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Introduction
• The Armv8-A architecture advances annually with relatively small-scale “ticks”.

• Armv8.5-A is the latest version, announced in September 2018. 

• But this presentation is not about the next annual architecture tick.
• Some architectural features take much longer than the annual cadence to research and develop.

• Arm is announcing two major new architecture technologies for performance scaling.
• The outcome of several years of architecture development.

• These new technologies are not yet part of any announced product roadmap.
• But guidance to developers to prepare for future Arm architecture and CPU products.

• Preparing the software ecosystem for complex new technologies can take a long time.
• To allow this work to begin, the new instruction sets will be published by the end of next week.
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Moore’s Law for transistor area scaling
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Moore’s Law for single-thread performance
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Addressing Moore’s Law

• Can we use the additional transistors to unlock more CPU performance?

• By processing more instructions or more data in parallel per cycle.

• New microarchitecture can extract more Instruction-Level Parallelism (ILP).

• But there are limits to this hardware magic.

• Could new architecture allow us to express greater parallelism in our code? 

• Tackling the unbending nature of Amdahl’s Law requires far more parallelisation.

• But without needing to rewrite the world’s software.
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Scalable Vector Extension v2 (SVE2)
Scalable Data-Level Parallelism (DLP) for more applications

Built on the SVE foundation.
• Scalable vectors with hardware choice from 128 to 2048 bits.
• Vector-length agnostic programming for “write once, run anywhere”.
• Predication and gather/scatter allows more code to be vectorized.
• Tackles some obstacles to compiler auto-vectorisation.

Scaling single-thread performance to exploit long vectors.
• SVE2 adds NEON™-style fixed-point DSP/multimedia plus other new features.
• Performance parity and beyond with classic NEON DSP/media SIMD.
• Tackles further obstacles to compiler auto-vectorization.

Enables vectorization of a wider range of applications than SVE.
• Multiple use cases in Client, Edge, Server and HPC.

– DSP, Codecs/filters, Computer vision, Photography, Game physics, AR/VR, 
Networking, Baseband, Database, Cryptography, Genomics, Web serving.

• Improves competitiveness of Arm-based CPU vs proprietary solutions.
• Reduces s/w development time and effort.

Built on SVE

Improved scalability

Vectorization of
more workloads
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Transactional Memory Extension (TME)
Scalable Thread-Level Parallelism (TLP) for multi-threaded applications

Hardware Transactional Memory (HTM) for the Arm architecture.
• Improved competitiveness with other architectures that support HTM.
• Strong isolation between threads.
• Failure atomicity.

Scaling multi-thread performance to exploit many-core designs.
• Database.
• Network dataplane.
• Dynamic web serving.

Simplifies software design for massively multi-threaded code.
• Supports Transactional Lock Elision (TLE) for existing locking code.
• Low-level concurrent access to shared data is easier to write and debug.

Improved scalability

Hardware Transactional 
Memory

Simpler software design



SVE Recap
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SVE features #1
HPC vector extension announced in 2016

Gather-load and scatter-store.
• Transfer a single vector from/to a vector of addresses.
• Permits vectorization of non-linear data structures.

Per-lane predication.
• Operate on independent lanes under a predicate register.
• Permits vectorization of complex control flows & nested loops.

Predicate-driven loop control and management.
• Eliminate loop head/tail and other vectorization overheads.
• Permits more aggressive vectorization at -O2.
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SVE features #2
HPC vector extension announced in 2016

Software-managed speculative vectorization.
• First-faulting vector load allows memory accesses to safely 

cross into invalid pages.
• Permits vectorization of data-dependent while/break loops.

Additional vector data-processing.
• In-order and tree-based floating-point reductions. 

• Integer and bitwise logical reductions.

• Integer and FP vector divide & four operand multiply-add.

• Vector trig (sin/cos/exp), etc., etc.
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SVE registers

• Scalable vector registers

• Z0-Z31 extending NEON’s 128-bit V0-V31.

• Packed DP, SP & HP floating-point elements.

• Packed 64, 32, 16 & 8-bit integer elements.

• Scalable predicate registers

• P0-P7  governing predicates for load/store/arithmetic.

• P8-P15 additional predicates for loop management.

• FFR    first fault register for software speculation.
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// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
b .latch

.loop:
ldr s1, [x0,x4,lsl 2] // s1=x[i] 
ldr s2, [x1,x4,lsl 2] // s2=y[i] 
fmadd s2, s1, s0, s2  // s2+=x[i]*a 
str s2, [x1,x4,lsl 2] // y[i]=s2 
add x4, x4, #1 // i+=1

.latch:
cmp x4, x2 // i < n 
b.lt .loop // more to do?
ret

Scalar SAXPY
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Scalar SAXPY

// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
b .latch

.loop:
ldr s1, [x0,x4,lsl 2] // s1=x[i] 
ldr s2, [x1,x4,lsl 2] // s2=y[i] 
fmadd s2, s1, s0, s2  // s2+=x[i]*a 
str s2, [x1,x4,lsl 2] // y[i]=s2 
add x4, x4, #1 // i+=1

.latch:
cmp x4, x2 // i < n 
b.lt .loop // more to do?
ret
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// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
whilelt p0.s, xzr, x2 // p0=while(i++<n)
dup   z0.s, s0 // z0=dup(A)

.loop:
ld1w z1.s, p0/z, [x0,x4,lsl 2] // p0:z1=x[i]
ld1w z2.s, p0/z, [x1,x4,lsl 2] // p0:z2=y[i] 
fmla z2.s, p0/m, z1.s, z0.s  // p0?z2+=x[i]*a 
st1w z2.s, p0, [x1,x4,lsl 2] // p0?y[i]=z2 
sqincw x4 // i+=(VL/32)

whilelt p0.s, x4, x2 // p0=while(i++<n) 
b.first .loop // more to do?
ret

Scalar SAXPY SVE SAXPY

// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
b .latch

.loop:
ldr s1, [x0,x4,lsl 2] // s1=x[i] 
ldr s2, [x1,x4,lsl 2] // s2=y[i] 
fmadd s2, s1, s0, s2  // s2+=x[i]*a 
str s2, [x1,x4,lsl 2] // y[i]=s2 
add x4, x4, #1 // i+=1

.latch:
cmp x4, x2 // i < n 
b.lt .loop // more to do?
ret
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Scalar SAXPY SVE SAXPY

// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
b .latch

.loop:
ldr s1, [x0,x4,lsl 2] // s1=x[i] 
ldr s2, [x1,x4,lsl 2] // s2=y[i] 
fmadd s2, s1, s0, s2  // s2+=x[i]*a 
str s2, [x1,x4,lsl 2] // y[i]=s2 
add x4, x4, #1 // i+=1

.latch:
cmp x4, x2 // i < n 
b.lt .loop // more to do?
ret

// -----------------------------------------
// void saxpy(const float X[], float Y[], 
//            float A, int N) {
//   for (int i = 0; i < N; i++)
//     Y[i] = A * X[i] + Y[i];
// }
// -----------------------------------------
// x0 = &X[0], x1 = &Y[0], s0 = A, x2 = N

saxpy: 

mov x4, #0 // x4=i=0 
whilelt p0.s, xzr, x2 // p0=while(i++<n)
dup   z0.s, s0 // z0=dup(A)

.loop:
ld1w z1.s, p0/z, [x0,x4,lsl 2] // p0:z1=x[i]
ld1w z2.s, p0/z, [x1,x4,lsl 2] // p0:z2=y[i] 
fmla z2.s, p0/m, z1.s, z0.s  // p0?z2+=x[i]*a 
st1w z2.s, p0, [x1,x4,lsl 2] // p0?y[i]=z2 
sqincw x4 // i+=(VL/32)

whilelt p0.s, x4, x2 // p0=while(i++<n) 
b.first .loop // more to do?
ret
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SAXPY using ACLE vector intrinsics
Arm C Language Extensions for NEON and SVE

NEON ACLE intrinsics

void saxpy(const float X[], float Y[], 

float A, int N) {

for (; N % 4 != 0; N--)

*Y++ += *X++ * A; // scalar loop head

for (i = 0; i < N; i += 4) {

float32x4_t vx = vld1q_f32(X);

float32x4_t vy = vld1q_f32(Y);

vy = vmlaq_f32(vy, vx, A);

vst1q_f32(Y, vy); 

X += 4; Y += 4; 

}
}

SVE ACLE intrinsics

void saxpy(const float X[], float Y[], 

float A, int N) {

for (i = 0; i < N; i += svcntw()) {

svbool_t part = svwhilelt_b32(i, N);

svfloat32_t vx = svld1(part, &X[i]);

svfloat32_t vy = svld1(part, &Y[i]);

vy = svmla(part, vy, vx, A);

svst1(part, &Y[i], vy);

}
}
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HPC performance SVE vs. NEON
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HPC performance SVE vs. NEON
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HPC performance SVE vs. NEON
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HPC performance SVE vs. NEON
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Introducing SVE2
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SVE2 enhancements

▪ NEON-style “DSP” instructions

• Trad NEON fixed-p, widen, narrow & pairwise ops

• Fixed-point complex dot product, etc. (LTE)

• Interleaved add w/ carry (wide multiply, BigNums)

• Multi-register table lookup (LTE, CV, shuffle)

• Enhanced vector extract (FIR, FFT)

▪ Cross-lane match detect / count

• In-memory histograms (CV, HPC, sorting)

• In-register histograms (CV, G/S pointer de-alias)

• Multi-character search (parsers, packet inspection)

▪ Non-temporal Gather / Scatter

• Explicit cache segregation (CV, HPC, sorting)

▪ Bitwise operations

• PMULL32→64, EORBT, EORTB (CRC, ECC, etc.)

• BCAX, BSL, EOR3, XAR (ternary logic + rotate)

▪ Bit shuffle

• BDEP, BEXT, BGRP (LTE, compression, genomics)

▪ Cryptography

• AES, SM4, SHA3, PMULL64→128

▪ Miscellaneous vectorisation

• WHILEGE/GT/HI/HS (down-counting loops)

• WHILEWR/RW (contiguous pointer de-alias)

• FLOGB (other vector trig)

▪ ID register changes only for SVE Linux kernel

Optional
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SVE2 widening & narrowing vs. NEON

• NEON uses high/low half of vector
• Too costly for vectors >>128b
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SVE2 widening & narrowing vs. NEON

• NEON uses high/low half of vector
• Too costly for vectors >>128b

• SVE2 uses even/odd elements
• Bottom & top variants of instructions
• Widens and narrows “in lane”

• Widening deinterleaves the inputs 
• But narrowing reinterleaves again
• And reduction is order-insensitive
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DSP/Multimedia performance SVE2 vs. NEON

Parity and beyond with traditional NEON DSP/Media workloads

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NEON DSP

SVE2 @ VL128b

SVE2 @ VL256b

SVE2 @ VL512b

Performance
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General performance SVE2 vs. NEON
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General performance SVE2 vs. NEON
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Introducing TME
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Arm Transactional Memory Extension (TME)

Programmer writes

tstart x0
cbnz x0, fallback

// transactional code here

tcommit

Hardware provides

• Strong isolation.

• Non-interference & containment from both 
transactional and non-transactional code.

• Failure atomicity.

• Architectural changes discarded on failure.
• All instructions commit or none.

• Best-effort transactions.

• No forward progress guarantee, SW must 
provide non-transactional fallback path.

• Good for multi-client “server” applications 
with large, rarely contended data structures. 
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TME transaction failure causes

• Causes

• DBG A debug-related exception was encountered but not raised.

• NEST The maximum transactional nesting depth was exceeded.

• SIZE The transactional read set limit or the transactional write set limit was exceeded.

• ERR An operation architecturally not permitted in Transactional state was attempted.

• MEM A transactional memory conflict was detected.

• CNCL The transaction was canceled by a TCANCEL instruction.

• TRIVIAL The system is currently running with the trivial TM implementation enabled.

• IMP Any other failure cause.

• Other bits

• RTRY Only set if the transaction might succeed on retrying.

• INT An unmasked interrupt was delivered.

• REASON  From the TCANCEL operand.
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Transactional Lock Elision (TLE)
Killer use-case for Hardware Transactional Memory (HTM)

• Execute a lock-protected critical section transactionally.
• Replaces the lock/unlock by TSTART/TCOMMIT.
• Same programming model as locks, but the critical sections can now run concurrently.
• Only falls back to a lock/unlock if there is a conflict (after user attempts any retries).
• Fallback code is the same as the transactional code but runs with the mutex locked.
• GNU C library already supports this for pthread_mutex_lock() on other architectures.

• Benefits of TLE.
• Concurrent execution of critical regions (when no conflict) gives higher throughput.
• Lock thrashing: lock state is not modified, so each processor can hold a local copy.
• Lock preemption: swapping out a thread that “holds” an elided lock does not block other threads.
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Unlocking an untaken lock
generates an exception**

Heuristic based on failure cause, 
retry count, previous behavior, etc.

Example TLE implementation

lock(x)

do {

while (is_locked(x)) /* wait for legacy */;

status = __tstart();

if (status == IN_TRANSACTION) {

if (is_locked(x))  
/* lost race with legacy */

__tcancel(LOCKED);

return;

}

/* transaction failed */

} while (ok_to_retry(status));

legacy_lock(x);

unlock(x)

if (is_locked(x)) {

legacy_unlock(x);

} else {
__tcommit();

}

** “Fixed a bug in the EGL driver where a mutex was unlocked more than
once. […] if lock elision is enabled in glibc, may result in a segmentation
fault.” https://devtalk.nvidia.com/default/topic/908423

https://devtalk.nvidia.com/default/topic/908423
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SAP-HANA: B+Tree / Delta Storage
Real-world example using hardware transactions for database indexing

T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Ledger, B. Schlegel, W. Lehner.
Improving In-Memory Database Index Performance with Intel® Transactional Synchronization Extensions. HPCA’14

Intel(R) Core(TM) i7-4770 @ 3.4 GHz (8 threads, 4 processors)

“Perhaps the most urgently needed
future direction is simplification.
Functionality and code for
concurrency control and recovery are
too complex to design, implement,
test, debug, tune, explain, and
maintain.”
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Twemcache: Twitter Memcached
Using Glibc’s Pthread mutex locks with TLE – no software changes required

• Twemcache1 is a heavily modified memcached

• Memcached is a high-performance 
distributed memory object caching system.

• Local test setup.

• 56 thread Broadwell server; 28 thread 
Haswell client (not isolated).

• Throughput at scale with TLE.

• At 56 threads: 40% more requests/second, 
49% reduction in average request latency

• Some increase in tail latencies, under 
investigation.
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40.3%
49.1%

1.64x

2.6x

8.2x

Tail latency increases

Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
(56 threads, 28 processors, 2 sockets)

1 https://github.com/twitter/twemcache

https://github.com/twitter/twemcache
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DPDK cuckoo+

Li et al. Algorithmic Improvements for Fast Concurrent Cuckoo Hashing. EUROSYS’14

• “Our results about TSX can be interpreted in two ways. On one hand, in almost all of our experiments, hardware transactional memory provided a modest but 
significant speedup over either global locking or our best-engineered fine-grained locking, and it was easy to use. This confirms other recent results showing, 
e.g., a “free” 1.4x speedup from using TSX in HPC workloads [22]. On the other hand, the benefits of data structure engineering for efficient concurrent access 
contributed substantially more to improving performance, but also required deep algorithmic changes to the point of being a research contribution on their 
own.”

Fine-grained per bucket

Fine-grained per location

Intel(R) Core(TM) i7-4770 @ 3.4 GHz (8 threads, 4 processors)

DPDK’s flow classification index uses a concurrent cuckoo+ hash

Hardware transactions for network data-plane processing



Conclusions
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Conclusions

• Arm is announcing two new technologies for the Arm architecture.

• New ways to scale performance and exploit additional transistors with Moore’s Law slowing. 

• Extracting more parallelism from existing software.

• SVE2: improved auto-vectorization with support for DSP/Media hand-coded SIMD.

• Scalable vectorization for increased fine-grain Data Level Parallelism (DLP).

• More work done per instruction.

• TME: easier lock-free programming for lightly-contended shared data structures.

• Scalable concurrency to increase coarse-grain Thread Level Parallelism (TLP).

• More done work per thread.

• SVE2 and TME may be able to combine for even greater performance scaling.

• Tackling Amdahl’s law on multiple fronts with a mix of DLP and TLP in multi-threaded applications.
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Enabling tools and documentation
Upstreaming to begin immediately

LLVM

• Upstreaming of SVE2/TME assembly support to 
begin immediately.

• Goal of initial SVE2 auto-vectorization & ACLE 
upstream by end Q1 CY20.

GNU Tools

• Upstreaming of SVE2/TME assembly, initial SVE2 
auto-vectorization & ACLE to begin immediately. 
(SVE autovec present since GCC8).

• Targeting GCC10 release at end Q1 CY20.

Glibc

• Aiming for Transactional Lock Elision support in
upstream Glibc by Q3 CY19.

Arm Tools

• SVE2/TME support in Arm compiler, debugger 
and fast models planned for H2 CY2019.

Documentation

• SVE2/TME ISA XML available by 15 April 2019.
• developer.arm.com/architectures.

• SVE literature at developer.arm.com/hpc.
• No ABI changes required by SVE2.

• SVE2 literature – including VLA programmer’s 
guide with code examples – available soon.

https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
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