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Abstract 

The class of frontier testable (i.e., reverse definite) tree languages is characterized by a !inite 
set of pseudoidentities for tree algebras, which are introduced here for this characterization. An 
efficient algorithm is presented that decides whether a given tree automaton recognizes a frontier 
testable tree language. The algorithm runs in time O(mn3 + m*n*), where m is the cardinality of 
the alphabet and n is the number of states of the automaton. 

In this paper a tree language is said to be frontier testable2 if there exists a natural 
number k such that 

(*) any two trees with the same set of subtrees of depth at most k either both belong 
to the language in question or both do not belong to it. 

A language is called k-frontier testable, if (*) is satisfied. 
The first result of this paper is an algebraic characterization of the class of frontier 

testable tree languages. For this purpose, tree algebras3 are introduced, and with every 
tree language a syntactic tree algebra is associated. The algebraic characterization of 
frontier testability then consists of four pseudoidentities defining a class of tree al- 
gebras which contains a syntactic tree algebra of a tree language if and only if this 
language is frontier testable. For each natural number k a set of identities is given that 
characterizes k-frontier testability, and from these sets of identities the pseudoidentities 
for the general case are derived. 

The problem of characterizing classes of regular tree languages in algebraic terms 
has been addressed in several papers, see, e.g., [lo, 12,13,16]. Two approaches have 
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been pursued: a semigroup-based and a universal algebraic one. By introducing tree 

algebras, this paper suggests a combined approach. At least in the case of frontier 

testability this approach seems more appropriate than the universal-algebraic approach 

and is superior to the semigroup-theoretical approach, because frontier testability 

cannot be characterized using semigroup-based methods (see concluding remarks). 

The second result of this paper is an efficient algorithm that decides whether the 

tree language recognized by a given tree automaton is frontier testable or not. The 

algorithm expects a deterministic frontier-to-root tree automaton as input and runs in 

time 0(mn3 + m2n2), where m is the cardinality of the alphabet and n is the number 

of states of the input automaton. This improves the exponential upper bound which 

is obtained by a straightforward implementation of the decision procedure described 

in [8]. 

The combinatorial properties of frontier testable tree languages used in Section 6 

were, in a weaker form, established jointly with Scholz [ 151. For background on uni- 

versal algebra and many-sorted universal algebra, the reader is referred to [4] and [7], 

respectively. 

1. Regular tree languages 

Throughout this paper we fix an arbitrary finite alphabet and denote it by A. We 

assume that r is a finite signature that contains one constant symbol c, and one binary 

function symbol & for every a E A. 

By a tree over A we mean a ground term in r. The set of all trees over A is denoted 

by T. It is the universe of a term algebra that we will denote by T. This algebra is 

the initial r-algebra, i.e., for every r-algebra B there exists a unique homomorphism 

T -P B, which we will denote by hn. 

By a tree language over A we mean a subset of T. A tree automaton over A is a 

pair (B, R) where B is a finite r-algebra and R 2 B. It is said that (B, R) recognizes 
the tree language h;‘(R). A tree language over A is called regular if there exists a 

tree automaton over A that recognizes the language. 

If (B,R) is a tree automaton, the elements of B are called the states of (B,R). A 

state q E B is called reachable, if it belongs to the image of hg, i.e., if it belongs to 

the universe of the substructure B’ of B which is generated by the empty set. Clearly, 

(B’,R n B’) is a tree automaton, it has only reachable states, and it recognizes the 

same language as (B,R). So, without loss of generality, we may assume that every 

tree automaton has only reachable states, and we will do so throughout this paper. 

Notice that the construction of (B’,R n B’) can be carried out in time O(mn2) where 

m is the cardinality of the alphabet and n = IBI. 

The purpose of the next two sections is to develop an alternative algebraic 

framework for the treatment of regular tree languages, which we will gain advantage 

from when we will try to characterize the class of frontier testable tree languages. 
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2. Tree algebras 

We are aiming at the definition of the notion of a tree algebra. For this purpose we 
introduce some operations on trees and related objects (special trees) and study the 
algebraic laws obeyed by these operations. 

We start with the observation that &(t,t’) is a tree over A, if a is a letter of A and 
if t and t’ are trees over A. We therefore obtain an operation r& : A x T x T + T by 
setting &a, t, t’) = fa(t, t’). 

An even simpler way to produce a tree over A is to take a letter a of the alphabet 
and view this letter as the one-node tree c,. According to this we define the operation 
zA: A + T by iA(a) = c,. 

For the rest of the paper we fix a variable x. By a special tree over A (see [ 171) 
we mean a r-term in x with exactly one occurrence of X. The set of all special trees 
over A except x is denoted by S. We write S’ for S U {x}, i.e., S’ stands for the set of 
all special trees over A. If s denotes a special tree over A and if t stands for a special 
or an ordinary tree, then st denotes the special or ordinary tree which is obtained by 
substituting t for x in s. 

On the set S we define a binary operation C# by r#(s,s’) = ss’. Due to the associa- 
tivity of the substitution operation, d’ is associative, i.e., the following law is obeyed 
by d’. 

d(s,d(s’,s”)) = d’(d(s,s’),s”) (1) 

In a similar way we defme @: S x T -+Tbysettingr&,t)=stfors~Sandt~T. 
In accordance with (1) we have the following ‘mixed’ law of associativity for d’ and 

$1 

rp(s, rp(s’,t)) = V%%,s’), t) (2) 

To construct special trees we finally introduce two functions p”: A x T -+ S and 
L’:A x T -+ S symmetric to each other by setting #(a,t) = a(t,x) and P’(a,t) = 

a(x, t), i.e., # produces special trees with x as the right successor of the root and ,lA 
with x as the Zeft successor of the root. Obviously, the following two laws are obeyed 
by these new operations. 

r’+qa, t), t’) = l&a, t’, t) (3) 

rp(pA(% t), t’) = &a,t, t’) (4) 

In Fig. 1, a graphical illustration of the six functions introduced so far is given. 
We now join together A, S, and T and rA, p’, AA, r@, &, and rr’ to make a 3-sorted 

structure. As identifiers for the three sorts we use the letters A, S, and T, i.e., if a 
3-sorted set is denoted by M, it is a {A, S,T}-indexed family of disjoint sets, which 
are referred to by MA, MS, and MT. We also write M in the form (MA,Ms,MT). If 
a function symbol f’kom a corresponding 3-sorted signature is to map, say, pairs of 
elements with first entry of sort S and second entry of sort T to elements of sort T, 
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LA. . a I . A a 

AA: a, t A I . 
.la\ 

A t 

pA: a, t A I 
/a\* 

‘A t 

Fig. 1. The six operations on A, S, and T. 

we indicate this by the subscript (ST,T). So q(s~,~), when interpreted in a corres- 

ponding structure M (with 3-sorted universe M), becomes a function Ms X h.fT 

+ MT. 

The sets A, S, and T together with the six operations lA, p’, AA, &, d’, and $ 

form a 3-sorted C-structure, where C is the 3-sorted signature given by 
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This structure is denoted by F, and as we have seen (see (l)-(4)) the following four 

identities hold in F: 

cr(s, fJ(s’,s”)) = o(o(s,s’),s”) (5) 

q(s, VW, t)) = tl(4s,s’), t) (6) 

@(a, 0, t’) = a, t’, t) (7) 

q(p(a, t), t’) = i+, 6 t’) (8) 

Finally, we can give the definition which is fundamental for this paper. 

Definition 1. A 3-sorted Z-algebra satisfying (5)-(8) is called a tree algebra. 

We observe the following. 

Remark 1. If B is a tree algebra, then the set Bs together with the binary operation oB 

is a semigroup. 

The following proposition, which we will need in the next subsection, states that F 

is fully determined by (5)-(8). 

Proposition 1. The tree algebra F is freely generated by the j-sorted set (A, 0,0) in 
the variety of tree algebras. 

Proof. Clearly, F is generated by (A,0,0); what remains to be shown is that for 

every tree algebra B every function ho : A + BA can be extended to a tree algebra 

homomorphism h : F + B. 
Assume, therefore, that B is an arbitrary tree algebra and ho an arbitrary function 

A + B..+. We first define a 3-sorted function h : F + B that extends ho and then show 

that it is a homomorphism. On S and T the function h is defined by induction using 

the following rules: 

h(c,) = rB(Ma)) (9) 

h(fa(t, t’)) = xB(ho(u),h(t), h(t’)) (10) 

h(f,(x, t)) = nB(h,(u), h(t)) (11) 

h(f,(s, t)) = aB(lB(ho(u), h(t)), h(s)) (12) 

h(f,(t,x)) = pB(ho(u),h(t)) (13) 

h(f&s)) = aB(pB(ho(a),h(t))>h(s)) (14) 

The compatibility of h with 1, rc, A, and p can immediately be read off from (9), 

(lo), (ll), and (13), respectively. 

Proving the compatibility with tr is much more complicated. We do this by induction 

according to the inductive definition of h. Assume first that s = _&(x, t) with a E A and 
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TV T and that s’ is an arbitrary element of S. Using the definition of a*, the assumption 

about s, and (12) we obtain the following chain of equations: 

h(a*(s,s’)) = h(ss’) (definition of oF) 

= KM’, t)) (assumption about S) 

= aB(nB(hs(a),Iz(t)), h(s’)) (because of (12)) 

= oB(h(P(a, t)), h(J)) (compatibility with 2) 

= aB(h(s), h(s’)) (definition of A*) 

The proof is symmetric if s is of the form f,(t,x). For the induction step let s = 

&“,t) and a, t, and S’ as before. Then h(aF(s,s’)) = ~~(h(s),h(s’)) is shown by the 

following chain of equations. 

I@(s,s’)) = h(ss’) 

= h(fa(S”S’, t)) 

(definition of a*) 

(assumption about S) 

(definition of a*) 

(because of(12)) 

(induction hypothesis) 

(because of (5)) 

(because of(12)) 

(assumption about S) 

The proof is symmetric if s is of the form &(t,s”). 

The compatibility of h with q is shown in a similar way. By induction on the 

structure of s one proves h(q*(s,t)) = qB(h(s),h(t)). Instead of (5) one uses (6); 

depending on whether x occurs in the left or right subtree of s one uses either (7) or 

(0 q 

3. A characterization of regularity in terms of tree algebras 

A tree algebra B is said to recognize a tree language L over A, if there exists a 

homomorphism h : F + B and a set R c BT such that h-‘(R) = L. We will prove in 

this section that a tree language is regular if and only if it is recognized by a finite 

tree algebra. 

For the direction from right to left assume that B is a finite tree algebra that rec- 

ognizes a tree language L over A, say, h : F --f B is a homomorphism such that 
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h-‘(R) = L for some R c BT. From h and B we obtain a tree automaton (C, R) by the 
following definitions: 

C=BT (15) 

c,” = h(ca) (16) 

fac(4,4’) = ~B(M4P 434’) (17) 

By induction on the set T, using the fact that h is a homomorphism, one proves 
he(t) = h(t) for every t E T, hence h,‘(R) = h-‘(R) = L, thus (C,R) recognizes L. 

What we have proved is the following. 

Remark 2. If L is a tree language over A recognized by a finite tree algebra, L is 
regular. 

To proof the converse of this remark let us assume that L is a tree language over A 

which is recognized by a tree automaton (B,R). We will construct a finite tree algebra 
C that recognizes L. 

Consider the 3-sorted set C = (A,BB,B), which is turned into a 3-sorted Z-algebra 
C by the following definitions: 

r%) = hB(Ca) W 

&JT 494’) = faBbl> 4’) (19) 

&f,f’)=f?f (20) 

?Yf-~ 4) = f(4) (21) 

~c(w) = Udd?(dq)) I 4’ E B) (22) 

ha, 4) = {(q’, f:(a 4’)) I 4’ E B) (23) 

In (20), f o f’ denotes the composition of functions, i.e., f o f’(q) = f(f’(q)) for 
every q E 8. 

The algebra C satisfies (5) and (6) because of the associativity of the composition 
of functions; it satisfies (7), since we have qB(AB(u,q),q’) = fT(q’,q) = &(u,q’,q), 

where the first equality is due to (22) and the second is due to (19). A symmetric 
argument would prove that C obeys (8). Thus C is a tree algebra. Therefore, using 
Proposition 1, there exists a homomorphism h: F + C which extends ho with ho(u) = a 
for every a E A. By induction on the structure of the trees over A one can show that 
h(t) = hg(t) for every t E T. This implies h-‘(R) = L, i.e., C recognizes L. This 
yields the following. 

Remark 3. If L is a regular tree language over A, then L is recognized by a finite tree 
algebra. 

Rutting Remarks 2 and 3 together we obtain the desired result. 
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Proposition 2. A tree language L over A is regular if and only if L is recognized by 
a jinite tree algebra. 

Algebraic characterizations of regular tree languages in terms of monoids and semi- 

groups have been given in, e.g., [5,8,13]. 

4. The notion of a syntactic tree algebra 

For every regular tree language L there exists, up to isomotphism, a smallest (with 

respect to the number of states) tree automaton that recognizes L. This tree automaton 

is usually called the minimal automaton of L and considered to be a canonic object for 

L. The r-algebra of this automaton is obtained as a quotient of T by an appropriate 

congruence, which is called the syntactic congruence of L. 
The concept of syntactic congruence was first introduced in the theory of regu- 

lar word languages and was later adapted to the tree case. Meanwhile, it has been 

recognized as a natural concept when dealing with recognizable sets (inverse images 

of homomorphisms into finite algebra) in any context, see, e.g., [2] for a treatment 

in a universal algebraic but one-sorted framework. The concept generalizes in a nat- 

ural way to the many-sorted case; the basic properties of the notion are preserved. 

The application to the case of tree algebras and tree languages leads to the following 

definition. 

The syntactic tree algebra congruence of a tree language L over A is the 3-sorted 

binary relation wL defined as follows: 

wi={(a,a’)EA xAl(a~L-~/EL) 

AVS E s’ vt, t’ E T (sfa(t, t’) E L ++ Sfa)( t, t’) E L)} 

-; = {(s,s’) E s x S 1 Vs” E S’ Vt E T (s”st E L H s”s’t E L)} 

N$ = {(t, t’) E T x T 1 Vs E S’ (st E L ++ st’ E L)} 

(24) 

(25) 

(26) 

So two elements are equivalent if and only if they (are of the same sort and) relate 

to L in the same way in every possible context. 

The basic properties of wL, as they can be derived from the general results on 

syntactic congruences are summed up in the following lemma. 

Lemma 1. Let L be a tree language over A. 
1. NL is a congruence relation on F. 
2. d is the largest (with respect to set inclusion) congruence such that L is a 

union of classes. 
3. L is recognized by a finite tree algebra ifs wL has finite index (i.e., ifs ~~ has a 

finite number of congruence classes). 
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As a consequence we note the following. 

Proposition 3. Let L be a tree language over A. Then the following conditions are 

equivalent : 
(A) L is regular 
(B) F/d is jinite 

(C) mL has finite index 

Proof. The equivalence of (B) and (C) is trivial. For the implication from (A) to (B) 

let L be a regular tree language over A. Then, by Proposition 2, it is recognized by 

a finite tree algebra, say, L = h-‘(R) for a homomorphism h: F --) B into a finite 

tree algebra B and some R G B T. Since B is finite, ker(h) has a finite index; since 

h-‘(R) = L, the language L is a union of classes of ker(h). Then, by Lemma 1, we 

know that wL is at least as large as ker(h), hence -L is of finite index too. 

For the implication from (B) to (A) let mL have finite index. Then F/d is a finite 

tree algebra, which, by Lemma 1, recognizes L. (Consider the natural homomorphism 

from F to F/-J~.) 0 

Definition 2. For every tree language L over A the quotient structure F/mL is called 

the syntactic tree algebra of L over A. 

5. Frontier testable tree languages 

A language of finite words is reverse definite if membership is determined by the 

prefix of a fixed maximal length of a given word. In the case of tree languages (reading 

trees from front to root) this corresponds to the set of frontier trees of a fixed maximal 

depth. 

The set of frontier trees of a given tree t (either ordinary or special) is defined as 

follows. If t E {ca ) a E A} U {x}, then front(t) = t. If t = fa(t’,t”), then 

front(t) = front(P) U fiont(t”) U { f=(t’, t”)}. 

The depth of a tree t is inductively defined too. If tE{c,~aEA}U{x}, then depth(t) = 1. 

If t = fn(t’,t”), then 

depth(t) = max{depth(t’), depth(t”)} + 1 . 

Let k be a natural number. The set of frontier trees of depth less than or equal to k 

of a tree t is now defined by frontk(t) = {t’ E front(t) 1 depth(t’)Gk}. 

We observe the following. 

Remark 4. Let t be an arbitrary tree. 

(1) The tree t has depth >k iff there is a tree of depth k in frontk(t). 
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(2) If the tree t has depth < k, there is a unique tree of maximal depth in frontk(t), 
namely t itself, and fiontk(t) = front(t). 

Definition 3. A tree language L over A is k-frontier testable if, for t, t’ E T with 
frontk(t) = fiontk(t’), either t, t’ E L or t, t’ $2 L. The language L is frontier testable if 
it is k-frontier testable for some k. 

6. An equational characterization of k-frontier testability 

In this section let k be a fixed positive natural number. 
We introduce some conventions concerning the notation of terms in Z. For tc(a, 40, 

~$1) we write a(&,&), for a($,$‘) and for n(II/,4) we write r,k$’ and II/d, respec- 
tively. (Note that because of the sorts it is always clear whether cr or rl is meant.) 

For notational convenience the term Sk . ..s~tl (or, to be precise, the term q(&, 

dsk-I,... q(s2, tl). . .))) is denoted by rk; it captures exactly all trees of depth 2k. 
This is expressed in the following remark, in which @’ stands for the free 3-sorted 
Z-term algebra over the (countable) set of all variables that are used in this paper to 
write equations in C. In particular, this set of variables includes sz,ss, . . . and tl, so F 
includes rk for every k. 

Remark 5. An ordinary tree t E T has depth(t) > k iff there is a homomorphism 
h: P + F such that h(Q) = t. 

An equational characterization of k-frontier testability is the main result of this sec- 
tion. 

Theorem 1. Let L be a regular tree language over the alphabet A. Then the following 

conditions are equivalent. 
(A) L is k-frontier testable, 
(B) The syntactic tree algebra of L satisfies the following equations, which are 

denoted by (FTk ) : 

a(rk, t) = W, rk) 

a(Zk, zk) = rk 

(smk ) 

(IdPk ) 

a(6 a(% Tk )) = a(& rk) 

a(a(t, tk), t’) = a(& @k, t’)) 

(tank) 

(ROtk ) 

(C) L is recognized by a finite tree algebra satisfying (FTk). 

An illustration of the four equations is given in Fig. 2. These pictures also explain 
the names of the equations: (Symk ) stands for ‘symmetry’, (Idpk) for ‘idempotence’, 
(car&) for ‘cancellation’, and (Rotk) for ‘rotation’. Equation (Symk) says that a tree 
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(SYmk) 

(IdPk) 

(Rob) 

Fig. 2. Graphical illustration of (FTk). 

of depth >k can be turned around its root. Equation (Idpk) allows a duplication of 
a tree of depth >k, (Cank) allows the elimination of the occurrence of a frontier 
tree which also occurs in the ‘neighbourhood’ of a tree of depth >k. Finally (Rot&) 
expresses that trees can be rotated around a tree of depth > k. 

We mention the following result for later use. 

Lemma 2. Every tree algebra in which (Symk), (Idpk), and (Rotk) hold, satisjies the 
following equation: 

a(& a(& zk)) = a(& zk 1. 

Proof. The assertion is proved by the following chain of equations: 

a(t, Zk) = a(a(t, Zk), a(t, Tk)) (because of (Idpk)) 

= a(t,a(Tk,a(t,Zk))) (because of (Rotk)) 

= a(t, a(a(t, Tk), Tk)) (because of (syn’k)) 
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= a(t,a(t,u(rk,rk))) (because of (Rotk)) 

= a(& a(& rk )) (because of (Idpk )) q 

The remainder of this section is devoted to the proof of Theorem 1. The implication 

from (B) to (C) follows immediately from Lemma 1. For the implication from (C) 

to (B) let L be recognized by a finite tree algebra B satisfying (FTk), say, L = h-‘(R) 

for a homomorphism h : F --t B and R G BT. By Lemma 1 the congruence wL is at least 

as great as ker(h). Thus F/mL satisfies every equation that F/ ker(h) satisfies. Since 

F/ ker(h) is a subalgebra of B and B satisfies (FTk) we obtain that F/wL satisfies (FTk). 

The more difficult parts are the implication from (A) to (C), i.e., the ‘correctness’ 

of (FTk), and the implication from (C) to (A), i.e., the ‘completeness’ of (FTk). 

6.1. Correctness 

We have to show that for every k-frontier testable tree language L over A there 

exists a finite tree algebra B satisfying (FTk) that recognizes L. We shall obtain the 

algebra B as the quotient of F by an appropriate congruence relation. 

Let xk be the binary 3-sorted relation on F defined as follows: 

=; = {(a,~‘) E A x A 1 a = a’} 

Mi = {(SJ’) E s x s 1 frontk(s) = frontk(s’)} 

3; = {(t,t’) E T X T 1 fiontk(t) = hntk(t’)} 

The properties of this relation are stated in the following lemma. 

Lemma 3. (1) The relation M k is a congruence on F of finite index. 
(2) A tree language over A is k-frontier testable lr it is a union of %k-clusses. 

(3) The quotient algebra F/zk satisfies (FTk). 

Proof. Clearly 25 k is an equivalence relation of finite index and saturates every k- 
testable tree language over A, i.e., every k-testable tree language over A is a union of 

zk-classes. In order to prove that xk is even a congruence relation we have to show 

that ak is compatible with the operations rA, p”, AA, I@, d’, and $. 

Compatibility with I: This is immediate. 

Compatibility with p: Suppose a ek a’ and t xk t’ for a,a’ E A and t, t’ E T. 
Then a = a’ and frontk(t) = frontk(t’), and we have to show &(x, t) Mk faf(x, t’). We 
proceed by case distinction on the depth of t. 

Case 1: depth(t) < k. Then t = t’ by Remark 4, thus fa(x, t) = _&(x, t’), hence 

fa(x, t) CR flZ,(x, 0. 
Cuse2: depth(t)2 k. Then also depth(t’)> k by Remark 4. Therefore, we may write 

frOntk(f&,t)) = frontk(t) U {X} and dS0 fiOntk(a’(X,t’)) = fiOntk(t’) U {X}, thus 

.Mx,O zk f&x, 0 
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Compatibility with A: Since the definitions of p and /z are symmetric to each other 

and since the definition of ak is symmetric in the same sense, the compatibility of xk 

with A follows from its compatibility with p. 
Compatibility with CJ and q: This follows from the fact that for all seS and t E SUT 

the set frontk(st) only depends on frontk(s) and frontk(t): t’ E front&t) 8 

l t’ E hntk(t), or 

l t’ is an ordinary tree and t’ E fiontk(s), or 

l there is a unique tree t” of maximal depth in fiontk(t) and depth(t”) c k, t’ = s’t” 

for some s’ E frOntk(s) n S, and depth(t’)<k (see Remark 4). 

To prove (3) we have to show: if Cp = $ is an equation of (FTk) and if h: fi + F/zk 

is a homomorphism then h(4) = h($) or, equivalently, if h: fJ -+ F is a homomor- 

phism then h(4) xk h(tj). But the latter follows immediately from Remark 5 and 

the fact that fiontk(fO(t, t’)) = fiontk(t) U frOntk(t’) for t, t’ E T with deptb(t)>k or 

depth(t’) > k. •1 

So every k-frontier testable tree language over A is recognized by F/ak, and F/zk 

satisfies (FTk). This is the correctness of (FTk). 

6.2. Completeness 

Let us assume that h: F + B is a homomorphism into a finite tree algebra satisfy- 

ing (FTk ). We have to show that ker(h) is at least as large as ek. So we assume, 

furthermore, that to and ti are trees over A with to zk tl, and we need to prove 

Mto) = h(tt ). 
If depth(to) < k or depth(tt ) < k, then to = tI by Remark 4, in particular, h(to) = 

h(t,). If depth(to)>k and depth(tt)ak, the situation is more involved. 

We will introduce the notion of a tree in normal form. Each such tree will have the 

shape of a comb, and the collection of all its teeth will coincide with its set of frontier 

trees of depth <k. Furthermore, the notion of a tree in normal form will be chosen in 

such a way that we will be able to prove the following. 

(1) For every tree t of depth 2 k there exists a tree t’ in normal form such that 

t ek t’ and h(t) = h(t’), see Lemma 6. 

(2) If t and t’ are trees in normal with t zk t’, then h(t) = h(t’), see Lemma 9. 

From this, h(to) = h(tl ) follows: by (1 ), there exist trees t,!, and ti such that to zk 

t& h(to) = h(t;), tl M k t[, and h(tl) = h(ti); we then have h(ti) = h(ti) by (2), thus 

h(to) = h(tA) = h(ti) = h(tl). It remains to give a formal definition of the notion of a 

tree in normal form and to prove (1) and (2), i.e., Lemmas 6 and 9. 

For notational convenience we denote ker(h) by X* (i.e., h(t) = h(t’) iff t zh t’) 

and zh n zk by x. 

Let a E A be a fixed letter. Given trees us,. . . , tl, we denote by y(u0,. . . , u,) the tree 

A(no, fa(%r *. . , .a%-1,&l>...)). 

By convention, when n = 0, then y(us) is set to ~0. 

(27) 
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De6nition 4. A tree t is in normal form if t = y(uo, . . . , u,) for some n > 0 and some 

trees us,..., un such that depth(u,) = k, depth(ui)<k for i with i<n, and frontk(t) = 

{UO,...,%}. 

The last condition is equivalent to frontk(ui) ~{uo,. . . , u,} for every i with i<n. 

If we say that ‘t = y(u0,. . . , u, ) is a tree in normal form’ we assume that the ui 

satisfy the conditions of Definition 4. (Observe that, in general, there is no unique way 

to write a tree as in (27).) 

In what follows the reader has to keep in mind that, by Lemma 3, every transfor- 

mation according to an equation of (FTk) does not only preserve eh-equivalence but 

also ensures wk-equivalence, hence z-equivalence. 

We start with two technical lemmas. 

Lemma 4. Let t be a tree with depth 2 k and let ~0,. . . , u,,-1 be an enumeration of 
the elements of fro&k(t). Then y(uo,. . . ,u,-~, t) x t. 

Proof. For i = 0,. . . , n we prove y(u0,. . . , ui- 1, t) M t by induction. The induction base 

(i = 0) is trivial. For the induction step let i < n and suppose y(us,. . . ,#;-I, t) w 

t. Since Ui E frontk(t) we can write t = SUi for some special tree s. Then t X 

Y(Uo, * *. 3 ui, t) is proven by the following chain of transformations: 

t ki ~(UO~.~~~Ui-~~t) (induction hypothesis) 

= Y(UO,..., %-19fn(%,t)) (because of (Idpk)) 

= Y(Uo,. . ., Ui_~,~(Uiy fa(SUi, t))) (because Of (CaQ) Or (can:)) 

= y(uo, * * * 7 %-1,W9fa(W,t)) (definition of y) 

M Y(UO,. . .P ui9 t) (because of (Idpk)) 0 

Lemma 5. Let t = y(uo,... , u,) be a tree with depth(u,)a k and (t’) an arbitrary 

tree. Then fa(t, t’) M y(u0,. . . , em, t’). 

Proof. We prove this by induction on m. The case m = 0 is trivial. If m > 0, observe 

the following: 

fzI(t, t’) = fa(Y(U0, . . ., %I), 0 (assumption about t) 

= fa(_M~O, Y(W, . . ., u,)), t’) (definition of y) 

= f=(uo, fa(Y(W,. . .9 u,,,), t’)) (because of (Rotk)) 

a fa(uO9 Y(Ul,. . * P Urn9 t’)) (induction hypothesis) 

= y(u0,u1,...,hn,~‘) (definition of y) q 

We can now prove that every tree of depth > k is z-equivalent to a tree in normal 

form. 
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Lemma 6. For every tree t of depth > k, there exists a tree t’ in normal form such 
that t x t’. 

Proof. We prove this by induction on depth(t). 

Induction base: depth(t) = k. If frontk(t) = {us,. . . ,u,,_l} then, by Lemma 4, 

t = y(uo,..., un--l,t) and Y(uo,..., 24,-l, t) is in normal form. 

Induction step: depth(t) > k. Let t = fb(t0, tl). We proceed by case distinction on 

the depth of tl. 
Case 1: depth(ti ) 2 k. By induction hypothesis there exists t” = y(v0,. . . , v,) in nor- 

mal form with t” M tl. A case distinction on the depth of to is helpful. 

Case la: depth(tc)<k. Assume froI&(fb(t(J, t”)) = (~0,. . . ,t.h_-l}. We have 

t = fb(tovt”) 

= Y(Uo, . . *, &-1,fAto,t”)) (Lemma 4) 

= Y(Uo,..., uPI-,,fa(to,t”)) (because of (Sym)) 

= Y(UO,...,U,-l,tO,t”) (definition of y) 

= y(uo,~~~,~~-l,~o,~o,~~~,~~) (definition of 7) 

and the last tree is in normal form. 

Case lb: depth(&) > k. By induction hypothesis there exists a tree t’ = y(u0,. . . , u, ) 
in normal form with t’ M to. By Lemma 5 we know fb(t’, t”) M y(uo,. . . ,um, vg, . . . , II,). 

Since the tree on the right-hand side is in normal form, this is sufficient. 

Case2: depth(tl) < k. Then depth(&) 2 k, and an application of (Symk) yields 

t w fb(tl, to). Case 1 applies to the tree of the right-hand side, so we find t’ in normal 

form with t’ !a fb(t1, to), hence t’ = t. 0 

We now show that adjacent teeth commute. 

Lemma 7. Let t = ~(uo,..., u,) be a tree in normal form. Zf 
(1) i < n- 1, or 
(2) i = n - 1 and depth(u,_l) = k, 

then t = Y(Uo ,...,Ui-l,Ui+l,Ui,Ui+2,..., uo), and the tree on the right-hand side is also 
in normal form. 

Proof. The first case is an immediate consequence of (Sym~). The second case is 

proven as follows. 

t = y(q,..., ui-l,fn(ui,fa(ui+l,Y(uI+2,. ..,u,)))) (definition of Y) 

= Y(W,..., ui-l,fa(fa(ui+l,Y(ui+Z,..., u,)),~)) (because of (SYW)) 

= Yh, * * * 3 k-1, fa(&+lv fa(Y(&+29 * * - 9 un), ui))) (because of (Rotk)) 

= YCW,..., ~i-l~fn(%+l~fa(Ui,Y(~i+27~~~~~n))) (because of (Symk)) 

= SY(W ,...,ui-l,ui+l,ui,t(i+2,..., U”) (definition of y) 0 

Next, we observe that multiple occurrences of a teeth can be eliminated. 
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Lemma 8. Zft = ~(240 ,,..,u,,) is a tree in normalform and ifO<i < n and ui = ui+l, 

then t x ~(uo, . . . , uiy ui+2, . . . , u,,), and the tree on the right-hand side is also in normal 

f orm. 

Proof. For i = n - 1, the claim follows immediately from (Idpk). The case i < n - 1 

is proven by the following transformations: 

t = y(u1,..., Ui-13 fn(ui9 fa(ui3 YC”i+29.. .Y u,)))) (definition of y, Ui = Ui+i) 

= YCW,..., ui--l,fa(ui,Y(ui+2,...,Un))) (because of (Can;)) 

= Y(Ul ~**~~Ui~Ui+29~~~~%) (definition of y) q 

Combining the foregoing two lemmas we can conclude the following. 

Lemma 9. TWO 5zk -equivalent trees in normal form are also xh-equivalent. 

Proof. Let t = y(uo, . . . , u,) and t’ = y( vg, . . . , v, ) be zk-equivalent trees in normal 

form. Then (240 ,..., 24,) = {us ,..., v,} by definition. By Lemma 7, the Ui and the uj 

can be rearranged such that their order in both trees is the same. In addition, Lemma 8 

allows to reduce the multiplicities of every Ui or Uj, respectively, to one. Thus both 

trees can be transformed into the same tree, hence t x t’. 0 

In view of what was said at the beginning of this subsection, the proof of the last 

lemma also completes the proof of the completeness of (FTk), which, in turn, completes 

the proof of Theorem 1. 

7. An efficient algorithm that decides frontier testability 

On the basis of Theorem 1 we will develop an efficient decision procedure that 

decides whether a regular tree language represented by a finite tree automaton is frontier 

testable or not. 

Corresponding to Remark 5 we have the following. 

Remark 6. Let D be a finite tree algebra generated by DA and assume that the sets 

Ei with i 2 1 are defined as follows: 

Ei+l ={~~(a,q,q’) 1 a E DA A(g,q’) E CDT X Ei)U(Ei X&)) 

Then q E Ei if and only if there exists a homomorphism h: P + D such that h(Ti) = q. 
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The sets Ei therefore build a descending chain. Since none of the Ei is empty 

(provided DA = @), the chain is stationary from the ]&I-th entry onwards: 

Remark 7. Let D and the sets Ei be as in the previous remark. Then El 2 E2 > . . .> 

El = El+, = . . ., where 1 = I&j. 

This remark is helpful to prove the following lemma, in the proof of which, for 

every q E DT, the set Eq is defmed to be the supremum of the chain q G Ey E . . . 

with Ey inductively detined as follows: 

E:+, =E: U {KD@,q,q’) 1 a E DA A (q,q’) E (D-r x g) U (Ey x D-r)} 

Lemma 10. Let D and 1 be as in the previous lemma. If D satisjies (FTk) for some 

k, then D satisjies (FT,). 

Proof. By Remark 6, D satisfies (FTk) if and only if it satisfies (28)-(31) below. 

44 4) = b(q, 4 

a(d, d) = d 

a(q,a(d’,d)) = a(d’,d) 

a(a(q, d), q’) = a(q, a(d, 4’)) 

for a,b E DA, q E &, d E Ek 

for a E DA, d EEk 

for a E DA, q E &, d E &, d’ E Eq 

for a E DA, q,q’ E &, d E En 

(28) 

(29) 

(30) 

(31) 

Therefore, D satisfies (FTt) if it satisfies (FTk) for some k, since, by Remark 7, the 

set El is the smallest among all Ei. 0 

We obtain the following interesting consequence of Theorem 1, which corresponds 

to a result in [8]. 

Corollary 1. Let L be a regular tree language over the alphabet A. Then the following 
conditions are equivalent: 

(A) L is frontier testable. 
(B) L is l-frontier testable, where 1 = I(F/mL)~I. 

From Lemma 10 and its proof we see that, in order to check whether a regular tree 

language L over A is frontier testable, it is sufficient to check whether an isomorphic 

copy D of F/d satisfies (28)-(31) with k = J&I. 
In general, computing an isomorphic copy D of the syntactic tree algebra of a regular 

tree language L starting from a tree automaton is expensive: the cardinality of DS has 

an exponential lower bound in terms of the states of a minimal automaton for L. 
However, in the definition of the sets Ei and El and in (28)-(31) we do not need Ds; 
we only need 4. and K~. These two objects can be computed efficiently, as we will 

see soon. 
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Let (B,R) be a tree automaton over A and L the language recognized by it. Consider 

the finite tree algebra C (with C = (A, BE, B)) as constructed between Remarks 2 and 

3, which recognizes L via the homomorphism h: F + C with h(a) = a for every 

a E A. Let C’ be the substructure of C generated by the 3-sorted set Q&0,0). (Note 

that CA = A and C+ = B, since B is assumed to be generated by the empty set.) 

According to (24)-(26) we define a binary 3-sorted relation N on C’ as follows: 

-‘A = {@,a’) E A x A 1 (c,” E R - c,“, E R) 

At’s E C; Vq, q’ E B (sfaB(q,q’) E R ++ sf$(q,q’) E R) 

At19,q’ E B (f:(q,q’) E R +-+ f:(q, q’) f R)), 

v = {(J-J”) E % x C; 1 b E B (f(q) E R H f’(q)) 

Ah E B Vs E CL W-(q)) E R * &f’(d) E RI), 

-r = {(q,q’) E B x B 1 (q E R ++ q’ E R) 

AVf 6 C; (f(q) E R - f ‘(4) E R)). 

(32) 

(33) 

(34) 

It is clear that N is a congruence on C’ and that D defined by D = C’/- is an 

isomorphic copy of F/wL. We have 

rcD(a/-, q/m, q//f- 1 = f=(q, q’)/- (35) 

foraEAandq,q’EB. 
Another way to define NT is to say that it is the coarsest equivalence relation on 

B that is compatible with the partition (R, B \ R} and the functions gz: B --) B and 

hi: B --f B defined by gz(q’) = ff(q,q’) and h!(q’) = ff(q’,q) for a E A and q E B. 
By a result of [l], Nr can therefore be computed in time O(mn log n) where m = IAJ 

and n = JBI. 
Taking all together we can now state: 

Theorem 2. There exists an algorithm that, given a tree automaton with n states and 
over an alphabet of cardinality m, decides in time O(mn3 + m2n2) whether the tree 
language recognized by the automaton is frontier testable. 

Proof. A sketch of an algorithm follows. Its correctness is clear from the proof of 

Lemma 10 and Theorem 1. 

1. Compute the binary relation NT on CG = B using the algorithm presented in [ 11. 

This takes time O(mnlogn). 
2. Let DT = Ci/- and 1 = I&(. (Note: 1 <n.) 

3. Compute El,..., Et as defined in Remark 6, using (35). This can be done in a 

straightforward way according to the definitions in time 0(mn2). 
4. For every q E &, compute the set E 4. This can be done in a straightforward way 

in time 0(mn3). 
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5. Check (28)-(31) with k = I, again using (35). This takes time 0(m2n2 + mn + 
mn3 + mn3). 

6. Report whether the equations are satisfied or not. 

The overall running time is 0(mn3 + m2n2). 0 

8. An equational characterization of frontier testability 

The aim of this section is to present a finite set of equations characterizing frontier 

testable tree languages (where the parameter k is not fixed). This is not achievable, 

if we stick to the present signature C. The following proposition even states that no 

set (no matter whether this set is finite or infinite) of equations in C characterizes the 

class of the syntactic tree algebras of all frontier testable tree languages. However, as 

we will see below, extending Z helps. 

Proposition 4. There is no set E of equations in the signature Z such that the fol- 

lowing ho& for every regular tree language L. 
(+) L is frontier testable if and only if the syntactic tree algebra of L satisjes E. 

Proof. For contradiction let us assume that E is a set of equations satisfying (+). We 

distinguish two cases. 

Case 1: Every equation of E is true in F. Then every quotient of F satisfies E, in 

particular, the syntactic tree algebra of a regular non-frontier testable tree language. 

Case2: There is an equation 4 = II/ in E such that there exists a homomorphism 

h: fi + F with h(4) # h($). W.l. o. g. we assume that 4 and $ are of sort T. (If 

4 and + are of sort A, consider ~(4) = q($). If 4 and $ are of sort S, consider 

q(c$,t) = q(ll/,t) for a new variable t of sort T.) Let to = h(4), tl = h($), and 

k = max{depth(to),depth(ti)}. W.l.o.g. assume tl $2 front(ts) and set L = {t E T 1 

to E fiontk(t)htl $i fiontk(t)}. Then L iS a k-frontier testable language, but its SyI&XtiC 

tree algebra does not satisfy the equation $J = 1+9 (since to E L, but tl +! L), hence it 

does not satisfy E - a contradiction. 0 

To be able to characterize frontier testability by equations, we could adapt the notion 

of ‘ultimately defined by an infinite sequence of equations’ (e.g., see [ 111) known from 

finite semigroup theory. But introducing implicit operations (see [ 141) is an even better 

remedy, for in our case the set of equations characterizing frontier testability will turn 

out to be finite. We do not need the entire machinery of implicit operations and implicit 

equations (as elaborated in [2]), just the implicit o-operation, which is known from 

finite semigroup theory. 

We recall some facts and notation from finite semigroup theory (see, e.g., [3]). An 

element s of a finite semigroup is called idempotent if s2 = s. In every finite semigroup 



104 Th. Wilkel Theoretical Computer Science 154 (19%) 85-106 

there exists, for every element S, a unique idempotent element in the subsemigroup 

generated by S, i.e., in the set {s,s2, .s3,. . .}. This element is denoted by so. 

As pointed out in Remark 1, if B is a tree algebra, then Bs together with eB 

forms a semigroup. In view of what has just been said about finite semigroups, this 

motivates the following definition in which Z’ denotes the 3-sorted signature Z U 

h,s)h 

Definition 5. If B is a finite tree algebra, then B is the 3-sorted C’-expansion of B in 

which s”’ ’ is the unique idempotent element in {s,s2,s3,. . .}, where Bs together with 

cB is viewed as a semigroup. 

We use the following lemma known from finite semigroup theory (see, e.g., [ll]). 

Lemma 11. If S is a jnite semigroup of cardinality n and tfm > n, then the following 
assertions are equivalent for an element s E S: 

(A) There exist SO,. . . , s,,_~ E S such that s = sosl . ..s.,,_,. 

(B) There exist SO,S~,SZ E S such that s = sos;l)s~. 

In our situation this extends to the following remark, where P’ denotes the free 

3-sorted P-term algebra in the variables ss,sl, and to. 

Remark 8. Let D, the sets Ei, and 1 be as in Remarks 6 and 7. Then q E Et iff there 

exists a homomorphism h: P’ + D such that h(sosyto) = q. 

From this, in view of Theorem 1 and the proof of Lemma 10, we get the desired 

result: 

Theorem 3. Let L be a regular tree language over A. Then the following conditions 
are equivalent. 

(A) L is frontier testable. 
(B) The 3-sorted Z’-algebra F/wL satisfies the following equations, which are de- 

noted by (FT). 

a(s&to, t) = b(t,s&to) 

a(s&to, s&to) = s&to 

a(& a(st,s&to)) = a(st,s&to) (Can) 

446 sosyto), t’) = a(t, a(s&to, t’)) 

(C) L is recognized by a finite tree algebra B such that B satisfies (FT). 
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9. Concluding remarks 

In [ 10, 121 Nivat, Peladeau, and Podelski use semigroups to classify regular tree 

languages; they characterize classes of regular tree languages by the corresponding 

classes of syntactic semigroups. This does not work for frontier testability. If A is a 

two letter alphabet and a denotes one of its elements, the syntactic semigroup of the 

tree language L = {t E T 1 a E front,(t)} is an extension of the syntactic semigroup 

of the language 

L’=Lu{~E T 13 s~S’3 to,rl E T(t=sf,(to,t,))}, 

and L is l-frontier testable but L’ is not, So neither the class of all frontier testable 

nor the class of k-frontier testable tree languages (for any k > 0) can be characterized 

by a set of identities or pseudoidentities for semigroups (since validity of equations is 

preserved by passing to substructures). 

In [ 161 Steinby develops an algebraic framework for the classification of regular tree 

languages. From (FTk) one can easily derive a finite set of equations characterizing 

k-frontier testability in that framework. However, it is not clear to me whether the class 

of all frontier testable tree languages can be characterized in Steinby’s framework by 

a finite set of equations (even when implicit operations are allowed). From (FT) I can 

derive only an infmite set of equations using an infinite number of implicit operations. 

It is not hard to extend the equational characterization of frontier testability of Sec- 

tions to the more general case of generalized definite tree languages [9,15]; one only 

needs to combine our results with the results on definite tree languages presented 

in [lo]. It is, however, unlikely that the property of being generalized definite (not 

even of being definite) can be decided efficiently. 

Presumably, a transformation of known results [2] from universal algebra could 

provide an abstract framework for the classification of regular tree languages using 

tree algebras, i.e., a correspondence between classes of regular tree languages defined 

by certain closure properties and ‘pseudovarieties of A-generated (see Remark 6) tree 

algebras’. Steinby’s framework mentioned above provides a similar correspondence for 

so-called “varieties of C-tree languages” and “varieties of finite Z-algebras” for arbitrary 

one-sorted signatures Z. However, an abstract classification result for tree algebras 

would have to prove to be useful in the sense that it allows succinct characterizations 

of interesting classes of regular tree languages. Therefore, a first aim should be a 

characterization of other, more complicated classes of regular tree languages by using 

tree algebras. Perhaps, a characterization of locally testable tree languages [8,16], a 

natural class of regular tree languages, can be obtained along these lines. 
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