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ABSTRACT. In this article, we take a rapid journey through the history of algebra, noting

the important developments and reflecting on the importance of this history in the teaching

of algebra in secondary school or university. Frequently, algebra is considered to have three

stages in its historical development: the rhetorical stage, the syncopated stage, and the

symbolic stage. But besides these three stages of expressing algebraic ideas, there are four

more conceptual stages which have happened along side of these changes in expressions.

These stages are the geometric stage, where most of the concepts of algebra are geometric

ones; the static equation-solving stage, where the goal is to find numbers satisfying certain

relationships; the dynamic function stage, where motion seems to be an underlying idea,

and finally, the abstract stage, where mathematical structure plays the central role. The

stages of algebra are, of course not entirely disjoint from one another; there is always some

overlap. We discuss here high points of the development of these stages and reflect on the

use of these historical stages in the teaching of algebra.

KEY WORDS: algebra, abstract stage, equation-solving stage, function stage, geometric

stage, rhetorical stage, symbolic stage, syncopated stage

This article is about algebra. So the first question is, what do we mean
by algebra? Few secondary textbooks these days give a definition of the
subject, but that was not the case two centuries ago. For example, Colin
Maclaurin wrote, in his 1748 algebra text, “Algebra is a general Method
of Computation by certain Signs and Symbols which have been contrived
for this Purpose, and found convenient. It is called an Universal Arith-
metic, and proceeds by Operations and Rules similar to those in Common
Arithmetic, founded upon the same Principles.” (Maclaurin, 1748, p. 1)
Leonhard Euler, in his own algebra text of 1770 wrote, “Algebra has been
defined, The science which teaches how to determine unknown quantities
by means of those that are known.” (Euler, 1984, p. 186) That is, in the
18th century, algebra dealt with determining unknowns by using signs and
symbols and certain well-defined methods of manipulation of these. Is that
what algebra still is? It is hard to say. Sometimes, algebra is defined as
“generalized arithmetic,” whatever that means. But a look at a typical sec-
ondary algebra textbook reveals a wide variety of topics. These include
the arithmetic of signed numbers, solutions of linear equations, quadratic
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equations, and systems of linear and/or quadratic equations, and the ma-
nipulation of polynomials, including factoring and rules of exponents. The
text might also cover matrices, functions and graphs, conic sections, and
other topics. And, of course, if you go to an abstract algebra text, you will
find many other topics, including groups, rings, and fields. So evidently,
“algebra” today covers a lot of ground.

In this article, we will take a rapid tour of the history of algebra, first as it
was defined in the eighteenth century and then as it is understood today. We
want to look at where algebra came from and why? What was its original
purpose? How were the ideas expressed? And how did it get to where it is
today? Finally, we want to consider how the history of algebra might have
some implications for the teaching of algebra, at whatever level this is done.

In many history texts, algebra is considered to have three stages in its
historical development: the rhetorical stage, the syncopated stage, and the
symbolic stage. By the rhetorical, we mean the stage where are all state-
ments and arguments are made in words and sentences. In the syncopated
stage, some abbreviations are used when dealing with algebraic expres-
sions. And finally, in the symbolic stage, there is total symbolization – all
numbers, operations, relationships are expressed through a set of easily rec-
ognized symbols, and manipulations on the symbols take place according
to well-understood rules.

These three stages are certainly one way of looking at the history of
algebra. But I want to argue that, besides these three stages of express-
ing algebraic ideas, there are four conceptual stages that have happened
along side of these changes in expressions. The conceptual stages are the
geometric stage, where most of the concepts of algebra are geometric; the
static equation-solving stage, where the goal is to find numbers satisfying
certain relationships; the dynamic function stage, where motion seems to
be an underlying idea; and finally the abstract stage, where structure is the
goal. Naturally, neither these stages nor the earlier three are disjoint from
one another; there is always some overlap. I will consider both of these sets
of stages to see how they are sometimes independent of one another and at
other times work together. But because the first set of stages is well known
and discussed in detail by Luis Puig in the recent ICMI Study on Algebra
(Puig, 2004), I will concentrate on the conceptual ones.

We begin at the beginning of algebra, whatever it is. It would seem that
the earliest algebra – ideas which relate to the eighteenth century definitions
by Euler and Maclaurin – comes from Mesopotamia starting about 4000
years ago. Mesopotamian mathematics (often called Babylonian mathe-
matics) had two roots – one is accountancy problems, which from the
beginning were an important part of the bureaucratic system of the earliest
Mesopotamian dynasties, and the second is a “cut and paste” geometry
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probably developed by surveyors as they figured out ways to understand
the division of land. It is chiefly out of this cut and paste geometry that
what we call Babylonian algebra grew. In particular, many old-Babylonian
clay tablets dating from 2000–1700 BCE contain extensive lists of what
we now call quadratic problems, where the goal was to find such geometric
quantities as the length and width of a rectangle. In accomplishing this
goal, the scribes made full use of the surveyors’ “cut-and-paste” geometry.

As an example, we consider the problem from tablet YBC 4663 (c.
1800 BCE), in which we are given that the sum of the length and width
of a rectangle is 6 1/2, and the area of the rectangle is 7 1/2. (Neugebauer
and Sachs, 1945, p. 70) We are to find the length and the width. The scribe
describes in detail the steps he goes through. He first halves 6 1/2 to get 3
1/4. Next, he squares 3 1/4 to get 10 9/16. From this (area), he subtracts the
given area 7 1/2, giving 3 1/16. The square root of this number is extracted
− 1 3/4. Finally, the scribe notes that the length is 3 1/4 + 1 3/4 = 5, while
the width is 3 1/4 − 1 3/4 = 1 1/2. It is quite clear that the scribe is dealing
with a geometric procedure. In fact, a close reading of the wording of the
tablets seems to indicate that the scribe had in mind this picture, where
for the sake of generality (since there are lots of similar problems solved
the same way) the sides have been labeled in accordance with the generic
system which we write today as x + y = b, xy = c (Figure 1).

The scribe began by halving the sum b and then constructing the square
on it. Since b/2 = x − ((x − y)/2) = y + ((x − y)/2), the square on b/2
exceeds the original rectangle of area c by the square on (x − y)/2, that is,
((x + y)/2)2 − xy = ((x − y)/2)2. The figure then shows that if one adds
the side of this latter square to b/2, one finds the length x, while if one
subtracts it from b/2, one gets the width y. We can express the algorithm
as a modern-day formula:

x = b

2
+

√(
b

2

)2

− c y = b

2
−
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2
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− c

Figure 1.
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I emphasize that this is a modern formula. The Babylonians had noth-
ing similar on their tablets. What they described, totally in words, was a
procedure, an algorithm. I have just translated this for our convenience –
because we are accustomed to doing it this way. But the Babylonians were
certainly in the “rhetorical” stage, the first stage mentioned earlier.

So, with this problem and other similar problems, expressed in words yet
solved using geometric ideas, we have what I call the beginning of algebra,
the beginning of a process of solving numerical problems via manipulation
of the original data according to fixed rules. This example is only one of
many found on clay tablets asking to determine geometric quantities, so
somehow dealing with those matters was the object of this first algebra.

In Greece, of course, mathematics was geometry. Yet what we think
of as algebraic notions were certainly present in the work of Euclid and
Apollonius. There are numerous propositions, particularly in Book II of
Euclid’s Elements (Euclid, 2002) that show how to manipulate directly rect-
angles and squares. And then there are propositions where Euclid “solves”
what appear to be algebraic problems for geometric results, such as the
position of a particular point on a line. Euclid solved these problems by
manipulating geometric figures, but, unlike the Babylonians, he based the
manipulations on clearly stated axioms.

Let us look at Elements Proposition II-5: If a straight line is cut into equal
and unequal segments, the rectangle contained by the unequal segments of
the whole together with the square on the straight line between the points
of section is equal to the square on the half.

If we think of the “unequal segments of the whole” as x and y (with sum
b), then the proposition seems to say that xy + ( x−y

2
)2 = ( x+y

2
)2 and this

result can be used to solve the system of equations x + y = b; xy = c. If
we substitute c for xy and b for x + y, we get
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with a similar result for y.
Proposition II-5 does not itself solve an equation. Islamic mathemati-

cians, however, quoted this result centuries later to justify their own al-
gorithmic solution of quadratic equations. However, Euclid himself does
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solve what we can call equations. Some of these are in Book VI of the
Elements, but they are much clearer in another work, the Data (Euclid,
1993). Consider

Proposition 1 If two straight lines contain a given area in a given angle,
and if the sum of them be given, then shall each of them be given (i.e.,
determined).

If we take the given angle to be a right angle - and the diagrams in the
surviving medieval manuscripts show such an angle - then the problem
is essentially identical to the standard Babylonian problem of finding the
sides of a rectangle given the area and the semi-perimeter. In fact, Euclid’s
method is also virtually the same as that of the Babylonians. To demonstrate
this proposition, Euclid sets up a rectangle, one of whose sides is x = AS,
the other y = AC. He then draws BS = AC and completes the rectangle
ACBD. Now AB = x+y is given as is the area of rectangle ACFS (Figure 2).
So to determine AS and AC, he must apply

Proposition 2 If a given area be applied to a given straight line, falling
short by a figure given in species, the sides of the deficiency are given.

Here the given area is that of ACFS and this has been applied to the given
line AB, but it falls short by a square. Euclid claims that he can determine
the sides of the square, namely y. To do this, he bisects AB at E, constructs
the square on BE, then notes that this square is equal to the sum of the
rectangles ACFS and the little square at the bottom (Figure 3).

Since the rectangle’s area is given, say c, and since the area of the square
is given, (b/2)2, the little square at the bottom is the difference of c and
(b/2)2. We can see that y, the “sides of the deficiency” is known, and so is

Figure 2.
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Figure 3.

x, the length of the given area. In fact, we have
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the standard Babylonian formula for this case.
There are many parallels between Babylonian algebra expressed geo-

metrically and Greek “geometric algebra,” so a natural question to ask is
whether the Greek material is an adaptation of material that the Greeks
learned from the Babylonians. There are arguments supporting both sides
of this question, but the answer is still unknown. Whether or not there was
transmission, it is clear that the “algebra” we recognize in the Greek geo-
metrical works is based on geometric manipulation, just as the algebra in
the Babylonian tablets.

Of course, even though the underlying rationale for Babylonian equa-
tion solving was geometric, the Babylonians still developed algorithms,
or procedures, to solve equations. Eventually, the algorithms began to re-
place the geometry. The history of algebra begins moving to the “equation
solving” stage. We see evidence of this in Diophantus’s knowledge of the
algorithm for solving quadratic equations, solely based on numbers, in
the third century. In India, the quadratic formula also appears without any
geometric underpinning as early as the sixth century.

The first true algebra text which is still extant is the work on al-jabr and
al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad
around 825 (Al-Khwarizmi, 1831). The first part of this book is a manual for
solving linear and quadratic equations. Al-Khwarizmi classifies equations
into six types, three of which are mixed quadratic equations. For each type,
he presents an algorithm for its solution. For example, to solve the quadratic
equation of the type “squares and numbers equal to roots” (x2 + c = bx),
al-Khwarizmi tells his readers to take half the number of “things”, square
it, subtract the constant, find the square root, and then add it to or subtract it
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from the half the roots already found. As in Babylonian times 28 centuries
earlier, the algorithm is entirely verbal. There are no symbols.

Having written down an algorithm, al-Khwarizmi justifies it using a
“cut-and-paste” geometry, very much like the Babylonians. But once the
justifications are dispensed with, al-Khwarizmi only expects the reader
to use the appropriate algorithm. This is different from the Babylonian
procedure, in which each problem indicates some use of the geometric
background. In another difference with his Babylonian predecessors, al-
Khwarizmi virtually always presents abstract problems, rather than prob-
lems dealing with lengths and widths. Most of the problems, in fact, are
similar to this one: “I have divided ten into two parts, and having mul-
tiplied each part by itself, I have put them together, and have added to
them the difference of the two parts previously to their multiplication, and
the amount of all this is fifty-four.” The equation translating this problem
is (10 − x)2 + x2 + (10 − x) − x = 54. Al-Khwarizmi reduces this to
x2 + 28 = 11x and then solves according to his algorithm.

Al-Khwarizmi does, however, have one or two other types of problems:
“You divide one dirhem among a certain number of men, which number is
‘thing.’ Now you add one man more to them, and divide again one dirhem
among them; the quota of each is then one-sixth of a dirhem less than at
the first time.” Al-Khwarizmi describes how to translate this problem into
the equation x2 + x = 6; he can then use one of his algorithms to find that
x = 2.

Algebra has now moved decisively from the original geometric stage to
the static equation-solving stage. Al-Khwarizmi wants to solve equations.
And an equation has one or two numerical answers. His successors in the
Islamic world do much the same thing. They set up quadratic equations
to solve and then solve them by an algorithm to get one or two answers.
You may notice that I am only talking here about quadratic equations.
Surely, Islamic mathematicians solved linear equations. In his al-jabr, Al-
Khwarizmi has numerous problems solvable by linear equations, mostly in
his section on inheritance problems. But to a large extent, solving lin-
ear equations was part of what we would call arithmetic, not algebra.
That is, the basic ideas were part of proportion theory, an arithmetical
concept.

Over the next few centuries, Islamic mathematicians worked out various
ideas in algebra. They developed all the procedures of polynomial algebra,
including the rules of exponents, both positive and negative, and the proce-
dures for dividing as well as multiplying polynomials. Yet the goal of these
manipulations was to solve equations, and since the Islamic mathematicians
could not solve equations of degree higher than two by an algorithm, they
developed two alternative methods. First, there was a return to geometry,
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but a more sophisticated geometry than Euclid’s. Namely, Omar Khayyam
found a way to solve cubic equations by determining the intersection of
particular conic sections. A second alternative, and one that was certainly
more useful, was to determine numerical ways of approximating the solu-
tion, ways closely related to what has become known as the Horner method.
Still, of course, the idea was to find a single answer (or maybe two or
three).

One Islamic mathematician, who was interested in solving cubic equa-
tions, began to think in new ways. This was Sharaf al-Din al-Tusi (d.
1213), a mathematician born in Tus, Persia. Let us consider his analysis of
the equation x3 + d = bx2. He began by putting the equation into the form
x2(b − x) = d. He then noted that the question of whether the equation has
a solution depends on whether the “function” on the left side reaches the
value d or not. To determine this, he needed to find a maximum value for
the function. Although he does not tell us how he did so, he claims and then
proves that the maximum value occurs when x = 2b/3, which in fact gives
the functional value 4b3/27. Thus Sharaf al-Din could now claim that if
this value is less than d, there are no (positive) solutions; if it is equal to d,
there is one solution at x = 2b/3, and if it is greater than d, there are two
solutions, one between 0 and 2b/3 and one between 2b/3 and b (Figure 4).

Sharaf al-Din still could not figure out an algorithm to determine these
solutions, but at least he knew the basic conditions on whether the so-
lutions existed. Unfortunately, his work was not followed up, either in
Islam or later in Europe. So this attempt in Islam to move to “func-
tions” ultimately got nowhere. One of the reasons, perhaps, is that Sharaf
used no symbols – and dealing with functions without symbols is very
difficult.

Figure 4.
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The Islamic algebra which was transmitted to Europe in the twelfth and
thirteenth centuries was just the static equation-solving algebra. There were
several routes that al-Khwarizmi’s algebra took into Europe, including the
work of Leonardo of Pisa (Fibonacci), and Abraham bar Hiyya (in Spain –
d. 1136), as well as the direct translations made by Robert of Chester and
Gerard of Cremona. In all of them, the basic idea of static equation – solving
remained. We have a problem to solve, in general a numerical problem,
which involves squares. We figure out which algorithm to use and then
use it to get our answer (or in some cases, two answers). Interestingly, the
problems considered only involved positive numbers. Negative numbers
did not appear, either in the problem posed or in the solution. There was
never a perceived need to solve an equation such as x + 3 = 2, nor a “real”
problem that required such an equation.

In all the algebra texts that reached Europe and in the ones that Europeans
wrote soon thereafter, the problems solved were virtually always abstract
problems. It was very difficult to come up with a quadratic equation problem
coming from the “real world”. One mathematician who did so was the
sixteenth century English mathematician Robert Recorde. Here is one of
his problems: There is a strange journey appointed to a man. The first day
he must go 1 1/2 miles, and every day after the first he must increase his
journey by 1/6 of a mile, so that his journey shall proceed by an arithmetical
progression. And he has to travel for his whole journey 2955 miles. In
what number of days will he end his journey? (Recorde, 1969) Of course,
Recorde is assuming you know how to sum an arithmetic progression. And
it is out of this sum that the quadratic equation emerges.

In sixteenth century Italy, there was a major breakthrough in mathemat-
ics. Several Italian mathematicians figured out how to solve cubic equations
and fourth degree equations as well. But as we see in Girolamo Cardano’s
Ars Magna (Cardano, 1968), the basic principle here was the same as in the
solution of quadratic equations. First, Cardano classified cubic equations
into a large number of different classes. For each class, he presented an al-
gorithm for solution. He often justified the algorithms by some geometric
argument, but basically it was the algorithm itself that was important. It
is that which enabled one to find an answer (or perhaps two or three) to a
very clearly defined equation. But that was it. Algebra was still just about
finding solutions to equations. And if you look through Cardano’s work,
you find that again virtually all the problems he solves by using equations
are purely abstract.

However, beginning with Cardano and the other Italian algebraists of
his time, we begin to see a very rapid change from the Islamic rhetori-
cal algebra through the syncopated stage into the modern symbolic stage.
All are, however, in the context of static equation solving. The easiest
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way to comprehend the change is to look at the notation by which
four mathematicians, Cardano, Francois Viète, Thomas Harriot, and René
Descartes expressed Cardano’s algorithm for solving the cubic equation
“cube and thing equal to number,” that is, x3 + cx = d. First, here is Car-
dano’s solution to the equation x3 + 6x = 20. (Cardano had no way of
expressing a “general” equation.)

� v : cub : �108 p : 10 m : � v : cubica �108 m:10.

Next, here is Viète’s solution to A cube + B plane 3 in A equals Z solid
2:

A is l.c.l.Bplane plane plane + Zsolid solid + Zsolid−
l.c.l.Bplane plane plane + Zsolid solid − Zsolid

Then, we have Harriot’s solution to 2ccc = 3bba + aaa:

a = 3

√√
bbbbbb + cccccc + ccc − 3

√√
bbbbbb + cccccc − ccc

It is only a short step from Harriot’s notation to that of Descartes. Here is
Descartes’ solution to the equation z3 = −pz + q:√

C. + 1

2
q +

√
1

4
qq + 1

27
p3 −

√
C. − 1

2
q +

√
1

4
qq + 1

27
p3

With a new notation coming into place in the seventeenth century, a
great change in point of view was also taking place in algebra itself. Math-
ematicians started asking questions other than “find the solution to that
problem expressed as an equation.” There are probably many reasons for
this, but certainly one of the reasons was increasing interest in astronomy
and physics. Johann Kepler was interested in the path of the planets. Galileo
Galilei was interested in the path of a projectile. In both of these cases, it
was not a “number” that was wanted, but an entire curve. Both Kepler and
Galileo realized that the solutions to their problems were conic sections,
and the only way they knew how to deal with these was by what they had
learned from Apollonius. His mathematics was largely “static” in that he
was not concerned with moving points – just with a particular slice of a
cone. Nevertheless, Kepler and Galileo were able to pull out of his work
the ideas they needed to represent motion.

Now neither Kepler nor Galileo had a useful notation for representing
motion. They did not use algebra, but relied on Greek models, including
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the detailed use of proportion theory. For example, Galileo, in his Two New
Sciences of 1638, describes the path of a moveable object projected on
a horizontal plane which eventually ends. He writes: “the moveable, . . .
driven to the end of this plane and going on further, adds on to its previous
equable and indelible motion that downward tendency which it has from
its own heaviness. Thus there emerges a certain motion, compounded from
equable horizontal and from naturally accelerated downward motion, which
I call projection.” (Galileo, 1974, p. 217) And then he demonstrates the
following, by the use of a purely geometrical argument, with no algebraic
symbolism at all:

Proposition 3 When a projectile is carried in motion compounded from
equable horizontal and from naturally accelerated downward motions, it
describes a semiparabolic line in its movement.

If one reads Kepler’s New Astronomy of 1609 (Kepler, 1992), one finds
similar ideas. Besides going through all of the numerical data from the
observations, Kepler discusses in great detail the geometry of the ellipse as
he finally shows that the orbit of Mars is an ellipse. There is no algebra in
the book, only geometry. This book was very difficult to read. One had to
fight through all of the verbiage – and Kepler used lots of it. It seemed that
something had to be done so that the important physical results of Kepler
and Galileo could be better disseminated and so that further developments
could result from their work.

In 1637, the appropriate tools for representing this work appeared. The
two fathers of analytic geometry, Fermat and Descartes, produced their
first works on the subject. Both were interested in the use of algebra to rep-
resent curves, although, interestingly, neither cited any motivations from
physics. Descartes’ clear motivation was to use the algebra to solve geo-
metric problems, while Fermat was just interested in representing curves
through algebra. But since both showed how to represent a curve, however
described verbally, through algebra, analytic geometry gave mathemati-
cians a mechanism for representing motion. And Newton, for one, picked
up on this as he developed the calculus.

Curiously, Newton, when he wrote the Principia, was somewhat hesitant
to use algebra. Much of the work is presented using classical geometry,
although with a modern “twist.” But given the newly developed algebra,
which Newton certainly used freely in some of his other works, it is not
surprising that one of the major thrusts in the early eighteenth century
was to translate Newton’s ideas into algebraic language and prove them
using algebra and the newly invented calculus. The mathematicians who
accomplished this, along with others in that time period, were no longer
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interested in finding a “number” as answer to a problem. They wanted a
curve. They were interested in seeing how objects – be they planets or
projectiles - moved, and they moved in curved paths. In fact, the primary
goal of mathematicians, it appears, once the calculus was invented, was to
determine curves which solved problems, not just points.

Just to give a quick example, recall that Newton had purportedly shown
in the Principia that an inverse-square force law implied a conic-section
orbit with a focus at the center of force. There was, in fact, great debate in
the mathematical community as to whether Newton’s sketch was indeed a
proof. In any case, Jakob Hermann, among other, used the algebra of differ-
entials to prove this result. Namely, he showed that the inverse-square force

law could be translated into the differential equation −ad2x = x(y dx−x dy)2

(x2+y2)3/2 .
Hermann then showed, using both algebraic manipulation and Leibniz’s
techniques for dealing with differentials, that the solution to this equation
was given by the equation a ± cx

b =
√

x2 + y2. This was, in fact, the equa-
tion of a conic section. As the eighteenth century wore on, algebra grew
more and more able to represent paths of motion – and finding such paths
became more and more a central problem.

Meanwhile, another question started to arise. How do we know that
all the algebraic manipulations we are making are correct? Even in the
nineteenth century, there were mathematicians worrying about whether
negative numbers made sense, and certainly there was concern about the
status of complex numbers. What gradually dawned on practitioners was,
that as long as you had some form of axiom system in place, then you
could be assured that your calculations gave correct results. So axioms were
formulated for arithmetic that were then applied to algebraic manipulations.
But when Hamilton discovered the quaternions, mathematicians realized
that there could be other sets of axioms that gave interesting results. Perhaps
you did not need commutativity of multiplication.

Late in the eighteenth century, another development which would have
a major effect in changing the notion of algebra took place. Lagrange, in a
major study, tried to determine why Cardano’s algebraic solutions of poly-
nomials of degrees three and four could not easily be extended to solutions
for polynomials of higher degree. Although Lagrange did not come to any
conclusive results, he did introduce the idea of permutations into the search
for solutions. His hint was followed up by Abel in the early nineteenth cen-
tury, who proved that there could be no general algebraic solution of a
fifth degree equation. And then Galois developed methods involving what
we now call group theory for determining under what conditions polyno-
mial equations are solvable. In fact, Gauss had earlier discovered how to
solve a large class of such polynomial equations, those given by cyclotomic
polynomials.
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Throughout the nineteenth century, the nascent idea of groups grew, par-
ticularly once mathematicians realized that many kinds of situations had
common properties, including the notion of geometric transformations. In
1854, Cayley gave an axiomatic definition of a group, but his definition did
not make it into the mathematical mainstream for another 30 years, when it
was essentially rediscovered by Walter Dyck and Heinrich Weber. During
the 1890s this definition entered textbooks along with the axiomatic defi-
nition of a field, an idea which also had roots in the work of Galois. By the
beginning of the twentieth century, algebra had become less about finding
solutions to equations and more about looking for common structures in
many diverse mathematical objects, with the object being defined by sets
of axioms.

This is as far as we will take the history – but to conclude I want to deal
somewhat with the pedagogical implications of the history of algebra?
Can one use these two sets of stages in the development of the subject in
decisions on how to teach algebra in the twenty-first century? Obviously,
one cannot answer this question without some research. But I think we
should consider, at least, some of the following:

• Should one begin the study of algebraic reasoning by using geometric
figures? These are more concrete objects than the x’s one usually uses.
Squares could be exactly that. Products of numbers can be represented as
rectangles. The distributive law is simply a statement about two different
ways to represent a given rectangle. And so forth. At the same time, it is
probably useful to discuss these concepts verbally. Students are familiar
with the “words” of geometry; perhaps they can learn to argue with these
words as they draw pictures.

• Should one in the first “real” algebra course (at whatever age this is
done) put all one’s energy into teaching the solving of problems via
equations (of degree one, two, and (perhaps) three)? Right now, I think
that most secondary algebra texts are too diffuse. The student does not
really know the aim of the course. If one limits the aim to the solution
of equations, one has a focus to the course. All algebraic manipulations
would then be introduced as tools to solve equations. And when and how
to introduce negative numbers should be carefully considered. In addi-
tion, one should stress the idea of translating “real-world” problems into
algebra.

• Given that the notion of “function” is more abstract than the solution of
equations, should we not wait on this until a second course in algebra?
The students need lots of experience with curves, which can perhaps be
gained in geometry, before dealing with the abstract idea of a function.
They also need lots of experience in algebraic manipulation.
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• Before one teaches “abstract algebra”, namely, groups, rings, fields, and
so on, via axiomatic definitions, it is critical that students have enough
examples at their fingertips to understand why it is so useful to generalize.
They need to understand why particular sets of axioms were chosen. The
only way to gain this understanding is through enough experience with
examples. It would therefore be reasonable that axiomatics, along with
increased abstraction, should appear rather later in the curriculum than
earlier.

COMMENTARY FROM A MATHEMATICS EDUCATOR

Reviewing our history, as always, sheds light on contemporary issues. Thus
an historical view of the development of algebra has important things to
tell us about recent “Numeracy” developments, as well as raising more
fundamental questions about appropriate algebra curricula.

The emphasis in many countries on numeracy in primary mathematics
education, and its extension into secondary and adult education, makes an
assumption that mathematics is to be seen as based on number, and, as
such, that algebra is primarily generalized arithmetic. An historical view
places number and geometry on at least equal footing in mathematical
development, and highlights the powerful interrelationship between the
two. Furthermore, we are reminded of the important algebraic role played
by symbolism, and of the complexity of the key mathematical ideas of
generalization and abstraction.

To the extent that the ontogenetic argument is useful in mathematics
education, this reflection should cause us to rethink some current trends.
Historically, the motivation for algebra came from the need to solve par-
ticular problems, both real-world problems, and those arising from math-
ematical investigations. Algebra did not arise from an abstract need to
generalize arithmetic. The form of algebra today owes more to the nature
of its generating problems, and the tools that were used to solve them, than
it does to the rules of arithmetic. Educationally, as Katz suggests, it there-
fore makes sense to consider whether a problem-solving basis would be
useful in the early stages of algebraic education. The focus it provides may
help to overcome the barrier algebra seems to present for many people.

While algebra has grown, through the later stages of history, into a
powerful tool for describing and using mathematical systems, most peo-
ple will never need to interact with it in this role. Thus setting up algebra
as essentially mathematical generalization during compulsory schooling is
unlikely to be widely useful, and has not, to date, been pedagogically suc-
cessful. It usually degenerates into a sequence of algebraic skills that are
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unrelated to each other and can only be used in recognisable mathematical
situations. This is not to ignore the need for school algebra to be able to be
turned, at the senior levels, into the study and use of mathematical and ax-
iomatic systems. But, as history teaches us, a problem-solving introduction
is consistent with such a development.

I believe that this barrier is also a result of students being unprepared for
the type of abstraction that is required to move through generalized arith-
metic to manipulating mathematical systems, as current curricula demand.
Regarding preparedness for abstraction, again history has a lesson: it takes
a long time, and a lot of experience with abstraction, to be comfortable
with the particular formal abstractions that characterize modern mathe-
matics. The bringing forward of the grade level at which algebraic ideas
are introduced has steadily reduced the opportunities for such practice.
Furthermore, it has meant that teachers are working on formal pre-algebra
concepts at earlier stages, and using up time that would otherwise be spent
on more diverse experiences.

The concentration on structure (as in the New Math initiatives) and
on number (as in the Numeracy initiatives) has added to the narrowing
of mathematical objects and processes that are part of young children’s
experiences. Geometric concepts are also vital, and their links with alge-
bra are tangible in a way that numerical concepts are not. To the extent
that learning theories are correct about the need for concrete experiences,
then the generalizations inherent in drawing and reading maps, building
structures, experiencing thrown and falling objects, categorizing charac-
teristics of things, folding paper, and sketching and painting are important
components of mathematics education.

Similarly, experiencing multiple uses for numbers and mathematical ob-
jects, and multiple ways of representing and describing them, as happened
throughout the long history of numbers is essential if sufficient practice at
generalization and abstraction are to be achieved. Moving prematurely into
the way numbers are dealt with in today’s modern mathematics is likely to
contribute to difficulties later on.

A final lesson for mathematics education embedded in Katz’ descrip-
tion of the development of algebra is the way that concepts we now ac-
cept as well-defined had a history of less than exact connotation before
taking on their present form. Let us take ‘function’ as an example. The
following is edited from the website: Earliest Uses of Mathematical Words
(http://members.aol.com/jeff570/mathword.html, downloaded 15.07.05).

The word FUNCTION first appears in a Latin manuscript “Methodus tangen-
tium inversa, seu de fuctionibus” written by Gottfried Wilhelm Leibniz (1646-
1716) in 1673. Leibniz used the word in the non-analytical sense, as a magnitude
which performs a special duty. He considered a function in terms of “mathematical
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job”– the “employee” being just a curve. He apparently conceived of a line doing
“something” in a given figura. . . . From the beginning of his manuscript, however,
Leibniz demonstrated that he already possessed the idea of function, a term he
denominates relatio.

[In] 1692, Leibniz, uses functiones in a sense to denote the various ‘offices’ which
a straight line may fulfil in relation to a curve, viz. its tangent, normal, etc.

In . . . 1694, . . . Leibniz used the word function almost in its technical sense,
defining function as “a part of a straight line which is cut off by straight lines
drawn solely by means of a fixed point, and of a point in the curve which is given
together with its degree of curvature.” The examples given were the ordinate,
abscissa, tangent, normal, etc. . . .

[In] 1698, Johann Bernoulli, in another letter to Leibniz, for the first time deliber-
ately assigned a specialized use of the term function in the analytical sense. At the
end of that month, Leibniz replied (p. 526), showing his approval.

Function is found in English in 1779 in Chambers’ Cyclopedia: “The term function
is used in algebra, for an analytical expression any way compounded of a variable
quantity, and of numbers, or constant quantities”

Thus, not only was function developed through geometry, but also it took
much use before its analytical sense was fully developed. It is an open, and
interesting, question whether an introduction to the idea of function as a
tool, possibly a geometric tool as Katz suggests, would be a useful curricula
approach.

There is probably no one “best” way to teach algebra. But it is clear
that since elementary algebra is the key to any success in mathematics at
all and abstract algebra is critical to work in advanced mathematics, we
must increase the flow of students through our algebra courses. I believe
that attention to the history of the field is a valuable guide in deciding how
to do this. I hope that these ideas can be taken seriously in the discussions
of the future of the teaching and learning of algebra.

NOTE: Further historical details on the events mentioned in this paper can
be found in either (Katz, 1998) or (Katz, 2004).
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