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Categories of structured sets often fail to have some desirable properties. They may even fail
to have any interesting decently behaved full subcategories. But, under some natural assumptions
(and disregarding purely set theoretic problems concerning ‘size’), it is always possible to embed
them into nicely behaved topological categories, in particular each such category has:

(1) a topological hull (= Mac Neille completion),

(2) a cartesian closed topological hull (= Antoine-completion),

(3) a hereditary topological hull,

(4) a concrete quasitopos hull (= Wyler completion).

The purpose of this paper is to discuss these hulls and to provide several illuminating examples.
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Introduction

The objects of this paper are categories of structured sets and structure-preserving
maps (more formally: categories A supplied with a forgetful functor U: A - Set)
satisfying the following condition:

(C) every constant map between A-objects is an A-morphism.

Such categories will be called constructs. Familiar constructs, such as Top, Unif
and Prox, share an important categorical property: they are topological, i.e., they
have sufficient initial and final structures. This property, even though being rather
convenient, is considered by an increasing number of topologists and analysts (cf.
the reference list B) not convenient enough. Additional convenience properties are
required. The existence of a quasitopos structure is particularly desirable. This
property splits naturally into two parts, each interesting in its own right: cartesian
closedness, whose value has been recognized for more than 20 years, and heredity,
whose usefulness has become apparent more recently. These properties will be
described in Section 1.
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Natural candidates for convenient constructs are full subconstructs and supercon-
structs of the classical constructs, in particular of Tep. Unfortunately, constructs
may fail to have any interesting convenient full subconstructs, e.g.:

(1) Top has only 2 full subconstructs, which are topological quasitopoi: they
consists of all discrete spaces and, respectively, of all indiscrete spaces [24].

(2) Top,, the construct of T,-spaces, has only one full subconstruct, which is
topological: it consists of all discrete spaces.

(3) Met, the construct of metric spaces and non-expansive maps, has infinitely
many topological (even quasitopoi) full subconstructs, but each of these contains
only metric spaces whose underlying topologies are discrete.

It is the more surprising that (modulo some foundational problems, discussed in
Section 3.2) every construct can be fully embedded as a finally-dense subcategory
into some convenient construct: e.g., its largest finally tight extension, which is a
concrete quasitopos with productive quotient maps [25]. Although extensions of
constructs follow the rule:

(BB) ‘bigger is better’; i.e. stronger convenience stipulations require bigger

extensions,
they also follow the rule:
(SB) ‘smaller is better’; i.e. smaller extensions generally preserve more structure
of the original construct.
Hence it seems desirable to find, for a given construct A and a given convenience
condition P, a smallest extension P(A) of A satisfying P. Such an extension will be
called a P-hull of A. For the convenience properties, mentioned above, such hulls
exist (modulo-foundational problems, see section 3.2) for any reasonable construct.
The properties of these hulls and various examples will be presented in Section 2,
their construction in Section 3. Finally, Section 4 indicates that the mentioned results
are special cases of far more general results.

Background material, definitions, examples and references up to 1981 can be

found in the survey article [23]. Most references given there will not be repeated here.

1. Convenience properties

1.1. Topological constructs

A construct A is called topological provided it satisfies the following equivalent
conditions:

(1) A is initially complete, i.e., every source of the form (f;: X -» UA;);., has an
initial lift (fi: A-> A})icr1,

(2) A is finally complete, i.e., every sink of the form (f;: UA, > X);.; has a final
lift (fi: Ai> A)icy,

(3) A is an injective object in the quasicategory Const of constructs and concrete
functors.
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Most of the familiar constructs, consisting of ‘topological objects’, are topological,
e.g., the constructs Top, PrTop, PsTop, Conv, k-Top, Prox, Unif, Near, Mer, Bor and
SynTop, consisting of topological, pretopological, pseudotopological, convergence,
compactly generated topological, proximity, uniform, nearness, merotopic, borno-
logical and syntopogeneous spaces respectively. So are the constructs Simp, Prost
and Rere, consisting of simplicial complexes, preordered sets and reflexive relations.
Subconstructs of topological constructs, defined by separation axioms, like Top,,
Top,, Top,, Unif, etc., generally fail to be topological, but usually have familiar
constructs as their topological hulls.

Topological constructs have many pleasant properties, e.g., they have concrete
limits and concrete colimits, and their fibres are complete lattices.

Recent references: [20, 25].

1.2. Cartesian closed topological constructs

A topological construct A is cartesian closed provided it satisfies the following
equivalent conditions:

(1) for every A-object A the endofunctor AX _: A— A has a right adjoint,

(2) A has decently behaved function spaces, i.e., for every pair (A, B) of A-objects
the set Mor,(A, B) can be supplied with the structure of an A-object—usually
denoted by B*, and called a function space of a power object—such that for any
A-object C and any map f: A X C - B the following conditions are equivalent:

(a) f:AxC— B is an A-morphism,
(b) f*:C~ B*, defined by (f*(c))(a)=f(a, c), is an A-morphism,

(3) in A final epi-sinks are finitely productive, i.e., if (f;: A;> A),c,; and (g;: B, >
B),.; are final epi-sinks in A, then so is (f; X g;: A, X B; > AX B); jer+s,

(4) A is a injective object in the quasicategory Const, of constructs with finite
concrete products and finite product preserving concrete functors.

For small-fibred A these conditions are equivalent to:

(5) A has the following properties:

(a) in A quotient maps are finitely productive, i.e.,if f:A>Band g: C—> D
are quotient maps in A, thensois fXg:AXC—-> BxD,

(b) in A products commute with coproducts, i.e., for any A-object A and
any set-indexed family (B;); of A-objects the natural morphism II(A X
B;)> AXIIB; is an isomorphism.

Of the familiar topological constructs, listed in 1.1, only PsTop, Conv, k-Top, Bor,
Simp, Prost and Rere are cartesian closed.

Further examples: filter-generated merotopic spaces [16, 30] uniform limit spaces
[31, 39], and Cauchy-spaces [15].

Recent references: [3, 11, 25, 28, 36, 37].

1.3. Hereditary topological constructs

A topological construct A is called hereditary provided it satisfies the following
equivalent conditions:
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(1) in A final sinks are hereditary, i.e., if (f;: A; > A);.; is a final sink in A, B is
a subspace of A, B; is the subspace of A; with underlying set f;'[B], and g;: B;~> B
is the corresponding restriction of f;, then (g;: B;> - B);.; is a final sink in A too;

(2) in A final epi-sinks are hereditary;

(3) in A partial morphisms are representable, i.e. every A-object A can be
embedded via the addition of a single point 0, into an A-object A¥ =AU {004}
such that the following holds:

For every partial morphism B - A, i.e., for every A-morphism f: C > A from a
subobject C of B into A, the unique function f¥: B> A*, defined by

_[f(b), ifbeC
f*(b)—{oom ifb;EC}’

is an A-morphism,;

(4) A is an injective object in the quasicategory Const, of constructs with sub-
spaces and subspace preserving concrete functors.

For small-fibred A these conditions are equivalent to:

(5) in A coproducts and quotients are hereditary.

Of the familiar topological constructs, listed in 1.1, only PrTop, PsTop, Conv,
Mer, Bor, Simp and Rere are hereditary. The only full subconstructs of Tep, which
are hereditary topological, are those consisting of all discrete resp. of all indiscrete
spaces [24].

1.4. Concrete quasitopoi

A topological construct A is a quasitopos provided it satisfies the following
equivalent conditions:
(1) A is cartesian closed and in A partial morphisms are representable,
(2) A is cartesian closed and hereditary,
(3) in A final epi-sinks are universal, i.e., if (f;: A;> A);., is a final epi-sink in
A, f:B—> A is an A-morphism and for each i I the diagram

k
i

; ——>

i

A
ln

—s A
S

E
W

is a pullback in A, then (g;: B;> B),.; is a final epi-sink in A,
(4) in A colimits are universal,
(5) for each A-object A the comma category A/A is cartesian closed,
(6) A is an injective object in the quasicategory Const,, of constructs with finite
concrete products and subspaces and concrete functors preserving finite
products and subspaces.
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For small-fibred A, these conditions are equivalent to:

(7) in A quotients and coproducts are universal.

Of the familiar topological constructs, listed in Section 1.1, only PsTop, Cony,
Bor, Simp and Rere are quasitopoi.

Alternative names, which have been used for topological constructs, which are
quasitopoi, are concrete quasitopoi [22], strongly topological categories [24], and
topological universes [34].

Recent references: [2, 3, 4, 25]

2. Hulls

In this section various extensions of a construct A4, i.e., full concrete embeddings
E:A- P(A) are characterized. For simplicity we will assume that A is a full
subconstruct of P(A) and that E: A- P(A) is the corresponding inclusion.

2.1. Topological hulls

Every construct A has (modulo foundational problems, see section 3.2) a fopologi-
cal hull (= Mac Neille completion) T(A), characterized uniquely (up to isomorphism)
by the following equivalent conditions:

(1) T(A) is the smallest topological extension of A,

(2) T(A) is the largest initially and finally tight extension of A,

(3) T(A) is an initially and finally tight topological extension of A,

(4) T(A) is the injective hull of A in Const.

Examples of topological hulls: T(Top,) = Top, T(Unif,) = Unif, T(Poset) = Prost,
T(Met) is the construct PMet of pseudometric spaces.

2.2. Cartesian closed topological hulls

Every construct A with finite concrete products has (modulo foundational prob-
lems, see section 3.2) a cartesian closed topological hull (= Antoine completion) CT(A),
characterized uniquely (up to isomorphism) by the following equivalent conditions:

(1) CT(A) is the smallest finally tight cartesian closed topological extension of A,

(2) CT(A) is a cartesian closed topological extension of A, in which A is finally

dense and powers B” of A-objects A, B are initially dense,

(3) CT(A) is the injective hull of A in Const,.

Examples of cartesian closed topological hulls: CT(Top) =EpiTop [13, 32, 18],
CT(PrTop) =PsTop {18], CT(Tych)=c-embedded convergence spaces [18,19],
CT(Unif) = bornological uniform spaces [7], CT(Prox) = coreflective hull of Prox
in Unif [33], CT(HComp) = coreflective hull of HComp in Unif [9], CT(Poset) =
Prost.
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Recent references: [9, 10, 11, 12, 14, 28, 37].

2.3. Hereditary topological hulls

Every construct A with subspaces has (modulo foundational problems, see section
3.2) a hereditary topological hull HT(A), characterized uniquely (up to isomorphism)
by the following equivalent conditions:

(1) HT(A) is the smallest finally tight hereditary topological extension of A,

(2) HT(A) is the injective hull of A in Const,,.

Examples of hereditary topological hulls: HT(Top) =PrTop, HT(Poset) = Rere,
HT(Met) is the construct Dist of distance spaces (obtained by dropping the triangle-
inequality in the definition of a pseudometric space).

Details will appear in the author’s “Hereditary topological constructs”, Proc.
Sixth Prague Topol. Symp. 1986.

2.4. Concrete quasitopos hulls

Every construct A with finite concrete products and subspaces has (modulo
foundational problems, see Section 3.2) a concrete quasitopos hull (= Wyler-comple-
tion) CQ(A), characterized uniquely (up to isomorphism) by the following
equivalent conditions:

(1) CQ(A) is the smallest finally tight concrete quasitopos extension of A,

(2) CQ(A) is a concrete quasitopos extension of A, in which A is finally dense
and objects of the form (B*)*, with A and B being A-objects, are initially
dense,

(3) CQ(A) is the injective hull of A is Const,,.

Examples of concrete quasitopos hulls: CQ(Top) = PsTop [38], CQ(Poset) = Rere,
CQ(Met) = Dist. CQ(Unif) is the construct of submetrizable bornological merotopic
spaces [8]. CQ (the construct of finite simplicial complexes) = Simp. CQ(STOP) =
construct of superspaces [40].

Recent references: [2, 3, 4].

3. Constructions

In section 3.1 constructions of the hulls will be provided. The foundational
problems, raised by these constructions, will be discussed briefly in section 3.2.

3.1. Construction of the hulls

Each of the hulls under discussion is a finally tight extension. It can therefore be
obtained as a full subconstruct of the largest finally tight extension. This can be
described as follows: If A is a construct, the objects of Max(A) are pairs (X, S),
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consisting of a set X and a structured sink S, i.e., a class of pairs (A, a), consisting
of an A-object A and a function a: UA - X, subject to the following conditions:
(1) If (A,a)e S and b: B— A is an A-morphism, then (B, a: b)€ S,
(2) if A is an A-object and a: UA— X is a constant map, then (A, a)e S.
Morphisms in Max(A) from (X, S) to (Y, T) are functions f: X - Y, satisfying
the condition:

(M) (A,a)eSimplies(A,f-a)eT

The construct A can be regarded as a full finally dense subconstruct of Max(A4) via
the embedding E : A > Max(A), defined by EA=(UA, {(B, b)|b: B> Ac Mor A}).
Each of the four hulls of A can be obtained as the full subconstruct of Max(A),
consisting of those objects (X, S§) for which S can be expressed as an intersection
S ={icr S(i) of some particular S(i)’s. These will be described, for each of the 4
hulls, as follows:

(1) The topological hull: if i = (b, B) is a pair, consisting of an A-object B and
a map b: X - UB, then

S(i)={(A, a)|b- a: A-> Be Mor A}.

(2) The cartesian closed topological hull: if i = (B, C, b) is a triple, consisting of
A-objects B and C and a map b: UBx X » UC, such that for each xe X the
restriction b(—, x): B—> C is an A-morphism, then

S(i)={(A, a)|bo(idgxa): Bx A> C ¢ Mor A}.

(3) The hereditary topological hull: if i=(Y, B, b) is a triple, consisting of a
subset Y of X, an A-object B and a map b: Y » UB, then

S(iy={(A, a)|boay: Ay > Bec Mor A},

where Ay is the subspace of A with underlying set a™'[ Y] and ay : UAy > Y is the
corresponding restriction of a: UA-> X.

(4) The concrete quasitopos hull: if i =(Y, B, C, b) is a quadruple consisting of
a subset Y of X, A-objects B and C and a map b: UBx Y > UC, such that for
each ye Y the restriction b(-, y): B> C is an A-morphism, then

S(i)={(A, a)|bo(idgx ay): Bx Ay > C € Mor A}

where A, and a, are defined as in (3).
Recent references: [2, 9, 10, 38]

3.2. Foundational problems

As is well known, such concepts as the ‘set of all sets’ or the ‘category of all
categories’ can easily lead to contradictions. There are various ways to avoid these,
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Most familiar, perhaps, is the distinction between sets and (proper) classes resp.
between classes and (proper) conglomerates, leading to such concepts as the ‘class
of all sets’ and the ‘quasicategory of all categories’.

If A is a construct and P(A) is one of the hulls of A, discussed before, then P(A)
usually fails to be a construct: in fact if A is not small (the objects of A form a
proper class) then the objects of P(A) are proper classes too; hence the collection
of P(A)-objects is a proper conglomerate; hence P(A) is a quasiconstruct only. If
this quasiconstruct is isomorphic to some construct, it will be called a legitimate
quasiconstruct. In this case, there are no real problems. But sometimes P(A) is ‘too
big’ to be legitimate; then it is called illegitimate. Sufficient (and necessary) conditions
for a construct A to have a legitimate hull, are exhibited:

(a) for the topological hull in {5],

(b) for the cartesian closed topological hull.in [6],

(c) for the concrete quasitopos hull in [2].

It may be worth mentioning that
(1) there are constructs whose topological hull is illegitimate [5],
(2) there are topological constructs, whose cartesian closed topological hull is
illegitimate [6],

(3) Spanier’s quasispaces form an illegitimate construct [27].

There are other ways to deal with the above mentioned problem (e.g., by means of
a chain of Grothendieck universes), but none, to the author’s knowledge, can ‘explain
away’ the problem.

4. Generalizations

The above results are (particularly interesting) special cases of far more general
results. If the category of sets is replaced by a category X, and instead of constructs
concrete categories over X, i.e., pairs (A, U) consisting of a category A and a forgetful
functor U:A- X, are considered, then the above constructions and most of the
results remain valid. Naturally, in the cartesian closed case X should be required
to be cartesian closed, in the quasitopos case X should be required to be a quasitopos,
and in the hereditary case X should be required to carry a suitable factorization
structure for morphisms. The general results not only imply the above results (of
interest primarily to topologists and analysts) but also familiar results such as the
characterization of (a) complete lattices as injective objects in Poset, (b) Mac Neille
completions of partially ordered sets as injective hulls [17], and (c) locales as
injective objects in the category of semilattices [21, 29].

In the general situation condition (C), saying that all constant maps are morphisms,
is unnatural, hence dropped. It could have been omitted here too. This has not been
done since condition (C) is responsible for the ‘familiarity’ of the concepts and
hulls under discussion, e.g. it guarantees [25] that cartesian closedness is equivalent
to the existence of decently behaved function spaces (condition (1) in 1.2), a
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condition topologists and analysts are primarily interested in; also it is responsible
for the hulls of familiar constructs to be not too exotic.
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