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Abstract

Rotations in the discrete plane are important for many applications such as image
matching or construction of mosaic images. We suppose that a digital image A

is transformed to another digital image B by a rotation. In the discrete plane,
there are many angles giving the rotation from A to B, which we called admissible
rotation angles from A to B. For such a set of admissible rotation angles, there exist
two angles that achieve the lower and the upper bounds. To find those lower and
upper bounds, we use hinge angles as used in [7]. A sequence of hinge angles is a
set of particular angles determined by a digital image in the sense that any angle
between two consecutive hinge angles gives the identical rotation of the digital image.
We propose a method for obtaining the lower and the upper bounds of admissible
rotation angles using hinge angles from a given Euclidean angle or from a pair of
corresponding digital images.

1 Introduction

Rotations in the discrete plane are required in many applications for image
computation such as image matching or construction of mosaic images [4].
For the moment, the most popular method to estimate the rotation angle is
to approximate the rotation matrix by minimizing errors [4].

In the continuous plane, the Euclidean rotation is well-defined and possesses
the property of bijectivity. This implies that for two angles γ1, γ2 and a set
of points A, if the Euclidean rotation with angle γ1 applied to A gives the
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same result as the Euclidean rotation with angle γ2 applied to A, then we
have γ1 = γ2.

In the discrete plane, however, two different points can arrive at the same
grid point after a discretization of the Euclidean rotation (DER). Because of
this reason, two different angles can give the same rotation result for a set
A of grid points 1 . In other words, we can define a set of admissible rotation
angles S such that any angle in S gives the same rotation result for A. Note
that S depends on A. The two most interesting angles in S are the lower
and the upper bounds because with only these two angles we can deduce
the other angles in S. This paper aims to find these two angles from a given
rotation angle or from two given corresponding sets of grid points. In order to
identify the exact bounds, we should not involve any computation error. Thus,
we work with discrete geometry tools which guarantee to avoid computation
with real numbers. Moreover, because we assume that our data are discretized
from continuous images of an object, we enforce the property that the discrete
rotation 2 between two different sets of grid points gives the same result as
DER.

Some work on discrete rotations already exists. The most widely used discrete
rotation in the beginning is the CORDIC algorithm [10]. The rotation angle is
estimated with addition or subtraction using pre-computed values to achieve
the required precision. It gives almost the same result as DER but an approx-
imation of the angle. Andres described in [1],[2] some discrete rotations such
as the rotation by discrete circles, the rotation by Pythagorean lines or the
quasi-shear rotation. Computation executed during these rotations are exact.
However, because they preserves the bijectivity, they cannot give the same
results as DER.

On the other hand, Nouvel and Rémila proposed in [7] another discrete rota-
tion based on hinge angles, which gives the same results as DER. It is known
that a sequence of hinge angles is a set of particular angles determined by a
digital image in the sense that any angle between two consecutive hinge angles
gives the identical rotated digital image. This means that hinge angles corre-
spond to the discontinuity of DER. Nouvel and Rémila showed that each hinge
angle is represented by an integer triplet, so that any discrete rotation of a
digital image is realized only with integer calculation. Because their algorithm
gives the same rotation results as DER, we see that hinge angles represented
by integer triplets give sufficient information for executing any digital image
rotation.

In this paper, we propose a discrete method for finding the lower and the

1 Accordingly, DER is not bijective.
2 A discrete rotation is a rotation designed for the discrete space. It transforms a
set of grid points into another set of grid points.
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upper bounds of admissible rotation angles. Our method uses hinge angles
because we can obtain the same result as DER and because they allow exact
computations. The input data of our method is two sets of grid points where
point correspondences across the two sets are known. The output is two hinge
angles that give the lower and the upper bounds of the admissible rotation
angles for the two sets. Note that a part of this work was presented in [9].

2 Discrete Rotation

It can appear strange that the Euclidean rotation used for the common task
in geometric computation is problematic for many applications. Data are usu-
ally represented in the computer by integers or rational numbers. But the Eu-
clidean rotation which requires sine and cosine functions is designed for real
numbers. Therefore, the computation results given by a Euclidean rotation
are, in most cases, represented by floating numbers which are approximations
of real numbers. When an algorithm uses the Euclidean rotation for integer
or rational data and then converts the obtained floating values into integer or
rational numbers, precisions of these results may decrease. Another problem
also arises for rotations in discrete space. It is well known that the Euclidean
rotation is bijective and transitive. But when we convert the result obtained
by the Euclidean rotation into a discrete space, it is easy to see that these two
properties are lost [5,8]. The loss of these two properties leads to research on
the discrete rotation.

There are two ways to compute a discrete rotation: using floating numbers and
using only integers. The first way, in most cases, is easiest and allows us to
use floating computation followed by the rounding function to obtain the set
of grid points as the output. The main problem with the rounding function
is the approximation due to the loss of the value after the decimal point.
This approximation leads to lack of precision during computation. The second
way does not have this problem, but avoiding floating numbers implies that
sine and cosine functions should not be used. Computing rotations without
trigonometrical functions requires development of a new method, which is a
tough problem.

3 Hinge Angles

We consider grid points in Z2 as the centers of pixels and rotate them in
such a way that the rotation center has integer coordinates. Hinge angles are
particular angles that make some points in Z2 rotated to points on the frontier
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between adjacent pixels. In this section, we give the definition of hinge angles
and their properties related to Pythagorean angles.

3.1 Definition of Hinge Angles

Let x = (x, y) be a point in R2. We say that x has a semi-integer coordinate
if x+ 1

2
∈ Z or y + 1

2
∈ Z. The set of points each of which has a semi-integer

coordinate is called the half-grid and is denoted by H . Thus, H represents
the set of points on the frontiers of all pixels whose centroids are points in Z2.

Definition. 1 An angle α is called a hinge angle if at least one point in Z2

exists such that its image by the Euclidean rotation with α belongs to H .

Because H can be seen as the discontinuity of the rounding function, hinge
angles can be regarded as the discontinuity of the discretized Euclidean ro-
tation. More simply, hinge angles determine a transit of a grid point from a
pixel to its adjacent pixel during the rotation.

The following theorem is important because it shows that we can represent
every hinge angle with three integers.

Theorem. 2 ([7]) An angle α is a hinge angle for a grid point (P,Q) ∈ Z2

if and only if there exists K ∈ Z such that

2Q cosα + 2P sinα=2K + 1. (1)

Geometrically, a hinge angle α is formed by two rays going through (P,Q) and
a half-grid point (K + 1

2
, λ) where the two rays share the origin as their end-

points as shown in Figure 1 (left). This theorem indicates that all calculations
related to hinge angles can be done only with integers. Hereafter, α indicates
a hinge angle.

We denote by α(P,Q,K) the hinge angle generated by an integer triplet

(P,Q,K). Setting λ =
√

P 2 +Q2 − (K + 1
2
)2, we easily derive the following

equations from (1) and Figure 1 (left),

cosα =
Pλ+Q(K + 1

2
)

P 2 +Q2
, sinα =

P (K + 1
2
)−Qλ

P 2 +Q2
. (2)
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Fig. 1. A hinge angle α(P,Q,K) (left) and four symmetrical hinge angles (right).

Note that we have a case where a half-grid point is (λ,K + 1
2
) instead of

(K + 1
2
, λ). In such a case, the above equations become

cosα =
Qλ+ P (K + 1

2
)

P 2 +Q2
, sinα =

Pλ−Q(K + 1
2
)

P 2 +Q2
. (3)

The symmetries on hinge angles are important because it allows us to restrict
rotations in the first quadrant of the circle such that α ∈ [0, π

2
].

Corollary. 3 Each triplet (P,Q,K) corresponds to four symmetrical hinge
angles α + πk

2
where k = 0, 1, 2, 3.

Figure 1(right) gives an example of Corollary 3. In order to distinguish the
case of (K + 1

2
, λ) from that of (λ,K + 1

2
), we change the sign of K; we use

α(P,Q,K) for the case of (K+ 1
2
, λ), and α(P,Q,−K) for the case of (λ,K+ 1

2
).

Because the symmetries allow us to restrict α to the range [0, π
2
], as mentioned

above, we may assume that K is positive.

3.2 Properties Related to Pythagorean Angle

Because hinge angles are strongly related to Pythagorean angles, certain prop-
erties of Pythagorean angles are required to prove some properties of hinge
angles. Thus, we first give the definition of Pythagorean angles and their prop-
erties.

Definition. 4 An angle θ is called Pythagorean if and only if both its cosine
and sine belong to the set of rational numbers Q.
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We can deduce from Definition 4 that a Pythagorean angle θ is represented
by an integer triplet (a, b, c) such that

cos θ =
a

c
, sin θ =

b

c
. (4)

In the following, θ indicates a Pythagorean angle. The lemma below for Pythagorean
angles is well known.

Lemma. 5 Let (a, b, c) be an integer triplet generating a Pythagorean angle
where |c| = max{| a |, | b |, | c |}. If gcd(a, b, c) = 1, then c is odd.

If gcd(a, b, c) = i, then gcd(a
i
, b
i
, c
i
) = 1 and the triplet of integers (a

i
, b
i
, c
i
)

generates the same Pythagorean angle as (a, b, c).

Theorem. 6 Let Eh be the set of hinge angles and Ep be the set of Pythagorean
angles. Then we have Eh

⋂

Ep = ∅.

Proof. Assume that there exists an angle α such that α ∈ Eh and α ∈
Ep. Since α ∈ Ep, we can find an integer triplet (a, b, c) generating α where
gcd(a, b, c) = 1. By substitution of (4) in (2), we obtain

2
Qa+ Pb

c
=2K + 1, (5)

from which we derive 2Qa+Pb

c
∈ Z. Because we know that c is odd according

to Lemma 5, we obtain Qa+Pb

c
∈ Z. However, this contradicts the fact that for

any pair n,m ∈ Z, we never have 2n = 2m+ 1. Therefore α cannot belong to
Eh and Ep simultaneously.

This theorem shows that it is not possible to rotate a point (i, j) ∈ Z2 to a
point (x, y) such as x = i+ 1

2
, y = j+ 1

2
, if the angle of the rotation is a hinge

angle.

The next theorem shows an interesting relation between hinge angles and
Pythagorean angles.

Theorem. 7 ([6]) Let θ be a Pythagorean angle and α be a hinge angle. The
angle α′ = α + θ is a hinge angle.
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4 Computing the Lower Bound Rotation Angle from a Pythagorean
Angle

Because we work here in the discrete space, the rotation of a grid point by
two different angles can give the same result. Namely, two different angles give
the same result after the rotation of a grid point followed by discretization.
Generally there exists a range of angles in which the same result is obtained.
We thus define admissible rotation angles, abbreviated hereafter by ARA, to
represent this range of angles.

In this section, we propose a method for computing the lower bound αinf

of ARA for a given digital image from a given angle. Note that with minor
modifications, this method can also find the upper bound αsup of ARA. Thus
applying any rotation to the given digital image with an angle between αinf

and αsup gives the same result. We note that both αinf and αsup are hinge
angles.

Our input is a Euclidean angle. However, we can replace it by a Pythagorean
angle because there exists a method with linear time complexity O(m) to ap-
proximate a given Euclidean angle with a Pythagorean angle with a precision
of 1

10m
[3], where m is a fixed integer that represents the quality of approxi-

mation. Below, we assume that we are given a Pythagorean angle, as the one
in [7].

Nouvel and Rémila presented a method for computing all possible hinge angles
for a grid point or a pixel in a digital image [7]. Their method can be used for
finding our interesting hinge angle which is the lower bound of the admissible
rotation angles. Its time complexity is O(n log(n)) where n is the number of
all hinge angles for a given grid point. Note that n depends on the coordinates
of the grid point.

4.1 Computing the Lower Bound Rotation Angle for a Grid Point

For each grid point p = (P,Q) ∈ Z2, there are less than n = ⌊√P 2 +Q2 + 1
2
⌋

different hinge angles in each quadrant [7]. We can compare in magnitude
any pair of hinge angles. This means that we have a totally ordered set
{α(P,Q,K1), α(P,Q,K2), ..., α(P,Q,Kn)} of hinge angles in the ascending or-
der where Ki ∈ Z. Given a Pythagorean angle θ, in order to find the lower
bound rotation angle α(P,Q,Ki) such that α(P,Q,Ki) < θ < α(P,Q,Ki+1),
we use a tree structure. The binary search allows us to find α(P,Q,Ki) in
O(log(n)), providing that we can compare a hinge angle with a Pythagorean
angle in a constant time. The algorithm is described in Figure 2.
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Function: Find the lower bound rotation angle

for a point

Input (Point p(P,Q), Pythagorean angle θ)

Output (α(P,Q,K))
var Kmax = ⌊√P 2 +Q2 − 1⌋;
var Kmin = 0;
var K = ⌊Kmax+Kmin

2
⌋;

While (Kmax −Kmin 6= 1)
if (α(P,Q,K) > θ)

Kmax = K;

else

Kmin = K;

K = ⌊Kmax+Kmin

2
⌋;

end while

return α(P,Q,K);

Fig. 2. Function for the lower bound rotation angle for a point.

The following theorem shows that the comparison between a hinge angle and
a Pythagorean angle is executed in a constant time.

Theorem. 8 Let α be a hinge angle and θ be a Pythagorean angle. We can
check whether α > θ in a constant time with integer calculation.

Proof. Let α(P,Q,K) be a hinge angle in [0, π
2
] and θ(a, b, c) be a Pythagorean

angle in [0, π
2
]. From (2) and (4), we obtain

cosα− cos θ=
Q(K + 1

2
) + Pλ

P 2 +Q2
− a

c
.

If θ is greater than α, cosα− cos θ > 0. Thus

cQ(2K + 1)− 2a(P 2 +Q2)>−2cPλ. (6)

Since we know that c, P, λ are positive, the right-hand side of (6) is always
negative. Thus, if the left-hand side of (6) is not negative, then θ > α. Oth-
erwise, we take the square of (6), so that we only have to check whether the
following inequality holds:

[

cQ(2K + 1)− 2a(P 2 +Q2)
]2

< 4c2P 2λ2. (7)

Note that because λ =
√

P 2 +Q2 − (K + 1
2
)2, we see that 4λ2 in the right-

hand side of (7) contains only integer values. Therefore, we can verify (7) with
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integer calculation. If it is true, θ > α; otherwise, α > θ. Note that because of
Theorem 6, it is impossible to obtain θ = α.

We claim that this comparison of a hinge angle and a Pythagorean angle is
executed in a constant time because even in the worst case, we only have to
check two equations (6) and (7).

We mention the importance of the rotation with angle π
2

and its multiplica-
tions. In fact, if the angle of a rotation is equal to π

2
, π, 3π

2
, we just have to flip

x and/or y-coordinates by changing their signs. It gives the justification that
we can restrict the input angle θ to 0 < θ < π

2
.

4.2 Computing the Lower Bound Rotation Angle for a Set of grid Points

In this subsection, we present an algorithm for computing the lower bound
rotation angle from a given Pythagorean angle θ for a digital image consisting
of m grid points A. The output is a triplet of integers that represents the lower
bound rotation angle for A. We note that the lower bound rotation is a hinge
angle.

The algorithm computes all hinge angles for all points in A, and sorts them to
keep the largest one. More precisely, we first compute the lower bound rotation
angle for the first point of A, and store it as a reference. Then, we compute the
lower bound rotation angle for the second point in A and compare it with the
reference to keep the larger one. After repeating this procedure for all points
in A, our algorithm returns the lower bound rotation angle α such that α < θ.
The time complexity of this algorithm is O(m log(n)) because we call m times
the binary search (Figure 2) whose time complexity is O(log(n)). Figure 3
illustrates our algorithm. As shown in Theorem 9, the comparison between
two hinge angles is realized in a constant time, so that our algorithm does not
change the global complexity.

Theorem. 9 Let α1, α2 be two hinge angles. We can check whether α1 > α2

in a constant time and with integer calculation.

Proof. Let α1(p, q, k) and α2(r, s, l) be two hinge angles in [0, π
2
]. From (3)

we obtain

cosα1 − cosα2 =
p(k + 1

2
) + qλ1

p2 + q2
− r(l + 1

2
) + sλ2

r2 + s2
. (8)

If α2 is greater than α1, cosα1 − cosα2 > 0. Thus
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(r2 + s2)p(2k + 1)− (p2 + q2)r(2l + 1)> 2(p2 + q2)sλ2 − 2(r2 + s2)qλ1.(9)

If the left-hand side of (9) is negative and the right-hand side of (9) is positive,
then α1 > α2. If the left-hand side of (9) is positive and the right-hand side of
(9) is negative, then α2 > α1. We can easily check the signs of the lef-hand side
and the right-hand side of (9) with integer computation. Note that p, q, k, r, s, l
are all positive, and that (2(p2 + q2)sλ2)

2 and (2(r2 + s2)qλ1)
2 contain only

integer values.

If the signs of the left-hand side and the right-hand side of (9) are the same, we
first compute the square of each side and then compare the values to identify
which is the greater. For simplicity, we assume that the signs of the both sides
of (9) are positive, and let A = (r2 + s2)p(2k + 1), B = (p2 + q2)r(2l + 1),
C = (r2 + s2)q and D = (p2 + q2)s. Now (9) is rewritten by

A− B> 2Dλ2 − 2Cλ1. (10)

Then we take the square of equation (10) to obtain

(A− B)2 − 4(C2λ2
1 +D2λ2

2)>−8CDλ1λ2. (11)

If the sign of the left-hand side of (11) is positive, we can deduce that α2 > α1.
Otherwise, taking the square of each side gives us

[

(A−B)2 − 4(C2λ2
1 +D2λ2

2)
]2
< 64C2D2λ2

1λ
2
2. (12)

We note that we can easily verify whether (12) is satisfied with integer com-
putation alone. If (12) is true, α1 < α2; otherwise α2 < α1. The same logic can
be applied to the case where the signs of the both sides of (9) are negative.

This comparison of a pair of hinge angles is executed in a constant time because
in the worst case, we only have to check three equations (9), (11) and (12).

5 Digital Image Rotation by a Lower Bound Rotation Angle

This section uses the results obtained in Section 4 to present an algorithm for
rotating a digital image with a given lower bound rotation angle.

It is already proved in [7] that we can obtain the same result as the DER
with respect to the original rotation angle. Note that our input is a lower
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Function: Find the lower bound rotation angle for a

digital image

Input (Digital image A, Pythagorean angle θ)

Output (hinge angle)

var HA,HAtemps \* hinge angle *\;
HA = Find the lower bound rotation angle for a

point (first point p1 of A, θ);

for each p ∈ A\{p1}
HAtemps = Find the lower bound rotation angle

for a point (p, θ);

if (HA < HAtemps) HA = HAtemps;

end for

Return (HA);

Fig. 3. Function for finding the lower bound rotation angle for a digital image.

Function: Discrete rotation

Input (a digital image A, a lower bound rotation

angle α)

Output (the rotated image A′)

var HA : hinge angle;

for each p ∈ A

HA = Find the lower bound rotation angle for

a point (p, α);

move p to (K, ⌊λ + 1
2
⌋) or (⌊λ + 1

2
⌋, K), depending

on the sign of K and put it to A′ ;

end for

Return (A′);

Fig. 4. Discrete rotation algorithm by a lower bound rotation angle.

bound rotation angle and the input of the algorithm presented in Figure 2
is a Pythagorean angle. In spite of this difference, we can apply the same
algorithm thanks to Theorem 9, since we are looking for K, which gives the
arriving pixel (K, ⌊λ + 1

2
⌋), for each pixel (P,Q). The algorithm is presented

in Figure 4. It supposes that the center of rotation is the origin.

For each point, our algorithm calls the binary search (Figure 2) to find the
corresponding hinge angle, which designates its new position. If we consider
n as the biggest coordinate of all points in A, we can assume that there are
less than 4n2 points in A. Thus we can conclude that the complexity of our
algorithm is O(n2 log(n)). The first advantage of our method is that it does
not require any floating number calculation. The second advantage is that the
exact rotation of the digital image is obtained with only an integer triplet. We
need neither matrices nor angles for realizing the rotation.
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6 Obtaining Admissible Rotation Angles from Two Digital Images

Let us assume that a set of grid points in the first image and its corresponding
set in the second image are given: A = {p1,p2, ...,pl} and B = {q1, q2, ..., ql}
are given where pi corresponds to qi. Given A and B, we obtain a hinge angle
pair {αinf , αsup}. This pair of hinge angles is the lower and the upper bounds
of the ARA. Therefore each γ such that αinf ≤ γ < αsup is consistent with the
point correspondences between A and B. Hereafter, we assume that A is the
original point set and B is the rotated point set by angle γ. In this section,
we show how to obtain the ARA from A and B.

6.1 Setting Rotation Centers

For any rotation, we need to set a rotation center. Without loss of generality,
we may choose any grid point in a digital image for the rotation center. As-
suming that rotation centers for A and B are p1 and q1 respectively, we define
two translation functions TA and TB such that

TA(pi)=pi − p1,

TB(qi)= qi − q1,

for all pi ∈ A, qi ∈ B. We can regard the origin as the rotation centers after
these translations. Hereafter, we assume that these translations have been
already applied in order to obtain A = {p1,p2, ...,pl} and B = {q1, q2, ..., ql}.

6.2 Computing Lower and Upper Bounds of Rotation Angles from Two Cor-
responding Point Pairs

In this subsection, we consider a special case of two corresponding point pairs.

We let A = {p1,p2} and B = {q1, q2} where pi = (Pi, Qi) and qi = (Ri, Si).
We then define a circle C (p2) going through p2 whose center is p1. Thus the
radius of C (p2) is r = d(p1,p2) where d(p1,p2) is the Euclidean distance
between p1 and p2.

Let us define the half-grid H (q2) around q2:
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Fig. 5. The corners of H (q), namely, four corners of a pixel around q.

H (q2) = {(x, y) ∈ H :S2 −
1

2
≤ y ≤ S2 +

1

2
if x = R2 +

1
2
,

R2 −
1

2
≤ x ≤ R2 +

1

2
if y = S2 +

1
2
}.

We set p1 and q1 to be the rotation centers. Then, we need to detect intersec-
tions between C (p2) and H (q2) in order to find a hinge angle pair. We thus
investigate which corners of H (q2) are inside of C (p2).

Setting four corners of H (q2) to be C1(q2) = (R2 − 1
2
, S2 − 1

2
), C2(q2) =

(R2− 1
2
, S2+

1
2
), C3(q2) = (R2+

1
2
, S2+

1
2
), C4(q2) = (R2+

1
2
, S2− 1

2
) as shown

in Figure 5, we define a binary function F :

F (Ci(q2)) =







1 if Ci(q2) is inside of C (p2),

0 otherwise.

In order to obtain F (Ci(q2)) with integer calculation, we compare each of
‖(2(R2 ± 1

2
), 2(S2 ± 1

2
))‖2 with (2r)2. Note that we may assume that C (p2)

and H (q2) always intersect with each other. This is because no intersection
between C (p2) and H (q2) indicates that p2 and q2 are not corresponding.

The following lemmas are needed to prove Theorem 12 below.

Lemma. 10 For a circle C (p2) centered on p1, any Ci(q2) = (R2± 1
2
, S2± 1

2
)

cannot be on C (p2) for i ∈ {1, 2, 3, 4} where R2, S2 ∈ Z.

Proof. Let r be the radius of C (p2). Because C (p2) goes through p2, r
2 ∈ Z.

Let us assume that Ci(q2) is on C (p2). Thus the Euclidean distance between
the origin and Ci(q2) is equal to r. This indicates that r2 = (R2± 1

2
)2+(S2± 1

2
)2.

However, this contradicts the above fact that r2 ∈ Z.

Lemma. 11 Let D be a line that belongs to H . If C (p2) is a circle centered
on p1. Then, the number of distinct intersections of C (p2) and D is two or
zero.

Proof. Let p2 = (P2, Q2) ∈ Z and the equation representing D be x = i+ 1
2

(i ∈ Z). Letting (x1, y1) be the coordinates of the intersecting point of D and
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C (p2). Then we have







x2
1 + y21 = P 2

1 +Q2
1,

x1 = i+ 1
2
.

From these equations, we obtain y21 = P 2
1 +Q2

1 − (i+ 1
2
)2. Because P 2

1 +Q2
1 −

(i+ 1
2
)2 does not belong to Z, y1 cannot be equal to 0. Therefore there is two

distinct solutions for y1 if P 2
1 +Q2

1−(i+ 1
2
)2 > 0; no solution otherwise. Similar

discussion can be done for the case of y = j + 1
2
.

Theorem. 12 If two points p2 and q2 are corresponding, the circle C (p2)
and the half-grid H (q2) always have two or four distinct intersections.

Proof. In general, if a circle intersects with a square and the center of the
circle is not inside of the square, we have 1, 2 or 4 intersections. Having just
one intersection means that the circle goes through one corner of the square or
the circle is tangential to a half-grid. Lemma 10 shows that the circle cannot
goes through one corner. Lemma 11 shows that the circle cannot be tangential
to any half-grid. Therefore we have only 2 or 4 intersections.

From Theorem 12, we always have two or four distinct intersections between
C (p2) and H (q2), and we see that there are five cases corresponding to dif-
ferent possibilities to have 0,1,2 or 3 corners inside of C (p2), as illustrated in
Figure 6.

Remark. 13 The cases represented in (a) and (c) in Figure 6 never happen
unless two conditions are satisfied.

(1) q2 is on the x-axis or on the y-axis.
(2) The radius r of C (p2) is sufficiently close to a half-integer.

The case of Figure 6(c) is problematic because it generates two distinctive
ranges of admissible rotation angles. These two ranges are symmetric with
respect to the x-axis or the y-axis. However, this case rarely occurs as explained
below.

Supposing that q2 is neither on the x-axis nor the y-axis, we see R2 or S2

is not zero. We assume that they are positive. In the first quadrant, the y-
coordinate (respectively x-coordinate) of points in C (p2) is strictly decreasing
with respect to x (respectively y). Thus it cannot intersect twice with a line
parallel to the x-axis (respectively y-axis).

Supposing that q2 is on the y-axis (respectively on the x-axis), we see that the
distance between the origin and C1(q2) (respectively C3(q2)) is greater than r.

Thus we have r <
√

(R2 − 1
2
)2 + (1

2
)2 (respectively r >

√

(R2 +
1
2
)2 + (1

2
)2 ).
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(a) ΣF (Ci(q2)) = 0 (b) ΣF (Ci(q2)) = 1

(c) ΣF (Ci(q2)) = 2 (d) ΣF (Ci(q2)) = 2

(e) ΣF (Ci(q2)) = 3

Fig. 6. Illustration of cases ΣF (Ci(q2)) = 0,1,2 or 3.

Letting ǫ = r − (R2 − 1
2
) (respectively ǫ = r − (R2 +

1
2
)) where ǫ < 1

2
, we

obtain ǫ(8r − 4ǫ) < 1 (in both cases). We experimentally observe that as far
as r ≤ 105, ǫ(8r − 4ǫ) < 1 never holds. On the other hand, if r is sufficiently
large enough to have 8r− 4ǫ ≈ 8r then we have ǫ < 1

8r
, which means that r is

sufficiently close to a half-integer. We can thus conclude that (2) in Remark 13
is satisfied only if r is sufficiently large.

As explained above, the case of Figure 6(c) occurs extremely rarely. Thus, we
take no account of this case from now on, which causes no problem from the
practical point of view.

The main function of our algorithm for finding the lower and the upper bounds
of admissible rotation angles, consists of three steps. The first step sets the
rotation center at p1 and q1, as described in Section 6.1. The second step
computes which corners are inside of C (q2) and then compute the index Iq2

=
∑

i 2
i × F (Ci(q2)). Therefore we can easily identify which corners are inside

of C (p2) from Iq2
. The third step calls a function that returns hinge angles

corresponding to Iq2
. There exist fourteen possible values for Iq2

from 0 till 15
except for 5 and 10. Note that geometrically Iq2

can be neither 5 nor 10. The
value 15 of Iq2

implies an error such that all corners are inside of C (q2). Since

15



Table 1
Corners of H (q2) inside of C (p2) and ARA.

Value of Iq2
αinf αsup

Iq2
= 1 or Iq2

= 14 α(P1, Q1, R2 − 1) α(P1, Q1, 1− S2)

Iq2
= 2 or Iq2

= 13 α(P1, Q1, R2 − 1) α(P1, Q1,−S2)

Iq2
= 3 or Iq2

= 12 α(P1, Q1, 1− S2) α(P1, Q1,−S2)

Iq2
= 4 or Iq2

= 11 α(P1, Q1, R2) α(P1, Q1,−S2)

Iq2
= 6 or Iq2

= 9 α(P1, Q1, R2 − 1) α(P1, Q1, R2)

Iq2
= 7 or Iq2

= 8 α(P1, Q1, R2) α(P1, Q1, 1− S2)

Iq2
= 0 and R2 = 0 α(P1, Q1, 1− S2) α(P1, Q1, 1− S2)

Iq2
= 0 and S2 = 0 α(P1, Q1, R2 − 1) α(P1, Q1, R2 − 1)

Iq2
whose value is 0 corresponds to the case ΣF (Ci(q2)) = 0, we should verify

whether H (q2) really intersects with C (p2). Note that for the other values
for Iq2

, we can make a pair (d, e) such that d + e = 15. The two indices of
each pair design the same pair of lower and upper bounds of ARA. Table 6.2
gives the corresponding lower and upper bound rotation angles for each value
of Iq2

. Each step of this algorithm has the constant time complexity. Thus the
global complexity of this algorithm is also O(1).

6.3 Incremental Computing Lower and Upper Bounds of Rotation Angles

In general, the corresponding point sets contain more than two points. There-
fore, in this section, we extend our algorithm in Section 6.2 to two sets of
corresponding point pairs, A and B, each of which has l points where l > 2.

To simplify the notation, we denote by ARA(pi, qi) = (αi inf , αi sup) the pair
of angles that gives the lower and the upper bounds of admissible rotation
angles for the pair of points (pi, qi). Note that αi inf , αi sup are hinge angles.
ARA(An, Bn) denotes the two most restrictive angles for all points i such as
i ≤ n. We recursively define it by ARA(An, Bn) = ARA(An−1, Bn−1)

⋂

ARA(pn, qn).

A new algorithm handles all points incrementally. This algorithm is divided
into two parts. The first part is to initialize the algorithm by computing
ARA(p2, q2). The second part computes ARA(Ai, Bi) for i = l. Note that
ARA(p1, q1) cannot be computed because p1 and q1 are the centers of the
rotation.

The time complexity of this algorithm is O(l). As explained in Section 6.2,
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Fig. 7. Running of the incremental algorithm.

the function giving a pair of lower and upper bound rotation angles from a
pair of points is realized in a constant time O(1). Moreover, as explained in
Section 3, we can compare two hinge angles in a constant time O(1). Therefore,
the computation of this algorithm for l points takes the time complexity of
l × (O(1) +O(1)) = O(l) as a whole.

Figure 7 gives an example of the incremental algorithm for two sets of three
points. Given input data of the algorithm as shown in Figure 7 (A), we first
obtain the result of the translation described in Section 6.1 as illustrated in
(B). We then compare, for each pair of points (pi, qi) with i ≥ 2, the distance
of pi from the origin with that of each corner from H (qi) to deduce the
corresponding hinge angle as explained in Section 6.2. Finally, we obtain (D)
which shows the intersection of all ARA(pi, qi) obtained in (C).

7 Experimental Evaluation using Synthetic Data

We evaluated our algorithm using synthetic data and verified the quality of
obtained admissible rotation angles. To test our algorithm, we need two sets of
points. We randomly generated the set F of 100 floating points in a 200× 200
square. The first set I is obtained by discretizing F . The second set I

′ is
obtained by applying the DER with angle θ = 50◦ to the first set I (Figure 8).
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Fig. 8. Randomly generated points and their corresponding rotated points.
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Fig. 9. Result of our algorithm applied on the sets of points in Figure 8 .

We assumed that the point correspondences across the two sets I and I
′ are

known.

Figure 9 shows the hinge angles obtained by our algorithm. The green and the
red curves give the lower and the upper bound rotation angles for each pair
of point in correspondence. We can see that lower bound rotation angles are
always lower than θ and that upper bound rotation angles are greater than θ.
The blue and purple lines give the lower and the upper bound rotation angles
for points with the lower IDs than the point of interest. As we can see, after
only ten pairs of points, the range of admissible rotation angles becomes less
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than 0.1◦ while the range is reduced to 0.02◦ after twenty pairs of points. Then
the precision increases slowly. This shows that the precisions of admissible
rotation angles acquired after twenty pairs of points are not significant in this
particular case.

Figure 9 also indicates that most pairs of points give the admissible rotation
angle range smaller than 1◦ (for example, pair #39). Pair #34 and pair #66,
however, give a range greater than 4◦. In fact, the maximum range for a pair
of points is directly related to the distance between the center of rotation and
the pair of points. We denote by d the distance between the rotation center
and the pair of points. Then, the maximum difference between the lower and
the upper bound rotation angles is sin−1

√
2
d

. For the pair #34, d =
√
173; thus

the maximum range is approximately 6.1◦. For the pair #39, d =
√
16505 and

thus the maximum range is approximately 0.63◦. This is consistent with our
experimental result.

We cannot expect that just by applying our algorithm only to the farthest
pairs of points from the rotation center, we will obtain the exact bounds
of admissible rotation angles. This can be confirmed by the pair #34, for
example. We see that the range is greater than 4◦ but the upper bound hinge
angle gives a close approximation to the rotation angle. On the other hand, by
keeping only the farthest pairs of points, our algorithm might become faster.
But we need an additional procedure for determining which pairs of points
have to be kept. If we set distance δ and keep only the pairs of points whose
distance from the rotation center is greater than δ, we have to compute the
distances of all pairs of points from the rotation center. Then the complexity
required by this approach is still O(n). Accordingly, we conclude that keeping
only the farthest pairs of points is a does not contribute toward the complexity
improvement.

8 Discussion on practical application to digital images

In the previous section, we start with grid points in the discrete plane. In
other words, all coordinates of the points are integers. But in reality, points in
the Euclidean space are not represented by integers but real numbers. Thus
we start here with the set of floating points to see how our algorithm works.
Then we test our algorithm with real data acquired by a digital camera.
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Fig. 10. Result of our algorithm applied on a sets of floating points.

8.1 Synthetic data

To test our algorithm using synthetic data more similar to real data, we applied
the Euclidean rotation with angle θ = 50◦ directly to the set F that is used
in Section 7. Then we discretized the rotated image to obtain the second set
I
′′. To the two sets I and I

′′, we applied our algorithm. We note that the set
I comes from Section 7.

Figure 10 shows the obtained hinge angles. Because we started with the set of
floating points, we observe some errors in bounding admissible rotation angles.
In fact, we see that some pairs of points, the pairs #64 and #73 for instance,
do not contain θ.

Figure 11 (left) explains how errors arise in rotating floating points. Let assume
that the point q1 is obtained after the Euclidean rotation of the floating point
p1 with angle γ. Let p2 and q2 denote the discretization of p1 and q1. If we
apply our algorithm to the pair of points {p2, q2}, we obtain ARA(p2, q2) =
(αinf , αsup). In this case, γ does not belong to the interval [αinf , αsup] (Figure 11
(right)). We see that this is caused by discretization of the floating points. We
can give a bound for this error. In fact, this bound directly depends on the
distance between the rotation center and the pair of points. If we denote by
d this distance, the maximum error is equal to sin−1

√
2

2d
. Note that the pair of

points {p3, q3} and the angle ρ bring the same problem.

To avoid this problem, we modify our algorithm for example as follows. We
keep all the pairs of bound rotation angles determined by all pairs of points. Af-
ter sorting all lower and upper bound rotation angles into two lists Linf ,Lsup,
we remove all hinge angles αinf from Linf such that for ∃αsup ∈ Lsup, αinf >

αsup. We also remove all hinge angles αsup from Lsup such that for ∃αinf ∈ Linf ,
αsup < αinf .
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Fig. 11. Examples of errors for computing lower and upper bounds of rotation angles
introduced by rotation of floating points.

With this procedure, we can guarantee that the lower bound hinge angle is
smaller than the rotation angle applied to the points and that the upper bound
hinge angle is larger than the rotation angle. The complexity O(n log n) is
required in sorting the remaining hinge angle pairs, which does not increase
the computational cost of the algorithm as a whole.

Another way to avoid the problem is to compute the smallest distance d of all
the points from the rotation center and then compute a Pythagorean angle θ

satisfying θ > sin−1
√
2

2d
. We then add (subtract) θ to the upper (lower) bound

rotation angle obtained by our algorithm in Section 6. As a result we obtain
the upper and the lower rotation angles that define the interval accurately
including the true rotation angle.

Both methods return a valid ARA. It is preferable to use the second method
when there are few pairs of points because it does not remove any hinge angles.
The first method is preferable when data contains many pairs of points in
correspondence because the obtained ARA is more restrictive than the ARA
obtained by the second method.

8.2 Real data

We applied our algorithm to see its practical usefulness. We used a turntable
that is rotated with respect to the vertical axis with respect to a digital image
plane. The precision of rotations in control is 10−3 degrees.

We put a toy block on the turntable and then took its image using a standard
digital camera where the camera was fixed so that its optical axis is parallel
with the rotation axis (Figure 12(a)). Next we rotated the turntable with the
angle of 44.99◦ and then took another image of the toy block by the fixed
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camera (Figure 12(b)).

We manually selected five points in the first image and their corresponding
points in the second image. Then we applied our algorithm to the five pairs
of corresponding points.

Our algorithm might return the empty result (Figure 12(c)). This is because
no intersection between C (pi) and H (qi) was found for all i = 1, 2, . . . , 5.

In the case of real data, we cannot always guarantee to detect correct corre-
sponding pairs of points even manually. This indicates that a problem different
from the discretization problem (see Section 8.1) arises 3 . Namely the maxi-
mum difference of distances from the rotation center between two points in
correspondence can become greater than

√
2. This is illustrated in Figure 13

where points p and q are in correspondence and ǫd = |dp − dq| is greater than√
2 where dp, dq are respectively the distances from p, q to the origin. We

see that no intersection exists between the circle C (p) going through p and
H (q).

To avoid this problem on corresponding points, we can change the resolution
of the images. Namely, we degrade the image resolution until we find an inter-
section between C (p) and H (q). Because of the change in image resolution,
we cannot accept the obtained hinge angles as they are. Instead, we add (sub-
tract) a Pythagorean angle θ from the obtained upper (lower) hinge angle, in
order to, let assume that dp < dq and that H (q) is defined for the image
whose resolution is degraded with 2−n from the original one. Then we have to
choose θ satisfying θ > n

√
2

2dp
.

Figure 12 (d) shows the results obtained by the modification above to the
same data. We can see that the real rotation angle (44.99◦) is included in the
ARA obtained by our algorithm with this modification. Accordingly, we can
conclude that our modification is effective.

9 Conclusion

In this paper, we have introduced problems of rotations in the discrete space.
Because rotations are mathematically defined for the continuous space, it is
necessary to develop new operational tools for such discrete rotations.

Our problem was from two digital images to find all possible rotation angles to
rotate the first image into the second. Namely, to find the admissible rotation

3 We assume here that we are to find ARA from given correspondences

22



(a) (b)

(c) (d)

Fig. 12. Result of our algorithm applied on real data.

Fig. 13. Problem of corresponding points with real data.

angles between two digital images. Since we need to have only exact computa-
tion without any approximation. We decide to adopt hinge angles which allow
us rotations using only integer computation. By using their properties, we
have proposed a method for incrementally computing the lower/upper bound
rotation angles from a Pythagorean angle for a set of discrete points. Based
on this method, we have also proposed a linear algorithm for finding from two
digital images the lower and the upper bound rotation angles representing the
admissible rotation angles between them.

In addition, we have shown with experiments that our algorithm is efficient
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with synthetic data and gives consistent results. Then we also have done some
experiments to real data. Results given by our algorithm were not consistent
because of the loss of correct point correspondences in our input. We then ex-
plained why these problems appear and gave necessary modifications to obtain
consistent results. These modifications did not increase the time complexity
while keeping the integer computation.

The range size of ARA can be considered as the unreliability of the point cor-
respondence. In other words, the larger the range of ARA between two points
becomes, the less the reliability of their point corresepondence is. Therefore,
it may be interesting if we can propose a new method for evaluating "good"
point correspondences from a given pair of digital images by using our results.

Another future work is to extend our proposed method to the 3D space. Be-
cause in 3D hinge angles are not yet defined in 3D, the first direction we should
take is to design 3D hinge angles and develop a 3D discrete rotation algorithm
based on 3D hinge angles. Then we will improve such a rotation algorithm in
order to find admissible rotation angles in 3D as we did for 2D in this paper.
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