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Abstract

Let f : C �→ Ĉ be a transcendental meromorphic function with at most finitely many poles
mainly investigated the existence of the Baker wandering domains off (z) and proved, among other
that iff (z) has a Baker wandering domainU , then for all sufficiently largen, f n(U) contains a round
annulus whose module tends to infinity asn → ∞ and so for some 0< d < 1,

Mc(r, a, f )d � mc(r, a, f ), r ∈ G,

whereG is a set of positive numbers with infinite logarithmic measure. Therefore, we give out s
criterion conditions for non-existence of the Baker wandering domains.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and results

Let f : C �→ Ĉ be a transcendental meromorphic function, andf n, n ∈ N, denote the
nth iterate off . Thenf n(z) is defined for allz ∈ C except for a countable set of the pol
of f,f 2, . . . , f n−1. Define the Fatou set off by

Ff = {
z ∈ Ĉ:

{
f n

}
is defined and normal in some neighbourhood ofz

}

✩ This work was supported by NSF of China (10231040).
E-mail address:jzheng@math.tsinghua.edu.cn.
0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.05.038
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and the Julia set off by Jf = Ĉ \ Ff . It is well known thatFf is open and completel
invariant underf , i.e.,z ∈ Ff if and only if f (z) ∈ Ff . Let U be a connected compone
of Ff , thenf n(U) is contained in a component ofFf , denoted byUn. If for some integer
p � 1, Up = U , that is,f p(U) ⊆ U , thenU is called a periodic domain and the small
integerp such thatUp = U is the period ofU ; if for some pair ofn �= m, Un = Um,
but U is not periodic, thenU is called preperiodic; if forn �= m, Un �= Um, thenU is
called a wandering domain off . And U is called the Baker wandering domain ifU is
wandering and allUn are multiply-connected and surround 0 and the Euclidean dist
dist(0,Un) → +∞ asn → +∞.

It was proved in [2] that for a transcendental entire functionf (z), every multiply-
connected component of its Fatou set must be Baker wandering and in this case,Ff andJf

both have only bounded components. Andf (z) has only simply connected Fatou comp
nents if it has a finite asymptotic value. The same result was proved in [18] if it has a
Nevanlinna deficient value (for the definition of Nevanlinna deficient value, please s
statement before Corollary 2). This result is interesting, because we can distinguis
existence of multiply-connected Fatou components by the quantity, Nevanlinna defic
in theory of value distribution, and thus we establish some relationship between the
complex dynamics and value distribution of meromorphic functions. In this paper, w
vestigate the necessary condition under which a transcendental meromorphic funct
multiply-connected Fatou components.

Theorem. Let f (z) be a transcendental meromorphic function with at most finitely m
poles. Iff (z) has a Baker wandering domainU , then for a multiply-connected domainA
in U such thatf n(A) contains a closed curve which is not null-homotopic inUn, there
exists a positive numbern0 such that for eachn > n0, we have a round annulusDn =
{rn < |z| < Rn} in f n(A) anddist(0,Dn) → ∞ andmod(Dn) → ∞ asn → ∞.

Remark.

(A) It was proved in Theorem 1 of Zheng [18] that the Julia set of a transcendental
morphic function with at most finitely many poles has only bounded compone
and only if it has a Baker wandering domain.

(B) From the proof of Theorem (see also [9] and result (II) in Theorem 1 of Zheng [
there exists aR > 0 such that for any closed curveγ in {|z| > R} surrounding 0,f (γ )

and sof p(γ ) contains a closed curveΓp with n(Γp,0) = 1, wheren(Γp,0) is the
winding number ofΓp with respect to 0. Therefore, a Baker wandering domainU in
Theorem definitely contains a multiply-connected domainA satisfying the condition
stated in Theorem. Furthermore, we deduce that for each sufficiently largen, Un con-
tains a round annulusDn such that dist(0,Dn) → ∞ and mod(Dn) → ∞ asn → ∞.
This is an improvement of result (III) in Theorem 1 of Zheng [18] which only ass
that

⋃∞
n=1 Un contains a sequence of round annuliDn such that dist(0,Dn) → ∞ and

mod(Dn) → ∞ asn → ∞.
(C) We can prove by using the same method as in Lemma 3.3 in [15] that a mu

connected wandering domainU is Baker wandering, ifU contains a closed curveγ
such that there exists a sequencef nk (γ ) not to be null-homotopic inFf . Then we
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raise a question: Is any multiply-connected wandering domain Baker wanderi
f has infinitely many poles, then the answer to this question is negative. In fac
can construct an example of meromorphic function which has a multiply-conn
wandering domainU such thatf np|U → a asn → ∞ andf p−1(a) = ∞. Therefore,
we should put our attention on a meromorphic function with finitely many poles a
this question.

Next we discuss some consequences of the theorem. Set

Mc(r, a, f ) = max
{∣∣f (z)

∣∣: |z − a| = r
}
,

mc(r, a, f ) = min
{∣∣f (z)

∣∣: |z − a| = r
}
,

Ms(r, a, f ) = max
{∣∣f (z)

∣∣: |Rez − Rea| = r, | Im z − Ima| = r
}
, and

ms(r, a, f ) = min
{∣∣f (z)

∣∣: |Rez − Rea| = r, | Im z − Ima| = r
}
.

Whena = 0, we simply writeM(r,f ) for Mc(r,0, f ). As an application of Theorem
we can deduce the following.

Corollary 1. Letf (z) be a transcendental meromorphic function with at most finitely m
poles. IfJf has only bounded components, then for any complex numbera, there exists a
constant0 < d < 1 and two sequences{rn} and {Rn} of positive numbers withrn → ∞
andRn/rn → ∞ (n → ∞) such that

Mc(r, a, f )d � mc(r, a, f ), r ∈ G, (1)

and

Ms(r, a, f )d � ms(r, a, f ), r ∈ G, (2)

where

G =
∞⋃

n=1

{r: rn < r < Rn}.

It is obvious that the setG in Corollary 1 has infinite logarithmic measure, that is,

lm(G) :=
∫
G

dt

t
= ∞.

From Corollary 1, we can immediately obtain some criterion conditions of non-exis
of the Baker wandering domains of such a transcendental meromorphic function. In
to state one of such consequences, below we introduce the basic notations of Nev
theory (see [12]). Letf (z) be a meromorphic function. Define

m(r,f ) = 1

2π

2π∫
log+∣∣f (

reiθ
)∣∣dθ (3)
0



J.-H. Zheng / J. Math. Anal. Appl. 313 (2006) 24–37 27

t
ea-

any
nt,

g

and

N(r,f ) =
r∫

0

n(t, f ) − n(0, f )

t
dt + n(0, f ) logr,

where log+ x = max(logx,0) andn(r, f ) denotes the number of poles off in {|z| < r},
and the Nevanlinna characteristic is

T (r, f ) = m(r,f ) + N(r,f ).

The lower orderµ and the orderλ of f (z) are in turn defined as follows:

µ = µ(f ) = lim inf
r→∞

logT (r, f )

logr
, λ = λ(f ) = lim sup

r→∞
logT (r, f )

logr
.

Fora ∈ C, the quantity

δ(a,f ) = lim inf
r→∞

m(r, 1
f −a

)

T (r, f )
= 1− lim sup

r→∞
N(r, 1

f −a
)

T (r, f )

is called deficiency of Nevanlinna of the valuea. If δ(a,f ) > 0, thena is called a deficien
value of Nevanlinna. ByE we denote a set of positive numbers with finite logarithmic m
sure which may not be the same for each occurrence. From (1) witha = 0, we immediately
deduce the following consequence.

Corollary 2. Letf (z) be a transcendental meromorphic function with at most finitely m
poles. Then each of the following statements implies thatJf has an unbounded compone
so thatf (z) has no Baker wandering domains:

(I) for anyε > 0, there exists a curveΓ tending to∞ such that

log
∣∣f (z)

∣∣ < ε logM
(|z|, f )

, z ∈ Γ ; (4)

(II) for some meromorphic functionh(z), which may be a complex number, satisfying

logM(r,h) = o
(
logM(r,f )

)
, r /∈ E, (5)

we haveδ(0, f − h) > 0.

The result in Corollary 2 corresponding to (I) follows immediately from (1) witha = 0.
Indeed, ifJf has no unbounded components, then we have (1) for somed > 0. On the
other hand, for 0< ε < d we have a curveΓ tending to∞ such that (4) holds onΓ . For
sufficiently larger ∈ G, Γ intersects the circle{|z| = r}. By z0 we denote the intersectin
point. Then

d logM(r,f ) � logmc(r, f ) � log
∣∣f (z0)

∣∣ < ε logM(r,f ),

so thatd < ε, which derives a contradiction.
By the Hadamard three circle theorem, for all sufficiently larger > 0, we have

logM
(
rε, f

)
� (1− ε) logM(1, f ) + ε logM(r,f ).
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This implies that our result is an extension of [5, Theorem 10] which considers that
f is a transcendental entire function, for allε > 0, there exists a curveΓ tending to∞
such that onΓ , |f (z)| � M(|z|ε, f ).

In order to prove the result in Corollary 2 corresponding to (II), suppose thatJf has
only bounded components, then we have (1) witha = 0. Under the assumption of (5), fo
sufficiently larger ∈ G \ E, we have∣∣f (z) − h(z)

∣∣ �
∣∣f (z)

∣∣ − ∣∣h(z)
∣∣ � mc(r,0, f ) − M(r,h) > 1 for |z| = r,

log+(1/|f (z) − h(z)|) = 0 and hencem(r,1/(f − h)) = 0, r ∈ G \ E. This implies that
δ(0, f − h) = 0. We derive a contradiction, and thus the result in Corollary 2 unde
follows.

Furthermore, we can deduce the following result.

Corollary 3. Letf (z) be an entire function with orderρ and all but finitely many zeros o
f be real. If2< ρ � ∞, thenf (z) has only simply connected Fatou components.

When 2< ρ < ∞, a result of Edrei et al. [10, Corollary 1.2] asserts thatδ(0, f ) > 0,
and therefore Corollary 3 follows from result (II) in Corollary 2; whenρ = ∞, a result of
Miles [13, Theorem 1] asserts that

N

(
r,

1

f

)
= o

(
logM(r,f )

)
.

Suppose thatf (z) has a multiply-connected Fatou component. Then (1) holds witha = 0.
Therefore on the circle|z| = r ∈ G, |f (z)| > 1, that is,m(r,1/f ) = 0. By the first funda-
mental theorem of Nevanlinna (see [12, Theorem 1.2]), forr ∈ G, we have

T (r, f ) = T

(
r,

1

f

)
+ O(1) = N

(
r,

1

f

)
+ O(1) = o

(
logM(r,f )

)
.

On the other hand, from (1) we have

T (r, f ) = m(r,f ) = 1

2π

2π∫
0

log+∣∣f (
reiθ

)∣∣dθ � d logM(r,f ), r ∈ G.

Thus we derive a contradiction from which Corollary 3 follows.
Below as another application of Corollary 1, we exhibit non-existence of the B

wandering domains of a transcendental meromorphic functionf (z) with at most finitely
many poles in terms of the existence of two values whichf (z) assumes few times in a
angular domain. By this result, we relate theory of complex dynamics to that of
distribution again. ByΩ(α,β) we denote the angular domain{z: α < argz < β}, 0 �
α < β < 2π and byn(r,Ω(α,β), f = a) the number of the distinct roots off (z) = a in
{|z| < r} ∩ Ω(α,β).

Corollary 4. Letf (z) be a transcendental meromorphic function with at most finitely m
poles. If we have an angular domainΩ = Ω(α,β), 0� α < β < 2π andµ(f ) > π

β−α
such

that for some integerk � 0 and0� ρ < µ = µ(f ), we have
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(
r,Ω,f (k) = 1

)
< rρ + O(logr), r /∈ E, (6)

thenJf has an unbounded component andf (z) has no Baker wandering domains.

Remark.

(D) A natural problem is whether Corollary 4 still holds for the order replacing the lo
order.

(E) If µ(f ) = ∞, then the result in Corollary 4 holds, as long as we assume that
exists an angular domainΩ = Ω(α,β) such that

lim sup
r /∈E→∞

n(r,Ω,f = 0) + n(r,Ω,f (k) = 1)

logr
< ∞.

Corollary 5. Letf (z) be a transcendental meromorphic function with at most finitely m
poles. If for all sufficiently larger > 0 andd > 1, we have

logM(2r, f ) > d logM(r,f ), (7)

thenJf has an unbounded component andf (z) has no Baker wandering domains.

Remark.

(F) Corollary 5 is still true if (7) is replaced byT (2r, f ) > dT (r, f ). FromT (2r, f ) >

dT (r, f ), by using Chuang’s inequality (see [7]), we can deduce thatT (2r, f (k)) >

dkT (r, f (k)), dk > 1 and sof (k)(z) has no Baker wandering domains.
(G) It is obvious that if

logM(r,f ) ∼ r

logr
(r → ∞), (8)

then (7) holds. Therefore such a transcendental entire function has only simpl
nected Fatou components.

∏∞
n=2(1+ z

n(logn)2 ) is an entire function to satisfy (8).

(H) Let Γ (z) be the gamma function. Then 1/Γ (z) is an entire function. Since

log
1

Γ (z)
= z logz + O(z)

uniformly asz → ∞ for |argz| < π − δ,

T (r,1/Γ ) = (
1+ o(1)

) 1

π
r logr

so that T (2r,1/Γ ) > dT (r,1/Γ ), d > 1. On the other hand, by noting th
N(r,1/Γ ) ∼ r , we have δ(0,1/Γ ) = 1. Therefore, 1/Γ (z) has not multiply-
connected components of the Fatou set.

(I) Let f (z) be an entire function satisfying (7) andg(z) a transcendental entire functio
Since logM(r,g) is convex in logr , M(3r/2,g)

M(r,g)
→ ∞ (r → ∞). Then from a theorem

of Pólya [14] (also see [8]), for some 0< ρ < 1 and all sufficiently larger , we have

logM(2r, f ◦ g) � logM
(
ρM(3r/2, g), f

)
� logM

(
2M(r,g), f

)
> d logM

(
M(r,g), f

)
� d logM(r,f ◦ g),
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so that from Corollary 5 it follows thatf ◦ g has no multiply-connected componen
of the Fatou set.

Corollary 6. Every transcendental meromorphic function satisfying linear differen
equation with rational coefficients must have no the Baker wandering domains a
Julia set has an unbounded component.

Remark.

(J)
∑m

j=1 Qj(z)e
Pj (z) satisfies a linear differential equation with rational coefficie

whereQj(z) is rational andPj (z) a polynomial.
(K) Let Jv(z) be v order Bessel function of the first kind which comes from the Be

differential equation which is a linear differential equation with rational coefficie
Entire functionJv(z)(z/2)−v has no multiply-connected components of the Fatou
from Corollary 6.

The main results in this paper were addressed in the course of Complex Dynamics
was taught by the present author in Tsing Hua University from February to June, 20

2. Proof of Theorem and its corollaries

By using the same method as in the proof of Theorem 1 of Zheng [18], we can pro
following result which shall be used to the proof of Theorem and for completeness w
proof we shall give.

Lemma 1. Let f (z) andU be given as in Theorem. Then forA in Theorem, there exist
in

⋃∞
m=1 f m(A) a sequence of round annuliDn with 0 as center andmod(Dn) → ∞ and

dist(0,Dn) → ∞ asn → ∞.

The hyperbolic metric plays a key role in the proof of Lemma 1. On a hyperbolic
setΩ , that is,Ĉ \ Ω contains at least three points, we have the hyperbolic densityλΩ(z)

defined as follows:λΩ(z) is the hyperbolic density on every component ofΩ . We define
the hyperbolic length of a curveα in Ω by

LΩ(α) =
∫
α

λΩ(z)|dz|.

Fora /∈ Ω define

CΩ(a) := inf
{
λΩ(z)|z − a|: z ∈ Ω

}
.

In the proof of Lemma 1, we need the following result, which is essentially du
Beardon and Pommerenke [4] and see [17].

Lemma 2. LetΩ be a hyperbolic open set. Then fora /∈ Ω , we have

1 � λΩ(z)|z − a| � π
, (9)
2(βΩ(z;a) + κ) 4βΩ(z;a)
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whereκ = Γ (1/4)4/(4π2) and

βΩ(z;a) = inf

{∣∣∣∣log
|z − a|
|b − a|

∣∣∣∣: b ∈ ∂Ω

}
.

Proof of Lemma 1. SetH = ⋃∞
m=0 f m(A). Take a pointb in a non-degenerate bounda

of A such thatf (z) assumes valueb at infinitely many points and obviouslyb ∈ ∂H . We
want to prove thatCH (b) = 0. To the end, suppose thatCH (b) > 0.

We take a Jordan curveγ in A which separates the boundaries ofA and choose a
sufficiently largeR0 > 0 such that

n

(
R0,

1

f − b

)
− n(R0, f ) >

1

2πCH (b)
LA(γ ). (10)

Sincef n(A) → ∞ (n → ∞), for a positive integerp we have a closed continuumΓp ⊂
f p(γ ) ⊂ f p(A) such thatΓp ⊂ {|z| > R0} andn(Γp,0) = 1.

Sincef :f p(A) → f p+1(A), by the principle of the hyperbolic metric [1], we have

λf p+1(A)

(
f (z)

)∣∣f ′(z)
∣∣ � λf p(A)(z), z ∈ f p(A).

From the definition ofCH (b), we have

CH (b)
∣∣f ′(z)

∣∣ � λf p+1(A)

(
f (z)

)∣∣f (z) − b
∣∣∣∣f ′(z)

∣∣ � λf p(A)(z)
∣∣f (z) − b

∣∣,
z ∈ f p(A). (11)

From (11), (10) and the argument principle, we have

LA(γ ) � Lf p(A)

(
f p(γ )

)
� Lf p(A)(Γp) =

∫
Γp

λf p(A)(z)|dz|

� CH (b)

∫
Γp

|f ′(z)|
|f (z) − b| |dz| � 2πCH (b)

∣∣∣∣ 1

2πi

∫
Γp

f ′(z)
f (z) − b

dz

∣∣∣∣

= 2πCH (b)

(
n

(
Γp,

1

f − b

)
− n(Γp,f )

)

> 2πCH (b)

(
n

(
R0,

1

f − b

)
− n(R0, f )

)
> LA(γ ).

This is impossible. Therefore, we have proved thatCH (b) = 0.
Then there exists a sequence{zn} in H such thatλH (zn)|zn − b| → 0 asn → ∞. Put

δn = |zn − b| andβn = βH (zn;b). From (9) it follows thatβn → +∞ asn → ∞. The
definition ofβH (z;b) implies that for the annuli

Bn = {
z: δne

−βn < |z − b| < δne
βn

}
,

we haveBn ⊂ H and mod(Bn) = 2βn → ∞. Sinceb lies in a continuum of∂H , δn � 0,
otherwiseβn → 0. From the formula ofβH (z;b), we deduce thatδn → +∞ asn → ∞.
SinceFf has only bounded components, eachf m(A) is bounded, and so contains at m
finitely manyBn. Thus dist(0,Bn) → ∞ (n → ∞).
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Then there exists inH a sequence of annuli{Dn} with center 0 such that mod(Dn) =
mod(Bn) + O(1) and dist(0,Dn) → ∞ asn → ∞. Lemma 1 follows. �

Now we start to prove Theorem.

Proof of Theorem. Let S(z) be the rational function consisting of sum of the singu
parts of Laurant series off (z) at its poles. Then we can write

f (z) = g(z) + S(z),

whereg(z) is an entire function. We take a positive numberR such thatf (z) is analytic
and|S(z)| < 1 in {|z| > R}.

From Lemma 1 it follows that for some sufficiently largep, f p(A) ⊇ {s/2 < |z| < 8s}
ands > 2(M(R,g) + 1+ |g(0)|). Put

h(z) = 2(g(8sz) − g(0))

M(4s, g)
, |z| < 1.

By the theorem of Bohr (see [8, Theorem 6.9]),h({|z| < 1}) ⊃ {|z| = r̃}, r̃ > c, c is
a universal constant and 0< c < 1. Therefore,g({|z| < 8s}) ⊃ {|z + g(0)| = rs}, rs >
c
2M(4s, g). By noting that logM(r,g) is convex in logr , we have

M(2r, g)

M(r, g)
→ ∞ (r → ∞).

We can assume that forr > R, M(2r, g) > 16
c

M(r, g). Thusrs > 8M(2s, g) > M(s, g)

and sinceg({|z| � s}) ⊂ {|z| � M(s,g)}, we have that

g
({

s < |z| < 8s
}) ⊃ {∣∣z + g(0)

∣∣ = rs
}

so thatf ({s/2 < |z| < 8s}) ⊃ {|z + g(0)| = rs}. It follows from f ({|z| = s/2}) ⊂ {|z| <

M(s,g)/2} that ∂f ({s/2 < |z| < 8s}) ∩ f ({|z| = 8s}) lies in {|z| > 8M(2s, g)} and sur-
rounds the origin. It is easy to see that

f p+1(A) ⊃ f
({

s/2< |z| < 8s
}) ⊃ {

M(s,g)/2 < |z| < 8M(2s, g)
}
.

By induction withM(2s, g) replacings, we have

f p+n(A) ⊃ {
Mn(s, g) < |z| < 8Mn(2s, g)

}
, (12)

whereMn(r, g) = Mn−1(M(r, g), g). We want to show the round annuli{Mn(s, g) < |z| <
Mn(2s, g)} satisfies the requirement of theorem, indeed, we have

Mn(2s, g) � Mn−1
(
22M(s,g), g

)
� Mn−2

(
24M(s,g), g

)
� · · · � 22n

Mn(s, g).

We complete the proof of Theorem.�
Whenf (z) is entire, we give another proof of Theorem as follows.
Suppose that the result of Theorem does not hold. Then there exists a sequence{nk} such

that
⋃∞

k=1 f nk (A) does not contain any sequence of round annuliBm with the origin center
and mod(Bm) → ∞ and dist(0,Bm) → ∞ asm → ∞. ConsiderH = ⋃∞

k=1 f nk (A). From
Corollary 4 of Zheng [18],δ(0, f −z) = 0, and sof (z) has a fixed-pointb, and it is obvious
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thatb is not in the closure ofH , for any wandering domain off (z) cannot contain periodi
points off (z). We can chooseb not to be a Nevanlinna deficient value off (z), and hence
the equationf (z) = b has infinitely many roots. Since all the roots off (z) = b are the
roots off n(z) = b, n � 1, for eachn andr > 0 we have

n

(
r,

1

f n − b

)
� n

(
r,

1

f − b

)
.

Thus we have a sufficiently largeR0 > 0 such that (10) holds forf nk+1−nk (z) :f nk (A) →
f nk+1(A), provided thatCH (b) > 0. Then by the same argument as in the proo
Lemma 1, we can proveCH (b) = 0 and further we obtain a sequence of round an
Bm with the origin center and mod(Bm) → ∞ and dist(0,Bm) → ∞ asm → ∞. Thus we
derive a contradiction.

Theorem follows.
In the proof of Corollary 1, we need the following, which is essentially due to Bake

(see [5, Lemma 7] and [19, Lemma 4]).

Lemma 3. Let U be a domain in the complex plane andf (z) be defined and analyti
in f n(U) (n = 0,1, . . .) inductively such thatH = ⋃∞

n=0 f n(U) has at least two finite
boundary points in the complex plane. Iff nk |U → ∞ (k → ∞), then for any compac
subsetK of H , there exists a positive constantM such that for all sufficiently largek, we
have ∣∣f nk (z)

∣∣ �
∣∣f nk (z′)

∣∣M, for all z, z′ ∈ K. (13)

Proof of Corollary 1. Under the assumption of Corollary 1, there exists a Baker w
dering domainU containing anA in Theorem. From Theorem, we have in

⋃∞
n=0 f n(A)

a sequenceDn = {z: rn � |z − a| � Rn} with rn → ∞ andRn/rn → ∞ (n → ∞). Set

G =
∞⋃

n=1

{r: rn � r � Rn/
√

2} and C(r, a) = {
z: |z − a| = r

}
.

Obviously,G has the infinite logarithmic measure. For everyr ∈ G, we haveC(r, a) ⊂ Dn

for somen and we have a curveγ (r) in A and a positive integerm(n) such thatC(r, a) =
f m(n)(γ (r)). Thus we have two pointsw0 andw1 in γ (r) ⊂ A such that

Mc(r, a, f ) = max
z∈C(r,a)

∣∣f (z)
∣∣ = ∣∣f (

f m(n)(w0)
)∣∣ (14)

and

mc(r, a, f ) = min
z∈C(r,a)

∣∣f (z)
∣∣ = ∣∣f (

f m(n)(w1)
)∣∣. (15)

By noting thatA is a compact subset ofU andf n(U) → ∞ (n → ∞), we can apply
Lemma 3 to show that for some constantM > 1, we have∣∣f m(n)+1(w0)

∣∣ �
∣∣f m(n)+1(w1)

∣∣M. (16)

Combining (14)–(16), we obtain (1) withd = 1/M .
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SetS(r, a) = {z: |Rez−Rea| = r , | Im z− Ima| = r}. S(r, a) is a square with centera.
It is easy to see that for everyr ∈ G, S(r, a) ⊂ Dn for somen. Then by the same argume
as in above, we can imply (2).

The proof of Corollary 1 is completed.�
In order to prove Corollary 4, we need the Nevanlinna theory on angular domain

f (z) be a meromorphic function on the angular domainΩ(α,β) = {z: α � argz � β},
where 0< β − α � 2π . Following Nevanlinna (see [11]) define

Aα,β(r, f ) = ω

π

r∫
1

(
1

tω
− tω

r2ω

){
log+∣∣f (

teiα
)∣∣ + log+∣∣f (

teiβ
)∣∣}dt

t
,

Bα,β(r, f ) = 2ω

πrω

β∫
α

log+∣∣f (
reiθ

)∣∣sinω(θ − α)dθ,

Cα,β(r, f ) = 2
∑

1<|bm|<r

(
1

|bm|ω − |bm|ω
r2ω

)
sinω(θm − α), (17)

whereω = π
β−α

andbm = |bm|eiθm are the poles off (z) onΩ(α,β) appeared according t

their multiplicities.Cα,β(r, f ) has the same formula as inCα,β(r, f ) for the distinct poles
of f (z) onΩ(α,β) and the Nevanlinna’s angular characteristic is defined as follows:

Sα,β(r, f ) = Aα,β(r, f ) + Bα,β(r, f ) + Cα,β(r, f ).

Lemma 4 [20]. Letf (z) be transcendental and meromorphic inC. If for ρ > 0,

lim sup
r→∞

logn(r,Ω(α,β), f = a)

logr
� ρ, (18)

then given arbitrary smallε > 0, for sufficiently larger > 0, we have

Cα,β

(
r,

1

f − a

)
< K

(
rρ−ω+ε + logr

)
, (19)

whereω = π
β−α

andK is a positive constant depending onε.

The following is the second Nevanlinna fundamental theorem on angular domain

Lemma 5 [11]. Let f (z) be meromorphic in the complex plane and consider ang
domainΩ(α,β). Then for arbitrary integerk � 0 we have

Sα,β(r, f ) < Cα,β(r, f ) + Cα,β

(
r,

1

f

)
+ Cα,β

(
r,

1

f (k) − 1

)
− Cα,β

(
r,

1

f (k+1)

)

+ Rα,β(r, f ), (20)

whereRα,β(r, f ) = O(logrT (r, f )), r /∈ E.
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The proof of Lemma 5 is omitted, since it can be proved by the similar argume
those in the proof of Milloux inequality in the complex plane (see Hayman [12]).

Now we can prove Corollary 4.

Proof of Corollary 4. Take a positive numberε such thatρ + ε < µ. Under (6), applying
Lemma 4 gives that

Cα,β

(
r,

1

f

)
+ Cα,β

(
r,

1

f (k) − 1

)
< K

(
rρ−ω+ε + logr

)
, r /∈ E. (21)

Now it follows from Lemma 5 and (21) that

Bα,β(r, f ) � Sα,β(r, f ) − Cα,β(r, f )

< (k + 1)Cα,β

(
r,

1

f

)
+ Cα,β

(
r,

1

f (k) − 1

)
+ Rα,β(r, f )

< K̃
(
rρ−ω+ε + logrT (r, f )

)
, r /∈ E.

Thus

β−ε∫
α−ε

log+∣∣f (
reiθ

)∣∣dθ � π

2ω
sin(εω)K̃

(
rρ+ε + rω logrT (r, f )

)
, r /∈ E. (22)

If Jf has no unbounded components, thenf (z) has the Baker wandering domains and
have (1) for some positive numberd and a setG such thatG \ E has infinite logarithmic
measure. Thus applying (1) to (22) yields that forr ∈ G \ E,

d(β − α − 2ε) logM(r,f ) <
π

2ω
sin(εω)K̃

(
rρ+ε + rω logrT (r, f )

)
,

so thatµ � max{ρ + ε,ω}. We derive a contradiction. Corollary 4 follows.�
Proof of Corollary 5. Suppose on the contrary thatJf has no unbounded componen
then we have a sequence of round annulusDn = {z: rn � |z| � Rn} such thatRn/rn → ∞
and rn → ∞ and f (Dn) ⊂ {|z| > Rn} so that |f (z)| > 1 in Dn and n(Rn,1/f ) =
n(rn,1/f ). From (12) and (7), we can require thatRn = rd

n .
Thus by using the first Nevanlinna fundamental theorem, we have

T (Rn,f ) + O(1)

= T (Rn,1/f ) = m(Rn,1/f ) + N(Rn,1/f ) = N(Rn,1/f )

= N(rn,1/f ) +
Rn∫

rn

n(t,1/f ) − n(0,1/f )

t
dt + n(0,1/f ) log

Rn

rn

= N(rn,1/f ) + (
n(rn,1/f ) − n(0,1/f )

)
log

Rn

rn
+ n(0,1/f ) log

Rn

rn

< N(rn,1/f ) + log
Rn

N(ern,1/f ) <
(
2+ (d − 1) logrn

)
T (ern, f ).
rn
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On the other hand, byxn we denote the maximum integer part of[log2]−1 log(rd−1
n /2e).

Then by using (7), we have

T (Rn,f ) = T
(
rd
n , f

)
� 1

3
logM

(
rd
n /2, f

)
� 1

3
logM

(
2xnern, f

)

� 1

3
dxn logM(ern, f ) � Krc

n logM(ern, f ),

wherec = (d − 1)
logd
log 2 andK = (3d)−1(2e)−c.

Thus we obtain the inequality 2+ (d − 1) logrn � Krc
n. This is impossible, sinc

rn → ∞ asn → ∞.
Corollary 5 follows. �
Finally, we give a proof of Corollary 6 by using asymptotic integration theory

Brüggemann [6], Steinmetz [16] and Zheng [21]).

Proof of Corollary 6. Letf (z) be a function in Corollary 6. From the theory of asympto
integration, anth order linear differential equation with rational coefficients hasn linearly
independent formal solutions

Wj = exp
(
Pj (z)

)
zdj

[
logz1/p

]mj Qj (z, logz), 1� j � n, (23)

with Pj (z) being a polynomial inz1/p , dj ∈ C, mj ∈ N0 and Qj(z, logz) = 1 +
O(1/ logz), as |z| → +∞. There exist a finitely many rays argz = θi , 1 � i � m, such
that θ1 < θ2 < · · · < θm and inSi = {z ∈ C: θi < argz < θj+1}, the differential equation
has a fundamental solution system with form in (23). Then inSi , we have

f (z) = c1W1 + c2W2 + · · · + cnWn,

wherecj is a complex number. We can assume without any loss of generalities thatP :=
P1 = · · · = Pk and fork < s � n andθi < θ < θi+1,

Re
(
P

(
reiθ

) − Ps

(
reiθ

)) → +∞,

asr → +∞. Thus

log
∣∣f (

reiθ
)∣∣ = Re

(
P

(
reiθ

)) + O
(
log|z|). (24)

Since any meromorphic solution of linear differential equation with rational coeffic
has only finitely many poles and the finite positive order of growth, we define the indi
functionhf (θ) of f (z) by

hf (θ) := lim sup
r→∞

log|f (reiθ )|
rρ

,

whereρ is the order off (z). Therefore, from (24), it follows that

T (r, f ) = m(r,f ) + O(logr) = rρ

2π

2π∫
0

max
{
0, hf (θ)

}
dθ + O

(
rρ−ε

)

(see [16, Theorem 2]). It is easy to see thatT (2r, f ) > dT (r, f ), d > 1. Sincef (z) has
only finitely many poles, Corollary 6 follows from Corollary 5.�
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