
YMCA

—Why Markov Chain Algebra?—

Mario Bravetti

Dipartimento di Scienze dell’Informazione, Università di Bologna,
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Abstract

Markov chains are widely used to determine system performance and reliability characteristics. The
vast majority of applications considers continuous-time Markov chains (CTMCs). This note motivates
how concurrency theory can be extended (as opposed to twisted) to CTMCs. We provide the core
motivation for the algebraic setup of Interactive Markov Chains. Therefore, this note should have
better been baptized YIMC.
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Continuous-time Markov chains (CTMCs) are a widely used performance eval-

uation model. They can be considered as labeled transition systems, where

the transition labels—rates of negative exponential distributions—indicate the

speed of the system evolving from one state to another. Numerical algorithms

allow the computation of important characteristics of a given CTMC with rel-

ative ease and comfortable run times, and in a quantifiably precise manner.

Using probabilistic model checking techniques also logical properties can be
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checked. Several software tools are available to support the specification, nu-

merical analysis, and model checking of CTMCs. This note is not concerned

with the analysis, but with the integration of CTMCs in the process algebraic

framework for the modeling and analysis of reactive systems.

Interactive Markov chain algebra (IMC) is an extension of classical process

algebra in which random delays can be described. Any such delay is specified

by a negative exponential distribution. The basic concept is to add a delay

prefix to process algebra. This simple extension—a clear separation between

delays and actions—yields a specification formalism for describing CTMCs in a

precise and modular way, resembling the hierarchical nature of typical modern

systems. The theory of IMC has been driven by a set of design rationales,

which we briefly discuss in the sequel.

IMC is a simple extension of process algebra.

It extends traditional process algebra by a single operator, (λ) . P , where λ

is an arbitrary positive real value, and . the prefix operator, and P a process

algebra term. Intuitively, (λ) . P delays for a time which is exponentially dis-

tributed with rate λ prior to exhibiting the behavior of P . Stated differently,

the probability to behave like P within t time units is 1 − e−λ·t, or simpler: it

takes on average 1
λ

time units to evolve into P .

IMC extends process algebra in a conservative way, i.e.,

the meaning of established composition operators does not change.

IMC is a conservative extension because the operational semantics, equiv-

alence relations, and equational theory remain unaltered for the basic process

algebra fragment. Whether one takes CCS, π-calculus, CSP, ACP, μ-CRL or

. . . as a basis does not make a difference. We took LOTOS, where the basic

fragment looks like this:

P ::= a . P | P + P | X | recX.P | P ||S P

where a is an action, S a set of actions, and + and ||S are the standard choice

and parallel composition. Note that the last rationale can also be formulated

as “standard process algebra is included in IMC”.

IMC encompasses the algebra of CTMCs,

where bisimulation coincides with lumpability.

The algebra of CTMCs is a fragment of IMC orthogonal to the (standard)
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process algebra fragment, and is characterized by the following equational laws:

(B1) P + Q = Q + P (B2) (P + Q) + R = P + (Q + R)

(B3) P + 0 = P (B4) (λ + μ) . P = (λ) . P + (μ) . P

The axioms (B1) through (B3) are well known and standard for process algebra.

Axiom (B4) is a distinguishing law and can be regarded as a replacement in the

Markovian setting of the traditional idempotency axiom for choice (P + P =

P ). It reflects that the resolution of choice is modeled by the minimum of

(statistically independent) exponential distributions. Together with standard

laws for handling recursion on classical process calculi, these axioms can be

shown to form a sound and complete axiomatization of the CTMC fragment

given by:

P ::= (λ) . P | P + P | X | recX.P | P ||∅ P

IMC naturally supports phase-type distributions.

Phase-type distributions can be considered as matrix generalizations of ex-

ponential distributions, and include frequently used distributions such as Er-

lang, Cox, hyper- and hypo-exponential distributions. Intuitively, a phase-type

distribution can be considered as a CTMC with a single absorbing state (a state

that is never left once reached). The time until absorption of this absorbing

CTMC determines the phase-type distribution [9]. In terms of IMC, phase-

type distributions can be encoded by explicitly specifying the structure of the

CTMC using summation, recursion, and termination (0), as in the IMC-term

Q̃ given by (λ) . recX.(μ) . (μ) .X + (λ) .0. The possibility of specifying phase-

type distributions is of significant interest, since phase-type distributions can

approximate arbitrary distributions arbitrarily close [9] (i.e., it is a dense sub-

set of the set of continuous distributions). In other words, IMC can be used to

express arbitrary distributions, by choosing the appropriate absorbing Markov

chain, and (mechanically) encoding it in IMC.

IMC supports constraint-oriented specification

of random time constraints.

(The term constraint-oriented was coined in [11].) This property enables

to enrich existing untimed specifications with random timing constraints by

just composition. The description of time constraints can thus take place in a

modular way, that is, as separated processes that are constraining the behavior

by running in parallel with an untimed (or otherwise time-constrained) process.

This is facilitated by an elapse operator [6] which is used to impose phase-

type distributed time constraints on specific actions. The semantics of this
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operator is defined by means of a translation into the basic operators of IMC—

it is, in fact, just “syntactic sugar”. Due to the compositional properties of

IMC, important properties (e.g., congruence results) carry directly over to

this operator. Delays are imposed as time constraints between two actions,

and a delay may be “interrupted” if some action of some kind occurs in the

meanwhile. That is, the elapse operator is an operator with four parameters,

syntactically denoted by

[on S delay D by Q unless B] :

• a phase-type distribution Q that determines the duration of the time con-

straint,

• a set of actions S (start) that determines when the delay (governed by Q)

starts,

• a set of actions D (delay) which have to be delayed, and

• a set of actions B (break) which may interrupt the delay.

Thus, for instance, [on {a} delay {b} by Q̃ unless ∅] imposes the delay of

Q̃ (modeling a phase-type distribution) between a and b. Semantically, the

intuition behind this operator is that it enriches the chain Q with some syn-

chronization potential that is used to initialize and reset the time constraint in

an appropriate way. The time constraint is imposed on a process P by means

of parallel composition, such as in

P ||S∪D∪B [on S delay D by Q unless B].

IMC adds nondeterminism and interaction to CTMCs.

Interactive Markov chains can be used to specify CTMCs, but due to the

presence of nondeterminism (inherited from standard process algebra), the

model underlying IMC is richer. In fact, it is the class of continuous-time

Markov decision chains [10], a strict superset of CTMCs. Nondeterminism is

one of the vital ingredients of process algebra and hence of IMC.

IMC has a well-understood equational theory.

See [4, Chaper 5] for sound and complete equational characterizations of

strong and weak bisimilarity for the full calculus—including recursion and open

terms.
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Conclusion

In a nutshell, a well thought-out choice of basic algebraic operators makes IMC

a calculus with a unique set of distinguishing properties. The theory of IMC is

developed in [4,5]; see also [1]. It is worth noticing that calculi like PEPA [7] or

EMPAgr [2] do not possess all of the aforementioned properties. In particular,

they are not conservative extensions of process algebra as delays and actions

are twisted rather than separated. The separation of delays and actions allows

to treat action synchronization as in standard process algebra and is also one

of the key principles to obtain process algebraic frameworks for more general

distributions [3,8].
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