
Electronic Notes in Theoretical Computer Science 86 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume86.html 16 pages

Deductive Generation of
Constraint Propagation Rules

Sebastian Brand

CWI
P.O. Box 94079

1090 GB Amsterdam
The Netherlands

Eric Monfroy

IRIN
Université de Nantes

2, rue de la Houssinière
BP 92208 Nantes Cedex 03

France

Abstract

Constraint propagation can often be conveniently expressed by rules. In recent
years, a number of techniques for automatic generation of rule-based constraint
solvers have been developed, most of them using a generate-and-test approach. We
examine a generation method that is based on deduction. A solver (i. e., a set
of rules) for a complex constraint is obtained from one or several weaker solvers
for simple constraints. We describe incremental solver constructions for several
types of constraint modifications, including conjunction, existential and universal
quantification.

1 Introduction

Rule-based methodologies have had a place in constraint processing for a long
time. A number of languages allow one to program constraint solvers in this
declarative way. Examples are the languages based on the concurrent con-
straint programming (ccp) paradigm [14] such as AKL [6], Oz [15], and espe-
cially CHR [10]. Also the term-rewriting language ELAN [11,8], and CLAIRE
[7] are suitable for rule-based constraint processing. The last years have seen
an increase in work on, and interesting results in, the automatic generation of
rule-based constraint solvers [3,2]. Almost all of these approaches have in com-
mon that their paradigm is essentially generate-and-test. Syntactically correct

c©2003 Published by Elsevier Science B. V.

45

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Brand and Monfroy

rule candidates are enumerated and subjected to a validity test against the
constraint definition, which is usually extensive (truth table), or a constraint
logic program. In a different method [13] the conclusion is derived from the
given premise, which itself, however, comes from a syntactic enumeration pro-
cess. Another aspect is examined in [1], where the merging of solvers written
in the full and more expressive CHR language is discussed. The main focus
is on termination and confluence, while we look here at solvers consisting of
propagation rules only where these two properties are of no concern.

We explore the idea of incremental, deductive, combinatorial rule gener-
ation. The key property here is that the source definition of the constraint
is irrelevant. Instead, the input to our method is another set of rules associ-
ated to some constraints, and the relation of these constraints to the desired
constraint. The rules are processed according to declarative transformation
steps, meta rules, leading to the introduction of new or discarding of cur-
rently present rules. In that way, solvers for basic, primitive constraints are
transformed or combined into solvers for complex constraints.

A number of benefits arise from this approach. When combining solvers,
the resulting solver may propagate stronger than the simple union of its build-
ing blocks. That is, the consistency it enforces is stricter, which translates into
less search when solving constraint satisfaction problems. Work spent on pre-
viously generated solvers is re-used. This means that the incremental method
can be faster than generate-and-test. Even if it is not always the case, it
may be best for certain classes of solvers. Finally, describing rule generation
in a deductive way by meta rules provides a new perspective on, and helps
understand the origin of, rule-based constraint solvers.

Although we introduce the deductive method in a general setting in Sec-
tion 3, the main part of the paper deals with a specific type of rule: the
inclusion/membership rules that were first discussed in [3]. These rules are
especially interesting and relevant as sets of them (i. e., solvers) can enforce
generalised arc-consistency (GAC), a central local consistency notion in con-
straint programming.

We discuss a number of transformations on inclusion rule sets, leading to
solvers for modified constraints. The most important transformation is solver
generation for the conjunctive constraint C1 ∧ C2, based on the rules for C1
and C2. An auxiliary modification is adding an unconstrained variable to
a constraint, constraint padding. An inverse effect is achieved by existen-
tially or universally quantifying a variable in a constraint. Furthermore, we
discuss tightening a constraint by disallowing previous solutions, constraint
restriction. An important special case of the latter is defining a constraint
negatively by the set of its non-solutions. All these transformations yield a
rule-based solver that enforces GAC when the source solver is complete with
respect to the constraint in a certain sense. In Section 7 we conclude with the
example of incrementally constructing a solver for the fulladder constraint,
based only on solvers for some primitive base constraints.

46

Brand and Monfroy

2 Preliminaries

2.1 Constraint Satisfaction Problems

Consider a sequence of variables X = x1, . . . , xn with respective domains
D1, . . . , Dn associated to them. By a constraint C on the variables X we
mean a subset of D1 × . . . × Dn. Given an element d = d1, . . . , dn of D1 ×
. . . × Dn and a subsequence Y = xi1, . . . , xi� of X we denote by d[Y] the
sequence di1 , . . . , di� . In particular, for a variable xi from X, d[xi] denotes di.
A constraint satisfaction problem, in short CSP, consists of a finite sequence
of variables X = x1, . . . , xn with respective domains D = D1, . . . , Dn, together
with a finite set C of constraints, each on a subsequence of X. We write it as
〈C;x1 ∈ D1, . . . , xn ∈ Dn〉, in short 〈C;X ∈ D〉. By a solution to 〈C;X ∈ D〉
we mean an element d ∈ D such that for each constraint C ∈ C on the variables
Y we have d[Y] ∈ C. The latter is also denoted by |=d C. By extension we
write |=d C if |=d C for all C ∈ C. Then d is a solution if |=d C.

2.2 Local Consistency and Propagation

A technique that is central in solving constraint satisfaction problems is con-
straint propagation. It is most common in its specific form of domain reduc-
tion, i. e., the domain of a variable participating in a constraint is reduced
in the light of the domains of the other variables. As an example consider
〈x < y ; x ∈ {1..3}, y ∈ {1..3}〉 in which the inequality constraint propagates
to the smaller domains x ∈ {1..2}, x ∈ {2..3}. Constraint propagation is best
understood as fixpoint computation of propagation operators on CSPs. We
are concerned with propagation operators that are rules. A CSP that is a fix-
point of a set of rules, for instance after exhaustive application of these rules,
is said to be closed under this rule set.

A measure of the strength of propagation is given by the enforced local
consistency (as opposed to global consistency, which may have a prohibitive
exponential complexity). An important local consistency notion is generalised
arc-consistency (GAC). It holds for a satisfiable constraint if every instanti-
ation of any variable of the constraint can be extended to an instantiation
of all variables that satisfies the constraint and is permitted by the current
domains.

Propagation is incomplete in the sense that it does not always identify a
solution or inconsistency of a CSP. Thus, it is usually interleaved with search.

3 General Propagation Rules.

General constraint propagation rules have the form

{c1, . . . , cn} → {c′1, . . . , c′m}
where both left-hand side (lhs) and right-hand side (rhs) are sets of con-
straints interpreted as conjunctions (allowing disjunctive rhs’s would amount

47

Brand and Monfroy

to search). Propagation rules operate on a constraint store that is itself a set
of constraints. A rule is applicable if its lhs is contained in, or implied by, the
store. In this case its rhs is added to the store.

3.1 Validity

A substantial property of a rule is that it is valid with respect to its constraints:
the lhs must imply the rhs. We presume that the rhs does not contain new
variables, i. e., it simply constrains more some of the lhs variables. In this case
validity means that every solution of the lhs can be projected into one of the
rhs:

C → C ′ is valid if ∀d. |=d C implies |=d C ′ .

3.2 Feasibility

It is useful to classify rules by the satisfiability of their lhs’s. We call a rule
feasible, if its lhs is satisfiable, that is

C → C ′ is feasible if ∃d. |=d C .

An infeasible rule is thus trivially valid.

3.3 Redundancy

When considering a set of constraint propagation rules, it is useful to ask
whether it is a smallest such set to enforce the associated local consistency
notion. We define: a rule r is redundant with respect to a rule set R if every
set of constraints closed under R is also closed under r. In this case r does
not contain any extra information. It is helpful that, when testing a rule for
being redundant, it suffices to test its rhs as the set of constraints [5].

If a rule set is strong enough to detect inconsistency of sets of constraints
in the language of their lhs’s, then infeasible rules are redundant.

4 Transformations of (General) Propagation Rules

A transformation is a sequence of atomic steps introducing or removing single
propagation rules. There are also two auxiliary structural transformation
steps. These deal with the rhs of rules, while the lhs’s are focused on by the
transformation steps that introduce or remove a rule. We assume a fixed,
finite language of constraints. For brevity, we write R, r for the set R ∪ {r}
in the remainder of the paper.

48

Brand and Monfroy

4.1 Subsumption

A rule subsumes another with the same rhs if its lhs implies the other. As a
meta rule we formulate more precisely

[general-subsume]
R, C1 → C ′, C2 → C ′

R, C1 → C ′ if ∀d. |=d C2 implies |=d C1

A typical corresponding situation is C1 ⊆ C2. We say that a rule is subsumed
by a set of rules if it is subsumed by a rule contained in the set.

4.2 Derivation

Two ancestor rules with the same rhs give rise to a descendant if the constraint
language can express the disjunction of the two lhs’s, or something stronger.
Formally,

[general-derive]
R, C1 → C ′, C2 → C ′

R, C1 → C ′, C2 → C ′, C3 → C ′

if ∀d. |=d C3 implies |=d C1 or |=d C2

It is important to observe that validity is preserved – the descendant rule in-
herits it from its ancestors. The idea of this transformation step is to compose
the first two rules, at best into one that subsumes both former rules.

To avoid trivial, subsumed descendants, C3 should not simply imply one
of C1, C2. Finding candidates for C3 depends on the language. Ideally, it can
be constructed from C1, C2, and we are able to do so in the following.

(De)composing rules

In the above meta rules, all mentioned propagation rules coincide in their
rhs’s, while in general we deal with varying rhs’s. We assume suitable, implicit
transformations between C → C ′

1 ∪ C ′
2 and the two rules C → C ′

1, C → C ′
2.

5 Inclusion Rules

Having the two transformation steps – meta rules –, it is interesting to describe
the result of a derivation. We proceed with a specific language, and consider
rules of the form

C, x1 ∈ S1, . . . , xn ∈ Sn → y �= a

where each Si is a set of constants, and a a constant. The constraint C is
on the n + 1 distinct variables {x1, . . . , xn, y}. The base domain of all the
variables is D, which means C ⊆ Dn+1. We require ∅ �= Si ⊆ D for all
i ∈ {1..n}.

We call C the constraint associated to the rule. In the following, all rules
are regarded as being associated to the same constraint, and we omit it from
the notation. Finally, with X = (x1, . . . , xn) and S = S1 × . . . × Sn we
abbreviate the above inclusion rule as X ∈ S → y �= a.

49

Brand and Monfroy

The interest in inclusion rules arises from the possibility to express, by sets
of such rules, generalised arc-consistency (GAC) for the associated constraint.

5.1 Transformations of Inclusion Rules

We provide now specialisations of the general subsumption and derivation
transformations. Subsequently, we describe the rule set resulting from a sta-
bilising derivation of such transformations. If certain conditions on the source
rule set are met then the resulting rule set enforces generalised arc-consistency.

5.2 Subsumption

This meta rule discards a rule in presence of a stronger one:

[subsume]
R, X ∈ S → y �= a, X ∈ P → y �= a

R, X ∈ S → y �= a
if S ⊇ P

A rule subsumes another one with tighter bounds. It is easy to see that this
is an instance of [general-subsume].

Example 5.1 x ∈ {2} → y �= 1 is subsumed by x ∈ {2, 3} → y �= 1. ✷

5.3 Derivation

This meta rule creates a new rule from two present rules:

[derive]
R, X ∈ S → y �= a, X ∈ P → y �= a

R, X ∈ S → y �= a, X ∈ P → y �= a, X ∈ Q → y �= a

if

(i) Qi = Si ∩ Pi �= ∅ at all indices i ∈ {1..n} except for some k

(ii) Qk = Sk ∪ Pk

(iii) Qk ⊃ Sk and Qk ⊃ Pk

The side conditions guarantee that the derived rule is syntactically correct
(1.), and that it is not subsumed by any parent (3.), although it may itself
subsume one or both of them. Furthermore, it is valid (1. and 2.). It is useful
to notice that xk ∈ Qk is the collapsed disjunctive constraint “xk ∈ Sk or
xk ∈ Pk”.

A [derive] step depends on k, and for two ancestor rules there may be several
appropriate indices k, satisfying (1.,2.,3.). Note however, that no derived rule
subsumes another with a different k.

Example 5.2 From

x1 ∈ {1, 2}, x2 ∈ {1, 3} → y �= 2

x1 ∈ {2, 3}, x2 ∈ {2, 3} → y �= 2

we derive the two rules

x1 ∈ {1, 2, 3}, x2 ∈ {3} → y �= 2 with k = 1

x1 ∈ {2}, x2 ∈ {1, 2, 3} → y �= 2 with k = 2 .
✷

50

Brand and Monfroy

5.4 Properties of the Transformations

We proceed by collecting properties of these inference rules. We do so in two
steps: first, linking the source and the result of an exhaustive application of
the transformations, and second, characterising the propagation that a fully
transformed rule set achieves.

Atomic Rule, Rule Set Closure

It is convenient to have the concept of an atomic rule: X ∈ S → y �= a is
atomic if each Si is a singleton set. It is useful to be aware of the 1-1 corre-
spondence between such an atomic rule and a non-solution d of the associated
constraint, namely by {d[X]} = S and d[y] = a.

We denote by closure(R) the rule set that results from an exhaustive ap-
plication of [subsume, derive]. The following first finding links atomic rules
and rule set closure.

Theorem 5.3 Let R be a set of inclusion rules and C their associated con-
straint. If R subsumes every atomic rule valid for C then closure(R) subsumes
every rule valid for C.

Proof. We argue by contradiction: Let us say that r = (X ∈ S → y �= a) is
valid but not subsumed by closure(R). Without loss of generality we assume
that all other rules X ∈ S ′ → y �= a with S ′ ⊂ S are subsumed.

Observe first that r is not atomic. Take then some Sk that is not a single-
ton, and partition it into Sk = Pk ∪Qk where neither Pk nor Qk is empty. We
construct complete bounds P,Q by defining Pi = Qi = Si at the remaining
indices i �= k.

Both corresponding rules X ∈ P → y �= a and X ∈ Q → y �= a are valid
since r is. For each of the two rules there must be a subsuming rule contained in
closure(R), as we assumed initially. Enter now these two subsuming rules into
[derive]. The resulting new rule must subsume r, contradicting our assumption.

As regards [subsume], we remark that subsumption is a transitive relation.
Therefore, if a rule is subsumed by a rule set then this is still the case after
an application of [subsume] to the set. ✷

We know now which “seed rules” are necessary so that after closure there
are rules for all valid propagations. Next, we establish the local consistency
notion achieved by these propagations.

Theorem 5.4 Let R be a set of inclusion rules valid for their associated con-
straint C. Let R subsume every rule valid for C. Then the constraint C is
closed under R iff C is generalised arc-consistent.

Proof. Suppose that C is not closed under r = (X ∈ S → y �= a) in R, thus
C[X] ⊆ S and a ∈ C[y]. Since r is valid we know that for all d we have that
d[X] ∈ S implies d[y] �= a. The counter position is that, for all d, d[y] = a

51

Brand and Monfroy

implies d[X] �∈ S, and in turn d[X] �∈ C[X]. But this means that the partial
instantiation {y �→ a} can not be extended to a solution of C.

For the reverse direction, suppose that {y �→ a} can not be extended to a
solution of the constraint C. So no d exist with d[y] = a and d[X] ∈ C[X].
Then x1 ∈ C[x1], . . . , xn ∈ C[xn] → y �= a is a valid rule; and as such is
subsumed by R. The subsuming rule in R, however, is applicable to C. ✷

Both preceding results together allow us to obtain a GAC-enforcing set
of inclusion rules from an initial set of all atomic rules, or corresponding
subsuming rules, that is then closed in particular under [derive].

5.5 Uniqueness

The closure of a set R under the meta rules [derive,subsume] is unique if the
base domain is finite. Then there are only finitely many syntactically correct
rules. Any closure algorithm that applies [derive] at most once to any two
rules in R for a specific k must terminate. Furthermore, the meta rule system
is confluent. Every cricital pair, obtained by applying two meta rules to R,
is joinable. This is easy to see for pairs stemming from [derive]+[derive] and
[subsume]+[subsume]. The somewhat more involved case of [derive]+[subsume]
requires a case distinction (further applicability of [derive]) that we omit here.

5.6 Relation to RGA

The method of choice for producing sets of inclusion rules is described in
[3], which introduced the notion. We compare the outcome of their Rule
Generation Algorithm (called RGA here), and our closure method. The main
difference lies in infeasible rules. Notice that the inclusion rule X ∈ S → y �= a
is infeasible exactly if S ∩ C[X] = ∅.

Lemma 5.5 Let RRGA be the inclusion rule set that RGA generates for a
constraint C. Let RCLS be a set of rules valid for C and also subsuming every
atomic rule valid for C. Moreover, let RCLS be closed under [derive, subsume].
Then

• every rule in RRGA is subsumed by a rule in RCLS, and

• every feasible rule in RCLS subsumes a rule in RRGA.

Proof. RGA (see its presentation in [3]) enumerates all valid rules, discarding
those that are subsumed. In turn, RCLS subsumes all valid rules, by Theo-
rems 5.3,5.4.

Inversely, each feasible rule in RCLS is valid, and not strictly subsumed
by another valid rule. This means that it is either in, or subsumes a rule
in, RRGA. (The latter case my arise due to presence of infeasible rules and
[derive].) ✷

Example 5.6 The deductive approach may yield infeasible rules, and rules

52

Brand and Monfroy

that are “partially infeasible”. Consider the constraint Cex on x, y with domain
{1, 2, 3}. RGA generates the rules R = {(1), (2), (3), (4)}.

Cex x y

1 1

3 1

3 3

y ∈ {3} → x �= 1(1)

y ∈ {1, 2, 3} → x �= 2(2)

x ∈ {1, 2, 3} → y �= 2(3)

x ∈ {1} → y �= 3(4)

Let us construct R′ by replacing (1) in R by the valid, feasible rule

y ∈ {2, 3} → x �= 1 .(5)

Observe that R′ is closed under [derive, subsume]. The rhs of rule (5) contains
the unsatisfiable part y ∈ {2}. Next, construct R′′ by adding to R

y ∈ {2} → x �= 1 .(6)

Rule (6) is valid but infeasible. Also R′′ is closed under [derive, subsume]. ✷

5.7 Significance of Infeasibility

For constraint propagation, rule (5) is preferable over rule (1), which is strictly
subsumed. Rule (6), on the other hand, is redundant relative to R, and so
undesirable. Ideally, infeasible rules should not be derived. However, many
feasible rules that RGA produces, are redundant [5]. Therefore, a finalising
redundancy removal after rule generation is appropriate in either approach.

6 Applications

We demonstrate some applications of deductive rule generation.

6.1 Conjunction of Constraints

Given two constraints C1 and C2 on the same variables, and their associated
rules R(C1) and R(C2), we are interested in rules for the conjunctive con-
straint C1∧C2 (note that the solutions of this constraint, hence the constraint
itself, is the intersection C1∩C2). In general the simple union R(C1)∪R(C2)
does not propagate as strongly as possible. For example, consider the boolean
variables x, y ∈ {0, 1} constrained by not(x, y) ∧ (x = y). This CSP is closed
under any rules valid for the two constraints individually, yet it is inconsistent.

By Theorems 5.3,5.4 we can state, however, that if R(C1),R(C2) subsume
all atomic rules valid for C1, C2, resp., then

R(C1 ∧ C2) = closure(R(C1) ∪R(C2))

enforces GAC on the conjunctive constraint C1∧C2. To see this, observe that
any atomic rule valid for C1 ∧ C2 must be valid for at least one of C1, C2 as
well. An obvious generalisation is R(

∧m
i=1Ci) = closure(

⋃m
i=1R(Ci)). For an

example, we refer to Subsection 7.

53

Brand and Monfroy

6.2 Local Consistency Notion

It is interesting to observe that from the view of the set of the constituent
constraints Ci, all on the same set of variables, the consistency enforced is
relational (1,m)-consistency [9]. Since we enforce GAC on the global con-
junctive constraint, an instantiation of any one variable can be extended to a
solution of the global constraint, which is also a solution of each of the con-
stituent constraints. Enforcing GAC on the constituent constraints separately
is equivalent to relational (1, 1)-consistency, a strictly weaker local consistency.

6.3 Constraint Padding

In order to construct the rules for a conjunctive constraint as in the preceding
subsection, the participating constraints must be on the same set of variables.
This can be achieved by suitably extending the individual constraints to new
variables, without constraining the latter. We call this padding. Consider a
constraint C ⊆ Dn and a variable v ∈ D not constrained by C. We define
C ′(X, v) = {d | d[X] ∈ C ∧ d[v] ∈ D}, or concisely C ′ = C × D, and find its
rules by:

R(C ′) = closure({X ∈ S, v ∈ D → y �= a | (X ∈ S → y �= a) ∈ R(C)}
∪
{X ∈ S, y ∈ {a} → v �= b |

(X ∈ S → y �= a) ∈ R(C) ∧ b ∈ D})

The first set in the union pads the input rules by simply adding a redundant
test. In that way, all valid atomic rules with rhs’s on the variables of C are
constructed. This set is closed under [derive, subsume] if R(C) is. The second
set creates the rules for the new variable. Since v is not actually constrained,
there can be no valid rule with a rhs on v. Hence all rules in the second set
must be infeasible. Also observe that exactly all valid, atomic, infeasible rules
on v are subsumed by this set. Although infeasible rules are redundant (with
respect to a GAC-enforcing set of inclusion rules), it is essential to incorporate
them here if the generated rule set is to serve as the input to another meta
rule closure, such as for a conjunctive constraint.

In conclusion we can state that R(C ′) subsumes all atomic rules that are
valid for C ′, if this is true for R(C) and C. Moreover, R(C ′) achieves then
GAC on C ′. The pre-closure processing is linear in the size of the set R(C).

Example 6.1 We pad the boolean constraint not(x, y) to not(x, y, z)
with z ∈ {0, 1}.

54

Brand and Monfroy

not(x, y) :

y ∈ {0} → x �= 0

y ∈ {1} → x �= 1

x ∈ {0} → x �= 0

x ∈ {1} → x �= 1

not(x, y, z) :

y ∈ {0}, z ∈ {0, 1} → x �= 0

y ∈ {1}, z ∈ {0, 1} → x �= 1

x ∈ {0}, z ∈ {0, 1} → x �= 0

x ∈ {1}, z ∈ {0, 1} → x �= 1

x ∈ {0}, y ∈ {0} → z �= 0, z �= 1

x ∈ {1}, y ∈ {1} → z �= 0, z �= 1

6.4 Defining a Constraint by its Non-Solutions

A constraint for which rules should be generated can be defined positively by
stating its solutions. This is the input of the RGA algorithm [3]. Sometimes,
however, it may be more natural to define a constraint negatively by stating
the tuples that are not solutions. Suppose we are given a set N of such
non-solutions, or no-goods, defining the constraint C. We can write this as
C = Dn+1 − N if C is on n + 1 variables (recall C ⊆ Dn+1).

It is simple to obtain the corresponding GAC-enforcing rules as we can
straightforwardly construct all valid atomic rules. Recall that every atomic
rule corresponds to a non-solution of the constraint, and vice versa. Conse-
quently, we find the seed rule set of all valid atomic rules by

RN = {x1 ∈ {t1}, . . . , xn ∈ {tn} → x0 �= t0} |
(t0, . . . , tn) is a permutation of t ∈ N}

For instance, take a binary constraint C(x, y) of which only (1, 2) is not a
solution. Then we obtain R{(1,2)} = {x ∈ {1} → y �= 2, y ∈ {2} → x �= 1}.

The closureR(C) = closure(RN) achieves GAC by Theorems 5.3,5.4. Con-
structing RN is linear in the size of N : it produces |N | · (n + 1) atomic rules.

Example 6.2 Define C over x, y, z ∈ {1..10} as the constraint that at least
one number in the ordered sequence x, y, z is not prime. The 4 non-solutions
(2, 3, 5), (2, 3, 7), (2, 5, 7), (3, 5, 7) are easily found. The rules are in Table 1.

Rule generation from the negative definition is particularly appropriate
when the non-solutions are few, as in this example. Our implementation of
the closure method took much less than a second to find the rules. In contrast,
the RGA algorithm supplied with the 996 solution tuples did not return within
30 minutes. ✷

55

Brand and Monfroy

12 atomic rules:

x ∈ {2}, y ∈ {3} → z �= 5

x ∈ {2}, z ∈ {5} → y �= 3

y ∈ {3}, z ∈ {5} → x �= 2
...

y ∈ {5}, z ∈ {7} → x �= 3

8 rules after closure:

x ∈ {2, 3}, y ∈ {5} → z �= 7

x ∈ {2}, y ∈ {3} → z �= 5

x ∈ {2}, y ∈ {3, 5} → z �= 7

x ∈ {2, 3}, z ∈ {7} → y �= 5

x ∈ {2}, z ∈ {5, 7} → y �= 3

y ∈ {3}, z ∈ {5, 7} → x �= 2

y ∈ {5}, z ∈ {7} → x �= 3

y ∈ {3, 5}, z ∈ {7} → x �= 2

Table 1
Rules of Example 6.2

6.5 Restricting a Constraint

Suppose a constraint is defined by restricting another reference constraint by
discarding solutions. That is, C ′(X) = C(X) ∧ X �∈ N where N collects the
solutions of C that cease to be solutions of C ′. Such a situation may occur
in a dynamic setting, where propagation with a relaxation should take place
before the actual constraint is learned. Assume thus that we know N and the
rules R(C). We construct the seed rule set RN precisely as in the preceding
Subsection 6.5. Then we combine to

R(C ′) = closure(R(C) ∪RN)

The properties of R(C ′) depend on those of R(C), cf. Theorems 5.3,5.4.

Example 6.3 Suppose the boolean constraint or on x, y, z ∈ {0, 1} is the
base constraint for or ′, defined by or ′(x, y, z) = or(x, y, z)∧(x, y, z) �= (1, 1, 1),
or alternatively, or ′ = or−{(1, 1, 1)}. We find R(or ′) = closure(R(or) ∪RN)
where RN consists of the three rules x ∈ {1}, y ∈ {1} → z ∈ {1};
x ∈ {1}, z ∈ {1} → y ∈ {1}; y ∈ {1}, z ∈ {1} → x ∈ {1}. ✷

6.6 Universal Quantification

Assume that C constrains the variables Y and another variable x ∈ D. Con-
sider the constraint C ′ = ∀x.C on the variables Y . It has the solutions
{t | ∀a ∈ D. ∃t′ ∈ C. t′[x] = a ∧ t′[Y] = t}. We can derive rules for C ′ based
on those for C by simply discarding all references to x:

R(C ′) = closure({Z ∈ S → y �= a | (Z ∈ S, x ∈ Sx → y �= a) ∈ R(C)})
If R(C) contains or subsumes all atomic rules valid for C then the equivalent
holds true for R(C ′) and C ′. So again, using Theorems 5.3,5.4, we obtain a

56

Brand and Monfroy

GAC-enforcing rule set.

We argue for this as follows. Take a rule of C and a non-solution d excluded
by it. d is a non-solution of C ′ as well, since the partial solution d[Y] does not
allow x to be all-quantified, d[x] being the counter example. This means that
we can correctly transform the rules of C into rules of C ′ as above.

It remains to consider completeness, that is, whether all atomic rules valid
for C ′ are subsumed. Take such a rule, Z ∈ S → y �= a. But then some rule
Z ∈ S, x ∈ Sx → y �= a must be subsumed by R(C). For, otherwise all d with
{d[Z]} = S, d[y] = a were solutions, meaning that x could be all-quantified.

Again, constructing the pre-closure rule set is linear in the size of R(C).

Automatic rule generation for quantified constraints has been identified
as desirable by [4], where a number of boolean constraints and associated
rules for arc-consistency are discussed, for mixed sequences of universal and
existential quantification. In the subsection following the example we deal
with existential quantification.

Example 6.4 Consider the constraint rcc8comp, the composition constraint
from the Region Connection Calculus [12]. rcc8comp(RAB, RBC, RAC) describes
the possible spatial relations between three regions A,B,C. The 8 relations are
disjoint, meet, overlap, coveredby, covers, contains, inside, equal. Two examples
for allowed tuples are (contains, inside, equal), (contains, inside, overlap), mean-
ing that if region A contains region B and region B is inside (not touching the
border of) region C then region A can be exactly equal to, or overlap with,
region C.

The meaning of the universally quantified constraint
∀RAC.rcc8comp(RAB, RBC, RAC) is then exactly those pairs of rela-
tions between A/B, and B/C, such that any relation is possible
between A/C. Only three such pairs of region relations are legal:
(RAB, RBC) ∈ {(disjoint, disjoint), (inside, inside), (overlap, overlap)}.

rcc8comp is defined by 193 solutions tuples, from which, via set comple-
ment to get the non-solutions, and closure, 912 GAC-enforcing rules are gen-
erated. For the all-quantified constraint one obtains 7 rules by the above
procedure.

6.7 Existential Quantification

Existential quantification, or projection, is the dual to introduction of vari-
ables, Subsection 6.3. Assume that C constrains the variables Y and another
variable x ∈ D. Consider the constraint C ′ = ∃x.C on the variables Y that
has the solutions C ′ = {d[Y] | d ∈ C} = C[Y]. Rule construction in this
situation is different in the sense that it requires closure prior to modification
of the rules:

R(C ′) = {Z ∈ S → y �= a | (Z ∈ S, x ∈ D → y �= a) ∈ closure(R(C))}

57

Brand and Monfroy

If R(C) subsumes all atomic rules valid for C, then so does R(C ′) for C ′, and
R(C ′) enforces GAC on C ′.

Consider Z ∈ S, x ∈ D → y �= a from the set closure(R(C)). It means
that it is correct to conclude y �= a from Z ∈ S, independent of the value of
x. Then, clearly, the rule Z ∈ S → y �= a is valid for C ′. Inversely, consider
some atomic rule Z ∈ S → y �= a valid for C ′. It means that there does
not exist any solution d of C with {d[Z]} = S and d[y] = a. So the rule
Z ∈ S, x ∈ D → y �= a is valid for C, and must be subsumed by closureR(C).

Finally, notice that R(C ′) is closed under [subsume, derive], since any trans-
formation possible in R(C ′) would have been possible in R(C) using the cor-
responding ancestor rules.

7 An Example

We implemented the closure method as a naive meta-rule fixpoint computa-
tion algorithm in the CLP system ECLiPSe. The program accepts expressions
that describe the construction of inclusion rule sets according to the transfor-
mations in the preceding section. The output is a list of CHR rules.

FullAdder as a Composite Constraint

The basic rule set constructions of Section 6 enable us to derive a rule set for
a composite constraint based only on the rules of its subconstraints, and with-
out any reference to the extensional definition of any of the constraints. We
demonstrate this with the example of the fulladder constraint. The fulladder
gate adds two bits and a carry bit and produces the sum bit and output carry
bit. It is often defined with the help of the primitive gates and , or , xor and
three auxiliary variables:

fulladder(x, y, z, s, c) ≡ ∃ c1, c2, s1. xor(x, y, s1) ∧
and(x, y, c1) ∧
and(z, s1, c2) ∧
or(c1, c2, c) ∧
xor(z, s1, s)

To indicate the individual transformations, we make the padding visible:

fulladder(x, y, z, s, c) ≡ ∃ c1, c2, s1. ∃ h1, . . . , h25.

xor(x, y, h1, s1, h2, h3, h4, h5) ∧
and(x, y, h6, h7, c1, h8, h9, h10) ∧
and(h11, h12, z, s1, h13, c2, h14, h15) ∧
or(h16, h17, h18, h19, c1, c2, c, h20) ∧
xor(h21, h22, z, s1, h23, h24, h25, s)

58

Brand and Monfroy

The input are the three base rule sets of xor , and , or . The rules are first
padded so as to associate them to the same (auxiliary) variables. Then the
rules corresponding to the conjunctive constraint are computed, and finally
existential quantification removes the auxiliary variables again. This process
generates 66 rules in about 0.5 s. The generated solver enforces GAC on the
fulladder constraint.

It is useful to note that this transformation order requires the computation
of only one rule set closure. Padding and joining the rules for the conjunctive
constraint requires a post-processing closure, while existential quantification
needs a pre-processing closure and yields a rule set that is closed. Recall that
all transformation steps other than closure are just linear in the size of their
input set.

The rules of fulladder propagate strictly stronger than
the rules of its individual subconstraints. The CSP
〈fulladder(x, y, z, s, c) ; x, z, c ∈ {0, 1}, y ∈ {1}, s ∈ {0}〉 is closed under
the subconstraint rules, but a fulladder deduced rule propagates c ∈ {1}.

To compare with RGA, it is first necessary to create the entire fulladder
extensional definition – the truth table – by a separate algorithm. The defi-
nition can then be given to RGA. It generates 52 rules. Since some of our 66
rules are infeasible while RGA does not produce such rules, we subjected both
to a removal of redundant rules [5]. This reduced both rule sets to a unique
set of 28 nonredundant rules.

8 Final Remarks

We made a first step into exploring deductive and incremental generation of
rule-based constraint solvers. However, a number of topics deserve more work.

It would be desirable to obtain results for types of rules other than inclusion
rules. There the problem of finding a candidate condition in derive arises.

For any rule type it would be very interesting to apply derive not exhaus-
tively but only when it is promising to do so, i. e., to find strong descendant
rules. This would mean a trade-off between the strength of the resulting con-
sistency notion versus the cost of generating the solver and applying it.

The current implementation of the closure computation is unrefined. A
good internal representation of rule sets should lead to substantial improve-
ments in efficiency. Currently, unordered lists of inclusion rules are used, while
an appropriate ordered data structure could support the filtering of the po-
tential/interesting partners when considering subsume, derive for some rule. A
related question is the one for the best strategy in finding the closure.

Acknowledgement

This work benefited from discussions with Lucas Bordeaux. We are grateful
for the helpful suggestions of the reviewers.

59

Brand and Monfroy

References

[1] Slim Abdennadher and Thom Frühwirth. Using program analysis for
integration and optimization of rule-based constraint solvers. In Proc. of
Journées Francophones de Progr. Logique et Progr. par Contraintes, 2002.

[2] Slim Abdennadher and Christophe Rigotti. Automatic generation of rule-based
solvers for intentionally defined constraints. International Journal on Artificial
Intelligence Tools, 11(2), 2002.

[3] Krzysztof R. Apt and Eric Monfroy. Constraint programming viewed as rule-
based programming. Theory and Practice of Logic Programming, 1(6), 2001.

[4] Lucas Bordeaux and Eric Monfroy. Beyond NP: Arc-consistency for quantified
constraints. In Proc. of Principles and Practice of Constraint Programming,
Ithaka, 2002.

[5] Sebastian Brand. A note on redundant rules in rule-based constraint
programming. In Recent Advances in Constraints, volume 2627 of Lecture Notes
in Artifical Intelligence. Springer, 2003.

[6] Björn Carlson, Mats Carlsson, and Sverker Janson. The implementation of
AKL(FD). In Proc. of International Symposium on Logic Programming, 1995.

[7] Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE:
Combining sets, search and rules to better express algorithms. Theory and
Practice of Logic Programming, 2(6), 2002.

[8] Carlos Castro. Building constraint satisfaction problem solvers using rewrite
rules and strategies. Fundamenta Informaticae, 34(3), 1998.

[9] Rina Dechter and Peter van Beek. Local and global relational consistency.
Theoretical Computer Science, 173(1), 1997.

[10] Thom Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 1998.

[11] Claude Kirchner and Christophe Ringeissen. Rule-based constraint
programming. Fundamenta Informaticae, 34(3), 1998.

[12] David A. Randell, Zhan Cui, and Anthony Cohn. A spatial logic based on
regions and connection. In Proc. of Principles of Knowledge Representation
and Reasoning. Morgan Kaufmann, 1992.

[13] Christophe Ringeissen and Eric Monfroy. Generating propagation rules for
finite domains via unification in finite algebras. In New Trends in Constraints,
volume 1865 of Lecture Notes in Artifical Intelligence. Springer, 2000.

[14] Vijay Anand Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[15] Gert Smolka. The Oz programming model. In Computer Science Today, volume
1000 of Lecture Notes in Computer Science. Springer, 1995.

60

