
Theoretical Computer Science 128 (1994) 31-62 

Elsevier 

31 

Methods for message routing in 
parallel machines* 

Tom Leighton 
Mathematics Departmenf and Laboratory for Computer Science, Massachuselts Institute of 
Technology, Cambridge, MA 02139, USA 

Abstract 

Leighton, T., Methods for message routing in parallel machines, Theoretical Computer Science 128 

(1994) 31-62. 

In this paper, we survey many of the approaches that have been proposed for solving communica- 

tion problems in parallel machines. The material is presented from a theoretician’s perspective, 

although the paper was written for a general audience. 

1. Introduction 

The problem of getting the right data to the right place within a reasonable amount 
of time is one of the most challenging and important tasks facing the designer (and, in 
some cases, the user) of any large-scale general-purpose parallel machine. This is 
because the processors comprising a parallel machine need to communicate with each 
other (or with a common shared memory) in a tightly constrained fashion in order to 
solve most problems of interest in a timely fashion. Supporting this communication is 
often an expensive task, both in terms of hardware and time. In fact, most parallel 
machines devote a significant portion of their resources to handling communication 
between the processors and the memory. 

In this paper, we will survey many of the ideas and approaches that have been 
proposed for solving communication problems in parallel machines. We will cover 
techniques that have been developed by theoreticians as well as practitioners, and we 
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will pay particular attention to methods that have been (or are currently being) 

implemented in real machines. The material will be presented from a theoretician’s 

perspective, although the paper is intended for a general audience. Research questions 

and areas of current research will also be mentioned where appropriate. 

The paper is divided into two parts. In Section 2, we review the rather large 

vocabulary associated with parallel computation and message routing in parallel 

machines. Included in this section is a review of the many models and types of parallel 

machines, as well as various methods for configuring a shared memory. In Section 3, 

we review a wide variety of ideas, techniques, and approaches for dealing with 

message routing problems in parallel machines. Although our coverage of this 

material is certainly not exhaustive, we have tried to mention and/or provide pointers 

to most of the major contributions to the field, both in theory and in practice. 

As a consequence of our desire to cover a wide range of techniques, we will not be 

able to present any of the techniques at any significant level of depth. For those who 

want to learn more about this material, we have included a substantial bibliography. As 

a general rule of thumb, the topics covered in this paper are covered in much greater 

detail in the recent text by Leighton [SO]. Those topics that are not covered in [SO] 

(such as the material on randomly wired networks and area-universal networks) will be 

covered at length in a forthcoming text by Leighton and Maggs [55], portions of which 

can be obtained in draft form from the authors. For coverage of this material from 

a more practical perspective, we refer the reader to the survey paper by Dally [ 193. For 

more information on specific parallel machine architectures, see the text by Almasi and 

Gottlieb [6] (for general coverage of machines built before 1990) and the paper by 

Leiserson et al. [62] (for coverage of the CM-5). We also refer the reader to the survey 

by Pippenger on communication networks [74] and to the survey by Valiant on general 

purpose parallel architectures [S9] for more information on these subjects. Lastly, we 

refer the reader to the annual Proceedings of the ACM Symposium on Parallel Algo- 

rithms and Architectures (SPAA) for extended abstracts of recent research results. 

2. Terminology and models 

We begin our survey by reviewing the many models and types of parallel machines 

that are used by theoreticians, algorithm designers, programmers and architects. 

Unfortunately, there are large differences between the models, and the parallel 

machine that is imagined by the theoretician or programmer (i.e., the user) is often 

quite different than the machine that was built by the architect. In fact, one of the key 

applications of message routing is to bridge the gap between different models so that 

the machine built by the architect (say a Connection Machine) can be made to appear 

like the machine imagined by the user (say a parallel random access machine (PRAM)). 

Unfortunately, the coverage of machine models is lengthy (mostly because there are 

so many different views on what parallel machines are or should be) and it constitutes 

a significant digression from the main topic of message routing. The material is 
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important, however, because the motivation for many routing problems comes from 
trying to make one machine model emulate another. Hence, the material on models of 
parallel machines will provide an excellent background and perspective for our review 
of message routing. 

2.1. Models of parallel machines 

A wide variety of models have been proposed as the “right” abstraction of a parallel 
machine. In fact, there are probably more models of parallel machines than there are 
real parallel machines. In what follows, we will define many of the most important 
models and we will point out the basic differences among them. We have partitioned 
the models broadly according to the components which they use for communication. 
We begin with the most abstract (or wireless) models in Subsection 2.1.1. 

2.1.1. Abstract models of parallel machines 
The most popular abstraction of a parallel machine is, by far, the PRAM. A PRAM 

consists of a collection of independent processors and a single shared memory. It is 
assumed that each processor can read or write to any location in the memory in 
a single step. 

There are many different types of PRAMS depending on whether or not multiple 
processors are allowed to read or write to the same memory location at the same time 
and on what arbitration rule is used if multiple processors try to write to the same 
location at the same time. For example, in an exclusive-read, exclusive-write (EREW) 
PRAM, only one processor is allowed to read from or to write to any location in 
memory at any given time. In a concurrent-read, exclusive-write (CREW) PRAM, any 
number of processors are allowed to read from the same location in memory at the same 
time, but only one processor can write to any location at any time. In a CRC W PRAM, 
multiple processors are allowed to concurrently write to the same memory location, 
although a protocol must be specified to arbitrate among them. Many different 
arbitration protocols have been proposed (e.g., nothing is written, an adversary chooses 
what to write, the sum of the competing values is written, the lowest-index value is 
written, etc.), and the choice of the protocol can affect the computational power of the 
machine. For example, the logical OR of N bits can be trivially computed in one step on 
an N-processor CRCW PRAM if concurrent writes are handled by writing only if every 
competing processor tries to write the same thing (and otherwise writing nothing) - this 
is known as the COMMON CRCWPRAM model-but the same computation requires 
a(log N) steps on PRAMS with more limited concurrent writing capabilities f-261. (For 
more information on the various concurrent write models and their relationships to 
other models of computation, see [25,27,32].) 

Unfortunately, the PRAM is not a particularly accurate model for most parallel 
machines. In fact, no PRAM has ever been built per se, although most real parallel 
machines can emulate a PRAM with some degree of efficiency by appropriate use of 
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message routing. It has been argued by some that optical technology will eventually 

make the PRAM a reality. In fact, tremendous progress has been made in optical 

communication technology during the past decade, but optical switching technology 

is still no match for traditional electronic switching. 

The main advantage of the PRAM is that it provides a very simple and natural 

architecture-independent model for the parallel algorithm designer. In an effort to 

make the model more realistic, several variations of the PRAM model have been 

proposed and analyzed in the literature. Some of these variations are described in the 

following paragraphs. 

A distributed-memory PRAM (also known as a module parallel computer (MPC)) 

is the same as a PRAM except that the global memory is partitioned into M blocks 

and access to the memory is restricted so that at most one memory location within 

each block can be accessed at any time. Concurrent reads and writes may or may 

not be allowed depending on the model. The distributed-memory PRAM more closely 

models large-scale parallel machines (such as the BBN Butterfly, IBM RP3 and 

GFll, Ametek 2010, Intel iPSC and Touchstone, NASA MPP, NCUBE, and Think- 

ing Machine’s Connection Machine Series) for which the memory is partitioned 

into blocks, each with their own sequential access.’ Of course, the distributed- 

memory PRAM is harder to program than the generic shared-memory PRAM, 

but the partitioning of memory is a fact of life that must be confronted with large- 

scale parallelism. Techniques for simulating a generic shared-memory PRAM 

on more realistic distributed-memory models are covered in Section 3 of this 

paper. 

The distributed random access machine (DRAM) model of computation is similar to 

the distributed-memory PRAM model except that each processor/memory pair is 

assigned a location in an area A square (or a volume V cube) and memory accesses are 

further restricted so that at most O(p) accesses can “cross” any region in the square 

with perimeter p in one step. (An access is said to cross a boundary if its origin and 

destination are on opposite sides of the boundary.) The DRAM model attempts to 

capture the notion of physical locality in parallel machines, and it reflects the 

limitations imposed by the area and volume constraints inherent in two and three 

dimensional wiring technology. For example, if a parallel machine occupies volume V, 

then it has a cross section with area V2’3, which means that at most 0( V2’3) wires can 

pass through the cross section and thus at most 0( V2’3) memory accesses can pass 

through the cross section at any time. This model is particularly appropriate for 

parallel machines based on arrays (such as the MPP, Intel Touchstone, and Ametek 

’ Recently, a variation of the distributed-memory PRAM model which includes parameters for bandwith 

and latency was proposed. This model is known as the Log P model, and it is described in “P. Culler, R. 
Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian and T. van Eicken, Log P: Towards 

a realistic model of parallel computation, in: 4th ACM SIGPLAN Symp. on Principles and Practice of 
Parallel Programming (1993)“. 
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2010) or fat trees (such as the CM-5). Further information on the DRAM model can 
be found in [61] as well as in Section 3 of this paper. 

In the block PRAM (BPRAM) model, the cost of accessing data from memory is 
altered to reflect the fact that in many parallel machines, the time to access one byte of 
data is often little more than the time needed to access 100 bytes of data. In particular, 
the time needed to access b bytes of data is defined to be CI + bb in the BPRAM model 
where CI and fl are predetermined constants such that (Y $ p. For more information on 
this model, see [2,14]. The BPRAM model has also been generalized to models (such 
as the local memory PRAM (LPRAM) and the hierarchical BPRAM) where the cost of 
a memory access varies with the distance of the access in the memory hierarchy (e.g., 
see [3,7]). 

The scan model is similar to the generic PRAM model except that we are allowed to 
perform a prefix computation in a single step. In particular, if xi is contained in the ith 
processor for 1 Q i < N then the ith prefix yi = x1 @ x2 @ ... @ Xi can be returned to the 
ith processor for 1 <id N as a primitive l-step operation in the scan model, where 
@ is an arbitrary associative operator. Since many parallel machines (such as 
a Connection Machine) can run a prefix computation in less time than it takes for 
each processor to access the global memory once, the scan model is more realistic than 
the PRAM model for many parallel machines. Allowing prefix as a primitive also 
allows the algorithm designer to design substantially faster algorithms for many 
problems (e.g., see [12]). Other variations of the PRAM that allow even more 
powerful primitives (such as multiprefix [SO], Fourier transforms, sorting, etc.) have 
also been proposed. 

PRAMS and related models are usually considered to be synchronous, multiple- 
instruction-multiple-data (MIMD) machines. In practice, MIMD machines (those for 
which different processors can be executing different instructions at the same time) are 
usually asynchronous (that is, different processors can start tasks independently of one 
another), although many such machines (such as the BBN Butterfly and the CM-5) 
have built-in mechanisms (such as a message router or a control network) that can be 
used to enforce some degree of synchronization. (For more information on methods 
for handling asynchrony in PRAMS, we refer the reader to [17,18,28,71].) In 
addition, most PRAM algorithms can really be run in SIMD fashion (where every 
processor executes the same instruction at the same step, but on different data) 
without much loss in efficiency. 

2.1.2. Network-based machines 

Most real parallel machines use some form of network to interconnect the proces- 
sors with each other and/or to interconnect the processors with the memory. Net- 
work-based machines can be broken into two broad classes depending on whether or 
not a processor is located at every node of the network. 

In a direct-network parallel machine, there is a processor and a block of memory 
at each node of the network. When a processor wants to access some data that is not 
stored in its local memory, it sends a message through the network to the appropriate 
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Fig. 1. An I-input butterfly. 

node requesting the data. Such machines are also sometimes referred to as message- 

passing and distributed-memory machines. Typical choices for the network include 

trees, arrays of varying dimensions, hypercubes, butterflies, and other hypercubic 

networks. (A k-dimensional N-sided array has Nk nodes {(i,, i,, . . . . 

ik)I lbil , . . . , ik d N >. Two nodes are connected if they differ in precisely one coordi- 

nate and they differ by precisely 1 in that coordinate. The N-node hypercube is 

a log N-dimensional 2-sided array. The N-input butterjy is a graph with log N + 1 

levels, each with N nodes. The jth node (0 <j < N) on level i (0 <i <log N) is denoted 

by (jr j2...jlogN,i) where j, j,...j,,,.=bin(j) and it is connected to nodes 

(jr j2...jiogN, i+l) and (jr...jiji+l ji+z...jioeN,i+l) on level i+l. The nodes 

on level 0 are called inputs and the nodes on level log N are called outputs. For 

example, see Fig. 1. (For definitions of other networks, see [SO].) A key property 

of all networks used for large-scale machines is that they have low node degrees, 

which rules out the complete network (in which every pair of nodes is connected by 

an edge). 

In an indirect or multistage network-based machine, the processors and blocks of 

memory are interconnected by a network of switches (which are not associated with 

any processor). Typically, the switches are grouped in levels (or stages) so that all the 

processors and memory are in a single stage and so that switches in one stage are 

linked only to a small number of switches in the adjacent stages. Each processor is 

usually equally distant from all the others, and thus there is usually no notion of 

locality in such machines. (A counterexample is the CM-5 which uses a fat tree and 

a butterfly in an indirect fashion that preserves some locality [62].) As a consequence, 

such machines are often referred to as shared-memory machines even though the 

memory is distributed into blocks across the network. Typical choices for an indirect 

network include crossbars (for small-scale machines), the butterfly, and other low- 

degree hypercubic networks. 
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By routing messages through the network, any network-based machine can emu- 
late any PRAM model. The efficiency of the simulation depends on how much work is 
required for message routing. This notion is captured in the bulk synchronous model of 
parallel computation. In the bulk synchronous model, the parallel machine consists of 
N processors and memory modules, a message router, and a synchronizer. Time is 
partitioned into blocks of L steps each (called supersteps) by the synchronizer. At the 
end of each superstep, the synchronizer checks to see if each processor has completed 
its tasks. If so, the processors are told to begin the next set of tasks. If not, then the 
processors that are finished wait for those that are not yet done. Data can only be used 
if it is available locally at the beginning of the superstep. Communication is handled 
by the router, which is capable of routing any h-relation in cth + /I? steps where c1 and 
/? are parameters that depend on the nature of the router that is used. (An h-relation is 
a routing problem where at most h packets start and finish at each node. Broadcasting 
and combining are not allowed.) For example, we will see in Section 3 that /3=log N 
and a=O(l) for a randomized router that is based on an N-node hypercube.’ (For 
more information on the bulk synchronous model, see [SS].) 

2.1.3. Bus-based machines 
In addition to point-to-point wires, many parallel machines also use buses to 

interconnect processors. In fact, some parallel machines (such as the Encore, Sequent, 
Alliant, and Ardent) rely on a single high-speed bus as the primary means to 
interconnect the processors and the memory. In such machines, the access to main 
memory is sequential in nature, but if the number of processors is small and the bus is 
fast, then the accesses can appear to be parallel. Although the single-bus approach to 
parallel architecture does not scale well, it has been successfully utilized to obtain 
efficient speedups for several applications using relatively small numbers of proces- 
sors. From the message routing point of view, there is not a lot to be said about such 
machines (since the routing is done by broadcast on the bus), although there are 
interesting problems involving cache coherency and bus access protocols (e.g., see 

C34,381). 
Multiple bus and reconfigurable bus architectures have also been proposed for 

parallel machines, but these approaches are still in the experimental stages. One 
particularly popular abstract model using buses configures the processors into a 2- 
dimensional array with a bus in every row and column. In some variations of the 
model, the user is allowed to locally partition the buses into sub-buses, thereby 
partitioning the processors into regions of the plane that are connected by buses. (For 
more information on reconfigurable networks, we refer the reader to the recent survey 
by Li and Stout [63].) 

Modeling the performance of multiple-bus architectures can be a tricky business 
since the cost of communicating across a bus increases with its size and with the 
number of points where it can be severed, a fact often overlooked in theoretical work 

2 In this paper, we use the notation log N to denote log, N. 
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on this subject. In addition, message routing algorithms on such networks suffer from 

the same bisection-width constraints that plague array-based interconnection net- 

works. As a consequence, message routing on a reconfigurable 2-dimensional bus 

architecture (for many problems) is not a lot faster than on a standard 2-dimensional 

array network, and so we will not devote much additional attention to bus-based 

architectures in this paper. 

2.1.4. The vector and datajow models 

The preceding models of parallel computation are all architecture-based. In 

other words, we described the setup of the machine and did not worry about what it 

could do. In what follows, we will describe two language-based models of parallelism. 

This time, the model will be defined by what it does and not so much by how it does it. 

In a vector machine, we specify the computation to be performed as a sequence of 

operations involving vectors of data. For example, one operation might be to 

compute C(i) = A(i) . B(i) for 1 d i Q 100. The vector operations are performed sequen- 

tially, but there are at least two ways to speed up the computation of a single vector 

operation. If we have a single processor, then we can gain a speedup by pipelining the 

various elementary instructions that make up each multiply. This technique is used 

widely in practice and can speed up computation by a reasonable constant factor (for 

one processor) if the array is sufficiently large (i.e., large enough to fill the pipeline). 

Given more than one processor, we can also speed up computation of a vector 

operation by spreading the work among the processors and performing the operation 

in a parallel SIMD fashion. For more information on vector processors, we refer the 

reader to [6,12]. 

In a datajow model, the computation to be performed is specified as a task graph. 

Nodes in the graph represent operations to be performed, and edges represent inputs 

and outputs for each operation. In order to carry out the computation, we need to 

map the task graph onto a machine. Whenever the inputs for a computation are ready 

and available at the same processor, the computation takes place and the outputs are 

sent to the appropriate locations. 

The efficiency of the dataflow approach depends on several factors, including the 

amount of parallelism inherent in the task graph, the efficiency with which the task 

graph is embedded into the machine that will execute it, and the performance 

capabilities of the underlying machine. A variety of dataflow machines have been 

constructed, and most use architectures that (at a high level) are similar to those 

described earlier in this paper. The problem of embedding a task graph in a parallel 

machine involves message routing as well as scheduling and placement issues. For 

more information on the dataflow approach to parallelism, we refer the reader to [6] 

and the references contained therein. 

2.1.5. Some comments on the meaning of shared memory 

The observant reader will notice that we have used the terms shared memory, 

distributed memory, and global memory often in the paper without really defining them. 
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The reason that we have omitted the definition is because the terms mean different 
things to different people. For example, Almasi and Gottlieb [6] define a memory to 
be a shared memory if each processor has equal access to each location in memory. 
This definition includes multistage network machines such as the BBN Butterfly even 
though the memory in such machines is clearly distributed into distinct blocks. Other 
definitions of a shared memory include any memory with a global address space, 
independent of equal access. Still others (e.g., [40]) restrict the definition to include 
only machines (such as PRAMS or single-bus machines) where the global memory is 
not partitioned in any discernible way. 

We will not attempt to resolve the confusion in terminology here. Rather, we will 
use the terms loosely, using the term distributed memory to refer to a memory that is 
physically broken into chunks, and using the terms shared memory and global memory 

to refer to the union of globally accessible addresses in any parallel machine. (Hence, 
in this interpretation, a memory can be both shared and distributed.) 

2.2. Types of routing algorithms 

There are many different models for message routing in a parallel machine aepend- 
ing on how each message moves through the machine and how it is buffered along the 
way. In this paper, we will focus on message routing in fixed-connection networks 
since virtually all of the parallel machines that have a need for message routing (such 
as the BBN Butterfly, IBM RP3 and GFll, Ametek 2010, Intel iPSC and Touchstone, 
NCUBE, MPP, and Thinking Machines CM-I, CM-2, and CM-5) use a fixed- 
connection network for communication. 

In the store-and-forward (or packet-switching) model of routing, each message 
consists of a single entity (called a packet) that moves through the network, one node 
or switch at a time. (A packet may or may not be transmitted from one node to 
another in a bit-serial fashion, but the entire packet is transmitted before any part of 
the packet advances to the next node.) A step is defined as the amount of time it takes 
for one packet to cross one wire. Generally, at most one packet can cross each wire at 
each step in the store-and-forward model. (Machines that use store-and-forward 
routing include the MPP, Intel iPSC, and early NCUBEs, as well as any machine 
composed of Transputers.) 

Packets may or may not be allowed to pile up in queues in the store-and-forward 
model. In hot-potato routing (also called chaos routing), packets cannot be queued. In 
other words, every packet must move at every step until it arrives at its destination. 
(This approach is being used in the Tera computer [82].) In some cases, this may mean 
that packets are misrouted since they might be sent in the wrong direction. (Approaches 
that allow misrouting are also referred to as defection and indirect routing algorithms. 
Such approaches are used in several machines, including the CM-1 and CM-2.) 

In routing with combining, two or more packets with the same destination can be 
combined into a single packet by any switch that contains both packets at the same 
time. Several different kinds of combining operations are possible, including just 
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about any binary operation. Combining has been used in several parallel machines, 

both in hardware (such as in the NYU Ultracomputer [29] and in some experimental 

machines [l]) as well as in software (such as in the Connection Machine series). 

In the circuit-switching (or path-lockdown) model of routing, the entire path from 

the origin to the destination of a message is established and dedicated so that the data 

in the message can be transmitted as an uninterrupted stream of pipelined bits from 

origin to destination. Of course, it may not always be possible to establish disjoint 

paths through the network for all messages that need them, and sometimes messages 

will be blocked or dropped. Such messages will need to be resent later. In some cases, 

a given wire may represent several channels that are used in a multiplexed fashion so 

that the paths need not be completely disjoint. The BBN Butterfly and IBM GFll are 

examples of machines that use the circuit-switching approach to message routing. 

The BBN Butterfly and IBM GFll differ in how the paths are set up, however. In 

particular, the GFl 1 computes routing paths in an oSS_line fashion (i.e., the commun- 

ication patterns that will be used are known ahead of time, and disjoint message paths 

are precomputed by a global sequential processor), whereas the BBN Butterfly 

attempts to set up the paths in an on-line fashion (i.e., using only local control and 

local information while the parallel program is running). Off-line solutions to routing 

problems are usually superior to on-line solutions, but they require advance know- 

ledge of the pattern of communication that will be used. Such advance knowledge is 

often not available, which limits the capabilities of machines such as the GF 11. 

The wormhole and cut-through models of routing form a compromise between the 

store-and-forward and circuit-switching approaches to routing. In wormhole and 

cut-through routing, each message consists of a collection offlits (usually about one 

byte of data each) and the message snakes its way through the network in a worm-like 

fashion. Each wire can transmit one flit per step and the message can occupy as many 

switches as it has flits at any time. If buffering is allowed, then the message can 

compress (like an accordion) into a smaller number of switches (possibly one). A key 

feature in wormhole and cut-through routing is that no message can ever be “cut”. In 

other words, consecutive flits in a message must always reside in neighboring (or the 

same) processors in the network. 

The precise differences between wormhole and cut-through routing depend on what 

sort of buffering is allowed. In [19], Dally states that in wormhole routing, no 

buffering is allowed, whereas buffering is allowed in cut-through routing, although 

other interpretations of the terms are common. 

2.3. Types of routing problems 

In addition to the myriad of routing models, there are also a wide variety of routing 

problems. The simplest kind of routing problem is a static problem in which there is at 

most one message to be sent from each processor and at most one message to be sent 

to each processor. Such routing problems are called one-to-one (or partial permuta- 
tion) routing problems. They are static in the sense that all the messages are ready to 
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be sent at the first step. (This is as opposed to dynamic routing problems where 

messages enter the system continually over time and the routing of messages is never 

completed per se.) Machines equipped to handle static routing problems include the 

BBN Butterfly, IBM GFll, and Thinking Machines CM-2. Machines equipped for 

dynamic routing problems include the Intel Touchstone, Ametek 2010, and Thinking 

Machines CM-5 

In more complicated routing problems, a single message may have multiple destina- 

tions (as in a one-to-many routing problem or a multibroadcast problem), or many 

messages may be destined for the same place. If more than one packet is headed for 

some block of memory, then the routing problem is said to be many-to-one. If each 

packet is headed for a distinct address with in each block, however, then the routing 

problem is also considered to be locally one-to-one. Locally one-to-one routing prob- 

lems arise in the simulation of EREW PRAMS, whereas one-to-one routing problems 

arise in the simulation of distributed-memory PRAMS. 

Destinations for which there are an above average number of packets are often 

called hot spots. If p packets start and end at every processor in a static problem, then 

the problem is said to have slackness or load p, (Such routing problems are also called 

p-relations.) 

In many-to-one routing problems, we may or may not allow packets heading for 

the same destination to be combined into a single packet before arriving at the 

destination. Combining is necessary if concurrent writes are to be emulated in an 

efficient manner in the network. Without combining, it might take N steps on an 

N-processor network to simulate just one step on an N-processor CRCW PRAM. By 

using combining, the simulation time can be reduced dramatically, as we will see in 

Section 3 of the paper. 

Depending on the machine, combining can also be useful for simulating EREW 

PRAM algorithms. This is because of hot spot problems that can arise when several 

processors want to access different memory locations within the same block of 

memory. If the cost of routing a long message is not much different from the cost of 

routing a short message (as is the case with many machines - because it can take 

a long time to initiate the sending of a message but very little additional time to send 

each bit of the message), then it can be worthwhile to combine messages headed for 

the same block of memory (but possibly different addresses). Notice that this issue 

does not arise when emulating distributed-memory PRAM algorithms since the 

burden of preventing memory contention is shifted to the algorithm designer in 

this model. 

2.4. Performance measures 

Generally speaking, a routing algorithm performs well if it routes every message to 

its destination as quickly as possible using as small an amount of the network 

resources as possible. The degree to which an algorithm achieves this level perfor- 

mance can be measured in several ways, as is described in what follows. 



42 T. Leighton 

In some static routing scenarios (such as on a CM-2) we wish to minimize the total 

time it takes to route all messages to their destinations. In static scenarios where 

messages are blocked or dropped (such as on a BBN Butterfly), we want to maximize 

the number of messages that successfully reach their destinations within a fixed 

amount of time (i.e., we want to maximize the throughput). 

In a dynamic setting, we often wish to minimize the latency (or delay) in sending 

each message to its destination. (This means that we will want algorithms that exploit 

locality when it is present.) We will also want to avoid the possibility that the network 

becomes deadlocked (a state where no messages can move) or livelocked (a state where 

messages can move, but no message can make progress toward its destination). In 

applications where hot spots can arise, we will desire algorithms that minimize the 

effect of the hot spots on packets with other destinations. 

In models that allow queueing, we often desire to minimize the queuesize at each 

switch. In scenarios where network bandwidth is limited (which is often the case), we 

want to maximize the bandwidth utilization (i.e., we want to maximize the fraction of 

wires in a critical bisection of the network that are being used productively at any 

given time). We also want to minimize the VLSI area or volume consumed by the 

routing network, as well as the number of switches in the network and their capacity. 

It is most desirable if the routing algorithm is guaranteed to perform well for all 

routing problems. Often this is not possible (or, at least, such an algorithm may not be 

known). In such cases, it is desirable for the algorithm to perform well for a random or 

average-case routing problem. At the very least, the algorithm should be known to 

perform well on a special set of commonly-occurring routing problems. 

Lastly, we desire routing algorithms that will perform well even if some of the 

switches in the network are faulty. Fault-tolerant algorithms are not typically used in 

practice today, although this is in the process of changing, and experimental machines 

(such as the MIT Transit Machine [15,23,24,68]) are being designed with fault- 

tolerance as a key performance measure. 

3. Basic techniques and approaches 

We begin our review of approaches to message routing with a discussion of greedy 

algorithms. Greedy algorithms are widely used in practice and are known to perform 

reasonably well on average. Unfortunately, greedy algorithms are also notorious for 

performing poorly on a variety of worst-case routing problems that often arise in 

practice. 

3.1. Greedy algorithms 

Most parallel machines use some form of greedy algorithm when routing messages 

through a network. Examples of such machines include the BBN Butterfly, IBM RP3, 

Ametek 2010, Intel Hypercube and Touchstone, and the Thinking Machines CM-l, 
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CM-2, and CM-5. The algorithms used on these machines are all greedy in the sense 

that each packet attempts to follow a simple shortest path to its destination. In 

a 2-dimensional array, for example, a packet starting at node (i, j) and destined for 

node (i’,j’) would first move through the ith row to node (i,j’) and then through the 

j’th column to its destination. In an N-input butterfly, there is always a unique path of 

length log N from every input to every output, and every packet follows such a path in 

a greedy algorithm on the butterfly. Similar greedy paths can be defined for other 

hypercubic networks. 

In what follows, we will survey what is known about the performance of the greedy 

algorithm for a variety of networks and routing models. There are many variations of 

the greedy algorithm depending on what contention-resolution protocols are used (if 

any) and which greedy paths are used by packets (if there is more than one option), 

and we will limit our discussion to the general behavior of greedy algorithms. For 

a more detailed discussion of greedy algorithms on arrays, butterflies, and other 

hypercubic networks, we refer the reader to [SO, Sections 1.7 and 3.41. 

3.1.1 Best-case and worst-case performance 

Generally speaking, the greedy algorithm performs very well in the best case and 

very poorly in the worst case, at least for static one-to-one routing problems. For the 

N-input butterfly and related hypercubic networks, the greedy algorithm can route 

many N-packet one-to-one routing problems from the inputs to the outputs with 

edge-disjoint paths in log N steps, which is optimal. Good examples of such best-case 

routing problems include spreading and packing problems. A packing problem is 

a routing problem in which all the packets are sent to a contiguous block of outputs so 

that the relative order of the packets is unchanged. A spreading problem is the reverse 

of a packing problem. An important special case of a packing problem is the k-cyclic 

shift permutation (where the packet at input i is sent to output (i+ k)mod N for all i). 

As a consequence, the greedy algorithm can be used to perform a k-cyclic shift of 

N packets in log N steps on an N-input butterfly for any k. The greedy algorithm can 

also be used to route any iv-packet monotone routing problem in 2 log N steps by first 

packing the packets and then spreading them. (A monotone routing problem is a one- 

to-one problem for which the relative order of the packets is unchanged.) Monotone 

routing problems arise in many applications, including the solution of one-to-many 

routing problems and the routing of packets that have been presorted according to 

destination. (For example, see Section 3.51.) 

Greedy routing also works well on arrays, particularly when the packets have been 

presorted according to their destination. More generally, if at most one packet in each 

row is initially destined for each column in a fix J% array, then the greedy 

algorithm routes every packet to its destination using queues of size one in the 

store-and-forward model in 2fi-2 steps, which is optimal for many routing 

problems on an array (due to diameter constraints). 

Unfortunately, the greedy algorithm does not perform very well in the worst case, 

even if we restrict ourselves to one-to-one routing problems (which we shall do for the 
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time being). For example, an N-input butterfly takes at least Q(fi) steps to route 

an N-packet transpose permutation no matter what routing model is used. (The 

transpose permutation sends the packet at input i, i2...iCClopNJ,2)jl jZ...jCClogN),2J to 

outputj,j,...j((,,,.,,,,i,i,...i((,,,.,,,.) If we are using the store-and-forward model 

and are limited to constant-size queues, the routing time can be even worse [67]. 

Similarly poor performance is exhibited by the greedy algorithm for several other 

commonly occurring routing problems such as the bit-reversal permutation (where 

the packet at input il i2...i10g N goes to output ilogNilogN_ ,...il). More generally, it is 

known that any oblivious algorithm (i.e., one for which the routing path for each 

packet is deterministically selected without knowledge of the other packet origins 

and destinations) will exhibit Q(,,/%/d) t’ ime worst-case performance for any N- 

node degree-d network. (This fact was recently proved by Kaklamanis et al. [37], 

who improved the well-known Q(fi/d3i2) bound due to Borodin and Hopcroft 

Cl 31.) 
The greedy algorithm can also be made to perform poorly on an array. In the 

store-and-forward model, the algorithm can be made to use queues of size Q(p) 

and/or many more than R(a) steps to route the packets to their destinations.3 In 

the circuit-switching and cut-through models, the greedy algorithm can be made to 

use O(N) steps to route N messages, depending on what contention-resolution 

protocols are used. 

3.1.2. Average-case performance 

On average, the greedy algorithm performs very well. So well, in fact, that 

average-case routing problems can be regarded as best-case problems for many 

networks. Indeed, the probability of encountering a routing problem with perform- 

ance anything like the worst case is so small that it should never happen in practice; 

that is, if practical problems were random, which, of course, they are not. 

The fact that commonly occurring (in practice) routing problems such as transpose 

are among the very few routing problems that exhibit worst-case performance can 

spell trouble for the designer of message routing algorithms. More than once, a greedy 

routing algorithm has been tested on random routing problems, found to “always” 

perform well, been implemented, and then found to have some nasty worst-case 

performance which did not show up the initial testing. Indeed, the message routing 

domain is one for which a solid understanding of worst-case behavior is crucial since 

(probabilistically rare) worst-case problems frequently arise in practice. 

When analyzing the average-case performance of the greedy algorithm, it is usually 

assumed that each packet has a random destination (independent of the other packets), 

which allows for the possibility that several packets might have the same destination. In 

the static case, it is usually assumed that there are p packets starting at each input (where 

3 For recent work in this area, see “D. China, T. Leighton and M. Tompa, Minimal adaptive routing on the 

mesh with bounded queue size, in Proc. 6th ACM Symp. on Parallel Agorithms and Architectures (1994)“. 
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p is often assumed to be one). In the dynamic setting, it is assumed that packets arrive at 

each input according to some random process (usually binomial or Poisson). 

The following results are representative of what is known about the average-case 

behavior of the greedy algorithm on an N-input butterfly and an N-node array. 

l If there are p packets at each input of a butterfly in the store-and-forward model, 

then the greedy algorithm (using any nonpredictive contention-resolution protocol 

such as FIFO) will route all the packets to their destinations within 

logN+o(logN)+O(p) steps using queues ofsize o(logN)+O(p) with probability 

1 -N-” for any constant CI. (This result is proved in [SO] using techniques from [S, 

79, 85, 86,901.) Whether or not the same result holds if queuesizes are restricted to 

be constant is not known, although variations of the greedy algorithm that will be 

discussed later do obtain O(l)-size queues. (See [67] for more information on this 

problem.) 

l If there is one packet at each input of a butterfly in the circuit-switching model, then 

@(N/log N) packets are likely to reach their destination without being blocked on 

the first pass of the greedy algorithm. If q message paths can use each edge of the 

butterfly, then this bound can be improved to O(N/log”qN). (A butterfly where 

each edge is replaced by a channel of q edges - so that q paths can pass through 

a channel simultaneously - is called a q-dilated butterfly. For more information on 

these bounds, we refer the reader to [42, 43, 4.5, 50, 671.) 

l In the dynamic store-and-forward model, the expected latency incurred by any 

packet on the way to its destination in a butterfly is O(log N), even if the arrival rate 

of packets is high enough to load the network to within 99% of capacity [83]. 

Whether or not a similar result can be proved for an algorithm that restricts queues 

to be of size O(1) is an interesting open question. 

a When routing N packets on a fi x @ array in the store-and-forward model, the 

probability that a packet is delayed A steps is O(emAi6). Moreover, the maximum 

queuesize will be 4 with high probability [49, 501. 

l For dynamic routing problems on a fix fi array for which the arrival rate 

loads the network of 99% of capacity, the probability that a packet is delayed by 

A steps is edoCd), and the maximum queuesize observed within any window of 

T steps is at most O(1 +(log T/log N)) with high probability [49, SO]. 

3.1.3. Protocols for bounding queuesize and combining 

The behavior of the greedy algorithm is the easiest to analyze when queues in the 

network are allowed to become arbitrarily large, and when combining is not allowed. 

(All of the results on average-case performance just described fall into this category.) 

Unfortunately, very little is known about the average-case behavior of the greedy 

algorithm when the forward progress of a packet is halted by a full queue in the node 

ahead. 

By modifying the greedy algorithm somewhat, however, it is possible to derive an 

algorithm which guarantees bounded queues, performs combining, and which 

provably performs well on static random problems. In particular, if each packet is 



assigned a random key (which can be assumed to be a function of the destination of 

the packet), and if the packets passing through each node of the network are restricted 

so that they pass through the node in sorted order (of the keys) and so that a packet 

never advances forward into a full queue, then the greedy algorithm can be shown to 

perform near optimally (even with combining) for many networks, including arrays, 

hypercubes, and butterflies. This particular variation of the greedy algorithm is 

known as Ranade’s algorithm and is analyzed in detail in [SO, 56,57,78,79]. Plans for 

implementation of this algorithm in a parallel machine are currently under way at the 

University of Paderborn [l]. (Other approaches to bounding queuesizes which are 

less amenable to combining are described in [67,73].) 

3.2. Converting worst-case routing problems into average-case problems 

Because the greedy algorithm is known to perform very well for all but a “few” 

routing problems, one approach to message routing has been to use the greedy 

algorithm for most routing problems and to use specially designed routing algorithms 

for the routing problems where the greedy algorithm fails. Although there has been 

some success in devising routing algorithms that work well for classes of routing 

problems that contain the transpose and bit-reversal permutations [69], algorithms 

that work well whenever the greedy algorithm fails are not known. Methods have 

been developed using randomness, however, that can be used to convert worst-case 

routing problems into average-case routing problems with a small amount of over- 

head. We will describe these methods in what follows. For more information and 

details, see [SO]. 

3.2.1. Randomizing the memory 

Typically, data is stored in memory according to some natural or logical pattern. 

For example, the i, j entry or block of a matrix might be stored in memory location 

bin(i) (bin( j). Such natural data storage patterns can lead to trouble, however, when 

we try to access or permute the data using the greedy algorithm on a network such as 

the butterfly. (For example, we have already seen that the task of transposing a matrix 

stored in this fashion would result in worst-case performance by the greedy 

algorithm.) 

One method for avoiding such difficulties is to store the data in a random fashion in 

memory. More precisely, let h :,[l, M] --f [l, N] be a random function where M is the 

total size of the memory and N is the number of blocks into which the memory is 

partitioned. Provided that M is much larger than N (which is usually the case), h will 

evenly spread the M memory locations among the N blocks of memory with high 

probability. (In particular, j (x: h(x)=y} ) will be (M/N)+o( M/N) for all y with 

probability very close to 1.) Hence, we can use h to randomly (and evenly) partition 

the memory by assigning memory location x to block h(x). 

By randomizing (or hashing) the memory in the fashion just described, we can 

convert any one-to-one routing problem into a random routing problem. This is 
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because each packet of the one-to-one routing problem will now be destined for 

a random output (where the randomization is provided by the choice of h). (In fact, 

the conversion works equally well for routing problems that are only locally one- 

to-one.) Hence, unless we are very unlucky in our choice of h, the transpose and 

bit-reversal permutations will be converted into routing problems that run in 

log N +o(log N) steps on an N-input butterfly, just like any other average-case 

routing problem. 

Of course, once h is fixed (and the memory is partitioned), there will still be some 

bad one-to-one routing problems (e.g., routing problems that run in Q(,/%) steps 

using the greedy algorithm on an N-input butterfly) but we would not be likely to 

encounter them. This is because the set of bad routing problems is very sparse and 

(once h is applied) the set of bad routing problems becomes random. 

Randomizing the memory also has other benefits. For example, consider a locally 

one-to-one routing problem where there are a large number of packets (say k) headed 

for distinct locations within the same block of memory. The particular block of 

memory then forms a hot spot in the network (i.e., a bottle-neck). 

Hot spots frequently arise in practice because of the tendency to organize the 

memory in a highly structured manner (e.g., storing the ith row of a matrix in the ith 

block of the memory). Hot spots are troublesome for several reasons. For example, it 

will take at least k+ log N steps to deliver the k packets to the hot spot output. 

Moreover, the delays and congestion associated with packets headed for a hot spot 

can seriously delay other packets that are not headed for a hot spot. 

Many techniques have been developed for dealing with the hot spots (see [SO]) and 

we will mention some of them in this paper. Perhaps the simplest is to randomize the 

memory. In particular, as long as each memory location is accessed by at most one 

packet in a routing problem, then the routing problem is converted into a random 

routing problem by randomly partitioning the memory. Of course, hashing the 

memory does not solve the hot spot problem caused by a large number of packets 

trying to access the same location in memory (such as in the implementation of 

a concurrent read or concurrent write), but such routing problems can be efficiently 

handled using combining. 

Unfortunately, randomly hashing the memory has some undesirable side effects. 

For example, desirable aspects of regularity such as locality are destroyed when the 

memory is randomized. In addition, the addressing mechanism for the memory is 

complicated by hashing since we must be able to locally compute h(x) quickly for any 

x. This is not an easy task if h is a totally random function. Fortunately, several 

methods are known for constructing simple functions h which are random enough for 

routing purposes. (In particular, any log N-wise independent function will usually do. 

See [39,50,79] for more details and pointers.) 

Despite the drawbacks, a randomized memory organization is featured in several 

(still experimental) parallel machines, including the BBN Monarch [Sl], the Tera 

Computer [82], and the parallel machine being built at the University of Paderborn 
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3.2.2. Randomized routing 
Because of the negative side effects associated with hashing, hashing is not always 

appropriate as a tool for converting worst-case routing problems such as transpose 

into average-case problems. In addition, even if the memory is randomized, there are 

still worst-case one-to-one routing problems (which can be easily constructed by 

anyone that knows the hash function h). 

For applications where hashing is not appropriate, there is an entirely different 

approach to routing that does not alter the memory organization at all, and that does 

not exhibit consistent worst-case behavior for any one-to-one routing problem. The 

approach is based on the concept of randomized routing [go]. In randomized routing, 

each packet is intially sent to a random destination, and then it is greedily sent to its 

correct destination. Overall, then, each packet makes two passes through the network. 

At first glance, the concept of randomized routing may not seem very appealing. 

After all, we have converted one routing problem into two (potentially doubling our 

workload) and we have deliberately sent packets where they do not want to go during 

the first pass (which seems wasteful). Upon closer examination, however, it becomes 

clear that randomized routing can be very useful for nasty worst-case problems such 

as transpose. This is because randomized routing converts any single one-to-one 

routing problem into a random routing problem followed by the reverse of a random 

routing problem (which is equivalent to a second random routing problem for the 

purposes of greedy routing). In other words, randomized routing converts each 

one-to-one problem into two random problems, which means that any N-packet 

one-to-one problem can be routed in 2 log N + o(log N) steps on an N-input butterfly 

with high probability. (Here, the probability of failure depends on the choice of 

random intermediate destinations and not on the routing problem. If we are unlucky 

and pick bad intermediate destinations, then we just try again with new random 

intermediate destinations.) 

More generally, we can use randomized routing to solve any routing problem with 

p packets at each input and p packets destined for each output in 2 log N + 

O(p)+o(log N) steps on an N-input butte&y with high probability. Randomized 

routing can also be used to convert worst-case problems on arrays into average-case 

problems, with analogous results (depending on the diameter of the network). 

Unfortunately, randomized routing cannot be used to solve the memory hot spot 

problem unless we are allowed to combine messages destined for the same output 

(even if the messages are not destined for the same memory location). Other tech- 

niques that involve memory reorganization (such as hashing) are needed to resolve 

this problem. In addition, randomized routing does not directly exploit locality (if it 

exists), although variations of technique (such as the routing algorithm implemented 

in the CM-5 [62]) can be used in a fashion that exploits locality. Lastly, randomized 

routing uses twice as much time as does the simple greedy algorithm for average-case 

problems, which is undesirable in practice. Nevertheless, randomized routing is 

beginning to gain some acceptance in practice. In particular, the new CM-5 is the first 

parallel machine to utilize the technique in its routing algorithm, and the Cl04 
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Transputer routing chip is designed to handle messages with two headers (one being 
a random intermediate address) [75]. 

3.3. The universality of hypercuhic networks 

We have just observed that an N-input butterfly can solve any routing problem 
with at most p packets starting at each input and at most p packets destined for 
each output in O(log N +p) steps with high probability. In fact, this bound is tight, 
which means that it takes the same amount of time (up to constant factors) to route 
one permutation as it does log N permutations on an N-input butterfly. Similar results 
hold for routing on an N-node hypercube as well as other hypercubic networks. 
Hence, these networks are most efficient when used to route O(Nlog N) packets. 

Since the N-input butterfly (or N-node hypercube) can route any log N-relation in 
O(log N) steps with high probability, we can use an N-processor hypercube (or 
N-input butterfly) to simulate an N log N-processor distributed-memory PRAM 
(or any N log N-node fixed-connection network) with O(log N) slowdown, which is 
optimal up to constant factors (since the N-node hypercube has a factor of log N fewer 
processors). The simulation is straightforward. The ith processor of the hypercube is 
responsible for simulating log N processors (namely, processors (i- 1) log N + 1, (i- 1) 

log N + 2, . , . , and ilog N of the PRAM) for each i. Each step of the PRAM can be 
simulated with a log N-to-one routing problem (which takes O(log N) steps with high 
probability) and log N computational steps on the hypercube. Hence, the hypercube 
and its derivative networks are universal in the sense that an N-processor hypercube can 
do whatever an arbitrary N logN-processor distributed-memory machine can do with 
only O(logN) slowdown with high probability. (Technically speaking the hypercube 
processors are more powerful than the PRAM processors since the hypercube processors 
can handle log N switching decisions per step, but we will ignore this issue for now.) 

If hashing and/or combining are used, then the hypercube and its derivative networks 
can also simulate a CRCW PRAM in a similar fashion. Hence, hypercubic networks are 
provably close to optimal if the number of processors and wires is the only measure of 
cost. (Later, we will discuss other cost measures that result in different classes of 
networks being universal.) This is one of the main reasons that the hypercube and its 
derivative networks are such popular architectures for parallel machines. (Another 
reason that they are popular is that they contain many other natural networks, such as 
arrays and trees, as subgraphs. See [SO] for more information and pointers.) 

3.4. Randomly wired networks and the importance of expansion 

In Section 3.2, we observed that the problems associated with worst-case perfor- 
mance of the greedy algorithm on the butterfly (and related networks) can be largely 
overcome by randomizing the memory and/or using randomized routing. Recently, 
an alternative approach has been discovered that is proving to be even more powerful 
-randomized wiring. For example, consider an N-input butterfly network in which the 
first level of wiring is scrambled so that the ith input is connected to two randomly 
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Fig. 2. An R-input butterfly with a randomly wired first level. 

selected nodes on the next level, one in the top N/2 nodes and one in the bottom half 

of the nodes. (In addition, suppose that the connections are constrained so that two 

inputs are connected to each node at the next level, in order to maintain regularity at 

the switches.) The remainder of the network is left unchanged (so that the upper half of 

the remaining network is still a butterfly as is the lower half of the remaining network). 

For example, see Fig. 2. 

It is easy to see that there is a unique path of length log N from every input to every 

output in the modified butterfly just described. As in the ordinary butterfly, the path 

from an input to an output moves upward at a switch on the ith level (0 < i < log N) if 

the (i+ 1)st bit of the destination is a 0, and downward otherwise. Hence, the greedy 

algorithm for routing on the modified butterfly is the same as was used for routing on 

an ordinary butterfly. 

In fact, the only real difference between the modified butterfly and the ordinary 

butterfly is that the space of worst-case one-to-one routing problems (for the greedy 

algorithm) is randomized in the modified butterfly. This is because every packet is at 

a random position (within the top half or bottom half of the butterfly) after the first 

level of routing (since the connections at the first level are random). Hence, unless 

we are exceedingly unlucky in our choices for random connections, permutations such 

as transpose and bit reversal will be routed in log N + o(log N) steps by the greedy 

algorithm on the modified butterfly. Of course, there are still worst-case permutations 

for the modified butterfly, but we are not likely to encounter them in practice. 

It is worth noting that when we randomize wiring at the first level of the butterfly, 

we do not incur the negative side effects associated with randomized routing (e.g., the 

factor of two slowdown on average) or randomizing memory (e.g., loss of locality and 

the need to compute the hash function). In fact, by randomizing the wiring at every 

level of the butterfly (and adding wires to allow for redundant paths), far stronger 

properties can be attained. In particular, we can eliminate the existence of the 

worst-case (i.e., a(&)-time) one-to-one routing problems altogether! We will de- 

scribe how this feat can be accomplished in what follows. 
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3.4.1. Splitters, expanders, and multibutter$‘ies 
The butterfly and modified butterfly just described belong to a larger class of 

networks that are often referred to as splitter networks (or multistage interconnection 

networks). The switches on each level of a splitter network can be partitioned into 
blocks. All of the switches on level 0 belong to the same block. On level 1, there are two 
blocks, one consisting of the switches that are in the upper N/2 rows, and the other 
consisting of the switches that are in the lower N/2 rows. In general, the switches in 
a block B of size M= N/2’ on level I have neighbors in two blocks B, and B, on level 
1+ 1, where u stands for upper and 1 for lower. The upper block B, contains the 
switches on level 1+ 1 that are in the same rows as the upper M/2 switches of B. The 
lower block Bi consists of the switches that are in the same rows as the lower M/2 
switches of B. The edges from B to B, are called the up edges, and those from B to B, are 
called the down edges. The three blocks B, B,, and B, and the edges between them are 
collectively called a splitter. The switches in B are called the splitter inputs, and those in 
B, and B, are called the splitter outputs. In a splitter network with multiplicity d, each 
splitter input is incident to d outgoing up edges and d outgoing down edges, and each 
splitter output is incident to 2d incoming edges. For example, the butterfly and modified 
butterfly just described are splitter networks with multiplicity 1. In a d-dilated butterfly, 

the d up (and d down) edges incident to each splitter input all lead to the same splitter 
output, but there are better ways to connect the wires. For example, we have illustrated 
an S-input splitter network with multiplicity 2 in Fig. 3. (More generally, we can have 
splitters with r blocks of outputs where r > 2 is the radix of the splitter. For the present 
discussion, however, we will confine ourselves to splitters with radix 2.) 

In a splitter network, each input and output are connected by a single logical 
(up-down) path through the blocks of the network. For example, Fig. 4 shows the 
logical path from any input to output 011. In a butterfly (or any other splitter network 
with multiplicity l), this logical path specifies a unique path through the network, 
since only one up and one down edge emanate from each switch. (In fact, a splitter 

Fig. 3. An 84nput splitter network with multiplicity 2. 
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Fig. 5. An M-input splitter with (c(, a)-expansion. 

network with multiplicity one is very similar to a delta network [46].) In a general 

splitter network with multiplicity d, however, each switch will have d up and d down 

edges, and each step of the logical path can be taken on any one of d edges. Hence, one 

logical path can be realized by a myriad of physical paths in a general splitter network. 

In what follows, we will be primarily concerned with randomly wired splitter 

networks. A randomly wired splitter network is a splitter network where the up and 

down edges within each splitter are chosen at random subject to the constraint that 

each splitter input is incident to d up and d down edges, and each splitter output is 

incident to 2d incoming edges. 

The crucial property that randomly wired splitter networks are likely to possess is 

known as expansion. In particular, an M-input splitter is said to have ( CX, P)-expansion 

if every set of kdcrM inputs is connected to at least flk up outputs and /Sk down 

outputs, where CI > 0 and p > 1 are fixed constants. For example, see Fig. 5. 

A splitter network is said to have (cI, /I)-expansion if all of its splitters have 

(a, /3)-expansion. More simply, a splitter or a splitter network is said to have expansion 
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if it has (CC, /?)-expansion for some constants a > 0 and p > 1. A splitter network with 

expansion is more commonly known as a multibutterfly [S7], and a multibutterfly with 

(q/3)-expansion and multiplicity d consists of splitters in which each splitter input is 

incident to d up and d down edges and for which any kd@M splitter inputs are 

adjacent to /?k splitter outputs (where M is the size of the splitter). 

Splitters with expansion are known to exist for any d 3 3, and they can be construc- 

ted deterministically in polynomial time [36,64,87], but randomized wirings typically 

provide the best possible expansion. In fact, the expansion of a randomly wired 

splitter will be close to d - 1 with probability close to 1, provided that c( is a sufficiently 

small constant. (For a discussion of the tradeoffs between CI and b in randomly wired 

splitters, see [Sl, 871.) 

A multibutterfly with (a, /I)-expansion is good at routing because one must block fik 

splitter outputs in order to block k splitter inputs. In classical networks such as the 

butterfly, the reverse is true: it is possible to block 2k inputs by blocking only 

k outputs. When this effect is compounded over several levels, the effect is dramatic. In 

a butterfly, a single fault can block 2’ switches 1 levels back, whereas in a multibut- 

terfly, it takes /?’ faults to block a single switch 1 levels back. 

3.4.2. Routing results for multibutterflies and randomly wired splitter networks 

Randomly wired splitter networks and multibutterflies have long been known to 

possess interesting properties, but have only recently been discovered to be an 

excellent choice as a message routing network. For example, in 1974, Bassalygo and 

Pinsker [lo] used (randomly wired) splitter networks with expansion to construct the 

first nonblocking network of size O(NlogN) and depth O(logN). (A nonblocking 
network is a network capable of connecting any unused input to any unused output 

with a path that does not overlap with existing paths between other inputs and 

outputs. For example, the telephone system would ideally be a nonblocking network.) 

Unfortunately, the Bassalygo-Pinsker result did not include a fast on-line algorithm 

for connecting the input/output pairs and so the result was of limited applicability, 

and interest in the networks waned. (For a survey of the early work on nonblocking 

networks and telephone switching networks, see [72].) 

Interest in splitter networks with expansion was rekindled in 1989 when Upfal (who 

named the networks multibutterjies - a term attributed to Ron Fagin) showed that 

any N-input multibutterfly can route any one-to-one problem in the store-and- 

forward model in O(log N) steps using a variation of the greedy algorithm [87], and 

that, by using pipelining, any N-input multibutterfly can route O(logN) one-to-one 

problems in O(log N) steps. Although the proof was complicated and the constants 

hidden by the Big Oh notation were large, the result was important because the only 

previously known deterministic on-line linear-hardware O(log N)-step packet routing 

algorithm [48] requires the use of the AKS sorting circuit [4] (which is even more 

complicated and has even larger constant factors). 

Shortly afterwards, Leighton and Maggs [53,54] provided a simple analysis of the 

greedy routing algorithm on multibutterflies, and derived smaller constant factors for 
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the O(log N) time bound. More importantly, they also showed that the multibutterfly 

is highly fault-tolerant. In particular, they proved that no matter how an adversary 

chooses f switches to fail, there will be at least N-O(j) inputs and N-O(f) outputs 

between which a simple variant of the greedy algorithm can route any log N permuta- 

tions in O(log N) steps. Note that this is the best that one could hope for in general, 

since the adversary can always choose to isolate Q(f) inputs and Q(f) outputs by 

carefully selecting f faults. In the more commonly studied model of randomly located 

faults (e.g., see [33]), one can do even better. For example, even if O(N log N) faults 

are randomly placed in the multibutterfly, with probability near 1, the network can 

still deterministically route any permutation on O(N) inputs and outputs. Thus 

the multibutterfly became the first bounded-degree network known to be able 

to sustain large numbers of faults with only minimal degradation in performance. 

(These results were also recently extended to hold for randomly wired splitter 

networks with multiplicity 2 [SS]. The results are of interest since such networks do 

not have expansion - and, therefore, are not multibutterflies ~ and they are the 

networks of choice in practical implementations [15].) 

Randomly wired splitter networks have also been found to be very useful for circuit 

switching. In particular, Arora et al. [S] developed a circuit-switching algorithm for 

a randomly wired splitter network that guarantees 100% throughput in O(log N) 

steps for any one-to-one routing problem. Arora et al. also showed how to on-line 

route any sequence of paths in a nonblocking fashion using back-to-back randomly 

wired splitter networks, thereby resolving the problem left open by Bassalygo and 

Pinsker.4 

Perhaps the most important feature of the algorithms discovered for message 

routing on randomly wired splitter networks is that they work as well in practice 

as they do in theory. In fact, there is a growing body of experimental data that 

indicates that randomly wired splitter networks outperform more traditional net- 

works with comparable hardware in many important respects [S, 15,24,44,52,54]. As 

a consequence, randomly wired networks appear to be an attractive substitute for 

hypercubic networks in many message routing applications. Construction of a 64- 

processor switching network based on this approach is currently underway at MIT 

[15,16,24]. 

3.4.3. Networks with multipath expansion 

Chong and Knight [16] recently proposed an alternative to multibutterflies based 

on the notion of multipath expansion. In particular, they suggest construction of 

a splitter network for which the number of physical paths corresponding to each 

logical path is maximized. Such networks can be easily constructed and might appear 

to be superior to networks that are chosen to maximize ordinary expansion for 

routing purposes. Curiously, networks with multipath expansion need not have 

4These results have recently been extended in “N. Pippenger, Self-routing superconcentrators, in: Pm. 
25th ACM Symp. on Theory of Computing (1993) 355-361”. 
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ordinary expansion and vice versa. In fact, networks with maximal multipath expan- 
sion can be constructed from ordinary butterflies, and can be shown to be subject to 
nasty worst-case behavior for large N. The networks have been found to perform well 
experimentally for N d 1024, however. 

3.5. Other approaches to message routing 

Thus far, we have focused our attention on some of the simplest and most widely 
used (or most promising) approaches to message routing. Many other approaches to 
the problem have been developed, however, and we will briefly survey some of them in 
what follows. 

3.5.1. Routing by sorting 
Given a fast algorithm for sorting N items, it is usually easy to derive a fast 

algorithm for routing N packets. This is because routing N packets to their destina- 
tions is often trivial if the packets have been presorted according to their destinations. 
In particular, for one-to-one routing problems, the greedy algorithm routes presorted 
packets in optimal time for both arrays and butterflies. This approach is used in 
the construction of Batcher-Banyon telephone switching networks such as the 
AT & T Starlite switch [35,84]. 

In addition, by presorting packets based on destination, packets with the same 
destination can be gathered together in a fashion that makes the task of combining 
greatly simplified. (In fact, the combining can be accomplished using a parallel prefix 
operation. This approach has been used successfully on the CM-1 and CM-2.) Even if 
combining is not allowed, the effect of memory hot spots can be localized by 
presorting packets. For more information on routing by sorting, see [47,50]. 

Unfortunately, sorting is a very challenging task in its own right. For a review of 
sorting algorithms on arrays and hypercubic networks, see [SO]. 

3.5.2. The information dispersal approach to routing 
Even though the greedy algorithm performs well for random routing problems, 

many packets will be delayed by congestion in most every routing problem. Hence, 
greedy algorithms typically require some form of queueing for most routing problems. 
By using a technique known as information dispersal, we can eliminate the delays 
associated with congestion for most one-to-one routing problems on butterflies. The 
idea behind information dispersal is to break up each packet into a collection of 
subpackets (often log N subpackets) which are routed in a greedylike fashion to their 
common destination along different paths. The advantage of the information dispersal 
approach is that the dispersal of large packets into many small packets tends to result 
in very balanced communication loads on the edge of the network. As a consequence, 
the maximum congestion in the network is likely to be so close to the average 
congestion (which is guaranteed to be low) that there is a good chance that packets 
will never be delayed at all. In addition, if we encode the contents of a packet into 
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a collection of subpackets in a redundant fashion, we will be able to make the 

algorithm highly fault-tolerant since only a fraction of the subpackets will have to 

reach the destination in order for the original packet to be reconstructed. 

However, there are some significant costs associated with information dispersal. 

For example, by partitioning each packet into many subpackets, we dramatically 

increase the number of packets overall as well as the number of bits used for 

addressing and routing information. Hence, the approach is only suitable for applica- 

tions where typical messages are long and the time to route a packet is closely 

correlated to the size of the packet. In addition, the method is not particularly useful in 

applications involving combining. 

The information dispersal approach to routing was first proposed and analyzed by 

Rabin [77]. Rabin’s original algorithm was subsequently simplified and strengthened 

by several researchers [33,65,66,76]. For more information on the approach, 

see [SO]. 

Information dispersal can also be quite useful as a tool for organizing memory in 

a way that prevents many of the problems associated with memory contention. As we 

have already seen, preventing hot spots where many packets need to access the same 

block of memory is one of the most challenging aspects of efficiently simulating 

a shared-memory machine (such as a PRAM) on a distributed-memory machine (such 

as a Connection Machine). As was discussed earlier, memory contention problems can 

be mitigated through combining, presorting packets according to destination, and/or 

randomizing memory. Information dispersal provides another highly effective tool for 

dealing with such problems. In particular, by encoding each item of data in the 

memory into R packets of data (each with 0(1/R) of the total size of the original 

packet) so that only R/3 of the packets are needed to reconstruct the original item, we 

can efficiently spread the storage of each item across R blocks of memory. When we 

try to write an item, we will be content to successfully write any 2R/3 of the R pieces. 

Similarly, when we try to read an item, we will be content to read any 2R/3 of the 

pieces (at least R/3 of which will be current, which is enough to reconstruct the item). 

By making R to be large (about log N), contention can be handled by simply dropping 

packets that are headed for hot spots. (For more information on the information 

dispersal approach to memory organization, see [9,50].) 

3.5.3. Of-line routing 

Thus far in our discussion of message routing, we have focussed our attention 

on on-line routing algorithms. This is because most parallel machines use on-line 

algorithms for routing. There are some machines (most notably, the IBM GFll 

and the control network of the CM5), however, that make use of off-line routing 

algorithms. 

Off-line routing algorithms differ from on-line algorithms in that the paths to be 

followed by the packets are computed by a processor with global information about 

the packet routing problem. Since it usually takes a long time (relatively speaking) to 

compute routing paths off-line, this approach is only useful if the routing problem is 
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known beforehand (as is the case with the GFll - since the programmer must specify 

all memory access patterns ahead of time), or if the same routing problem will be 

performed many times, or if very long messages are being sent in a circuit-switching 

mode. 

Finding good routing paths off-line is often very easy for natural networks such as 

arrays or butterflies. For example, BeneS [ll] showed in 1964 that there exist 

edge-disjoint paths for any N-packet one-to-one routing problem on an N-input 

BeneS network (the network consisting of back-to-back butterflies). (Waksman [91] 

later showed how to find the paths quickly off-line. See [50] for more information.) 

Near optimal routing paths can also be found in polynomial time for arbit- 

rary networks, although the methods are more difficult. (See [41,57,58] for more 

information.) 

3.5.4. Area-universal networks and fat trees 
For most part in this paper, we have measured the size of a network in terms of the 

number of nodes and wires it contains. While the numbers of processors, switches, and 

wires in a network are certainly valid measures of network cost, so are the silicon 

(VLSI) area and wiring volume of the network. The area of a network is the total area 

consumed by the chips and boards that make up the network, and the wiring volume is 
the total amount of three-dimensional space occupied by the network. Of course, the 

area and volume of a network are highly dependent on the number of nodes and wires 

contained in the network, but they are also highly dependent on the network itself. 

For example, an N-input butterfly consumes 0(N2) area and Q(N3’*) volume (the 

latter bound is tight if we allow fully three-dimensional wiring), whereas an N-node 

2-dimensional array consumes O(N) area and O(N) volume. Hence, an N-input 

butterfly can be significantly more costly to build than an N-node array for large N. 

We have already seen that hypercubic networks are near-optimal (in particular, 

they are universal) in terms of their performance when compared to other networks 

with the same number of nodes and wires. Because of their large area and volume 

requirements, however, hypercubic networks are far from optimal when compared to 

other networks with the same amount of area or volume. (This is because, for 

example, we can fit an N3’* -processor array into about the same volume as an 

N-processor hypercube.) Hence, we might ask which networks (if any) have near 

optimal (or universal) performance when compared to other networks with the same 

area or volume. 

The answer to this question lies with a class of networks known as fat trees. A fat 

tree has a structure resembling that of a complete binary tree, except that the internal 

nodes and edges of the tree are replaced by clusters of nodes and channels of wires 

(respectively) whose size increases in the upper levels of the tree. There are also other 

networks that are area and volume-universal (such as the mesh of trees [SO]), but fat 

trees appear to have the strongest universality properties. In fact, for every A, there is 

a fat tree with area A that can simulate any other network with area A (or a DRAM 

with area A) on-line with slowdown O(log.4) with high probability [57]. 



58 T. Leighton 

The routing algorithms used on fat trees are very similar to the algorithms used on 

back-to-back butterflies, except that locality is exploited wherever possible. In fact, 

most of the approaches described thus far for butterflies can be directly implemented 

on fat trees. (For that matter, the butterfly itself can be considered to be a fat tree, 

albeit a very fat one.) In particular, randomly wired fat trees have all the same routing 

properties as randomly wired splitter networks (provided that the routing problem to 

be solved does not overload the capacity of internal channels in the fat tree). 

As the sizes of parallel machines grow, it is likely that area-universal networks such 

as fat trees will increase in importance. In fact, fat trees have already been imple- 

mented in the new CM-5 in combination with the more traditional butterfly [62]. 

The fat tree approach to message routing was first proposed by Leiserson [59]. For 

more information on this subject, see [30,31,60]. In particular, [60] provides an 

excellent survey of area-universal networks. 

3.5.5. Cut-through routing on diluted tori 

Motivated by the same area and volume constraints that led to the development of 

fat trees, several architects (led by Dally and Seitz) have opted for a dilated torus in 

place of a hypercubic network. A q-dilated torus is a torus (usually with 2 or 

3 dimensions) where every edge is replaced by a channel with q wires. The bisection 

width of an N-node q-dilated r-dimensional torus is 2qN’-I”. Hence, the bisection 

width of an N “*-dilated r-dimensional torus is the same for all r. In addition, the area 

of an N “‘-dilated r-dimensional torus is about the same for all r (including the case 

when r = log N, where we have a hypercube). Hence, we would like to choose the value 

of r for which the routing performance is optimized. 

Dilated tori are typically used in conjunction with a cut-through or worm-hole 

routing algorithm and with long messages. Given a message between two random 

points u and v in the network, we will need (on average) at least (rN l/‘/4) steps to send 

the message from u to v using the greedy algorithm since the expected distance 

between two random points in the network is this large. If the message has length 

L and we use all N ‘jr wires in each channel along a shortest path from origin to 

destination to transmit the message in pipelined fashion, the entire message can be 

sent in about rN ‘I*/4 + L/N l/r steps on average. Using simple calculus, we find that 

this value (the average latency of a single message) is minimized by selecting 

log N 

r=log(&)+o(loglog(&))~ 

For relatively small values of N and large values of L, r is typically 2 or 3. For 

example, if N = 16000 and L = 150 (these are typical numbers for the MIT J-Machine 

[ 19]), then the latency is minimized by choosing r = 3 (which is why the J-machine is 

a 3-dimensional torus). 
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Of course, the preceding analysis neither accounts for delays caused by congestion 
nor for costs associated with Nl”’ -ary switches. However, similar heuristic calcu- 
lations have been made [19] that indicate that the 3-dimensional torus is a good 
routing network when area constraints are taken into account and typical message 
lengths are long. As a consequence, machines such as the Ametek 2010 and Intel 
Touchstone are configured as low-dimensional arrays. (Whether or not there is 
a more rigorous and/or scalable analysis which justifies this choice remains an 
interesting open question.) For more information on this important approach to 
message routing, see [ 19,20,2 1,22,70]. 
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