem definitely contains a multiply-connected domaigatisfying the condition
stated in Theorem. Furthermore, we deduce that for each sufficientlydatgecon-
tains a round annulu®,, such that dig0, D,) — co and modD,,) — co asn — oo.

This is an improvement of result (Ill) in Theorem 1 of Zheng [18] which only asserts
thatug‘;l U, contains a sequence of round anmyji such that dig0, D,,) — oo and
mod(D,,) — oo asn — oo.

(C) We can prove by using the same method as in Lemma 3.3 in [15] that a multiply-
connected wandering domailh is Baker wandering, it/ contains a closed curvye
such that there exists a sequent (y) not to be null-nomotopic inFy. Then we
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raise a question: Is any multiply-connected wandering domain Baker wandering? If
f has infinitely many poles, then the answer to this question is negative. In fact, we
can construct an example of meromorphic function which has a multiply-connected
wandering domait/ such thatf?|; — a asn — oo and f?~1(a) = co. Therefore,

we should put our attention on a meromorphic function with finitely many poles about
this question.

Next we discuss some consequences of the theorem. Set

Mc(ra, fy=max{|f@)|: lz—al=r},

me(r,a, f)y=min{|f@)]: lz—al=r},

M;(r,a, ) =max{|f(z)|: IRez—Rea|=r, |Imz —Ima|=r}, and
ms(r,a,f)zmin{|f(z)‘; |Rez — Rea| =, ||mz—|ma|=r}.

Whena = 0, we simply writeM (r, ) for M.(r, 0, f). As an application of Theorem,
we can deduce the following.

Corollary 1. Let f (z) be a transcendental meromorphic function with at most finitely many
poles. IfJx has only bounded components, then for any complex numlteere exists a
constantO < d < 1 and two sequences, } and {R,} of positive numbers with, — oo
andR, /r, — oo (n — oo) such that

Mc(r.a, f)* <me(r.a, f), reGq, (1)
and

My(r,a, )* <mg(r,a, ), reaG, 2)
where

o
G= U{r: rm <r <Ry}
n=1

It is obvious that the se&f in Corollary 1 has infinite logarithmic measure, that is,

Im(G) :=/$=oo.

G

From Corollary 1, we can immediately obtain some criterion conditions of non-existence
of the Baker wandering domains of such a transcendental meromorphic function. In order
to state one of such consequences, below we introduce the basic notations of Nevanlinna
theory (see [12]). Letf (z) be a meromorphic function. Define

2
1 ,
mer.f) = 5 [ og" | (ré")] a8 ©)
0
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and

r

N, f):/wdt—i—n(o, #)logr,
0

where log” x = max(logx, 0) andn(r, f) denotes the number of poles ¢fin {|z| < r},
and the Nevanlinna characteristic is

IT(r,f)=m(r, f)+ N, f).

The lower ordepw and the ordek of f(z) are in turn defined as follows:

M=u(f)=|iminflongM, A:A(f):limsupw.
e r r—00
Fora € C, the quantity
0. 1= limint " T2 _ 1 imeup 70
a, = — J " —1—_
r—oco  T(r, f) r—>oop T, f)

is called deficiency of Nevanlinna of the valuelf §(a, f) > 0, thena is called a deficient
value of Nevanlinna. B¥ we denote a set of positive numbers with finite logarithmic mea-
sure which may not be the same for each occurrence. From (1ywt, we immediately
deduce the following consequence.

Corollary 2. Let f (z) be a transcendental meromorphic function with at most finitely many
poles. Then each of the following statements impliesthdias an unbounded component,
so thatf (z) has no Baker wandering domains

() for anye > 0, there exists a curvé' tending tooo such that

log|f(2)| <elogM(lzl, f), zeT; (4)
(I1) for some meromorphic functidn(z), which may be a complex number, satisfying
|OgM(r,h)=0(|OgM(r, f)), re¢e E, (5)

we haves (0, f — h) > 0.

The result in Corollary 2 corresponding to (1) follows immediately from (1) wita O.
Indeed, if /s has no unbounded components, then we have (1) for sbmé. On the
other hand, for O< ¢ < d we have a curvd™ tending tooo such that (4) holds oi". For
sufficiently larger € G, I' intersects the circl§lz| = r}. By zo we denote the intersecting
point. Then

dlogM(r, f) <logm.(r, f) <log| f (z0)| < elogM(r, f),

so thatd < ¢, which derives a contradiction.
By the Hadamard three circle theorem, for all sufficiently large0, we have

log M (r®, f) < (1—e)logM(L, f) +elogM(r, f).
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This implies that our result is an extension of [5, Theorem 10] which considers that when
f is a transcendental entire function, for all> 0, there exists a curvg' tending tooco
such that o™, | f(2)| < M(|z|%, f).

In order to prove the result in Corollary 2 corresponding to (Il), supposefthdtas
only bounded components, then we have (1) wita 0. Under the assumption of (5), for
sufficiently larger € G \ E, we have

|f@) —h@)|=[f @)= |h@)] =m0, f) =M@, h)>1 for|z|=r,

log™(1/|f(z) — h(z)|) =0 and hencen(r,1/(f —h)) =0, r € G \ E. This implies that
3(0, f — h) = 0. We derive a contradiction, and thus the result in Corollary 2 under (ll)
follows.

Furthermore, we can deduce the following result.

Corollary 3. Let f(z) be an entire function with ordes and all but finitely many zeros of
f bereal. If2 < p < 00, then f(z) has only simply connected Fatou components.

When 2< p < oo, a result of Edrei et al. [10, Corollary 1.2] asserts th, /) > O,
and therefore Corollary 3 follows from result (11) in Corollary 2; wher= oo, a result of
Miles [13, Theorem 1] asserts that

NG%):W@M@ﬁ)

Suppose thaf (z) has a multiply-connected Fatou component. Then (1) holdsanittO.
Therefore on the circléz| =r € G, | f(z)| > 1, that is,m(r, 1/f) = 0. By the first funda-
mental theorem of Nevanlinna (see [12, Theorem 1.2]); foIG, we have

T@r, f)= T(r, %) +0(1)= N<r, %) +0() =o(logM(r, f)).

On the other hand, from (1) we have

21
nrﬁ—m@fyu£/b+U@ﬁﬂw>dmAﬂrﬁ reG
P =mn I =g |18 2 09 1), et
0

Thus we derive a contradiction from which Corollary 3 follows.

Below as another application of Corollary 1, we exhibit non-existence of the Baker
wandering domains of a transcendental meromorphic funcfian with at most finitely
many poles in terms of the existence of two values which) assumes few times in an
angular domain. By this result, we relate theory of complex dynamics to that of value
distribution again. By2(«, 8) we denote the angular domafn: o < argz < 8}, 0<
a < B < 2 and byn(r, 2(a, B), f = a) the number of the distinct roots gf(z) = a in
{lzZl <r} N 2(a, B).

Corollary 4. Let f (z) be a transcendental meromorphic function with at most finitely many
poles. If we have an angular domah= 2(«, 8),0< a < 8 < 27 andu(f) > ﬂ”Ta such
that for some integet > 0and0 < p < u = u(f), we have
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ar, 2, f=0)+n(r, 2, f¥=1) <r” + O(logr), r¢E, (6)
thenJ; has an unbounded component afi¢t) has no Baker wandering domains.

Remark.

(D) A natural problem is whether Corollary 4 still holds for the order replacing the lower
order.

(E) If u(f) = oo, then the result in Corollary 4 holds, as long as we assume that there
exists an angular domai2 = 2 («a, ) such that

. i(r, 2, f=04+a(r 2, fO=1
I|msupn(r’ =0 +n@r 2, f ) -
r¢ E—00 logr

Coroallary 5. Let f (z) be a transcendental meromorphic function with at most finitely many
poles. If for all sufficiently large > 0 andd > 1, we have

logM (2r, f) > dlogM(r, f), (7)
thenJ; has an unbounded component afi¢t) has no Baker wandering domains.

Remark.

(F) Corollary 5 is still true if (7) is replaced b¥ (2r, f) > dT (r, f). FromT (2r, f) >
dT (r, f), by using Chuang’s inequality (see [7]), we can deduce Th@t, f*®)) >
di T (r, f®), d, > 1 and sof ® (z) has no Baker wandering domains.

(G) ltis obvious that if

log M r, f) ~ @ (r — ), ®)

then (7) holds. Therefore such a transcendental entire function has only simply con-
nected Fatou componenig,~ ,(1+ n(lozw) is an entire function to satisfy (8).

(H) Let I'(z) be the gamma function. Then L' (z) is an entire function. Since
1
log—— =zlo )
gF(Z) zlogz + 0(2)
uniformly asz — oo for |argz| < — 6,

1
T(r,1/I)=(1+ 0(1))7 logr

so that T(2r,1/I") > dT(r,1/I"), d > 1. On the other hand, by noting that
N@r,1/T") ~ r, we haves§(0,1/I") = 1. Therefore, 1I'(z) has not multiply-
connected components of the Fatou set.

(I) Let f(z) be an entire function satisfying (7) agdz) a transcendental entire function.
Since logM (r, g) is convex in log, %/z,)g) — 00 (r — 00). Then from a theorem
of Pélya [14] (also see [8]), for some&g}o < 1 and all sufficiently large, we have

logM (2r, fog) = logM(pM(3r/2,g), f) = logM (2M (r, g), f)
> legM(M(r,g), f) >dlogM(r, fog),
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so that from Corollary 5 it follows thaf o ¢ has no multiply-connected components
of the Fatou set.

Corollary 6. Every transcendental meromorphic function satisfying linear differential
equation with rational coefficients must have no the Baker wandering domains and its
Julia set has an unbounded component.

Remark.

(J) Y71 0j(2)e") satisfies a linear differential equation with rational coefficients,
whereQ | (z) is rational andP; (z) a polynomial.

(K) Let J,(z) bev order Bessel function of the first kind which comes from the Bessel
differential equation which is a linear differential equation with rational coefficients.
Entire functionJ, (z)(z/2)~Y has no multiply-connected components of the Fatou set
from Corollary 6.

The main results in this paper were addressed in the course of Complex Dynamics which
was taught by the present author in Tsing Hua University from February to June, 2002.

2. Proof of Theorem and itscorollaries

By using the same method as in the proof of Theorem 1 of Zheng [18], we can prove the
following result which shall be used to the proof of Theorem and for completeness whose
proof we shall give.

Lemma 1. Let f(z) and U be given as in Theorem. Then farin Theorem, there exists
in U,—1 /™ (A) a sequence of round annuli, with O as center andnod(D,) — oo and
dist(0, D,,) — oo asn — oo.

The hyperbolic metric plays a key role in the proof of Lemma 1. On a hyperbolic open
sets2, that is,C \ §2 contains at least three points, we have the hyperbolic dehgity)
defined as followsi (z) is the hyperbolic density on every componentdfWe define
the hyperbolic length of a curvein 2 by

LQ(“):/)\Q(Z)MZL

Fora ¢ £2 define
Co(a):=inf{rg(2)lz —al: z€ 2}

In the proof of Lemma 1, we need the following result, which is essentially due to
Beardon and Pommerenke [4] and see [17].

Lemma 2. Let £2 be a hyperbolic open set. Then fo¥ £2, we have

<Ae@)z—al <

T
- - A 9
2(Be(z;a) + k) 40 (z; a) ©)
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wherex = I'(1/4)*/(47%) and

2=all. ) canl
|b — al

Bo(z;a) = inf{ log

Proof of Lemmal. SetH = ;o f™(A). Take a point in a non-degenerate boundary
of A such thatf (z) assumes valug at infinitely many points and obviouslye d H. We
want to prove thaCy (b) = 0. To the end, suppose th@y; (b) > 0.

We take a Jordan curve in A which separates the boundaries Afand choose a
sufficiently largeRg > 0 such that

R ! R ! L 10
< O’f b>—”( va)>m A(Y). (10)

Since "' (A) — oo (n — o0), for a positive integep we have a closed continuui}, C
fP(y) C fP(A) suchthatl’, C {|z| > Ro} andn(l,,0) =1
Sincef: fP(A) — fPTL(A), by the principle of the hyperbolic metric [1], we have

Aoy (F@)F @] < Ahppay (@), z€ fP(A).
From the definition ofCy (b), we have
Cr)|f'@)| <A ppe1a) ()] f @) = b|[F' @] < Apray@)| f(2) —
z€ fP(A). (1))

From (11), (10) and the argument principle, we have

La(y) = Lray (7)) = Lyray(Tp) = /)wfp(A)(Z)IdZI
FI’

>Cy (b)/ /@) |dz|>2ncH(b)‘i
| 21

'@
d
@) — Z‘

f@)—

Iy

1
_27TCH(b)< ( I b)—n(ﬂ,,f))

1
> ZﬂCH(b)(n(Ro, 7o ) — n(Ro, f)) >La(y).

b

This is impossible. Therefore, we have proved thiat(b) =

Then there exists a sequeneg} in H such that\ (z,)|z, — b| = 0 asn — oo. Put
8p = |zn — b| and B8, = By (z,; b). From (9) it follows thatg,, — +oc asn — oco. The
definition of B (z; b) implies that for the annuli

By ={z: 8ue P < |z —b| <8P},

we haveB, ¢ H and modB,,) = 28, — oo. Sinceb lies in a continuum obH, §, - 0,
otherwiseg, — 0. From the formula 0By (z; b), we deduce that, — 400 asn — .
SinceFy has only bounded components, eg¢h(A) is bounded, and so contains at most
finitely many B,,. Thus dist0, B,) — oo (n — 00).
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Then there exists il a sequence of annulD,,} with center O such that magd,) =
mod(B,) + 0(1) and dist0, D,)) — oo asn — oo. Lemma 1 follows. O

Now we start to prove Theorem.

Proof of Theorem. Let S(z) be the rational function consisting of sum of the singular
parts of Laurant series gf(z) at its poles. Then we can write

f@2) =g+ S(2),

whereg(z) is an entire function. We take a positive numlkesuch thatf (z) is analytic
and|S(z)| <lin{|z| > R}.

From Lemma 1 it follows that for some sufficiently large f7(A) 2 {s/2 < |z| < 8s}
ands > 2(M(R, g) + 1+ |g(0)]). Put

B = 2(g(8sz) — g(0))
 M(@4s,g9)

By the theorem of Bohr (see [8, Theorem 6.A){|z| < 1}) D{lz|=F}, F > ¢, c isS
a universal constant and©c < 1. Therefore,g({|z| < 8s}) D {|z + g(0)| = r}, ry >
5M (4s, g). By noting that log (r, g) is convex in log-, we have

M(2r, g) N
M(r, g)

We can assume that fer> R, M(2r, g) > %"M(r, g). Thusr, > 8M(2s, g) > M (s, g)
and sinceg ({|z] < s}) C {|z] < M (s, g)}, we have that

g(fs <lzl <&}) > {|z+ O] =r)

so thatf({s/2 < |z| < 8s}) D {|z + g(0)| = r,}. It follows from f({|z| =s/2}) C {|z] <
M(s, g)/2} thataf ({s/2 < |z|] < 8s}) N f({|z| =8s}) lies in {|z| > 8M(2s, g)} and sur-
rounds the origin. It is easy to see that

fp+l(A) D f({s/2 <|z| < 8s}) D {M(s, 2)/2 < |z| < 8M(2s, g)}.
By induction withM (2s, g) replacings, we have
FPH(A) D {My(s, 8) < |z] < 8M,(2s, g)}, (12)

whereM,, (r, g) = M,,_1(M(r, g), g). We want to show the round ann{yl¥f,, (s, g) < |z] <
M, (2s, g)} satisfies the requirement of theorem, indeed, we have

. lzl <L

(r — 00).

My(25,8) > My_1(22M (5, 8). 8) = My—2(2*M (5. 8). 8) = - = 2% My (s, 9).

We complete the proof of TheoremO

When f(z) is entire, we give another proof of Theorem as follows.

Suppose that the result of Theorem does not hold. Then there exists a sefgyuésaeh
that( ;2 ; /"« (A) does not contain any sequence of round anBylivith the origin center
and modB,,) — oo and dist0, B,,) — oo asm — oo. ConsiderH = ;2 f"«(A). From
Corollary 4 of Zheng [18]§ (0, f —z) = 0, and sof (z) has a fixed-poink, and it is obvious
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thatb is not in the closure off, for any wandering domain of (z) cannot contain periodic
points of £ (z). We can choosg not to be a Nevanlinna deficient value fz), and hence
the equationf (z) = b has infinitely many roots. Since all the roots ffz) = b are the

roots of f*(z) = b, n > 1, for eachm andr > 0 we have

< : ) < : )
nlr,——\)>=nlr, .
fr—b f—b

Thus we have a sufficiently largey > 0 such that (10) holds fof"k+17"k(z) : f*(A) —
f"+1(A), provided thatCy(b) > 0. Then by the same argument as in the proof of
Lemma 1, we can prov€y (b) = 0 and further we obtain a sequence of round annuli
B,, with the origin center and ma#,,) — oo and dist0, B,,) — oo asm — oco. Thus we
derive a contradiction.

Theorem follows.

In the proof of Corollary 1, we need the following, which is essentially due to Baker [3]
(see [5, Lemma 7] and [19, Lemma 4]).

Lemma 3. Let U be a domain in the complex plane arfdz) be defined and analytic
in f*(U) (n=0,1,...) inductively such thati = | 2, f"(U) has at least two finite
boundary points in the complex plane. fif|y — oo (k — 00), then for any compact
subsetk of H, there exists a positive constamt such that for all sufficiently largé, we
have

@] <&M, forallz, 7 e K. (13)
Proof of Corollary 1. Under the assumption of Corollary 1, there exists a Baker wan-

dering domainU containing anA in Theorem. From Theorem, we havelifi;” , /" (A)
asequenc®d, ={z: r, < |z —a| < Ry} with r, > co andR,,/r, — oo (n — 00). Set

G:U{r: rngran/«/é} and C(r,a)z{z: |z—a|:r}.

n=1

Obviously,G has the infinite logarithmic measure. For every G, we haveC(r,a) C D,
for somen and we have a curvg(r) in A and a positive integern (n) such thatC(r, a) =
F™M (y(r)). Thus we have two pointsg andwy in y (r) C A such that

Mc(r.a, )= max |f@)]=]f(f"" (wo)| (14)
zeC(r,a)
and
: = mi = mn) . 15

me(r,a, f) zerg(lrrja)!f(zﬂ |F (" (w))] (15)
By noting thatA is a compact subset @f and f"(U) — oo (n — 00), we can apply
Lemma 3 to show that for some constafit> 1, we have

| wo)| < | O wy) [ (16)

Combining (14)-(16), we obtain (1) with=1/M.
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SetS(r,a) ={z: |Rez—Rea| =r, |Imz—Ima| =r}. S(r, a) is a square with center.
Itis easy to see that for everye G, S(r, a) C D, for somen. Then by the same argument
as in above, we can imply (2).

The proof of Corollary 1 is completed.O

In order to prove Corollary 4, we need the Nevanlinna theory on angular domain. Let
f(z) be a meromorphic function on the angular dom&iw, 8) = {z: « < argz < B},
where O< 8 — « < 2. Following Nevanlinna (see [11]) define

’ 1 @ . ) d
gt ) =2 [ (5= 255 ) o o) | 1097 ae) ) -
1

B
Bup(r, f) = %/Iogﬂf(re“’)!sinw(@ —a)do,

1 1bm|®\
Ca,ﬂ(rv f) = 21<§<r( |bm|w - r2w ) SInw(em - C(), (17)

wherew = ﬁ”Ta andb,, = |b,,|e!’ are the poles of (z) on 2 («, B) appeared according to

their multi@cities.fa,ﬁ(r, f) has the same formula asd, g(r, f) for the distinct poles
of f(z) on 2(«, B) and the Nevanlinna’'s angular characteristic is defined as follows:

Soc,ﬂ(ra f)zAa,ﬂ(r’ f)+BOt,,3(r1 f)+Ca.ﬂ(rv .

Lemma 4 [20]. Let f(z) be transcendental and meromorphictn If for p > 0,

lim suplogn(r’ ngz h.f=a) <
r—00 r

P, (18)

then given arbitrary smak > 0, for sufficiently large- > 0, we have

Cop <r, 7 1 ) < K(rP=“*¢ +logr), (29)

—a
wherew = ﬁ”Ta andK is a positive constant depending en

The following is the second Nevanlinna fundamental theorem on angular domain.

Lemma 5 [11]. Let f(z) be meromorphic in the complex plane and consider angular
domaing2 («, B). Then for arbitrary integek > 0 we have

_ 1 1 1
Sa,p(r, f) < Copg(r, )+ Cap (r, ?> +Cup <r, 7]‘“‘) — 1) - Ca,ﬁ<r, —f(k+l)>
+ Ra,ﬁ(rv f)’ (20)
whereRy g(r, )= O(logrT(r, f)), r ¢ E.
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The proof of Lemma 5 is omitted, since it can be proved by the similar arguments to
those in the proof of Milloux inequality in the complex plane (see Hayman [12]).
Now we can prove Corollary 4.

Proof of Corollary 4. Take a positive numbersuch thap + ¢ < . Under (6), applying
Lemma 4 gives that

_ 1 — 1 _
Ca,ﬁ(", ?)-I-Ca’ﬂ(r, m) <K(rp “H’e—l—logr), r¢E. (22)
Now it follows from Lemma 5 and (21) that
B(X,,B(rf f) < Sol,ﬂ(rs f) - C(X,ﬁ(rv f)
_ 1 — 1
<(k+1DCup <V, ?> +Cap (”, m) + Ry g(r, f)
< IE’(rp_‘”+E +logrT(r, f)), re¢ E.
Thus
B—e
/ log™| £ (re'?)| a6 < 21 sin(ew)K (r"*€ +r®logrT(r, f)), r¢E. (22)
w

oa—E&

If J¢ has no unbounded components, thfgn) has the Baker wandering domains and we
have (1) for some positive numbérand a seG such thatG \ E has infinite logarithmic
measure. Thus applying (1) to (22) yields thatfar G \ E,

d(B —a —2)logM(r, f) < 2”—w sin(ew) K (r**¢ +r*logrT (r, ),

so thatu < max{p + ¢, w}. We derive a contradiction. Corollary 4 followsO

Proof of Corollary 5. Suppose on the contrary tha} has no unbounded components,
then we have a sequence of round annudys= {z: r, < |z| < R,} such thatr, /r, — oo
and r, — oo and f(D,) C {|z| > R,} so that|f(z)] > 1 in D, and n(R,,1/f) =
n(rp, 1/f). From (12) and (7), we can require tht = r¢.

Thus by using the first Nevanlinna fundamental theorem, we have

T(Ry, H+0Q)
= T(Rnal/f) =m(Ry, 1/f)+N(Rna 1/f)=N(Rn’1/f)

Ry
=N@u, 1/f) +/ n(t. 19 :n(O, Y7 dt +n(0,1/f) Iog?

R, R,
= N(ru, 1/f) + (n(ra, 1/f) — n(0,1/f)) log —— +n0.1/5) log -

n n

< N(@ry,1/f)+log %N(er,,, 1/f) < (2+ d-1 IOgr,,)T(er,,, ).

n
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On the other hand, by, we denote the maximum integer part[tdg 2]~ log(rd—1/2e).
Then by using (7), we have

TR, /)=T(rd, f) > %IogM(r,f/Z, f)= %IogM(Z""ern,f)
> %dx" logM (ern, f) = Kry logM (ery, f),

wherec = (d — 1)',3%‘; andK = (3d)~1(2¢)~¢.
Thus we obtain the inequality 2 (d — 1)logr, > Kr{. This is impossible, since
rp, — 00 asn — 0.

Corollary 5 follows. O

Finally, we give a proof of Corollary 6 by using asymptotic integration theory (see
Briiggemann [6], Steinmetz [16] and Zheng [21]).

Proof of Corollary 6. Let f(z) be afunctionin Corollary 6. From the theory of asymptotic
integration, a:th order linear differential equation with rational coefficients hdisearly
independent formal solutions

W; =exp(P;(2))z%[logz"/?]" 0 (z,logz), 1< j<n, (23)

with P;(z) being a polynomial inzl/7, dj e C, mj € Ngp and Q;(z,logz) = 1 +
0(1/logz), as|z| — +oo. There exist a finitely many rays arg=6;, 1 <i < m, such
thatt, <62 <--- <6, and inS; = {z € C: 6; < argz < 0,41}, the differential equation
has a fundamental solution system with form in (23). Thes}; irwe have
f@=ciWi+coWo+ -+, Wy,
wherec; is a complex number. We can assume without any loss of generalitieB that
Pi=---= P andfork <s <nandb; <0 < 6;41,
Re(P (re'p) — P (re’p)) — 400,
asr — +oo. Thus

log| f (re’”)| = Re(P(re')) + O(log z]). (24)
Since any meromorphic solution of linear differential equation with rational coefficients

has only finitely many poles and the finite positive order of growth, we define the indicator
functionh ¢ (6) of f(z) by

i0
hy(6) :=lim supw,
r—00 rP

wherep is the order off (z). Therefore, from (24), it follows that
0 2
T(r, f)=m(, f)+ O(logr) = ;—n / max{0, hs(0)}do + O(r"~*)
0

(see [16, Theorem 2]). It is easy to see th&er, ) > dT(r, f), d > 1. Sincef(z) has
only finitely many poles, Corollary 6 follows from Corollary 50
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