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Abstract. The importance of acyclic database schemes in relational database theory has been 
pointed out in various contributions in the literature. Unfortunately, the realm of interest which 
is captured by the database scheme is often intrinsically cyclic; therefore, we are faced with the 
problem of finding acyclic views on such a scheme. In this paper we consider three kinds of 
acyclicity, called a-, 7- and Berge-acyclicity by Fagin (1983), and we approach the problem of 
the existence of acyclic views in a database scheme. We show that the problem of deciding whether 
there exists a Berge-, y-, or a-acyclic view in a general database scheme is NP-complete and that 
the problem of deciding whether there exists a Berge- or y-acyclic view on an a-acyclic scheme 
is also computationally intractable. On the other side, if the given database scheme is y-acyclic, 
the problem of deciding the existence of  a Berge-acyclic view may be solved by means of  efficient 
algorithms which may also be used to find an acyclic view which involves the minimum number 
of relations. 
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C.R. Categories. G.2.2; F.2.2; H.2.1; H.2.4. 

1. Introduction 

A central problem in relational database research in the last few years has been 
the problem of investigating properties deriving from the 'structure' of a database 
scheme. In particular, acyclic database schemes have been defined and it has been 
proved that such schemes enjoy several desirable properties related to database 
design and use (see, among others, [2, 8, 9, 10, 12]). A survey on these topics can 
be found in [7]. 

Among acyclic database schemes, classes based on different structural properties 
have been introduced. A particularly relevant role is played by the so-called a-acyclic 
schemes [2], by y-acyclic schemes [8] and by Berge-acyclic [4] schemes. 

Due to the desirability of their properties, several authors have investigated the 
problem of designing acyclic database schemes. 
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In [5], a step-by-step methodology is provided that allows to generate acyclic 
schemes by adding a relation scheme at a time and by Constraining the way in which 
the new relation scheme is connected to the pre-existing database scheme. 

A different approach leads the designer to produce the acyclic scheme by modify- 
ing a pre-existing cyclic scheme. Goodman and Shmueli [13, 14] have considered 
several methods to approximate a cyclic scheme by an a-acyclic one (by adding, 
deleting or modifying a minimum number of relation schemes) and have proved 
that some of these modifications imply NP-complete problems. A similar approach 
is given in [3], where the transformation is obtained by adding new attributes to 
the pre-existing ones. 

Unfortunately, in several cases the database scheme obtained by means of such 
transformations does not represent in a natural way the realm of interest, which is 
intrinsically cyclic. On the other hand, in general, a user is not interested in the 
whole database scheme, but only in a proper subset of it, usually called a view. 

Therefore, it is meaningful to consider whether it is possible to find acyclic views 
in a cyclic scheme. 

In this paper we deal with the following problem: 
(i) Given a database scheme S and a subset A of its attributes, does an t~-, 3'- 

or Berge-acyclic view on S connecting A exist? 
(ii) How is the complexity of the above problem influenced by the acyclicity 

degree of S? 
A problem similar to the first one has been studied in [17] where a method to 

decompose a cyclic scheme in its a-acyclic and its cyclic part is given. 
Related problems also arise in the implementation of a 'universal relation interface' 

[ 15, 19]. These interfaces provide a higher level of data independence to the users 
by allowing them to formulate queries in terms of attributes independently from 
the way in which attributes are clustered in the relation schemes. 

In order to guarantee the correct and efficient execution of queries by a universal 
relation interface, we must consider the fact that a given set of attributes (which 
specify a query) may be connected in more than one way. Hence there may exist 
more than one interpretation of a query and more than one way to join database 
relations in order to answer the query. Both the unambiguity of a query and the 
existence of an efficient way to process the query are shown to be related to the 
acyclicity degree of the database scheme [1, 2, 6, 8, 12, 14]. 

In presence of cycles, the problem arises of imposing suitable assumptions either 
on the whole database or at least on a view on it. In particular, to provide a unique 
'natural' interpretation of a query, Maier and Ullman [16] define suitable views 
(maximal objects) to break up cycles in the database scheme and give an algorithm 
which constructs such views starting from the dependencies that hold in the database. 

In order to approach the solution of the problem stated at the beginning, we 
make use of the formalism of hypergraphs [4], which are often used for representing 
database schemes and studying their properties. After introducing the basic defini- 
tions we will prove that the problem of deciding the existence of acyclic views over 
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general database schemes is NP-complete and that, even assuming that the scheme 

is a-acyclic, the problem of deciding the existence of a 3'- or Berge-acyclic view 
remains computationally intractable. In the last part of this paper  we show that if 
the database scheme is y-acyclic efficient algorithms for deciding whether there 

exists a Berge-acyclic view connecting a given set of nodes may be found. Such 
algorithms are based on the concept of Bachman diagram [20] which, in the case 
of y-acyclicity, provides a concise representation of the database scheme. In par- 
ticular we show that the problem of the existence of a Berge-acyclic view, in this 

case, may be solved in O(m + n) time, where m is the number of  relation schemes 
and n the number  of attributes appearing in the database scheme. It is worth noting 
that, by making use of  the same algorithm, we may provide an efficient way of 

answering queries expressed in terms of attributes in a y-acyclic scheme. 

2. Basic definitions 

We assume the reader to be familiar with basic concepts in relational database 

theory; the needed background is contained in [18]. In this section we introduce 
the formalism which will be used throughout the paper. 

Definition 2.1. A hypergraph H is a pair (N, E), where N is a set of nodes and E 

a set of edges which are nonempty subsets of N, such that every node i n N  belongs 
to at least one edge in E. We say that a hypergraph H '  = (N' ,  E ' )  is a subhypergraph 
of H if E '  is contained in E. 

In a hypergraph the notions of connectivity and (connected) covering may be 
defined in a way similar to the case of graphs. 

Definition 2.2. Let H be a hypergraph and let n, m be a pair of  its nodes. We say 
that n and m are connected in H if they belong to the same edge or if there exists 
a node k in H connected to both n and m. A hypergraph is connected if all its nodes 
are pairwise connected (in this paper  we consider only connected hypergraphs). A 

covering of a hypergraph H = (N, E) over a subset f i / o f  its nodes is a connected 
subhypergraph H'= (N', E') of H such that JQ is contained in N ' .  We say that H '  

is a nonredundant covering over JQ if no proper subhypergraph of  H '  is still a 
coveting over ~r. 

It is easy to see that the above concepts provide a natural representation of the 
relational theory concepts we are interested in. In fact, a database scheme can be 
represented by means of a hypergraph whose nodes and edges correspond to 
attributes and relation schemes respectively; furthermore, a view on a given set of 
attributes (i.e., a joinable set of relations that allow to answer a query involving a 
given set of  attributes) can be represented by means of a coveting over the set of 
nodes corresponding to these attributes. 
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As it was said in Section l, while in the case of  graphs the only kind of  acyclic 

graphs are trees, in the case of  hypergraphs  several definitions o f  cycle and acyclic 
hypergraph  have been in t roduced;  in part icular ,  in [8, 17] the fol lowing definitions 
are provided.  

Definition 2.3. Let H = (N,  E)  be a hypergraph.  

- A sequence ( e l , . . .  ,. eq) of  distinct edges in E is a cycle (or Berge-cycle) in H if 
q >  1 and  A i = e i n e i + l # O  , for l<~i<q,  A q = e q ~ e l # O  , and [U~=~ ail >2. 

- A cycle ( e l , . . .  , eq) is a pure cycle if 

(i) q = 3  and e l c ~ e 2 n e a = 0 ,  or 

(ii) q > 3 and for all pairs of  indices i , j  such that  l < I i - J I  < q - 1, we have 
ei n ej = 0 (i.e., the edges which are nonad jacen t  in the sequence  are disjoint). 

- A y-cycle is either a pure  cycle or a cycle (el,  e2, e3) such that  there exists a pair 
of  nodes n, m in e3 such that  n is in el and  not  in e 2 and m is in e 2 and not in e~. 

- A hypergraph  is O-cyclic if it has a O-cycle; it is O-acyclic otherwise (where 
O = Berge or y). 

- A hypergraph  is a-acyclic if it contains no cycle ( e ~ , . . . ,  eq) of  length at least 

three such that  for each triple of  indices (i, j, k) ,  1 <~ i < j  < k <~ q, there is no edge 
in the hypergraph  that  contains A i u A i u Ak; it is cyclic otherwise.  

In [8] it is proved that  Berge-acyclicity implies y-acyclicity, y-acyclicity implies 
a-acycl ici ty and that none of  the reverse implicat ions hold. In Figs. 1-4 cyclic and 
acyclic hypergraphs  are shown. 

n l  n 2 

n7 

Fig. 1. A Berge-acyclic hypergraph. 

e, 

e ~ e  6 
Fig. 2. A y-acyclic, not Berge-acyclic hypergraph. 

85 
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rl 4 

Fig. 3. An a-acyclic, y-cyclic hypergraph. 

Fig. 4. A cyclic hypergraph. 

A different equivalent definition of y-acyclic hypergraph is based on the concept 
of Bachman diagram [20]. 

D e f i n i t i o n  2.4. Let H = (N, E) be a hypergraph where N = { n l , . . .  nml} is the set 
of nodes and {e~, . . . ,  elEi} is the set of names of edges in E. We say that a directed 
graph G = ( V, A) is a Bachman diagram of H, if: 

- V contains the set { n l , . . . ,  niN I, e l , . . . ,  el~l}, 
- there exists a bijection f :  P--> V, where P = {{n}t n is in N} u { X I X  = ["]e~n' e for 

any subset E '  of E and X ~ 0}, such that: 
-f({ni}) = ni for each ni in N, 
- f ( X )  = ei if  X is any edge in E with name ei, 
- the arc ( f ( X i ) , f ( X j ) )  is in A if and only if  Xi is contained in X~ and for no 

Xk in P we have that Xk properly contains Xi and it is properly contained in 
xj. 

A hypergraph is y-acyclic i f  it has a loop-free Bachman diagram [8]. 

E x a m p l e  2.5. Let us consider the y-acyclic hypergraph H given in Fig. 2. It is easy 
to see that i f  we consider the bijection given in Table 1, the directed graph G given 
in Fig. 5 provides a Bachman diagram of H. 
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Table 1 
A bijection that provides a Bachman 
diagram for the hypergraph in Fig. 2. 

P f ( P )  

{/11} n l  

{,~} ~ 
{n~, n8} e, 

{ r 1 4 •  115, n7} e6 

{FI3, n4} Vl 

{/14, /'15} /')2 

118 ~ e I q rl 3 

Fig. 5. A Bachman diagram 

/'11 /'i2 ) e5 ( 

1 1 
e2 e4 

T T 
~)1 " n4 b D 2 ~ }.15 

1 1 
e3 e6 

T T 
tl 6 n 7 

/l 9 

associated to th~ hypergraph in Fig. 2. 

3. On the existence of acyclic coverings 

In order to discuss the complexi ty  of  deciding whether  a database scheme allows 

a O-acyclic view ( 0  - a, 7, Berge), let us first prove the following lemma. 

Lemma 3.1. Let H be a general hypergraph and let 1Q be a set of  nodes. The problem 

of  deciding whether there exists a covering over 1V without pure cycles is NP-complete. 

Proof. It is easy to see that  the p rob lem is in NP. The p roof  that  it is also NP-hard 

may be obta ined  by reduction f rom the 3-SAT problem,  that  is the problem of 

deciding whether  a proposi t ional  formula  in conjunct ive  normal  form with exactly 

three literals in every clause is satisfiable or not  [11]. 
Let w = (nil  v nl2v nl3) ^ • • • ^ (nql v nq2v nq3) be such a formula,  where n 0 for 

1 ~< i ~< q and  1 <~j ~< 3 belongs to ~he set of  proposi t ional  variables or their  negation. 

First of  all let us consider a new formula  w' which is obta ined from w by introducing 

a dummy clause ni =p  between every two consecutive clauses ci, ci+l, where p is a 

new proposi t ional  variable. Clearly,  w is satisfiable if  and  only if  w' is. The reduction 

may be split in two steps. First o f  all we construct a graph G = (V, A) from w' in 
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the following way: 

V =  {nijl 1 <~ i~< q, 1 <~j~<3}u{ni[ 1 ~< i~< q - 1 } w  {no, nq}, 

A ={(no, ni)l l  <~ i<~ q -  1, 1 <~j<~3} 

u {(ni, n i+l j ) l l<~i<~q-1 ,  1 ~<j~<3} 

u {(no, nlj)[ 1 ~<j<~ 3} 

u {(nq, nqj) I 1 ~<j <~ 3}. 

Besides we define a set of forbidden pairs of nodes in N, 

F = {(n~j; nhk)[n o is the negation of  nhk}. 

Clearly, the problem of deciding whether w' is satisfiable or not is polynomially 
reducible to the problem of deciding whether there exists a path from no to nq in 
G which does not contain any forbidden pair of nodes (see Fig. 6). 

W = (q! V q2 V q3) A ( ~ q l  V q2 V "-qq3) ^ (ql V -qq2 V "qq3) 

W' = ( q l  V q2 V q3) ^ P ^ ( - a q l  V q2 V - l q 3  ) ^ p ^ (q l  V -qq2 V "-Iq3 ) 

G: /T°\ 

n31~n 3i3~ 33 
F= {(nil, n2~), (n12, n32), (hi3, n23), (n~3, n33), (n21, n3~), (n~2, n32)} 

Fig. 6. A f o r m u l a  w a n d  the  c o r r e s p o n d i n g  graph .  The  pa th  no, n~2, n~, n22, n2, n33, n3 c o r r e s p o n d s  to  

the  t ru th  ass ignment  q2 = T, q3 = F, p = T which  satisfies w and  w'. 

Starting from the graph G we may now construct a hypergraph H = (N, E)  in 
the following way: 

N = {uo, v#[ 1 ~< i<~ q, 1 ~<j~< 3}u  {Uo, uo} u {w~l 1 ~< i <~ q} 

u {f, jhk =Aku I for every (n,j, nhk) in F} 

u{ui[  1 <~ i<~q - 1}, 
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E = {eo = {Uo, u,, ,  u~2, ul3}, eq = {uq, vq,, vq2, Vq3}} 

{ e, = { v i i ,  v,2, Di3, Ui+I 1, Ui+ l 2, Ui+ l 3, Ui} [ 1 <- i ~ q - 1} 

u {eij = { u  0, v~j, w , }u  Fijll  <~ i<~ q, 1 <~j<~3, 

where F/j = {f/jhk If or every f i jhk in N}}. 

Essentially, the hypergraph is dual with respect to the given graph since to every 
node in the graph we have a corresponding edge in the hypergraph, and two edges 
intersect if they correspond to adjacent nodes in G or if they correspond to forbidden 
pairs of nodes. Besides, all edges corresponding to nodes at the same level intersect 
in one node (see Fig. 7). 

e o 

ell 

u12 

e13 

V12 

1121 ~ e,I u~ 

e 

U22 / U23 

V22 

e21 u2 

L U31 

W 3 

U32 ~ U33 

V31 V32 

e33 

83 

Fig. 7. The hypergraph corresponding to the formula w in Fig. 6 (note that for the sake of clarity only 
part of the edges are shown). 
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If  we now consider the set of nodes 

-,~= {u, lO ~< i <~ q } w  {w,[1 <~ i <- q}, 

we have that a covering of  H over 1Q exists without pure cycles if and only if there 
exists a path in G from no to nq which does not contain any forbidden pair of 

nodes. [] 

We can now state the first result concerning the existence of acyclic coverings 

over general hypergraphs. 

Theorem 3.2. The problem o f  deciding whether there exists a O-acyclic covering ( 0  = 

a, y, Berge ) o f  a hypergraph H over a given set o f  nodes N is NP-complete. 

Proof. Since, by definition, y- and Berge-acyclic hypergraphs do not contain pure 
cycles, we easily derive the correspondent NP-completeness result from Lemma 3.1. 
Furthermore, let us consider a hypergraph H as in the proof of  Lemma 3.1. We 
prove that a covering of H is a-acyclic if and only if it does not contain pure cycles. 

In fact, by definition, a hypergraph is cyclic if it contains a cycle ( e ~ , . . . ,  eq) of 

length at least three such that for each triple of indices (i,j, h), 1 <~ i < j  < h <~ q, 

there is no edge in the hypergraph that contains Ai w Aj w Zlh (where Zlk = ek n ek+~ 
if 1 ~< k < q and zlq = e~ c~ eq). 

If  an a-acyclic hypergraph contains a pure cycle (el, • • •, eq), then every ei, 1 ~< i <~ 
q, must contain at least a pair of  distinct nodes that belong to three or more edges. 

e6 ~.,~ e'/--.,~ 

Vql Vq2 Vq3 

Fig. 8. The a-acyclic hypergraph obtained by modifying the hypergraph in Fig. 7. 
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Since all edges in H contain at most one node with the above property, the theorem 
is proved. [] 

Let us now consider the case in which the given hypergraph is a-acyclic. We will 
show that the problem of the existence of a ~9-acyclic covering (t9 = y, Berge) over 
a given set of nodes remains computationally intractable also in this case. 

Theorem 3.3. Let H be an a-acyclic hypergraph and 1Q a subset of  its nodes. The 

problem of  determining whether H has a O-acyclic covering (0  = y, Berge ) over IQ is 
NP-complete. 

Proof. We derive the result by modifying the proof of Lemma 3.1. In fact, let us 
consider the hypergraph H = (N, E) and the set of nodes ]Q in the proof of Lemma 
3.1 and let H ' =  (N',  E') and IV' be obtained from H and /Q in the following way 
(see Fig. 8): 

N ' =  N u {u_,, u-2, u-3}, 

E'=  ( E - { e o } ) u  {e'o = eou {u-2}, e= N ' - {Uo,  U_l},e'--{u_i, U-2, U-3}}, 

It is easy to see that, because of the existence of edge e in E', H '  is a-acyclic. 
Since every coveting of H '  over ~r, must contain e~ and e', neither a y-acyclic 

covering nor a Berge-acyclic coveting can contain e (in fact, (e~, e', e) is a y-cycle 
and (eL, e) is a Berge-cycle). Therefore, if it was possible to solve our problem in 
polynomial time, it would be possible to decide the problem in Lemma 3.1 in 
polynomial time. In fact, a coveting of H over fi/ without pure cycles may be 
obtained by eliminating the edges e~, e' from the set of edges of a y-acyclic covering 
of H '  over N '  and by adding the edge Co. [] 

The negative results seen insofar are intrinsically related to the structure of the 
considered hypergraphs. In fact, if we consider the classes of hypergraphs satisfying 
stronger acyclicity conditions, the problem becomes more easily solvable. 

Theorem 3.4. The problem of  deciding whether a y-acyclic hypergraph H = (N, E) 
allows a Berge-acyclic covering over a given set of  nodes IQ is solvable in O(IEI21N[) 
time. 

Proof. In [1] it was proved that if H = ( N ,  E) is a y-acyclic hype~raph and 
H '  = (N' ,  E'), H" = (N", E") are two nonredundant coverings of H over N, for every 
edge e' in E '  there exists an edge e" in E" such that e" has the same intersections 
as e' with the remaining edges in E '  and vice versa (i.e., two nonredundant coverings 
differ only for nodes belonging only to one edge in the covering). 
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In order to decide whether there exists a Berge-acyclic covering of H over ]Q we 
may use the following algorithm: 

Step 1. Determine a nonredundant covering /~ of H over ]Q by repeating the 
following step: 
1.1. delete (in any order) an edge e if it satisfies the following redundancy 
predicate: 

"e  n ]Q ~ (.Ja~r-te~ e and the nodes in ~r are pairwise connected after the 
deletion of e". 

until no more edges e satisfy the redundancy predicate. 
Step 2. Test whether H is Berge-acyclic or not. 

In fact, from the above stated property of y-acyclic hypergraphs it follows that 
A 

either all nonredundant coverings of H over N are Berge-acyclic or no covering of 
H over ]Q is Berge-acyclic. 

Since the redundancy predicate may be tested in O([EIINI) time, Step 1 takes 
O(IEI21NI) time. It is easy to see that Step 2 requires O(IEI + INI) time. The overall 
complexity is then O(IEI2INI) time. [] 

It is interesting to observe that the above problem may be approached in a more 
efficient way if we assume that the given hypergraph is represented by means of a 
Bachman diagram. Note that a Bachman diagram G = ( V, A) provides a representa- 
tion of a hypergraph H = (N, E) by means of the following rules: 
- N is the set of source vertices in V; 
- E is the set of edges obtained by considering for each vertex ei in V the set of 

source vertices nj such that there exists a directed path from n~ to the vertex ei. 
No other edge is in E. 
The advantage of using such a representation arises from the fact (proved in [20]) 

that the Bachman diagram of a y-acyclic hypergraph has a size bounded by 
O(IEI+INI) and, hence, provides a much shorter representation of a given hyper- 
graph, while in general a hypergraph requires a representation of size O(IEItNI). 
Note that such a property of 7-acyclic hypergraphs does not hold for a-acyclic 
hypergraphs for which the Bachman diagram may have an exponential size in the 
size of H. 

Theorem 3.5. Given a Bachman diagram of a y-acyclic hypergraph H = (N, E), the 
problem of deciding whether H allows a Berge-acyclic covering over a given set of nodes 
may be solved in O(IE I + IN[) time. 

Proof. Let G = ( V, A) be a Bachman diagram of H. Let us first determine a minimum 
connected subgraph ¢3 of G containing N. Since the graph G is loop-free, ¢~ is 
also loop-free and may be obtained by means of a backtracking algorithm over G 
in O(IE] + I N]) time. Let us now construct a nonredundant covering/~ of H over 
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/V in the following way: 

- consider each sink s in t~; 
- if s is also a sink in G, then s corresponds to an edge in H and such an edge 

must belong to any covering of H over IV (otherwise, the nodes in ]V v/,ould 

not be connected); 
- otherwise, s corresponds to a set of  nodes of H which belGhg to all coverings 

of H over ]V; due to the properties of  ,/-acyclic hypergraphs it is hence necessary 
to provide only one edge in E containing such nodes; tbls may be accomplished 
by following any directed path from s to a sink in G. 

Furthermore, if  there exists a Berge-acyclic covering of H over ~ / t he  following 

property must hold: 
- the only case in which two or more arcs in G leave a vertex v is when v is a 

source vertex in G;  
because otherwise such a vertex v would correspond to an intersection in H of two 

or more edges containing two or more nodes. 
Since both steps above just require the visit of the Bachman diagram, the theorem 

is proved. [] 

Let us consider, for example, the hypergraph of Fig. 2. If  we wish to provide a 
covering over ns, ns, and n9, by considering the relative Bachman diagram (Fig. 5), 
we may determine the minimum subgraph t~ spanning from n5 to n8 and n9, in 
which el, e4, and e5 are sink nodes in both G and (~, and v~ is a sink node only in 
G. Starting from v~ we provide a completion of a nonredundant  covering H by 
adding edge e2. Since the property stated in the proof of the theorem holds, we 
may conclude that the edges el, e2, e4, and e5 provide a Berge-acyclic covering over 

ns, n8, and ng. 

4 .  C o n c l u s i o n s  

In various applications of relational databases it is relevant to determine views 
on the database scheme which satisfy particular acyclicity conditions. In this paper, 
by representing database schemes in terms of hypergraphs, it has been shown that 
this problem is computationally hard. In fact, in Theorem 3.2 we proved that the 
problem of  deciding the existence of a ag-acyclic view (~9 = a, y, Berge) over a given 
set of attributes is NP-complete, and in Theorem 3.3 we showed that even if  the 
database scheme itself is a-acyclic, the problem is still NP-complete. 

These results show that the problems of the unambiguous and efficient processing 
of queries which are related to the existence of acyclic views in the database scheme 
may be easily solved only if  stronger conditions than a-aeyclicity are imposed on 
the scheme. In fact, Theorems 3.4 and 3.5 show polynomial  algorithms for deciding 

whether a y-acyclic scheme admits a Berge-acyelic view. 
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Note that the procedure described in the proof of Theorem 3.5 provides a 
constructive approach to the determination ofa nonredundant covering ofa y-acyclic 
hypergraph. Since in a y-acyclic hypergraph all nonredundant coverings consist in 
the same number of edges [ 1 ], the same procedure allows us to d~termine a covering 
of a y-acyclic consisting of the minimum number of edges, in O([E[ + IN[) time. 
This result is particularly relevant for providing an efficient way of minimizing the 
number of join operations required to answer a query in a y-acyclic database. 
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