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a b s t r a c t

In this paper we summarize the most important generation methods developed for the
subclasses of hv-convex discrete sets. We also present some new generation techniques to
complement the former ones thus making it possible to design a complete benchmark set
for testing the performance of reconstruction algorithms on the class of hv-convex discrete
sets and its subclasses. By using this benchmark set the paper also collects several statistics
on hv-convex discrete sets, which are of great importance in the analysis of algorithms for
reconstructing such kinds of discrete sets.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The goal of Discrete Tomography (DT) [22,23] is to reconstruct discrete sets (finite subsets of the 2D integer lattice
defined up to translation) from the number of its elements lying on parallel lattice lines along several (usually horizontal,
vertical, diagonal, and antidiagonal) directions, called projections. It has several applications in pattern recognition, image
processing, electron microscopy, angiography, non-destructive testing, and so on. The main challenge in DT is that practical
limitations usually reduce the number of available projections to at most about four—which results in a possibly extremely
large number of solutions of the same reconstruction task. This can cause the reconstructed discrete set to be quite different
from the original one. In addition, the reconstruction problem can be NP-hard, depending on the number and directions of
the projections. In certain cases one can facilitate the reconstruction task by supposing that the set to be reconstructed has
some geometrical properties. Thus, the search space of the possible solutions can be reduced which can yield fast and less
ambiguous reconstructions.
A common problem in Discrete Tomography arises in comparing reconstruction methods from the viewpoint of speed,

accuracy, noise sensitivity, etc. In the past 15–20 years many reconstruction algorithms have been developed for solving the
reconstruction problem by using different techniques. The average performance of those reconstruction algorithms were
often tested on certain subclasses of hv-convex discrete sets. The reason of this is that the reconstruction in those classes
has a well-developed theory including heuristics and exact reconstruction algorithms, as well as some important results
regarding the complexity and ambiguity of the reconstruction. As an example, the reconstruction of hv-convex discrete
sets from two projections is known to be NP-complete while it can be solved in polynomial time with the additional
condition that the set is connected in the same time. The key to obtain an exact comparison of the average performance
of different reconstruction algorithms is to develop uniform random generators for the studied classes. Unfortunately, for
some subclasses of the hv-convex discrete sets no efficient method was known to generate elements of those classes by
using uniform random distributions. In addition, even if there was a uniform generator for a certain class of discrete sets,
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Fig. 1. A discrete set of size 6× 7 represented by a binary picture.

Fig. 2. (a) An hv-convex polyomino, (b) an hv-convex 8-connected but not 4-connected discrete set, and (c) a general hv-convex discrete set.

different authors used their own benchmark sets obtained by that uniform generator. Thus – until now – no exact overall
comparison of the algorithms were possible.
In this paper we describe methods for generating elements of the most frequently studied subclasses of the hv-convex

discrete sets—from uniform random distributions. This work is an extended version of [1] and it is strongly based also on the
results of [2]. However, it is new in its concept that our aim is to design a complete benchmark set for the class of hv-convex
discrete sets. Thus – as a main contribution – some new generation techniques are also proposed. The paper is structured
as follows. First, the necessary definitions are introduced in Section 2. In Section 3 we describe methods for generating hv-
convex discrete sets according to size and perimeter, possibly with certain additional properties. After that, in Section 4 we
collect some statistics that can affect the complexity of several reconstruction algorithms developed for the hv-convex class.
Section 5 concludes the paper.

2. Definitions

The finite subsets of the 2D integer lattice are called discrete sets. The size of a discrete set is defined by the size of its
minimal bounding discrete rectangle (i.e. not the number of its elements). A discrete set F of size m × n is defined up to a
translation and it is usually represented by a binary picture formed from unitary cells (see Fig. 1). We refer to the topmost
row of the discrete set as the first row, and to the leftmost column of the set as the first column. Thus, the upper left corner
of the minimal bounding rectangle of a discrete set is always the (1, 1) position, and the remaining positions of the minimal
bounding rectangle (and of the discrete set as well) are addressed consequently. Discrete sets with empty rows and/or
columns are not of interest in this study.
A discrete set F is 4-connected (8-connected), if for any two positions P ∈ F and Q ∈ F of the set there exist a

sequence of distinct positions (i0, j0) = P, . . . , (ik, jk) = Q such that (il, jl) ∈ F and |il − il+1| + |jl − jl+1| = 1
(max{|il − il+1|, |jl − jl+1|} = 1) for each l = 0, . . . , k − 1. The 4-connected sets are also called polyominoes [21]. If
the discrete set is not 4-connected then it consists of several polyominoes. The maximal 4-connected subsets of a discrete
set F are called the components of F. Those components are always uniquely determined. For example, the discrete set in
Fig. 1 has three components. A discrete set is called horizontally and vertically convex (shortly, hv-convex) if all the rows and
columns of the set are 4-connected. Let us introduce the notations P , Q, andHV for the class of hv-convex polyominoes,
hv-convex 8-connected discrete sets, and general hv-convex discrete sets, respectively. Obviously, P ⊂ Q ⊂ HV . Fig. 2
shows some examples of discrete sets belonging to those classes.
A polyomino F is northeast directed (NE-directed for short) if there is a particular point P ∈ F such that for each point

Q ∈ F there is a sequence P0 = P, . . . , Pt = Q of distinct points of F such that each point Pl of the sequence is north or east
of Pl−1 for each l = 1, . . . , t (see Fig. 3a). Similar definitions can be given for SW-, SE-, and NW-directedness. An hv-convex
polyomino is called NW-parallelogram polyomino if it is both NW- and SE-directed. Similarly, an hv-convex polyomino is
called NE-parallelogram polyomino if it is both NE- and SW-directed (see Fig. 3b).

3. A benchmark set of hv-convex discrete sets

Although the reconstruction from two projections in the class of general hv-convex discrete sets is NP-complete [29]
several methods can effectively solve this problem by applying some heuristic [25], metaheuristic [11,18,28] or
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Fig. 3. (a) An hv-convex NE-directed polyomino, and (b) an hv-convex NW-parallelogram polyomino.

optimization [15] technique. Besides, for hv-convex polyominoes and hv-convex 8-connected sets different reconstruction
algorithms have been developed to find one solution in polynomial time. The so-called kernel-shell method approximates
the solution iteratively by a nondecreasing and a nonincreasing sequence at the same time [8,9,13]. This algorithm has a
worst case time complexity of O(mn · logmn ·min{m2, n2}). Another observation is that the reconstruction task can also be
transformed into a 2SAT task [14,26] and then it is solvable in O(mn ·min{m2, n2}) time in the worst case. The comparison of
the average execution times of the two reconstruction approaches led to the design of a hybrid reconstruction algorithm [7]
that has the same worst case time complexity of O(mn ·min{m2, n2}) and remains fast in the average case as well. Recently,
an algorithm has been also published that can perform the reconstruction in the class of hv-convex 8-connected but not
4-connected discrete sets in O(mn · min{m, n}) time [5] and which finds all the solutions of this class having a given pair
of projections, yielding that the number of solutions is polynomial. On the contrary, it was proven that for certain pairs of
projections there can be exponentially many hv-convex 4-connected sets having those projections [17].
These strong theoretical results regarding the number of solutions and the complexity of reconstruction caused the class

of hv-convex discrete sets to become a class of main interest in Discrete Tomography. Elements of those classes are often
used to test newly introduced reconstruction methods in order to gain information about the advances and drawbacks of
the technique studied. For those tasks, there is a need for appropriately generated benchmark sets consisting of elements of
a large variety from the hv-convex class.

3.1. hv-convex polyominoes

For the class P we already have closed formulas for enumerating hv-convex polyominoes according to several
parameters. The semiperimeter (i.e. the half of the length of the boundary) of an hv-convex polyomino with size m × n
is obviously m + n. In [16] it was proved that the number Pn+4 of hv-convex polyominoes with a semiperimeter value of
n+ 4 is

Pn+4 = (2n+ 11)4n − 4(2n+ 1)
(
2n
n

)
. (1)

Later, in [20] it was shown that the number Pm+1,n+1 of hv-convex polyominoes of size (m+ 1)× (n+ 1) is

Pm+1,n+1 =
m+ n+mn
m+ n

(
2m+ 2n
2m

)
−
2mn
m+ n

(
m+ n
m

)2
. (2)

In addition, in [24] the authors described a fast probabilistic method that generates hv-convex polyominoes having fixed
perimeter with asymptotic probability 0.5. The method was extended in [7] to be able to generate hv-convex polyominoes
with fixed size, as well.

3.2. hv-convex 8-connected discrete sets

Now, let us study the class Q of hv-convex 8-connected discrete sets. We first give a recursive formula for the number
of hv-convex 8-connected discrete sets having a fixed semiperimeter. In order to do this we have to generalize the concept
of semiperimeter for hv-convex 8-connected but not 4-connected discrete sets (the class defined by Q \ P ), as well. Since
the components of such a set are hv-convex polyominoes, this can be done in a straightforward way.

Definition 1. Let F ∈ Q \ P having components F1, . . . , Fk. The semiperimeter of F is defined as the sum of the
semiperimeters of all Fi (i = 1, . . . , k).

Moreover, we recall an already known fact about elements of the classQ \ P from [5].

Proposition 2. The smallest containing discrete rectangles of the components of an hv-convex 8- but not 4-connected discrete
set are either connected to each other with their upper left and bottom right corners, or with their upper right and bottom left
corners.
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Fig. 4. An hv-convex 8- but not 4-connected set of (a) NW-type and (b) one of NE-type.

In the former case we say that the discrete set is of NW-type. Analogously, in the latter case we say that the set is of NE-type.
Fig. 4 shows two examples of this.
Let us introduce the notations Dn, Ln, and Qn for the number of NW-directed polyominoes, NW-parallelogram

polyominoes, and hv-convex 8-connected discrete sets having semiperimeter n, respectively. Moreover let T denote
the class of 8-connected discrete sets of NW-type whose components are all NW-parallelogram polyominoes (this time
including sets consisting of a single NW-parallelogram polyomino, as well), and let Tn denote the number of sets in class T
with semiperimeter n. With these notations we obtain T2 = L2 = D2 = 1 and (for technical reasons by setting T0 = 1) the
following recursive formulas

Theorem 3. For each n > 2

Tn = Ln +
n−2∑
m=2

LmTn−m (3)

and

Qn = Pn + 2
n−2∑
m=2

n−m∑
k=2

DmDkTn−m−k. (4)

Proof. If a discrete set F ∈ T with semiperimeter n has just one component then it is a NW-parallelogram polyomino with
semiperimeter n. Otherwise, it contains a NW-parallelogram polyomino with semiperimeterm (where 1 < m < n−1) as a
subset in the upper left-hand corner and – following from Proposition 2 – the rest of F is a discrete set with semiperimeter
n−mwhich also belongs to the T class. This observation can be concisely expressed by the recursive formula (3).
An hv-convex 8-connected set of semiperimeter n is possibly an hv-convex polyomino which gives the first term on the

right-hand side of (4)where Pn is defined by (1). Due to symmetry the number of discrete sets ofQ\P of NW-type and of NE-
type are the same. Therefore, it is sufficient to calculate the number of sets of NW-type having semiperimeter n andmultiply
the result by 2. Recalling from [5], for such a set of Q it is always true that F1, . . . , Fk−1 are NW-directed and F2, . . . , Fk are
SE-directed (that is, F2, . . . , Fk−1 are NW-parallelogram polyominoes). In particular, we also get that there are hv-convex
8-connected sets which have just two components and with no parallelogram polyominoes between them. Additionally,
the structure of a set of Q of NW-type is the following. It contains an NW-directed polyomino with semiperimeter m in
the upper left corner (where 1 < m < n − 1), an SE-directed polyomino with semiperimeter k in the bottom right corner
(where 1 < k ≤ n−m) and the remaining part (if not empty) is a discrete set with semiperimeter n−m− k belonging to
the class T (see Fig. 4a). Note that the number of NW-directed polyominoes with semiperimeter n are exactly the same as
the number of NE-directed polyominoes with semiperimeter n. Thus we get the formula (4). �

Considerations similar to Theorem 3 yielded recursive formulas for counting hv-convex 8- but not 4-connected discrete
sets according to their size [1,2]. Based on those formulas in [2] an algorithm was also supplied to generate discrete sets of
the classQ \P with given sizes by using uniform random distributions. Unfortunately, this algorithm generates sets of size
m× n in O(mn ·min{m, n}) time with an O(m2n2) preprocessing time which makes the method inappropriate to generate
sets of larger sizes.

Remark 4. The author of [2] proposed to generate the parallelogram components of given sizes of the hv-convex 8- but not
4-connected sets by generating simply directed hv-convex polyominoes with given sizes and then omit them if they are not
parallelogram polyominoes. This method is quite time-consuming and therefore, when preparing our benchmark set, we
used a more effective linear-time method that was described in [12].

Remark 5. In [5] the authors suggested to generate hv-convex 8- but not 4-connected discrete sets of a given size by using
themethod of rejection. They used the algorithm described in [6] to generate hv-convex 8-connected sets, and if the set was
4-connected as well then they omitted it. As we will see in Section 4, this method is also not suitable to generate discrete
sets of larger sizes.
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However, on the basis of Theorem 3 now we can outline a more effective random generator according to the
semiperimeter of the hv-convex 8- but not 4-connected set.

Algorithm GENQ for generating hv-convex 8-connected but not 4-connected discrete sets from a uniform random
distribution
Input: The integer n.
Output: An hv-convex 8- but not 4-connected set with semiperimeter n.

Step 1 calculate Ti for each i = 1, . . . , n;
Step 2 form = 2 to n− 2

for k = 2 to n−m
calculate DmDkTn−m−k;

Step 3 identify the semiperimeters u and b of the upper left and bottom
right directed components, respectively, by choosing a number
r ∈ [1,Qn] from a uniform random distribution;

Step 4 t := n− u− r;
Step 5 while (t > 0)

{ identify the semiperimeter p of the upper left NW-parallelogram
component by choosing a number r ∈ [1, Tt ] from a uniform
random distribution;
t := t − p; }

Step 6 generate the components knowing their semiperimeters by using
uniform random distributions;

Step 7 flip vertically the generated discrete set with 1/2 probability;

Theorem 6. Algorithm GENQ generates a random 8- but not 4-connected hv-convex discrete set of semiperimeter n in O(n log n)
time with O(n2) preprocessing time and O(n2)memory requirements.

Proof. For the number of NW-directed (parallelogram) polyominoes we obtain from [10] the direct formulas

Dn =
(
2(n− 2)
n− 2

)
, and Ln−1 =

1
n− 1

(
2(n− 2)
n− 2

)
. (5)

The first two steps of Algorithm GENQ are for the preprocessing and they trivially can be performed in O(n2) time. We
store all the increasing partial sums of the values calculated in these two steps (i.e. the values L1, L1 + L2 · Tn−2, L1 + L2 ·
Tn−2+L3 ·Tn−3 and so on, and similarly for theDmDkTn−m−k’s wherem = 2, . . . , n−2 and k = 2, . . . , n−2−m). For this we
need O(n2)memory. The stored values give a unique partitioning of the interval [1,Qn] and [1, Tt ] Due to the storing of the
increasing partial sums it can be decided in O(log n) time which of the intervals the randomly generated numbers of steps
3 and 5 fall into. Since Step 5 is iterated at most n/2 times, we get that the total execution time of Steps 3–5 is O(n log n). In
Step 6we generate an hv-convex NW-directed polyominowith semiperimeter u, an hv-convex SE-directed polyominowith
semiperimeter b, and NW-parallelogram polyominoes with semiperimeters determined in Step 5. All these components can
be generated in O(n) time [16,10] and so the complexity part of the theorem follows.
Due to the construction, the generated sets are hv-convex 8- but not 4-connected sets of NW-type. Finally, in Step 7 we

also take into account that the set to be generated can be either of NW-type or of NE-type with the same probability. �

For further details on the analysis of random generation algorithms of the above type the reader is referred to [19].

3.3. General hv-convex discrete sets

Regarding the generation of general hv-convex sets we first recall a concept of [2]. Let F be a discrete set with k ≥ 2
components such that Il × Jl = {il, . . . , i′l} × {jl, . . . j

′

l} is the minimal bounding rectangle of the lth component of F . We
say that the components of F are disjoint if for any 1 ≤ l, l′ ≤ kIl ∩ Il′ 6= ∅ or Jl ∩ Jl′ 6= ∅ only if l = l′. Obviously, if
an hv-convex discrete set has more than one components then they are disjoint. Now, without loss of generality we can
assume that il < il+1 for each l = 1, . . . , k− 1. F is called canonical if jl < jl+1 for each l = 1, . . . , k− 1. That is, the discrete
set is canonical if the minimal bounding rectangles of the components are connected to each other with their bottom right
and upper left corners (see Fig. 5). The following proposition shows the connection of the general and canonical hv-convex
discrete sets.

Proposition 7 ([1]). Each canonical hv-convex discrete set with k ≥ 2 components can be transformed into k! different general
hv-convex discrete sets by using a suitable permutation of order k on the column sets of the components. Conversely, for a general
hv-convex discrete set F with k ≥ 2 components there exist exactly one hv-convex canonical discrete set F ′ and a uniquely
determined permutation π of order k such that F ′ can be transformed into F by applying π on the column sets of F ′.
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Fig. 5. (a) A canonical hv-convex discrete set, and (b)–(f) all the derived hv-convex discrete sets by applying the permutation (1, 3, 2), (2, 1, 3), (2, 3, 1),
(3, 1, 2), (3, 2, 1), respectively.

Fig. 5 represents the relation described in Proposition 7.
Now we can study the generation problem in the general class of hv-convex discrete sets. Let C (t)n denote the number of

canonical hv-convex discrete sets with semiperimeter n and exactly t components. Moreover, let HVn denote the number
of general hv-convex discrete sets having semiperimeter n. Then the following relations hold

Theorem 8. For each t > 1 and n > 2

C (t)n =
n−2∑
m=2

PmC
(t−1)
n−m (6)

and

HVn =
bn/2c∑
t=1

t! · C (t)n . (7)

Proof. Formula (6) can be proven similarly to Theorem 4 of [2], while Eq. (7) follows from Proposition 7 and the fact that
the number of components can be at most bn/2c. �

By setting the initial values C (1)i = Pi (i = 2, . . . , n) and C
(t)
i = 0 when i < bt/2c on the basis of Theorem 8 an algorithm

similar to AlgorithmGENQ can be outlined to generate hv-convex discrete sets fromuniform randomdistributions according
to their semiperimeter. For more details we also suggest [2]. As a consequence we get

Theorem 9. A random hv-convex discrete set of semiperimeter n can be generated from a uniform distribution in O(n log n) time
with O(n2) preprocessing time and O(n2)memory requirements.

With similar observations in [2] an algorithm was supplied to generate general hv-convex discrete sets of size m × n
in O(mn · min{m, n}) time with O(m2n2min{m, n}) preprocessing time. Unfortunately, due to the huge computational
complexity this algorithm is not suitable to generate sets of larger sizes.

4. Statistics on hv-convex discrete sets

By applying the enumeration and generation methods presented in this paper we constructed a benchmark collection.1
It consists of hv-convex discrete sets of various sizes and perimeters as given below

• 100-100 polyominoes of size 10× 10, 20× 20, . . . , 100× 100,
• 100-100 polyominoes of size 150× 150, 200× 200, . . . , 500× 500,
• 100-100 8- but not 4-connected sets of size 10× 10, 20× 20, . . . , 100× 100,

1 The benchmark collection is available from the author upon request.
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Table 1
The values of Pn , Qn , and HVn .

n Pn Qn HVn

2 1 1 1
3 2 2 2
4 7 9 9
5 28 36 36
6 120 154 162
7 528 668 732
8 2344 2916 3368
9 10416 12740 15520
10 46160 55570 71618
11 203680 241692 329988
12 894312 1047604 1518090
13 3907056 4524464 6971112
14 16986352 19470660 31963904
15 73512288 83500968 146390016

Fig. 6. Some hv-convex binary pictures with a semiperimeter value of 5. The numbers tell us that there are other solutions that can be obtained by
mirroring or/and rotating the given discrete set.

• 100-100 8- but not 4-connected sets of semiperimeter 100, 200, . . . , 1000,
• 100-100 general hv-convex sets of size 10× 10, 20× 20, . . . , 100× 100,
• 100-100 general hv-convex sets of semiperimeter 100, 200, . . . , 1000.

The recursive formulas of Section 3 allow us to examine some important properties of hv-convex discrete sets that can
affect the reconstruction complexity. In order to get such statistics we first calculated the number of hv-convex discrete sets
in the classes studied. Table 1 shows the number of elements in the classesP ,Q, andHV with semiperimeter n for the first
15 values of n – represented by Pn, Qn, and HVn, respectively (the first column can also be calculated via formula (1) and it
enumerates the first 15 elements of Sequence A005436 in [27]). For n = 5 the corresponding hv-convex binary images are
shown in Fig. 6.
Knowing that P ⊂ Q ⊂ HV and with the aid of the statistics presented in Table 1, we can describe the relative

cardinality of the classes examined. With this information we can, for example, address questions concerning the relative
occurrence of certain hv-convex discrete sets and calculate the probability that an hv-convex discrete set chosen from a
uniform random distribution has some special properties which can facilitate the reconstruction task.

Example 10. Using the entries of Table 1we can calculate the probability that an hv-convex discrete setwith semiperimeter
value of 6 chosen from a uniform random distribution is an hv-convex polyomino (i.e. it consists of one component), which
turns out to be 120/162 ≈ 0.74. If we increase the semiperimeter value to 10, say, then this probability decreases to
46160/71618 ≈ 0.64. Such information is especially useful in the reconstruction task as hv-convex polyominoes can be
reconstructed from their horizontal and vertical projections in polynomial time. In contrast, if the hv-convex set has at least
two components then the reconstruction is NP-hard (see the introduction here). Hence with this method we can calculate
the probability that the reconstruction of the randomly chosen hv-convex set can be performed using a polynomial-time
algorithm to reconstruct an hv-convex polyomino.

Example 11. In [5] the authors presented a very fast algorithm for the reconstruction of hv-convex 8-connected but not
4-connected discrete sets. From the first few entries of Table 1 we have the suggestion that the number of such kinds of
sets rapidly decreases as the semiperimeter value increases. To verify this, we calculated the first 100 values of Pn/Qn (see
Fig. 7). From this figure it is evident, that – unfortunately – even for sets of relatively small sizes there is almost no chance to
apply this fast reconstruction algorithm in practice (assuming that the sets to be reconstructed are from a uniform random
distribution), and things get worse if we want to reconstruct sets of bigger sizes. This observation gives an explanation why
themethod of rejection is not an effective way to generate hv-convex 8- but not 4-connected discrete sets (recall Remark 5).

It is also possible to describe the true distribution of the number of components of the generated hv-convex discrete
set of theHV class since, in this case, we can enumerate the discrete sets of a given class that have exactly k components
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Fig. 7. The ratio Pn/Qn (vertical axis) depending on the semiperimeter value n (horizontal axis).

Fig. 8. The distributions of the number of components in theHV class for sets of size (a) 20× 20, (b) 40× 40, (c) 60× 60, (d) 80× 80, and (e) 100× 100.

(see, e.g., formula (6)). Table 2 lists the expectation values and the variances of the variables which represent the number
of components of a discrete set generated by using a uniform random distribution from the HV class when the size of
the minimal bounding rectangle is n × n for some fixed positive integer n. In addition, the corresponding distributions are
depicted in Fig. 8.
This piece of information can be very useful when reconstructing images like these. For example, the number of

components of an hv-convex set also affects the accuracy of the reconstruction heuristic that was presented in [3]. Namely,
more the components the hv-convex discrete set has, it is more likely that ambiguity will occur in the reconstruction.
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Table 2
The expectation value EHV (n) and the variance D2HV (n) of the number of components of a set with a minimal bounding rectangle of size n × n in theHV
class. The values have been rounded to 5 digits.

n EHV (n) D2HV (n)

20 6.53981 9.84446
40 26.33821 16.00766
60 46.30283 12.92260
80 65.70631 12.05665
100 84.99456 11.80716

Statistics about the expected number of components also opens the way to design reconstruction algorithms that exploit
information known beforehand about the expected number of components [4].
Finally, with the aid of the benchmark set it is also possible to make some conjectures on certain properties of

reconstruction tasks and algorithms. For example, the algorithm presented in [5] can find all the hv-convex 8-connected
but not 4-connected discrete sets in polynomial time from two projections. This result implies that the number of discrete
sets of the classQ\P with the same horizontal and vertical projections is bounded by a polynomial. However, when applied
the reconstruction algorithm on the 8-connected but not 4-connected discrete sets of the benchmark collection we found
that in each cases the number of different solutions having the same projections was at most 4. Even if we know from [5]
that for the pair of vectors (1, 2, 3, 2, 1), (1, 2, 3, 2, 1) the number of solutions is 6, we have the following

Conjecture 12. The number of different hv-convex 8- but not 4-connected discrete sets having given horizontal and vertical
projections is at most 6.

5. Conclusions

In this paper we have collectedmethods to generate hv-convex discrete sets (which possibly have certain connectedness
properties as well). Besides, we also presented some new generation algorithms to complement the former ones in order
to design a complete benchmark set for analysing the average performance of reconstruction algorithms developed for the
class of hv-convex discrete sets and its frequently studied subclasses. The new generation methods are designed according
to the semiperimeter of the set to be generated but they can be extended to generate discrete sets with fixed area (or with
fixed area and semiperimeter) without any difficulty. In addition, they can be generalized to higher dimensions as well.
By using the benchmark set supplied we have also collected some statistics on several subclasses of hv-convex discrete
sets which can be used to analyse the efficacy (speed, accuracy, noise sensitivity, etc.) of certain reconstruction algorithms
developed for the classes studied or to make some conjectures on other parameters, as well.
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