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In this paper, we describe a quasi-linear time universal cellular automaton. This cellular automaton 

is not only computation universal (in the sense of simulating any Turing machine), but also 

intrinsically universal (it is capable of simulating arbitrary one-dimensional cellular automata, even 

two-way). The simulation is based on a novel programming language (the brick language), which 

simplifies the recursive specifications of transition functions. 

Moreover, we prove that cellular automata form an acceptable programming system for parallel 

computation, thus providing an S-~HI theorem for cellular automata. This allows us to apply 

well-known results of the general theory of computation to cellular automata and might give 

a practical framework for studying the structural complexity of cellular automata computations. 

Introduction 

It is a well-known result that cellular automata are capable of universal computa- 

tion. To get the computation-universality, one has just to simulate a universal Turing 

machine. This simulation has been first exhibited by Smith [12]. He showed that 

cellular automata in one spatial dimension are capable of universal computation 

requiring only eighteen states per cell. More recently, Lindgren and Nordhal [6] have 
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stated more precisely the simulation given by Smith. They prove the existence of 

a computation-universal unidimensional cellular automaton with seven states per cell 

in the nearest-neighborhood and decrease to four states per cell if the neighborhood is 

extended. To that end they simply simulate a small universal Turing machine. If such 

simulations are interesting in terms of machine state-complexity, it is not so in terms 

of parallel computation. The great drawback is that the simulation’s speed is bounded 

by the speed of the Turing machine. 

Wolfram [14] was the first to make an incursion into the world of universal 

computation of unidimensional cellular automata without referring to the Turing 

machines. He defined four classes of behavior of cellular automata and conjectured 

that class four contains cellular automata capable of universal computation. The first 

authors who solved the problem of the self-referring (intrinsic) universal computation 

by a one-dimensional cellular automata were Albert and Culik Cl]. Their cellular 

automaton can simulate any one-way and “totalistic” cellular automaton with only 

eighteen states per cell. One-way means that, instead of sending a flow of signals 

resulting from each cell in both directions, the flow is restricted to being sent only in 

one direction (the two models have been proved to be equivalent [4]). Totalistic 

cellular automata correspond to a normal form for cellular automata with the help of 

a numbering that gives, in a certain sense, a Godel numbering of cellular automata. 

We present here a new intrinsic universal unidimensional cellular automaton which 

improves the complexities in space and in time of the cellular automaton proposed by 

Albert and Culik. Moreover, it can also simulate two-way cellular automata, requir- 

ing only that the transition function be described in totalistic form. 

Furthermore, our cellular automaton can also be adapted to get the composition of 

programs leading to the definition of an acceptable programming system proved 

equivalent to the formalism of Blum [3] by Machtey and Young [7]. Then, as 

a consequence, it also supports a form of the well-known S-m-n theorem. This allows 

us to apply well-known results of the general theory of algorithms to cellular 

automata. 

In order to describe the evolution, we introduce the notion of a brick. A brick can be 

interpreted as a procedure in a high-level programming language. Such a formalism 

leads to a simple description of the behavior of a cellular automaton. 

1. Preliminaries 

1.1. D@itions 

Definition 1.1. A cellular automaton is a doubly infinite array of identical cells indexed 

by Z, the set of integers. Each cell is a finite state machine C=(Q, 6), where 

l Q is a finite set, the set of states, 

l 6isamapping6:QxQxQ+Q. 



A unirlersal cellular automaton 201 

The mapping 6, often named local transition function, has the following meaning. 

The next state of the ith cell at time t is a function of the following states: its left 

neighbor (the cell i - 1) at time t - 1, its own state at time t - 1 and the state of its right 

neighbor (the cell i+ 1) at time t - 1. In other words, if c(i, t) denotes the state of the ith 

cell at time t, then the following equality holds: 

c(i, t)=d(c(i- 1, t-l), c(i, t-l), c(i+ 1, t- 1)). 

We have a special state for cellular automata, namely the quiescent state, often given 

as q. Its particularity is 6 (q, q, q) = q. 

We observe that, in general, the set of states of the cellular automaton has no 

structure. Below, we focus on a particular case with structured set of states. In order to 

structure the set of states, we identify its letters with an initial segment of the 

nonnegative integers. This numbering allows us to define the local transition function 

6 simply by a mapping of a subset X of N into itself. 

Definition 1.2. A cellular automaton with set of states Q and transition function 

6 : Q x Q x Q-Q is called totalistic, if Q c N and there exists a functionf: N-Q such 

that 

Vu, b, CEQ, 6(a, b, c)=f(a+b+c). 

The local transition function is not a function of a triple but a function of the sum of 

the states of the three cells. For any iEZ and tEN, 

6(c(i- 1, t-l), c(i, t-l), c(i+ 1, t- 1)) 

=f(c(i- 1, t- l)+c(i, t- l)+c(i+ 1, t- 1)) 

where the c(i, t) are numbers in Q c N. 

We observe that totalistic cellular automata can be made to differentiate their own 

state from the states of their left and right neighbors. This comes from the following 

lemma proved by Albert and Culik Cl]. 

Lemma 1.3. For every cellular automaton, there exists a totalistic one which simulates 

the usual one without loss of time and has at most four times as many states. 

We have defined what cellular automata are and the way they evolve locally but not 

how to represent their global evolution. 

Definition 1.4. There are two types of configurations: 

(1) We call configuration of a cellular automaton any mapping c: Z-Q which 

assigns a state of Q to each cell of the cellular automaton; 

(2) we call finite configuration of a cellular automaton any mapping c : Z+Q which 

assigns a state of Q to each cell of the cellular automaton in such a way that the 

nonquiescent part is finite and connected. In that case the quiescent state becomes 

a delimiter. 
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We will write the infinite repetition of the letter a of Q to the right by P. Similarly, 

an infinite repetition of the letter a of Q to the left is denoted by “‘a. A configuration is 

then denoted by a doubly infinite word of the form “qyq”, where letter q (the quiescent 

state) does not occur in word ~EQ*. Similarly, a finite configuration will be written as 

a finite word over Q. A sequence of (finite) configurations will be called a time-space 
diagram. Time-space diagrams are also helpful as a heuristic aid for the proofs. The 

device is not original, it has been introduced by Minsky [9] and used, for instance, by 

Waksman [13], Fischer [S] and Smith [l 11. With the timeespace diagrams it is also 

useful to define some types of cellular automata in the way the number of nonquies- 

cent cells increases. 

In the general case, between two time-steps, the length of the nonquiescent part of 

a configuration may increase by two, by the “birth” of nonquiescent cells at the 

leftmost and rightmost ends. If the nonquiescent part of a configuration is restricted to 

grow only in one direction, the cellular automaton is called a half-line ofautomata. We 

can also remark that it is an easy trick to simulate the evolution of a cellular 

automaton by a half-line. If one would like to do that, just notice the following idea, 

often useful with Turing machines: the doubly infinite array of identical cells can be 

folded, defining in this way a central cell which can be viewed as the leftmost cell of 

a half-line of automata and any other cell carries its previous value plus the value of 

the cell which was symmetrical with respect to the central cell. For convenience we 

always assume that the leftmost end is numbered 0. If we do not want to let the length 

of the nonquiescent part of the configuration to be increased at all, we particularize 

the two “border” cells. In this situation we define a segment of automata. 

1.2. D@erent representations of cellular automata 

As for finite automata, it is possible to define a product of finitely many cellular 

automata (CA). 

Definition 1.5. A product of cellular automata is a cellular automaton %7 = (Q, 6) whose 

set of states is the Cartesian product of finitely many sets of states Q = n YE I Qi and 

whose local transition function 6 is a mapping 6: Q x Q x Q-Q with following 

definition: 

~(X,y,z)=(~1(X1,Y1,Z1);~2(X2,y2,Z2);...;~n(X,,y”,Z,);) 

for XiEQi (1 Qibn) and x=(x1, . . . . x,), y=(yl,..., y,), z=(z,, . . . . z,)EQ. 

Remark 1.6. In a CA product the transititions are in general componentwise indepen- 

dent. We say that the behaviors of the cellular automata which form the CA product 

are superimposed. 

There are several ways to represent a cellular automaton. We have given in 

Definition 1.1 the most usual representation; however, it is also possible to define 

cellular automata not as functions of three elements of the set of states but as functions 
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of three n-tuples, elements of a set Cartesian product of finitely many states. The 

following definition may be compared with the one of a CA product given in 

Definition 1.5, where the behavior of the cellular automaton depends upon all the 

previous products of states. 

Definition 1.7. We call tuple-cellular automaton D=(Q, 6) any cellular automaton 

with set of states equal to a Cartesian product of finitely many finite sets and with local 

transition function 6 : Q x Q x Q-Q such that 

where x, y, z and a are n-tuples. 

We will represent such a cellular automaton as depicted in Fig. 1, where the main 

state corresponds to the usual state of a cellular automaton and the other “layers” to 

the memory of the messages which transit in each cell. We will use in the next sections 

a 3-tuple cellular automaton on which we superimpose, by Cartesian product, another 

cellular automaton which synchronizes the universal behavior of the 3-tuple CA. Let 

us denote the first part as the main-state part, the second one as the main-signal part, 

the third one as the second-signal part, and the fourth one as the synchronization part. 

1.3. Firing squad synchronization 

Thefiring squad synchronization problem is due to Myhill (1957). It can be expressed 

as follows: 

Given an initial line of soldiers, how can they fire at the same time knowing that the 

order to fire, coming from a general located at one end of the line, needs a certain 

constant time to propagate? 

Fig. 1. A tuple cell 
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Each soldier may be represented by a cell of a cellular automaton. The problem is to 

build a local transition function for a cellular automaton. The first answer was given 

in 1965 by Minsky and MacCarthy. First minimal solutions are due to Goto, 

Waksman and Balzer. After several years, a minimal time solution with 6 states was 

given by Mazoyer. 

We will use the following results in order to synchronize a segment of automata 

c13, 21. 

Lemma 1.8 (Firing squad lemma). There exists a CA Z=(Q, 6) with special symbols 

c, SEQ and a quiescent state q such that 

for t = 2n - 2 and A ("qO'- ’ cq”) (i, t) # $ for 0 < t < 2n - 2, where A denotes the global 
transition function corresponding to the local transition function 6. 

The states have the following meaning: the cell with the special symbol c is the 

general which gives the order to fire. At the end of a certain process, all the “soldiers” 

are ready to fire (that is, the cells with special state $). 

It is also possible to improve the time of synchronization if the initial line has not 

only one general but two. In that case we have the following result [lo]. 

Lemma 1.9 (Firing squad lemma with two generals). There exists a CA Z = (Q, 6) with 
special symbols c, $EQ and a quiescent state q such that: 

for t = n and A(“q~o”-2~qw)(i, t) # $ for 0 < t <n, where A denotes the global transition 
function corresponding to the local transition function 6. 

The two c’s on the initial configuration denote the two generals. This is an 

immediate consequence of Lemma 1.8 (firing squad lemma). 

For the proofs of the previous lemmas, the interested readers can refer to 

[13,2,10, S]. 

I .4. Two types of universality 

Several definitions of universality occur in the literature. Informally, universal 

behavior for any machine is the ability to mimic the behavior of any other machine 

with respect to the Church-Turing thesis. The universality of cellular automata was 

first pointed out by Smith [7]. This process was an external process. It used the 

simulation of a universal Turing machine by a cellular automaton. Such a universal 

cellular automaton has about 10 states but it is not a notion of universality intrinsic to 

cellular automata theory. 
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In 1987, Albert and Culik [l] exhibited a universal cellular automaton which works 

in quadratic time with no more than 14 states capable of simulating any given 

totalistic one-way cellular automaton on any initial configuration. This cellular 

automaton solves the problem of universality intrinsic to the cellular automata 

theory. 

Minsky [ 1 l] describes how a universal machine works in the following terms: “The 

universal machine works by operating on the description of another machine. It interprets 

such a description step by step to imitate the behavior of the other machine”. Our 

universal automaton does not behave much differently from the machine described 

above. 

We begin this section with the notion of computability used in the rest of the paper. 

Definition 1.10, Let D be a finite set, f be any partial recursive function defined on S* 

and A a cellular automaton with set of states Q = {qO, ql, . . . , qk}. A computesfif there 

exist two functions g from S into (1,2, . . . . kj and h from { 1,2, . ., kj into S such that 

for any word s=s1s2 . s, of S*, the evolution of the half-line of automata A on the 

initial configuration qsts,), qscsZ) ., qs(S,,jqw leads to a l-periodical configuration 

qij,qi*,...> qi,> 4” withf(s)=h(qi,)h(qi,)...h(qi_). 

Definition 1.11. A cellular automaton is computation-universal if it can compute any 

partial recursive function. More precisely, if S is any recursive function and 4 its 

encoding for cellular automata and x an integer in the domain of f; we say that 

a cellular automaton computes the functionf on the entry x if, at a certain time the 

result code [[&f(x)]] appears as the configuration on the cellular automaton. Its 

evolution has stabilized and the result remains as the unchanging configuration. 

Remark 1.12. In particular, a cellular automaton is computation-universal if it 

simulates a universal Turing machine. 

The above notion of universality is somewhat unsatisfactory, as it gives a notion of 

universality of cellular automata in terms of Turing machines. We prefer an internal 

notion of universality. 

Definition 1.13. Let A be the set of cellular automata and &?A= {(A, C): AEA and C is 

a finite configuration of A >. A cellular automaton U is said to be intrinsically universal 

if there exists an injective mapping ~:XCF+~ where r denotes the set of the 

configurations of U. The mapping (p is such that 

l it sets up a correspondence between the configurations of U and the configurations 

of A at any time of the simulation of A by U, i.e. 

&&J=(A,C) =3 V’tEN,&ig=(A,C), 

where C’ is obtained from C in t units of time and 5?, is the configuration of 

U obtained from %0 by simulating t steps of A; 
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l for each configuration of A, there exists a corresponding configuration of U. 

V(A, C)E4?, 3 4(%?) =(A, C) 

l both 4 and $- ’ are recursive. 

Remark 1.14. In the case of infinite configurations, $J becomes a function which to any 

function g assigns a recursive initial configuration 2. We then get a pair (A, C). 

Remark 1.15. It is clear that a cellular automaton which is CA-universal is also 

computation-universal. To get computation-universality, a CA-universal cellular 

automaton has just to simulate any computation-universal cellular automaton. 

We aim to present another CA-universal cellular automaton more efficient than the 

one of Albert and Culik. This efficiency is obtained by another coding of the given 

cellular automaton to be simulated. In the following sections we develop some 

material necessary for the universal cellular automaton before describing the simula- 

tion of a given cellular automaton on a given initial configuration. 

2. Examples of bricks 

We present in this section a new way to define the local transition function by 

defining the notion of bricks. It is an algorithmic idea for decomposing the functioning 

of a cellular automaton. The notion of a brick is tied with the notion of tuple cellular 

automaton in which the set of states is a Cartesian product of sets of states, each of 

them having a special semantics. Bricks are put together to describe the functioning of 

the cellular automaton. To do that we need the notion of parallel actions and some 

other notions which will be detailed. 

In the next section, we give the first brick which, in fact, will be useful in describing 

the evolution of the universal cellular automaton. Its role is to find the first occurrence 

of a given symbol. 

2.1. The Find-Symbol brick 

We can build a local transition function whose role is to find the first occurrence of 

a given symbol on the right side of the cell which starts the brick. The Find_Symbol 

brick receives as parameter the special symbol to be found and is initiated at any place 

of the half-line. The time required to find the symbol is the distance between the cell 

which sends the order Find_Symbol(a) (where a denotes the special symbol to be 

found) and the cell containing the first occurrence of the symbol. A two-tuple cellular 

automaton is required as the “search signal” emitted runs from the left to the right on 

the signal part of the tuple. It is initiated by the special symbol * which appears on the 

signal part. Its strategy is to move as quickly as possible to the right when the symbol 



A universal cellular automaton 207 

searched is not on the main state of the tuple. Thus, its transition function is the 

following: 

FS,:QxQxQ+Q, where Q=Q1xQ2, 

F&((b, q), (c, *), (4 q))=(c, q), 

F&((b, q)> (c, q), (4 *))=(c, qk 

FS,((b, *), (c, q), 4 q))= 
k *) if c #a, 

(a,J) if c=a. 

It is clear that, when the star meets the symbol a, the move of the signal to the right 

stops and the cell become marked by the special symbol J. The time needed for this 

action is obviously the distance between the ordering cell and the cell with symbol a. 

A corresponding time-space diagram illustrates the Find_Symbol brick (see Fig. 6). 

Lemma 2.1. If; at any time, the configuration of a cellular automaton is of the form given 
by the doubly infinite word in the set Wq(A+)qW where A denotes any finite alphabet 
product of Q1 and Qz and where Q1 n { *, J} = 8 and Q2 n (*, J} # 0, then, the brick 
FS, (namely, Find-Symbol(a)) marks by (a, J) thefirst occurrence of the symbol (a, q) 
from A+ on the right side of the unique occurrence of the symbol (b, *) with b # a. 

In the same way, it is possible to define the symmetrical operation, which is to find 

a given symbol located to the left of the requiring cell. 

2.2. The Shift-Left brick 

We describe in this section the way to move a $-block without using any other 

property of a tuple cellular automaton than the arrival of a special signal at the 

beginning of the $-block. That means that the information contained on the cell is 

simultaneously preserved and shifted to the right while the $-block moves to the left. 

When the special signal reaches the first !j at the beginning of the block, it orders it to 

become a $ and to exchange its state with the symbol which was previously at its left. 

Then, the $ follows the strategy: “if my left cell does not contain a $ or a quiescent 

state, I exchange my state with the content of the left cell”. This ensures us that the 

$-block is shifted to the left while the segment it goes through is shifted to the right. 

We give below the transition function of the brick assuming that the pairs (a, b) occur 

only at the start of the process and nowhere else: 

W(a, 4), (8, *), 6, q))=Gc q)=a, SU(b, q), (a, q), ($, *))=($, q)=S 

SL($, $, rs) = $, SL($, $, S)=$, 

SL($, $, a)=$, SL(a, $, b)=a, SL(c, a, S)=S, SL(q, S,?)=$, 
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where a, b, c denote any symbol of the set of the state except the symbols q, $ and 

3, q denotes the quiescent state and ? any symbol other than the quiescent state. 

Clearly, the Shift-left brick works in real time plus a small little constant time. 

That is, to swap two segments, one of length 1 and the other of length t, we need 

l+t+o(l) units of time. 

Lemma 2.2. The brick SL (namely, Shift-Left) swaps thefinite word A+ and thejnite 

word $$* in real time whenever the configuration of the cellular automaton is of the form 

given by the doubly injinite word in the set wq(Af)$$*q” where A denotes any finite 

alphabet without $, $ and q. 

Its behavior is illustrated in Fig. 6, where the first diagonal represents the departure 

times of the $ word and the second one their arrival times. 

It is also interesting to be able to move a segment to the left (resp. to the right) and 

leave the place free. This can be done by the Special_Send_Left brick. 

2.3. The Special-Send-Left brick 

Given a certain configuration with a segment identified, we aim to send it to the 

left end of the half-line. In that case, all the cells which are “ready to fire” are emitted 

on the main signal of the cell and replaced by the $$* configuration described 

in Section 2.2. They move themselves to the left as long as their left neighbor on 

the main signal is a quiescent state and halt as soon as the main state of their left 

neighbor is the special marker # and the main state of the current cell is also a # 

(i.e. the beginning of the code segment). We give the local transition function in 

terms of bricks and, furthermore, as three bricks superimposed on each other with 

interactions. 

The strategy of the Special-Send brick is the following: its cell to be emitted (which 

is a special symbol on the alphabet) receives a Send signal and emits its main state to 

the main signal of its left neighbor and substitutes the content of the main state with 

the special state $. Simultaneously, it sends a special signal to the right moving at unit 

speed to order the other cells of the block to emit their main state to the left and 

replace it with the special marker $. 

The condition for emitting is that the main signal of the left neighbor of a cell 

has become quiescent after the passage of the message and that the cell has received 

a special signal. The cell can emit as soon as the main signal of its left neighbor 

has become quiescent. At the same time, the emission signal must be sent to the 

right. Thus, when an emitting cell sends something, it sends its state to the main 

signal of its left neighbor and the emitting signal to the main signal of its right 

neighbor. 

With the above remarks, we can give the beginning of the local transition function 

of the Special-Send brick which describes the initiation of the process: 
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SSl((G 4), (4, *), (d2>4))‘($, 4)> 

ssl((~,-l,qX(~,qX(dl,*))=(~,~l), 

SS,((d,,*),(d,,q),(d,,q))=(d,, -), 

SSl cc!> 4L (d*, -L (49 4))=($, 4L 

SS,((a,d,),($,q),(d,, -))=ckd,), 

SS1 ((dz, - 1, (4, q)> (4r q))=(d,, - ). 

Then, we describe the emission of the rest of the data block, substituted at the end by 

the $S* word. 

SSz ((4 - I 2 -),Mc,q),&+~r q))=&> -L 

S&(CK 41, (6 1, - )> (4, q))=($> q), 

SSz(@G &I), 0, q), (&, - I)=($, &A 

SS,(($, 4-l), ($, 4). (4, N ))=CL 4). 

SS2 is used for the rest of the data block except the special marker @, which denotes 

the end of the data block. For this special marker, the emitting process must stop after 

its emission, which implies the following special strategy: 

SS3 (6 q), (4, - ), (@, 4))=(% 4) 

SS3 ((&, -), (@I, 4) (h, 4))=(@ - )9 

SS,((@, - ), (h, 4k (hI> q))=(h, 4)> 

SS,(($, 4)> (@I, - ), (h, 4))=($, 4), 

S&(($, A), 6, q), ((5% -))=(R @). 

When the whole data block (of length k+ 2, i.e. ddld2 . . . d, @, with respect to the 

coding of a data block) has been emitted, we must indicate that this message runs from 

right to left on the first signal part of the cellular automaton until the left neighbor of 

the first digit of the message meets the # # part and stops above the second #. We 

describe now the message-transmission part: 

ss~~~cj-l~4~~~cj~4~~~cj+l~4~~~~cj~ 413 

SS4((Cj-l,mk+2 )T (Cj, 417 tcj+13 4))=Ccj, 4h 

ss~~~Cj-~~~~~~cj~4~~~~j+l~m~~~~~cj~ml~~ 

ss4((cj-l, 4h Ccj, ml),(cj+lr 4))=Ccj9 41, 

ss4((cj-l, mlL(cjt 41, tcj+l, m2))z(cj5 W&J 
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for cj- 1 Cj # # # and cjcj+ 1 # # #. For these two special cases, the message must 

stop its movement to the left. Note that this does not include the case where one of 

them equals #, this case is described in SS3. Note also that the message is of the form 

m,qm,q...m,+,q. Wedescribenow thecase wherecj-rcj=# # orcjcj+r=# #: 

SSs((?Y, mr,9),(cI, 4,4),(c2, m2,4))=kj, m2,9), 

~~~((#,4,4)~(#,m~,9),(~~,9,9))=(#,ml,~), 

SS5((#,9,9),(#,ml, 0),@1,m2, 4))=(#,ml, 41, 

SSS((#,ml,o),(c,,m2,9),((c2,9,9))=(c,,m2,0), 

SSS((#> ml,9),(c,,mz,4),(c2,m2,9))=(cl,m2,4), 

SS,((#> ml,9),(cl,m2,a),((c2,m3,q))=(c,,m2,9), 

SS5((cl,m2, o),((c2, m3,9h(c3,9,9))=(c2, m3,0). 

We can then give the new lemma which describes more precisely the conditions for 

Special-Send brick. 

Lemma 2.3. If at any time, the cell containing thefirst d which marks the beginning of 

the first data block receives a message *, it initiates a process which sends to the left the 

data block starting from the beginning. The content of the main state of the cell is 

replaced by a $. When the emitting signal - leaves any cell it indicates that the content 

of its main state must be sent to the left at the next step and that the signal itself must be 

transmitted to the right. A cell becomes inactive, entering the special state $, when it has 

emitted the content of its main state and transmitted the signal 0. Then the emitted 

message is shifted from right to left until the first bit of the message arrives on the cell 

marked # has a left neighbor which is also the state #. The first bit of the message stops 

and sends a stop signal to the right, telling the other to stop. 

The work of the Special_Send brick is described in Fig. 6, where the first diagonal 

represents the departure times of the data, the second one their arrival times at the 

leftmost end of the half-line of automata. We recall that this brick works together with 

the receiving brick which gives the stopping condition for that process. 

2.4. Composition of bricks 

We can now begin to build something like a “wall” with the bricks. This example 

gives the manner to compose the bricks together. We use the composition of bricks 

and all the operators on the bricks as the “cement” of the wall. We will identify a data 

block concatenated after the code block of the initial configuration of the universal 

cellular automaton and send that data block to the left. Then, we swap the $-block 

which appears with the code segment. 

Initially, we have a configuration given by the doubly infinite word in the set 

wqA+ A +qw, where the first word on A+ denotes the code segment, the second one the 
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data segment, and 4 the quiescent state. We first let the FindPSymbol-right (d) work 

starting from the far nonquiescent of the word. It finishes its work in real time (i.e. 

length(code segment)) when it meets the first occurrence of the special symbol ‘d’ 

which denotes the beginning of the data block. Then, we enter the initial configuration 

of the Special-Send brick which sends the data block to the far left of the half-line. It 

finishes its movement after length(code segment) + length(data block) + 1 units of 

time. The place it left is filled with a $-block. 

The stop signal which finishes the Special-Send-Left brick is followed by 

a Find-Symbol which begins as the stop signal finishes. It looks after the first 3 it 

meets, that is the beginning of the $-block. It is a signal initiating the shift-left brick. 

When the shift-Left brick starts to work, the code segment and the $-block are 

swapped in real time. At the end, the data block remains on the main signal of the very 

first cells of the automaton. 

All that remains to be done is to push the content of the main signal of the 

configuration into the $-block which is at the beginning of the configuration. That can 

be done by a new simple brick which we call the fallPInto brick whose behavior is 

trivial. The operation above can be described briefly by the meta brick below: 

Start (configuration 0) 

Find-Symbol-right (d); 

SpecialPSendPleft chained with Find-Symbol-right($); 

Shift-Left; 

We have introduced in the example the meta instruction Brick 1 chained with Brick 

2, which says that the beginning of the second brick can be chained with the end of the 

first brick. The operation of this meta instruction is illustrated in Fig. 6. 

When the SpecialPSendPLeft brick finishes its work, it sends a signal which can be 

interpreted as a stop signal. It can initiate a Find-Symbol signal. In that case, we 

would have to define a simple local transition function which transforms the stop 

signal into a find signal when it passes the cell corresponding to the end of the work of 

the first brick. Such a transition rule is quite simple and we will not detail it. 

2.5. The Asynchronous_ Send brick 

The strategy of the Asynchronous_Send brick is the following: (1) the first cell 

(which is a special symbol on the alphabet) receives a Send signal and emits its main 

state to its right neighbor main signal; (2) it underlines the content of its right neighbor 

main state. The underlining corresponds to the instruction “be ready to be emitted”. 

This transition takes place after the state of the left neighbor has been emitted to the 

right. 

The condition of emission is that the main signal of the right neighbor of an 

“underlined” cell has become quiescent after the passage of the message. The local 
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transition function corresponding to the Asynchronous-Send brick is the following: 

AS(b,q),(#, >),(a,q))=(#,q), 

AS(( #, > 1, (4 41, (b, q))=(a, # 1, 

AS((4 41, UJ, 4), (#, >))=@, 41, 

AS(h 2 ml, (a29 419 (a39 4))=(az, m), 

AS((a,,m,),(az,mz),(a3,m3))=(a2,m,), 

AS(@,, 41, (a27 ml (a39 m2))=@2> al), 

AS(h, q), (~2, MI)> (a39 m2))=@2> 41, 

AS(h> 4X (a27 WI)> (~39 m2))=(a2, ai), 

AS(h, q), (~29 ml), (a35 m2))=b!2,4), 

AS((a,> 41, (~2, q)> (~3, m1))=(~2> q), 

AS((~,,~,),(~Z,~Z),(~~,~~))=(~,,~,), 

AS(h> ml), (~2, m2), @3,4))=@2, ml), 

AS(@,, 41, @2>qL (a39 m1))=@2,q), 

AS((a,, 41, (~2, q), (~3, q))=(az, q), 

AS((~,,q),(~z.q),(~3,~,))=(~2,q). 

We can then give the new lemma which describes more precisely the conditions for 

AsynchronousaSend brick. 

Lemma 2.4. If at any time the cell containing thefirst # which marks the beginning of 
the code segment receives a message ” > ” it initiates a process which sends to the right 

the code segment starting from the beginning. The content of the main state of the cell is 
not destroyed. When the # passes above any cell it underlines the content of its main 
state. A marked cell becomes unmarked when it has emitted the content of its main state. 
This can be done tf the main signal of its right neighbor has just become quiescent. 

The beginning of the work of the Asynchronous_Send brick is described by Fig. 2. 

We recall that this brick works together with the receiving brick which gives the 

stopping condition for that process. 

2.6. The Receive brick 

The Receive brick works together with the Asynchronous-Send brick. We recall 

quickly that the Asynchronous-Send allows the message to be sent along the main 

signal of the cells. 
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The message moves as quickly as possible to the right until the first symbol of the 

message has arrived just at the beginning of the data block. The rest of the message 

must then get over the well-placed segment of the message. As it arrives in the reverse 

order, it must jump over the message which is at its right place and move to the right 

on the second signal of the cells until the main signal of its right neighbor is 

a quiescent state. 

It can then “fall” into the main signal of the cell and take a special state. 

Notice that the message jumps over the well-placed duplicated code segment and 

then falls at its right place. Clearly, the message which was previously reversed 

is placed in the right order at its place. The Receive-brick finishes its operation 

after the reception of the entire message. The stopping condition of the 

Asynchronous_Send is that the main state of the right neighbor is a special marker, 

for instance, denoting the end of the data block (cf. Fig. 3). 

We can thus give the local transition function of the Receive brick and we will give 

a third brick to stop the emission. Those three bricks work together with a special 

meta brick which denotes the parallelization of the process. In order to give the local 

transition function we use the definition of the triple cellular automaton. We will 

describe precisely the local transition functions for each value of the triple and give the 

conditions necessary to evolve together. 

The transitions of the main state is obvious. It is an invariant of this brick. It is 

necessary only to give the stopping conditions for the processes. The main signal has 

a behavior which is more complex. We assume with respect to Lemma 2.4 that 

another brick emits what is to be emitted. Thus, the nonquiescent cells on the main 

signal of the cells move as quickly as possible until one meets the first occurrence of 

Fig. 2. The behavior of the Asynchronous send brick. 
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Fig. 3. The behavior of the Receive brick. 

a given symbol (say L for instance). Its local transition function is then 

Rr (a, b, c) = a, RI (4, b, cl = 4, R,(a, 6, q)=a, 

R,(a, 4, q)=a, R,(q> 4, q)=q> R,(q, 4, a)=q. 

To give the rules of moving to the right as quickly as possible as long as they can, we 

give here the stopping condition for the first symbol emitted. The first element of the 

pair denotes the main state of the cell and the second the main signal of the cell. Thus, 

Rz((xI, a), (x2,4),(x3,4))=(%~ a), 

Rz((xI, a), (x2,4), (f; 4))=(x,, a), 

Rz((xI, a), (f, q), (~3, q))=(f; a), 

where x1, x2 and x3 are different from the special markerf: 

To complete the description of the behavior of the evolution of the main signal of 

the cells, we must give the condition where the messages continue their movement on 

the second signal of the cells. To that end, we need to consider triples where the two 

first elements are as before and the third one denotes the second signal of the cells. 

Thus, the local transition function can be written as 

R,((xI, a, 41, (~2, b> q)> (f; 4, q))=b, _> b a), 

R~((xo> ~2,4),(xl,~l,q),(XZ,b,q))=(xl,~2~q). 

Then, as the message is on the second signal of the cells it continues its movement to 

the right as quickly as possible. The local transition function is then given by the 
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following rules where the elements are on the second signal of the cells: 

R3 (a, b, c) = a, R3 (4, b, cl = 4, R~(Q, 6, q)=a, 

R~(u, q> 41-a, R3(q> q, ql=q, R3(q, 4, a)=q. 

The message runs on the second signal of the cells until its right neighbor contains 

on the main signal a quiescent state which indicates that the message can “fall” in the 

main signal line. The local transition function which describes that process is given by 

the following rules where the first element of the pair denotes the state of the main 

signal of a cell and the second the state of the second signal of the cell. Thus, 

R~((xo> a1 1, (Xl, qh (4,4))=(:u,, a,), 

R~((xo> a3h (Xl, az), (x2, a1I)=(x,, a3). 

By combining the different rules we have given, it is possible to define the local 

transition function. With the local transition function above, we can give the new 

brick. 

Lemma 2.5. [f, at any time, the triple cellular automaton has on its main signal 

a nonquiescent segment identified with a reverse message according to Lemma 2.4, then if 

the cell containing the first symbol ofthe reversed message has a left neighbor containing 

on its muin stute u special symbol (for instunce f; the special marker which indicates the 

end of a data block) the content of its main signal becomes marked and does not move to 

the right anymore. When the main signal of the following cells meets a right neighbor 

with an underlined main signal, they both continue their movement to the right by 

jumping over the underlined main signal on the second signal of the cell. They become 

marked when the main signal oftheir right neighbor is a quiescent state and then fall into 

the main signal of their right neighbor. 

We have given the strategies of the asynchronous emission of data to the right in the 

reverse order and how they are received and replaced in the correct order. We must 

now give the condition to stop the emitting process. The receiving process is trivial to 

end. It stops when the signal on the main signal of the cells disappears. 

2.7. The Stop brick 

In the previous section we have seen the importance of the Stop brick. The emission 

of code can be stopped when the last symbol is to be emitted. In our case, such 

a symbol is given by the marker of the beginning of the data segment: the ‘cl’ marker. 

When the left neighbor of the cell which contains in its main state the d symbol is 
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emitted, the emission stops. This terminates the process of the Asynchronous-Send 

brick. 

Lemma 2.6. In order to stop the emission process the half-line must contain in a cell 
a special symbol (the d marker for instance) on the main state of the cells. When the 
emission process arrives at the cell located before the one which contains the special 
symbol, it stops the emission and ends the two bricks Asynchronous-Send and the 

Stop brick. 

We now give a more detailed explanation of the meta brick which allows to run 

different bricks and stop at least one of them at different times. 

2.8. The In-parallel meta brick 

Recalling the bricks corresponding to Lemmas 2.4-.2.6, we initially assumed the 

existence of a meta brick In_ParaIIeI which allowed us to compose the brick 

previously described and let them work together. Effectively, the last three bricks 

cannot be realized sequentially. The Asynchronous_Send bricks need the Stop brick 

to end the emission of data and this implies that the Receive brick has finished. This 

combination of the three bricks is quite difficult to detail in the local transition 

function: the number of transitions increases so quickly that their description would 

become not understandable. All the cases which may occur in the action of the 

configuration are treated by the bricks. The bricks sort the impossible configurations 

and work as soon as they can. 

Clearly, the Asynchronous%Send will not apply on a cell which has a second 

signal which is nonquiescent. The Receive brick will not work on a cell with 

a quiescent signal as left neighbor. These two examples show that the meta brick is 

capable of telling which brick is going to be applicable for any possible neighbors. 

One can convince himself that it is possible to write the corresponding local transition 

functions which are the same as the following instructions in our “brick language”: 

In-Parallel 

Asynchronous-Send// 

Stop//Receive. 

2.9. The Sum-up brick 

From the usual finite automaton which computes addition, it is possible to design 

a brick for the same purpose. To that end, we need a cellular automaton with three 

layers; the main state, the main signal, plus the synchronization. The main state and 

the main signal contain symbols in the set (0, 1, #, r> and the synchronization is 

superimposed on the sum process. Thus, we have the following result. 
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Lemma 2.1. The addition of two numbers written in binary with the most significant bit 

jirst with two border cells can be done in real time by the Sun--up brick. 

Proof. We give the local transition function corresponding to the brick: 

cell (0, r) (1, r) (O>O) &Al) (1,O) (1, 1) 

((-. Oh -1 
cc-> lb -) 
CC-, f-1, -) 

(09 0) 
(03 0) 
(13 0) 

(0% 0) 
(l,O) 
(O,r) 

VLO) 
(0, 0) 
(l>O) 

(17 0) 
(1.0) 
(0, r) 

The ~ state corresponds to any symbol. It is easy to see that the worst time for 

computing the sum is equal to the length of the numbers, that is, the time to propagate 

the carry r from the leftmost end to the rightmost end. Thus, we synchronize the brick 

with the help of the firing squad lemma with the two border cells as generals. Cl 

3. Coding the transitions and the configurations 

As in [l] we will encode the transition function and the initial configuration of the 

cellular automaton to be simulated. Indeed, if we refer to Definition 1.13, CA- 

universality is obtained by simulation of the transition function starting on an initial 

configuration. The universal cellular automaton must then contain a description of 

those two parameters. It is the same idea as used for constructing a universal Turing 

machine. 

In the present section we give the binary coding of the transition function of the 

cellular automaton to be simulated by the universal one. 

Initially, we assume that the cellular automaton A to be simulated is given by its 

transition function given in a totalistic form with respect to Definition 1.2 and by its 

initial configuration (that is the nonquiescent part of its cells) given in nontotalistic 

form. 

There is no loss of generality in assuming that the transition function of the cellular 

automata to be simulated is given in additive form. Lemma 1.3 ensures that it is 

always possible to transform any cellular automaton into a totalistic one. 

3.1. Coding the transition function 

The transition function of the cellular automaton A to be simulated is supposed to 

be in totalistic form. That is, the transition function is given asf: N -+N. We have then 

some pairs of data (i,f(i)) according to the natural definition of a function with the i’s 

ordered as usual. The local transition function is then defined as the set: 

f:={(i,f’(i)): iG{l, 2 ,..., 3 xn}$ 

where n denotes the number of states of the cellular automaton. 
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A transition of the cellular automaton can be divided into two steps: first, the 

cellular automaton computes the sum of its own state with the state of its left neighbor 

and with the state of its right neighbor for each nonquiescent cell and for the two 

quiescent bordering cells of the configuration. 

This is the reason why we need to have numbers of the interval of N comprised 

between 1 and 3n in the description of the local transition function of the cellular 

automaton to be simulated. The result of this sum can be interpreted as an i of the setf: 

The cellular automaton then reads the contents off(i) and replaces the old state by the 

image of the sum by the transition function. 

We will first describe the set fgiven previously by a word of the form 

# (# xTyJ3” # 

such that 

x=(&n(i) written with rlog,3nl digits: i+} and 

y= {Bin(f(i)) written with rlog,3nl digits: f(i)~Q} 

such that i corresponds to the first element offandf(i) to the second one. The first two 

# introduce the code segment, one # separates two blocks of code and the 1 is 

a special symbol to separate the two numbers in a block of code. 

Clearly, the domain and the image of the functionfcan be considered as words over 

the alphabet (0, 1, . . . , 9} in decimal format. This alphabet is not convenient for 

a cellular automaton. 

Hence, as usual, we will take the binary representation of the numbers given as 

words. To make the representation easier, we want all words to be of the same length. 

To do that, we take the smallest size necessary to represent the biggest number in 

binary representation. In other terms, rlog,3nl is the number of bits necessary to 

represent the maximum number which can be obtained by summing up the states. 

Moreover, the most significant bit is at the right. For instance, if the local transition 

functionfcontains the pair (2, 6) and the cardinality of the set of the states of the 

cellular automaton is two, the pair will be coded in the universal cellular automaton 

by the word 0107 011 # called code block. The concatenation of all the code blocks 

ordered by the usual order is called the code segment. The two symbols 7 and # are 

special symbols of the alphabet. The role of the # ‘s is to separate the code blocks and 

the role of the 1’s to separate the binary representation of the two numbers of the 

pairs. 

Example 3.1. Let A =(Q,f) be an additive cellular automaton with Q = { 1, 2) and 

f defined as follows: 

i 123456 

f(i) ~ 2 2 1 2 



A universal cellular automaton 219 

The transition functionfwill be coded in the following way: the two -‘s corresponding 

to any state, are replaced by the special sequence 111: 

the # 

introduces the maximal separates separates two 

code segment length two blocks numbers 

##100~111#010~111#110~010#001~010#101~100#011~010# 
\ V I 

a code block 

the code segment 

The coding of the transition function of the cellular automaton A needs 

6n(rlog, 3nl+2)+ 2 cells of the universal cellular automaton. Each cell of U 

contains a symbol in (0, 1, #, q}. 

In this coding, we can remark that the first element of the pairs of the transition 

function could have been omitted. It would seem to be very economical. But it is an 

easy trick to help our universal cellular automaton when it is searching the datum 

corresponding to the sum it has just computed. If we do not, the universal cellular 

automaton has to count the number of #‘s it has crossed. Such a mechanism would 

be expensive in states and too long for the universal computation. Indeed, the 

universal cellular automaton not only has to compare the digits of the signal emitted 

with the cells corresponding to the transition function, but also memorizes the 

number of #‘s it has already seen. 

3.2. Coding the initial configuration 

The initial configuration of the cellular automaton to be simulated by the universal 

one is supposed to be a snapshot. This snapshot is coded into the universal cellular 

automaton. 

There are two techniques to encode the initial configuration. They both use the 

binary representations of the states to be described. The difference between the two 

techniques is based on the performance of the universal computation which can be cut 

in two principal steps. As first “step”, the cellular automaton computes the sum of its 

own state with the state of its left neighbor and with the state of its right neighbor for 

each nonquiescent cell and for the two quiescent bordering cells of the configuration. 

That is the reason why we need to have numbers of the interval of N comprised 

between 1 and 3n in the description of the initial configuration of the cellular 

automaton to simulate. The result of this sum can be interpreted as an i of the set f: 

The cellular automaton reads then the contents off(i) and replaces the old state by the 

image of the sum by the transition function. The first possibility is to code the initial 
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configuration as it is on the cellular automaton to be simulated. So, the first step of the 

universal computation will be to sum up the states in groups of three neighbors. The 

second is to compute the sum first and code the result in the universal cellular 

automaton. The first coding will be called instantaneous description of the initial 

configuration and the second one the totalistic,form. 

We will prefer the totalistic form for many reasons. The first one is that computing 

the sums first before the universal computation is quicker than to begin the universal 

computation with the computation of the sums. Indeed, the two sums described above 

are, by assumption, done in real time. That is, the data are nearer before the universal 

cellular automaton starts. Secondly, the very first steps of the universal computation 

are more understandable if we begin with the search of the image of the additive state 

than by sums and communications. Third, we thus restrict the expansion of the 

cellular automaton to the right in the case where we simulate a half-line rather than 

a segment. 

For instance, if the initial configuration of the cellular automaton to be simulated is 

112122, it will first be summed up (more precisely, the binary representation of the 

initial states will be summed up three by three) in: 

l 4455 if the cellular automaton to be simulated is a segment; 

l 44554 if the cellular automaton to be simulated is a half-line. 

The word representing the coding of the configuration of the cellular automaton to 

be simulated in the universal cellular automaton is such that: 

the beginning and the end 

of the segment are marked each (4 separates the 

by #‘s coding of the cells of A 

# (~100@100@010@ 100@010@010@ # 

I 
data block 

v 
data segment 

I 

Each data segment can be written as a word of the following form: 

#(X@)k# 

with 

x = {Bin(i) written with [log, 3nl digits, igQ>, 

such that x corresponds to the binary representation of the additive form of the initial 

configuration of A and k denotes the number of nonquiescent cells on the additive 

form of the decimal representation of the additive form of the initial configuration of 

A. We can then evaluate the space each data block needs: 

[log, 3nl+ 1. 
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Thus, the number of cells needed to encode a data segment containing k additive 

data is (k(rlogz3nl+1))+2. 

4. Distribution of the code 

In this section, we present the manner in which the code is distributed between the 

given totalistic data blocks of the universal cellular automaton’s initial configuration. 

We assume first that the concatenation of the code segment and of the data segment 

of the cellular automaton we want to simulate is now the initial configuration of the 

universal cellular automaton U. Thus, each cell of U represents one of the following 

symbols: {O, 1, #, @, q} and {q} where q denotes the quiescent state. 

The code segment represents exactly the coding of the totalistic transition function 

of the cellular automaton to be simulated. After the code segment we concatenate the 

data segment. We can assume, without loss of generality, that the data segment is 

composed of the sums by triples of the initial configuration of the cellular automaton 

to be simulated. We have a data segment made up with the right infinite word: 

#d,+dz+d3@ . . . @id,-z+d,-, +d, # q” 

Lemma 4.1. It is always possible to get the totalistic initial conjiguration from the 
nontotalistic one in time 3rlog, 3nl+ o(l), where n denotes the number of the states. 

Proof. Assume the initial configuration of the cellular automaton to be simulated is 

coded in nontotalistic form as described in Section 3.2. That is, we have a configura- 

tion of the form 

#d,@d2@dg@ . (~d,_,~d,_l@dd,@ #q”. 

We also assume that the cellular automaton to be simulated is a segment rather 

then a half-line of automata or any other cellular automaton. It is not much harder to 

modify the process for the other types of cellular automata. The final configuration we 

aim to obtain is of the following form: 

d,+dz+d3(C;dd2+d3+d4(2 . ..(dd._,+d,_,+d,@ #q”. 

To get the initial configuration in totalistic form we twice use the cellular automa- 

ton which computes the sum of two numbers of the same length in real time (cf. 

Lemma 2.7). By real time, we mean that the number of units of time to process the sum 

is exactly the same as the length of its initial configuration (the two numbers). The 

primitive idea is to cut the additions into two phases: 

(1) summing up the state with its left neighbor; 

(2) summing up the partial result with the right neighbor. 

The data segment is entirely synchronized by means of the firing squad lemma with 

one general. Then, the coded states are emitted synchronously to the right as quickly 
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as possible. They arrive above the nearest right neighbor after length(data block) units 

of time as illustrated in Fig. 4. 

Then, the cellular automaton which computes the sums, adds up the two data 

blocks, memorizes the partial result, and synchronizes the data segment block by 

block. Then, to sum up the triples, the cellular automaton does the symmetrical 

operation. It corresponds to the second part of the sum. To that end, it sends the data 

blocks to the left as quickly as possible. The data blocks emitted arrive above the 

nearest left neighbor after length(data block) units of time. Then, the cellular automa- 

ton that computes the sums, adds up the data block received and the partial sum and 

memorizes the final result. 

Clearly, thanks to the cellular automaton which computes the sums, the cellular 

automaton which transforms a nontotalistic initial configuration into a totalistic one 

can easily be constructed. 0 

As we have just seen, we can consider, without loss of generality, that the initial 

configuration of the universal cellular automaton is of the form (C x D), where 

D denotes the concatenation of all the data blocks or, in other words, the data segment. 

We must transform the initial configuration into a configuration of the form 

d,Cd2Cd3C...dkC 

with may be some special markers between the di’s and C’s and where k denotes the 

number of totalistic data blocks; we call this operation the distribution of code. 

One may ask the reasons of the transformation of (C x D) into (d x C)“. The goal of 

this transformation is to speed up the search for the image of a data by the coded 

transition function. If the code were too far, we would have needed plenty of time to 

get the same result. We can also imagine other possibilities for distributing the code 

between the data. The dual solution of the one we gave before is to have an initial 

dl d2 d3 d4 dk 

sums + local synchronizat .ons 

Fig. 4. Transformation to a totalistic configuration 
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configuration of the form (C x d)k which is of the same type as ours. Another 

interesting alternative comes from the fact that the code must not be far from the data. 

Thus, to make a more economical solution, we could have distributed the code 

between each two data blocks and got another initial configuration of the form 

d,dtCd3d4C . dk_ 1 dkC but, in that case, we would have had plenty of crossing 

signals when the data are emitted. To avoid the collisions we would have been led to 

increase the size of the tuple cellular automaton, which would have multiplied the 

number of states of each cell. We will not go further into the description of possible 

initial configurations. There are plenty of them. We retain the first one. 

The distribution of the code is made in the following way: the first operation of the 

cellular automaton is to send a quick signal to the right to find the special symbol 

which delimits the end of the first data block. This one is then emitted to the left and 

its place is left free. It thus allows the code to be shifted to the right. The following 

operations are to duplicate the code segment and to shift it to the right after the next 

data block if some data blocks still remain. Such a process is depicted by Fig. 5. To 

detail these operations we introduce the notion of brick which describes a routine of 

the distribution of code. 

In the following sections, we will not give the details of the synchronizations which 

occur in the behavior of the cellular automaton. We assume that every operation is 

able to be synchronized and we will give later the synchronization strategy. 

4.1. General script qf the code distribution 

We recall briefly the initialization of the process (see Fig. 6) by the use of the bricks 

and chain with the following: 

In-Parallel 

Start(configuration 0) 

Find-Symbol (d); 

Special- Send-Left chained with Find- Symbol ($); 

Shift-Left; 

Fall-into (main signal); 

Find-Symbol (d); 

Iterate 

In-Parallel 

Asynchronous- Send// 

Stop// 
Receive; 

Shift-Right (data segment under the duplicated code); 

Fall-into (main signal); 

Find-Symbol-Left (end of a data block symbol); 

Send_Signal_Right (send-signal) 

Until no more data blocks can be shifted to the right. 
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code dl d2 dk 

\ Find-Symbol 

Shift-Left 

Asynchronous Send 

Special Send Left 
. . L 

q 
4 Fall Into 

Receive 

Fig. 5. The code distribution 

‘Sbloc 

Fig. 6. Beginning of the code distribution. 
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A new meta brick has been introduced in order to iterate the process of the code 

duplication. The condition “no more data blocks can be shifted to the right” is 

obtained by the occurrence of the special marker # after the end of the last data 

block. It says that the duplication of the code segment has only to be done once again. 

The operation of the Fall-Into brick introduced above is to replace the $-word by the 

data block. 

4.2. Time complexity of the code distribution 

We give the time complexity of the code distribution. We describe step by step the 

work of the code distribution given in brick language: First, the cellular automaton 

sends a signal moving to the right as quickly as possible to find the end of the first data 

block. This process is identified with the brick Find-Symbol(d). The signal reaches 

the symbol d after: t1 = length(code) = 6nrlog, 3nl+ o( 1) units of time. 

When the Find-Symbol brick has identified the position of the beginning of the 

first data block it sends it to the left and leaves its place free. This is the action of 

the Special-Send-Left brick. The entire first data block is gone after: 

t2 = 2 length(data) = 2 [log, 3nl+ o( 1) units of time and finishes its movement to the 

left end of the half-line after t3 =length(code)=6nrlog, 3nl+o(l) units of time. The 

next step is to identify the first $ and shift the $-block to the beginning of the half-line. 

This is done in time: t4 = 2 length (code) + o( 1). 

Then, we order the first data block, which is on the main signal to the main state 

instead of the “free” markers. This is done by the Fall-Into brick. One can see easily 

that it works in real time. Thus, the time to do the Fall-Into brick is: 

t5 =length(data)=rlog, 3nl+o(l). 

The role of the Fall-Into is to replace the $-word by the data block. Its behavior is 

intuitive enough and one can convince himself that it is possible to write its local 

transition function. It works in an asynchronous manner and uses a signal which dies 

at the left end of the data segment. 

Then a new Fall-Symbol brick is made to find the beginning of the code segment 

in order to enter the iterate meta brick. From now on we enter a more general loop 

which is iterated while some data blocks still remain. 

The general strategy of the code distribution can be divided in two main 

phases: 

(1) the code segment is duplicated and shifted; 

(2) the rest of the data segment on the right side of one data block is shifted to the 

right, at the end of the duplicated code segment. 

The time-space diagram shows clearly that the time is the following: 

t6 = 3 length(code) + length(data) = (1%~ + l)rlog, 3nl+ o (1) for the entire duplication 

of the code, which is asymptotically of order O(nlog, 3n). 

The rest of the data segment must be shifted to the right and leave the place free 

for the code segment which must be integrated into the main state of the half-line. 

Notice that the Shift-Right corresponding to the process in brick language works 
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analogously to the code emission and uses the second signal of the cells instead of 

the main signal and respectively. The brick needs the following time to be executed: 

t,=2(lengthcode)+klength(data))=12n(rlog,3nl+1)+2krlog,3nl+2), where k 

denotes the number of data blocks remaining. 

Note that we have compressed the Shift-Right and Fall-Into bricks into one. It is 

possible to find one transition function which can do the two processes together. We 

will not give the details. Its construction is similar to the constructions we have made 

in the previous sections. The important thing is that, at the end of the process, the 

active cell is the last one. That is the reason why we send a Find_Symbol_Left to seek 

for the beginning of the last code segment which has been duplicated, to go further in 

the iteration of the process if some data blocks still remain. 

Henceforth we are able to give the entire time complexity of the code distribution. 

To that end, let us assume that the number of data blocks in totalistic form is denoted 

by the letter k. Moreover, let us assume that the length of a data block is denoted by 

d and the length of the code segment by the letter c. Clearly, we have c = 0 (64 where 

II is the number of states of the cellular automaton. If we take brick by brick the time 

complexities given before, we get for the following: 

Find_ Symbol (d); 

Special- Send-Left chained with Find- Symbol ($ ); 

Shift-Left; 

Fall- Into (main signal); 

Find-Symbol (d); 

a time complexity of 4d +4c and for 

Iterate 

In-Parallel: 

Asynchronous-Send// 

Stop/l 
Receive; 

Shift-Right (data segment under the duplicated code); 

Fall-Into (main signal) ; 

Find-Symbol-Left (end of data block symbol); 

Send- Signal- Right (send- signal) 

Until no more data blocks can be shifted to the right. 

which is made (k- 1) times - as long as there are some data left on the half-line 

after the first part of the work of the process- we get a time complexity of: 

6(k- 1)c + 3 (O(k’)d). Thus, by adding the two time complexities, we get a time 

complexity of the process of the code distribution of the order O((k log n)(n + k)). 
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5. Computing universality 

In this section, we describe how the universal computation on a segment of 

automata is done. It can easily be transformed for a half-line of automata, but this will 

not be presented in this section. 

Recalling the results of the previous section, we now dispose of an initial configura- 

tion of the cellular automaton of the form (II x C)k. This configuration allows us to 

compute the simulation of an arbitrary cellular automaton, say A. We will distinguish 

the following steps in this process: 

(1) send the data block numbered j to the next data block at the right; 

(2) sum up the data numbered j and the data j+ 1, keep the data j+ 1; 

(3) send the data block numbered j to the previous data block at the left; 

(4) sum up the data numbered j and the final sum of (j- 1) +( j-2); 

(5) send the result of the sum to the corresponding number of the transition table; 

(6) take the result of the application of the transition function to the number and 

return it to the previous data block. Erase the content of the old value; 

(7) return to step 1. 

All the data blocks are emitted to their right neighbor. When the data blocks arrive on 

the main signal of the cells containing the next data on their main state, the contents of 

the two cells are added and the partial result obtained is written in the second signal of 

the cells. Then step 3 is carried out and the contents of the data blocks are sent to their 

left neighbor. 

When the data blocks arrive on the main signal of the cells containing the final 

result computed before on their second signal, the contents of the two blocks are 

added and the final result obtained is written in the main state of the cells and the 

other parts return to the quiescent state. Figure 7 illustrates the first steps of the 

simulation. 

The first four steps may be described in our brick language in the following way: 

Start(configuration “code distributed”) 

Firing- Squad- 1 (left) on nonquiescent part; 

Special_ Send-Right (main state); 

Superimpose 

Sun--up (main state + main signal --> second signal) 

with 

Firing-Squad-Z (on data blocks); 
Special-Send-Left (main state); 

Superimpose 

Sum-up (second signal + main signal --> main state) 

with 
Firing_ Squad_ 2 (on data blocks); 

final configuration (“end of sums”) 



228 B. Martin 

d_i code dj+l 

dj-1l I I Idj 

Fig. 7. The first steps of the simulation. 

The new bricks can easily be deduced from the bricks detailed in the previous 

sections and will not be described. The meta brick Superimpose with indicates that 

two processes are superimposed, the send process or the summing process with 

a firing squad which runs on the synchronization part of the cells. It can be seen as 

a CA-product with respect to Definition 1.5. 

We can then give the time complexity of the first four steps of the process which is 

clearly given by the synchronization time. The entire segment of automata is synchro- 

nized with the help of the firing squad lemma with one general. Thus, we get the time 

complexity: ti =2(k(c+d))-2+ 2c + 2d. 
We can now describe the other part of the process, namely the Find-Image meta 

brick. The result of the sum is emitted to the right in order to be compared with the 

first part of each block of code corresponding to the data emitted. When the entry 

corresponding to the data emitted has been found, it is emitted to the left in order to 

replace the old value of the data block. Arriving left, the image of the old value takes 

the place in the data block. This simulates one transition of the given totalistic cellular 

automaton A. Figure 8 illustrates the Find-Image brick. Those steps can be de- 

scribed in our brick language to form the meta brick Find-Image which simulates 

one transition of the cellular automaton A. 

Find-Image:= Start (configuration “end of sum”) ; 

Superimpose 

Inparallel 
SpecialLSend_Right (data)// 

Compare-Stop; 

with 

FiringSquad_ (left) on data blocktcode segment; 

end, 
final configuration (“end of transition”); 
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Fig. 8. The behavior of the find image brick 

In the above description, Firing&Squad_ 1 (left) stands for Minsky’s solution to the 

firing squad synchronization problem which is in time 3 length(segment) - 2. The time 

complexity of the Find-Image brick is trivially given by the time of the 

Firing-Squad with one general. Anyway, we must wait for the worst case, which is as 

follows: the data emitted correspond to the last data of the code segment. Thus, the 

time complexity of the Find-Image brick is given by: tz = 3(c+d)+o(l). 

The simulation of one transition of A is thus defined by the concatenation of the 

previous bricks. 

Simulate: := Start (configuration “code distributed”) 

Firing&Squad_ 1 (left) on nonquiescent part; 

Iterate 

Special-Send-Right (main state); 

Superimpose 

Sum-up (main state + main signal --> second signal) 

with 

Firing-Squad-2 (on data blocks); 

Special- Send_ Left (main state) ; 

Superimpose 

Sum-up (second signal + main signal --> main state) 

with 

Firing-Squad-2 (on data blocks); 

Find_ image; 

until any halting condition; 

The time complexity of one iteration simulated is thus t1 + t2 = 2(k + 2)(c + d) + o( 1). 

Figure 9 gives the general scenario of the superimposed synchronizations. The first 

Firing-Squad synchronizes once the whole half-line in order to emit the data blocks 
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n non-quiescent cells 
w 

Fig. 9. The synchronizations. 

to the right to be compared with the first part of each data block until the correspond- 

ing entry is found. During the search of the corresponding entry, k firing squads run to 

synchronize locally the half-line with the worst time possible. That is the correspond- 

ing entry is the last one. 

Remark that it is strongly required that the cellular automaton to be simulated be 

in totalistic form. If it were not, by applying Lemma 1.3, the corresponding additive 

CA would have N = n(n + 1)3 states, where n is the number of states of the original CA. 

Since the universal CA U simulates additive CA, this would lead to a time complexity 

for simulating one step of the original CA of O(N log N) = 0 (n4 log n), and thus the 

simulation would not work in quasi-linear time anymore! 

6. Final details 

If we wish our CA U to be computation-universal without using Turing machines, 

we can consider that a CA A enters on its first cell in an accepting state and freezes its 

evolution - with the help of synchronizations, for instance ~ in order to keep the result, 

In such a case, the universal CA U must, to end its simulation, clean up its line. 
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If the CA A to be simulated has an accepting state, the CA U must leave only the 

data resulting from the computation of A on its entry. To that end, it must destroy all 

the parts of the CA containing the code segment and concentrate all the cells with data 

segments. 

This can be done by the following steps: 

(1) all the data blocks are emitted to the left at unit speed; 

(2) the main line is destroyed; 

(3) all the data blocks concentrated on the left of the line fall into the main line. 

This type of cellular automata, able to compute and stop when the computation is 

completed, is called “computational-CA” or C-CA for short. 

7. Application to theory of algorithms 

We have shown in the previous parts of this paper that there exist a CA which is CA 

universal in quasi-linear time. This result allows us to apply the S-m-n theorem to 

the CA’s, 

We show here that cellular automata are really an acceptable programming system 

in the sense of Blum. We define first what is called an acceptable programming system. 

Definition 7.1 A programming system is a listing cpo, ‘pr , . . . which includes all the 

partial recursive functions (of one argument over N). A programming system 

cpO,cpl~~~~ is universal if the partial function (Puni” such that quniv(i, X) = vi(x) for all 

i and x is itself a partial recursive function; that is, if the system has a universal partial 

recursive function. A universal programming system cpo, cpl, . . . is acceptable if there is 

a total recursive function c for composition such that cpc (i, j) = ‘pi 0 ~j for all i and j. 

Programming systems are often referred to as indexings of the partial recursive 

functions. An important and useful property of reasonable (i.e. satisfying the definition 

above) programming systems is the ability to modify programs so that some input 

parameters are held constant. We recall quickly the S-m-n theorem, which shows 

that this property holds for all acceptable programming systems. 

Theorem 7.2. (S-m-n theorem). For any acceptable programming system qo, (pl, . . 

there is a total recursive function S such that for all i, all m 3 1 and n 3 1, and for all 

xl,...,x, and yl,...,yn 

That is, the function allows us to specify that the first m arguments for the ith 

program be held constant at x1, . . , x,. The proof will be omitted, since it can be 
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found in any book on computability and there is no special internal interpretation of 

it for cellular automata. 

As a particular case of this theorem we can apply it as S- 1~ 1 theorem. 

Theorem 7.3 (Sl-1 theorem). For any acceptable programming system cpO, cpl,. . 

there is a total recursive function S such that for all i and for all x and y, 

cPS(i,x)(Y)=cPi(x~ Yl 

That is, the function allows us to specify that the first argument for the ith program 

be held constant at x. We will not develop the proofs of those theorems in the present 

paper. They are well known and can be found in Machtey-Young [9] for instance. In 

this paper, we will show how the class of computational-CA is an acceptable program- 

ming system. 

Proposition 7.4. The class of C-CA contains all the partial recursive functions. 

The proof of this proposition is easy. It comes directly from the well known 

simulation of a Turing machine by a CA. The other fact necessary to end the proof is 

that the Turing machines form an acceptable programming system. 

Proposition 7.5. Any Turing computable function can be computed by a C-CA 

It is well known that the computation of partial recursive functions is equivalent to 

Turing computation. We use a simulation of a Turing machine by a C-CA. This way, 

we get an indexing of partial recursive functions. We thus get the following result. 

Proposition 7.6. The C-CA form a programming system 

This is the first step in the proof of the fact that C-CA are an acceptable program- 

ming system. We still have to prove, according to Definition 7.1, that C-CA form 

a universal and acceptable programming system. 

The universality of the C-CA programming system comes from the universality of 

the Turing machines programming system and from the following proposition. 

Proposition 7.7. Every C-CA function can be computed by a Turing machine. 

We can then give our theorem. 

Theorem 7.8. The C-CA programming system is an acceptable programming system. 

Proof. We consider the following facts. 

Fact 1. The previous propositions allow us to say that the C-CA are a universal 

programming system. One type of universality comes from the existence of a C-CA 

which simulates the evolution of a universal Turing machine. 
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Here, we consider the intrinsic universality. The existence of an intrinsic CA comes 

from [l] and from the CA described in this paper. 

Fact 2. With the coding of [l] it is hard to obtain the composition as defined above. 

U receives as entry a segment composed by the code C of the CA A to be simulated 

followed by a segment containing the initial line of A. This last segment will be called 

X. Let Ci and Cj denote the codes of the two CA’S pi and ~j. 

The C-CA V numbered V, (i, j) realizes the following operations on an initial line 

containing the successive segments CiCjx. 

The CA U simulates the work of the ith CA on the entry x. 

If the computation bi(.x) ends, U cleans up its line. 

Then, a special CA transforms the segment CjCi into the segment CiCj. Such a CA 

will not be described there, but it is easy to obtain one which works in real time. (i.e. 

length(Cj)+length(Ci)). 

The CA U simulates the work of thejth CA on the entry &(x). 

If the computation ~j(~i(x)) ends, U cleans up its line. 

At last, the CA transforms Ci Cj into the segment CjCi. 

It is clear that we can construct effectively the transitions of such a CA from the 

transitions of U and of the reversing CA. We have thus defined a function c which is 

total recursive. 

The composition could also be obtained by using the fact that there is a recursive 

transformation from CA to Turing machines and vice versa, but in that case, we would 

not have proved that CA form intrinsically an acceptable programming system. 0 

We have completed the proof that the C-CA form an acceptable programming 

system. This leads us to the world of general theory of algorithms. 

For instance, we have the general result which allows us to translate directly 

a programming system to another in an effective way. 

7.1. Obtaining the S-m-n theorem 

In the previous section we have proved that an intrinsic universal CA is an 

acceptable programming system and the way we get the composition. This gives us the 

S-m-n theorem. This is a consequence of the programming systems. To get this result 

we recall quickly the proof of the theorem. The coding of the function of several 

arguments into functions of one argument is another property of the function S. It 

does not need to have n arguments. We introduce the following functions: 

Let ( ),, be the coding of FU”+N. This function is defined in a recursive way as 

below: 

(x1 )...) x,)=(x,, (x,, . . . . x,)). 
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Let Con@, (xi, . . . . x,), (yl ,..., y”))=(xi ,..., x,,y, ,..., y,,) be the concatena- 

tion function. Then, the Sm-n can be written as: 

~S(i,~,(x,,...,X,))((Yl~.~~~Y~))=~i((xlr~~~,x~,Yl~~~~~Yn))~ 

Using the primitive recursive function Con, we see that a total recursive function 

S such that for all i, all ma 1 and all x and y, 

~s(i,,,x)(Y)=~i(Con(m, X, Y)) 

will satisfy the conditions of the theorem. 

To finish the proof we define three helpful total recursive functions P, Q and R: 
Since the C-CA form an acceptable programming system, there are CA’s numbered 

p and q such that 4P= P and 4, = Q. 

P(y)= (0, Y), 

Q((x, y))=(x+ 1, y) for all x and y, 

R(O)=p and R(x+ l)=c(q, R(x)) 

for all x where c is the total recursive function for composition. It is also easy to see, by 

an easy recurrence, that 4R(xj(y)= (x, y) for all x and y. 

Recalling that, by definition of the function ( ),, (x, y, z) = (x, (y, z)), we notice 

that 

4 R(X)o~R(Y)(Z)=~R(X)((Y) z)l=(x, Y, z). 

Finally, let k be such that &((m, x, y))=Con(m, x, y). 

If we define S(i, m, x)=c(i, c(k, c(R(m), R(x)))), we have 

&cl, 4 x)(y)=4i” ho 4~~0~ 4~w(Y)=4i(Con(m~ X9 Y)) 

which completes the proof that the S-m-n theorem applies on the C-CA. 

Theorem 7.9. Let cpO, cpl,. . . be any universal programming system and let I/I~, t+bl, . . . be 
any programming system with a total recursive S-l-l function: that is, there is a total 
recursive function S such that: for all i, x and y, there is a total recursive function t which 
translates the system ‘pO, ‘pl , . . . intO the system Go, I//~, . . . . that is, (Pi=~t(i) for all i. 

The proof is omitted and can be found, for instance, in [9]. In other words that 

there exist an effective procedure to translate C-CA programming system to any other 

programming system. Thus, any acceptable programming system is equivalent to the 

C-CA programming system in a fairly strong sense. 

7.2. Algorithmically unsolvable problems 

We give now some examples coming from the general theory of algorithms which 

are directly applicable to cellular automata. Let @e, Q1, . . . be an acceptable program- 

ming system. 
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If II/ is a partial recursive function, we say that $ (x) is convergent if $(x) exists, or 

equivalently x E 01) where D$ denotes the domain of the function $. Conversely, we 

say that $(x) is divergent if $(x) does not exist, or equivalently x4 DI+!I. This means that 

if the calculus of $ on the input x is convergent then the calculation halts on x. 

We show, in the present section, that some general problems are algorithmically 

unsolvable. We start with the halting problem which means that there does not exist 

a cellular automaton which decides if a given “program” stops (or does not) on a given 

input. This problem is independent of any programming system and thus applicable 

to cellular automata. 

Theorem 7.10. Let I)*, 11/l) . . . be an acceptable programming system. The function f such 

that for all x and y, natural numbers, 

fk Y)’ 
1 if $,(y) is convergent, 

0 otherwise 

is not a recursive function. 

The proof of the theorem will be omitted. It is a direct consequence of the fact that 

CA form an acceptable programming system. 

Remark 7.11. We find again the fact that, during the evolution of a cellular automa- 

ton on a given input, the occurrence of a given state cannot be predicted. 

Similarly, we also obtain Rice’s theorem which shows that in any acceptable 

programming system there are no nontrivial properties of the input-output behavior 

of programs, that is, properties of partial recursive functions, which can be decided by 

looking at the programs. 

We define PC the set of the partial recursive function with a given property by 

.Yc={x: &EC}. 

Then, we can give the following version of Rice’s theorem. 

Theorem 7.12. PC is recursive if and only if PC = $3 or PC = N. 

The proof of the Rice’s theorem is well known and 

theory of algorithms or complexity theory (e.g. [9]). 

can be found in any book on 

Remark 7.13. All the usual consequences of the Rice’s theorem can be applied to the 

cellular automata. Particularly, it is not possible to test algorithmically if two cellular 

automata can do the same computation. 

Rice’s theorem is very important because it destroys any hope to test algorithmi- 

cally the behavior of the input-output of programs. 
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8. Conclusion 

The idea of the decomposition by bricks of our universal cellular automaton comes 

from programming the behavior of the universal simulation on a computer. The 

bricks correspond approximatively to the procedure which occurs in the pascal- 

program. Programming has also been helpful for building the details of the transition 

functions of the bricks. 

The bricks are also helpful for establishing various properties of cellular automata. 

If not, we would have to make a recurrence with three levels and give cases, 

under-cases, and so on. Furthermore, it defines a new way to prove results for cellular 

automata, which is perhaps not so formal as a recurrence but good enough to 

convince the reader that the cellular automaton works as it is supposed to. 

The other original idea of this paper is the proof that certain classes of cellular 

automata form an acceptable programming system. The definition we use is rather 

different from the original definition introduced by Blum [3] although it was proved 

to be equivalent in [9]. We hope that people using Blum’s formalism would agree with 

this definition. Furthermore, it allows us to apply results which hold for any accept- 

able programming systems such as Turing machines and RAM machines. For 

example, a universal machine and an S-~HI theorem, yields a definition of abstract 

complexity, which leads to the difficult problem of defining good complexity measures 

for cellular automata. 

This paper shows also that it is worth studying parallel abstract machines such as 

cellular automata from the point of view of the computability theory. Though it has 

been well known [7] that all the results applying to Turing machines can be applied to 

cellular automata, it is new to study the computability intrinsically from the cellular 

automata [l]. 
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